
Implicit Staging of EDSL Expressions:
A Bridge between Shallow and Deep

Embedding?

Maximilian Scherr and Shigeru Chiba

The University of Tokyo, Japan
scherr@csg.ci.i.u-tokyo.ac.jp

chiba@acm.org

Abstract. Common implementation approaches for embedding DSLs
in general-purpose host languages force developers to choose between
a shallow (single-staged) embedding which offers seamless usage, but
limits DSL developers, or a deep (multi-staged) embedding which offers
freedom to optimize at will, but is less seamless to use and incurs addi-
tional runtime overhead. We propose a metaprogrammatic approach for
extracting domain-specific programs from user programs for custom pro-
cessing. This allows for similar optimization options as deep embedding,
while still allowing for seamless embedded usage. We have implemented
a simplified instance of this approach in a prototype framework for Java-
embedded EDSL expressions, which relies on load-time reflection for im-
proved deployability and usability.

Keywords: DSL, metaprogramming, Java, programming languages

1 Introduction

In recent years, the study of domain-specific languages (DSLs) and the inves-
tigation of their usage and implementation methods have attracted increasing
interest. These languages, which are limited in scope and tailored to a specific
problem domain, are said to be easier to reason about and maintain, and open
the door to domain-specific optimizations [1].

One form of DSL implementation of particular interest is the embedding of
DSLs by means of the available language constructs of an enclosing general-
purpose programming language. These embedded DSLs (EDSLs) bring several
advantages to the table. For one, sizable parts of the existing tool and general
language support (e.g. syntactic and semantic analysis) can be inherited from
the host language [1]. More importantly, they enable the embedded usage of

? This is a preprint version of the paper that appeared in the proceed-
ings of ECOOP 2014, LNCS 8586, pp. 385-410, DOI: 10.1007/978-3-662-
44202-9 16. The original publication is available at www.springerlink.com
(http://link.springer.com/chapter/10.1007%2F978-3-662-44202-9 16).

http://link.springer.com/chapter/10.1007%2F978-3-662-44202-9_16

2 Maximilian Scherr and Shigeru Chiba

DSL programs side by side with host language code. As they have a look-and-
feel similar to the host language code, they can be approached by programmers
in a fashion similar to using traditional libraries.

Recent examples of such EDSLs in object-oriented programming are JMock
[2], Guava’s fluent APIs (e.g. FluentIterable, Splitter, etc.) [3], SQuOpt
[4], and jOOQ [5].

When using only facilities expressible within the host language, an EDSL
developer may commonly approach pure language embedding, i.e. without “pre-
processor, macro-expander, or generator” [1], in one of two different fashions:

– Execution of the atomic surface elements of the EDSL is directly governed
by the semantics of the host language. Evaluation of DSL programs occurs
immediately in small steps, yielding and passing intermediate results. This
implementation approach is called shallow embedding.

– Execution of the atomic surface elements of the EDSL first produces (or
stages) an intermediate representation (e.g. AST) of the expressed program
or snippet. Evaluation to final result values occurs separately. This approach
is called deep embedding.

Hybrid forms are also possible, where only selected parts of an EDSL are deeply
embedded. Intuitively, it may help to think of depth here as a measure of freedom
of EDSL programs from the host language’s semantics. This has implications on
the degree of expressiveness and ability to optimize domain-specific computation.
In section 2 we describe the trade-offs between these two approaches.

The strength of deep embedding lies in the fact that computation is staged,
allowing for intermediate, customized processing. However, staging commonly
occurs in an explicit fashion with the potential to detract users and cause over-
head. In order to approximate this staging without incurring penalties we pro-
pose a method called implicit staging, which takes the form of a framework to
be employed by EDSL developers. Section 3 outlines this approach in general.

The main idea behind implicit staging is to statically extract domain-specific
code before it is executed by means of static analysis, in particular abstract
interpretation. This yields a representation of the domain-specific code that can
be processed by an EDSL’s developer in a customized fashion. We make the
following contributions:

– Implicit staging is a method to channel the processing of domain-specific
computation within its static context by semi-automatically isolating it from
general-purpose code.

– We present how increasing the amount of contextual information bears the
potential for rich optimizations that take into account the intermixed nature
of both shallow as well as deep EDSLs.

– In order to concretely illustrate and evaluate our approach, we implemented
a proof-of-concept framework using load-time reflection [6] for the Java lan-
guage. It enables implicit staging of compound EDSL expressions and is
mainly focused on bridging the gap between shallow and deep embedding.
We present this implementation in section 4 and its evaluation in section 5.

Implicit Staging of EDSL Expressions 3

– The prototype shows that our approach is feasible even without full source
code availability and that even basic data-flow analysis suffices to extract
worthwhile portions of EDSL subprograms.

2 Implementation of Embedded DSLs

In our treatment of EDSLs, provided as libraries, we distinguish between three
main roles (cf. figure 1): The developer (alternatively implementor or provider)
of the EDSL defines the interface, implements the language behavior, and writes
its documentation. The user of the EDSL is any developer who employs the
EDSL (directly or indirectly) to support the implementation of programs. The
end user then is anyone who actually causes the execution of these programs.

Fig. 1. EDSL implementation and usage roles

Depending on the choice of host language, the choice of basic building bricks
of an EDSL varies. For instance, in modern ML variants and Haskell these are
commonly data constructor and function applications. In Java they are mainly
field accesses and method calls. In our treatment we simply call these atomic
surface elements the tokens of an EDSL. Furthermore, in statically typed host
languages the introduction of EDSL-specific types and the restriction of type
signatures in effect allow developers to restrict certain combinations of EDSL
tokens, i.e. the EDSL’s specific syntax. It is mainly the runtime behavior of
these tokens that defines the concrete nature of the embedding.

In the following, we introduce shallow and deep embedding [7] by example
of a simple EDSL for matrix operations in Java. A materialized matrix is repre-
sented by a Matrix data type which wraps a two-dimensional double array. We
assume the existence of factory methods for creating matrices from given ele-
ments. We consider only three tokens: static methods for matrix addition (add)
and multiplication (mul), and a static method to stand for a uniform scaling
matrix (sca), i.e. a diagonal matrix of a given dimension and a scaling factor on
its diagonal.

2.1 Shallow Embedding

When operations of an embedded language are directly mapped to equivalent
operations of its host language the embedding is said to be shallow. This means
that EDSL tokens both represent a domain-specific operation and their imple-
mentation or meaning is to immediately perform it. In a shallow embedding of

4 Maximilian Scherr and Shigeru Chiba

our matrix EDSL this means that the add method is implemented to take in
two matrices and return a new one with added elements. The case of matrix
multiplication is analogous to addition, and the sca method creates an actual
scaling matrix. Listing 1 shows a simple usage example.

Listing 1. Shallow EDSL usage example

1 Matrix a, b, c;
2 // Omission
3 Matrix d = add(add(a, b), mul(c, sca(5, 3.0)));
4 Matrix e = add(a, d);

The advantage from an EDSL user’s point of view lies in the fact that the
behavior of an EDSL expression is easily predictable right where it appears in
the code. The expression add(add(a, b), mul(c, sca(5, 3.0))) on line 3
yields a new matrix, and does nothing more (or less). The fact that intermediate
results are created may be detrimental for the runtime performance, but not for
the understanding of that code line. This makes the usage of shallow embedded
DSLs very seamless.

From an EDSL developer’s point of view shallow embedding is easy to imple-
ment. However, this advantage is outweighed by the limitations due to having
to directly adhere to the host language’s semantics. In particular, this means
that optimizations such as common subexpression elimination or fusion of op-
erations cannot be implemented, execution cannot be chunked and scheduled in
sizes worthwhile for parallel execution, and execution is bound to occur on the
same machine and architecture that executes the host program.

2.2 Deep Embedding: Staging at Runtime

Instead of directly mapping tokens to equivalent host language operations, it
is possible to make them generate an intermediate representation (IR), usually
an AST. Here, the sole purpose of token execution is to contribute to build-
ing and composing the next stage of computation, i.e. staging. This IR can be
processed (e.g. optimized, transformed, compiled, etc.) in a separate step and
subsequently executed. This typically yields the end result of the expressed com-
putation. However, it is also possible for the result to be a further stage. A case
for this would be a program P1 whose evaluation generates a program P2 whose
evaluation generates a program P3, and so on.

For a deep embedding of our matrix EDSL we could use an abstract data
type MatrixExp with concrete data types for the different AST node types. The
token methods are implemented to create corresponding nodes. Instead of taking
arguments of type Matrix, the add and mul methods now take arguments of type
MatrixExp. We add a method cnst to create an AST node that will evaluate to
a provided (materialized) matrix.

Listing 2 shows a simple usage example. Lines 3–4 show the rough equivalent
of listing 1, lines 6–7 show a different usage of the EDSL in which the multi-
staged nature of the embedding is more apparent.

Implicit Staging of EDSL Expressions 5

Listing 2. Deep EDSL usage example

1 Matrix a, b, c;
2 // Omission
3 Matrix d = add(add(cnst(a), cnst(b)), mul(cnst(c), sca(5, 3.0))). evaluate ();
4 Matrix e = add(cnst(a), cnst(d)). evaluate ();
5 // Omission
6 MatrixExp dExp = add(add(cnst(a), cnst(b)), mul(cnst(c), sca(5, 3.0)));
7 Matrix f = add(cnst(a), dExp). evaluate ();

When the evaluate method is called, the entire EDSL program has already been
staged and can be fully inspected. This enables domain-specific optimizations,
alternative interpretations, or compilation to a possibly different target language
and execution. For instance, nested binary additions can be specialized to a
flattened addition which does not produce fully materialized intermediate results.

There are potential downsides to deep embedding. Depending on the host
language, it can be hard to hide from the programmer the fact that computation
is staged. This may sometimes be desirable, but when not it arguably adds an
additional layer of complexity for code understanding, especially if the ability to
dynamically create and pass around computation (e.g. ASTs) is abused by users.
Furthermore, EDSL developers have to build data structures for their specific
IR and make the tokens generate the correct IR nodes.

From a runtime performance point of view, the overhead associated with IR
construction, in particular the IR’s memory footprint, optimization, and inter-
pretation (or compilation) need to be carefully considered. After all, an EDSL
developer has no picture of and no influence on how the EDSL’s users place
EDSL expressions and trigger their evaluation in their programs.

2.3 No Middle Ground?

It is no surprise that deep embedding allows for much more powerful and ex-
pressive EDSLs than shallow embedding. Essentially, it can be seen as “just”
providing an elegant way to explicitly perform (domain-specific) code genera-
tion and execution at runtime. On the other hand, shallow embedding offers a
more immediate and seamless usage than deep embedding. However, this im-
mediate usage relies on the immediate execution by the host language, limiting
EDSL performance and expressiveness.

Both have in common the fact that it is reasonable to assume that snippets
of EDSL programs do in fact occur as static, compound expressions. However,
EDSL developers are unable to exploit this fact with either of the embedding
styles. Without the ability to do so, a true alternative between shallow and deep
embedding seems unattainable.

3 Implicit Staging

Custom treatment of EDSL programs, the crucial step for optimization, occurs
after a representation for them has been constructed. In the case of shallow
embedding, this step is never really allowed to happen. Although a sort of repre-
sentation is in fact implicitly constructed during compile time or interpretation

6 Maximilian Scherr and Shigeru Chiba

time, commonly there is neither awareness of what constitutes domain-specific
code, nor is it possible to customize its processing. As described, deep embed-
ding can be used to circumvent this. However, it means explicit IR construction,
explicit processing, and explicit triggering of execution at runtime.1

We propose an approach called implicit staging that aims to reduce explicit-
ness to a minimum where it is a hindrance, i.e. the IR construction and execution
triggering, and retains it where it is desirable, i.e. customized IR processing, while
not changing the way EDSL programs are expressed by EDSL users.

Unlike the described pure embedding approaches it is an impure approach.
Namely, it requires an outside, static, meta-level view and transformations on
user programs. With the exception of languages which allow arbitrary self-
modification, implicit staging can typically occur only once before the execution
of a program. Figure 2 shows the general overview of an implicit staging system
for a given program and EDSL:

1. Staging: Domain-specific parts are automatically extracted, reified, and made
available for processing to EDSL developers in the form of an IR.

2. Processing: The result of this customized processing forms a so-called residue
of the domain-specific computation.

3. Unstaging: The residue is reflected within the original program, yielding a
new, transformed program.

Fig. 2. Implicit staging overview

In principal, the staging step should be able to be performed on the basis of
a simple description or enumeration of the EDSL’s tokens by its developer. The
processing step is to be entirely defined and customized by EDSL developers
to form a desired residue suitable for unstaging. Like staging, the unstaging
step might also be guided by configuration, which is to be kept simple. Hence,
implicit staging lends itself to be provided in the form of a framework to EDSL
developers for whom it performs the staging and unstaging tasks.

1 Though in practice some of these steps can be combined, the separation of steps
here is helpful for a high-level discussion.

Implicit Staging of EDSL Expressions 7

3.1 Staging by Static Token Reinterpretation

The extraction of domain-specific code can be approached by statically simulat-
ing runtime staging behavior to varying degrees. Since EDSL tokens are elements
of the host language, they commonly have a defined runtime behavior. However,
during implicit staging, tokens may be regarded as mere markers and identifiers
for domain-specific computation.

If we assume a representation of the input user program that retains token
identifiability, even if it does not retain all the original source code structure,
the tokens can be reinterpreted as performing the construction of a generic IR.
However, unlike runtime interpretation or execution, as is the case with pure
embedding approaches, this staging reinterpretation is to be performed statically
and abstractly.

The IR can be further augmented with data-flow and control-flow infor-
mation, providing detailed information on the static context in which domain-
specific computation occurs. For instance, this might include type information,
uses and definitions, or value ranges. During processing of the IR, developers
can use this to improve the residue generation, e.g. perform better optimiza-
tions. Some of it might even be necessary for the unstaging step, for instance to
perform type conversions for the residue.

3.2 The Approach’s Potential

Implicit staging provides the basis for exposing a non-atomic, non-local, or even
global view on domain-specific computation. In particular, this means that deep
embedding style freedom can be approximated for traditionally shallowly em-
bedded DSLs. For instance, in an expression like add(mul(a, b), mul(a, b)),
which yields a materialized matrix, the common subexpression can be eliminated
during processing. This is the middle ground we were looking for. However, im-
plicit staging does not necessarily stop there. In fact, it is an extension to both
shallow as well as deep embedding.

The fact that implicit staging may provide contextual information about the
input program and contained EDSL subprograms opens the door to optimiza-
tions that are not possible with the described pure embedding approaches on
their own. After all, even with deep embedding, what can be inspected dur-
ing (runtime) IR processing is only what has been dynamically constructed.
For instance, in the deeply embedded expression add(mul(cnst(a), cnst(b),

mul(cnst(a), cnst(b))) the fact that there is a common subexpression may
eventually be discovered (during processing steps at runtime), but this is redun-
dantly and possibly repeatedly done. With implicit staging it can be optimized
in the residue to help reduce runtime staging overhead.

If we can extend our view even further, assuming an IR that provides in-
formation on dependencies between compound EDSL expressions, further op-
timization opportunities arise. More generally, implicit staging could not only
be used to separate domain-specific computation from general purpose one, but
help incorporate the relation between the two levels of computation into the

8 Maximilian Scherr and Shigeru Chiba

EDSL’s design and implementation. After all, unlike dedicated DSLs, embedded
DSL code snippets live within a general purpose program with its own data flow
and control flow. With an appropriate interface for EDSL developers, global
optimizations could be applied to EDSL programs which are intermixed and
dispersed in user code.

Sometimes, the purpose of dynamically staging an EDSL program at runtime
is to gather as big a program as makes sense in order to increase the chance of
finding redundant code and other optimization opportunities. Recall our deeply
embedded matrix DSL from section 2.2 and consider the user code in listing 3. It
might be wise to ever so slightly alter the surrounding user program to maintain
as much of the dynamically generated EDSL program as possible until a matrix
result needs to be materialized, i.e. when EDSL-external code needs it.

Listing 3. Deep EDSL context example (eager)

1 MatrixExp aExp , bExp , cExp , dExp;
2 // Omission
3 Matrix e = add(aExp , bExp). evaluate ();
4 System.out.println(mul(cnst(e), add(cExp , dExp)). evaluate ());
5 System.out.println(e);

Listing 4 shows such a lazier version. However, if we (statically) knew that
evaluate does not perform optimizations in this situation, it might be worth-
while to stay with the eager version of listing 3 or make different changes.

Listing 4. Deep EDSL context example (lazy)

1 MatrixExp aExp , bExp , cExp , dExp;
2 // Omission
3 MatrixExp eExp = add(aExp , bExp);
4 System.out.println(mul(eExp , add(cExp , dExp)). evaluate ());
5 System.out.println(eExp.evaluate ());

It is our vision for implicit staging, with a sufficiently rich IR and powerful
unstaging process, to eventually make it possible for EDSL developers to trans-
parently adapt user programs in the described fashion. This would free EDSL
users from the burden to consider the implementation details of the EDSL at
hand (in our example the evaluate method).

3.3 Design Aspects

Designing an actual framework for implicit staging requires careful consideration
of the following aspects:

– The choice of host language determines the type of language elements that
can be used as EDSL tokens. Furthermore, properties such as dynamic link-
ing and potential self-modification capabilities may limit the extent of im-
plicit staging. This means that not all host languages are equally suited.
Generally speaking, any language that makes static code analysis hard is
unlikely to be a good candidate.

Implicit Staging of EDSL Expressions 9

– The timing of performing IR construction is mainly determined by the type
of representation in which user programs can be provided to the framework.
While dedicated (pre-)processing of source code is an option, it usually comes
with restrictions regarding the deployment of both the EDSL itself as well
as end-user applications, e.g. upgrades require recompilation. Additionally,
working entirely at compile time restricts data sharing and forces an early
code generation phase.

– The scope of the IR, its contained contextual information, and its construc-
tion greatly influence implementation difficulty for both the framework de-
veloper as well as EDSL developers. This is the main hurdle anticipated for
fully realizing the vision outlined in section 3.2.

4 Implicit Staging at Load Time

In order to concretely illustrate and evaluate implicit staging, we developed a
simple and limited proof-of-concept framework for DSLs embedded in Java. As
indicated in section 3, implicit staging does not necessarily have to occur at
compile time. Java serves well to show this, as it is a language environment
where compilation, class loading, and runtime are closely related. Compilation
results in bytecode [8] which retains sufficient language-level information (e.g.
method names) and its loading occurs on demand at runtime.

Java neither has compile-time metaprogramming facilities, nor does it allow
for simple compiler customization without relying on a custom compiler. How-
ever, it does allow for customized bytecode transformation at load time, i.e. when
a class file is loaded by the Java Virtual Machine (JVM). Choosing load time as
the time for performing implicit staging has the following advantages:

Seamless Workflow Integration: There exists a dedicated mechanism to per-
form bytecode transformations at load time on the JVM. Hence, setting up
our implicit staging implementation should not be harder than using other
bytecode instrumentation tools and should not substantially impair software
development and usage workflows.

Runtime System Specialization: User programs and contained EDSL ex-
pressions in bytecode remain as is until they are loaded on a specific run-
time system. The processing of their IR can be specialized dynamically to
that runtime system. For instance, in presence of specific libraries, drivers,
or hardware, EDSL expressions could be compiled to exploit these, and in
their absence a fallback implementation could be used.

Shared Environment: Loaded user programs share the same runtime envi-
ronment (including the heap) as the staging, IR processing, and unstaging
steps. This establishes cross-stage persistence [9,10,11] which grants EDSL
developers certain freedoms and ease of use. For instance, in our implemen-
tation it is used to provide a simple interface for returning the results of IR
processing as live objects.

10 Maximilian Scherr and Shigeru Chiba

EDSL Deployment and Evolution: Any upgrade or patch of an EDSL’s im-
plementation as well as of our implicit staging framework itself can be sup-
plied modularly. There is no need to recompile user programs from Java
source files with updated library versions. For instance, this is useful in
cases where user programs are only deployed as binaries and cease to be
maintained. Implicit staging at load time enables the evolution and improve-
ments of an EDSL to still be reflected in such cases.

Working with Java comes with the issues of late binding (i.e. virtual method
calls) which restrict whole-program analysis. However, these issues are shared
with other OOP language environments. Being able to work at load time is in
so far beneficial as it allows us to consider more information on the actual state
of the whole program when it is run than at compile time. However, the main
technical challenge lies in having to process low-level (i.e. machine language like)
bytecode instead of structured source code.

4.1 Prototype Overview

In the following we will describe the components, interfaces, and workflow of our
prototype implementation. We designed it with a focus on enabling optimization
and semantic customization of (mostly local) compound EDSL expressions in
user programs, in order to offer a bridge between shallow and deep embedding for
EDSL developers. Compound EDSL expressions are individual Java expressions
that are composed of EDSL tokens either in a nested or chained fashion.

Aside from providing skeleton token implementations, an EDSL’s developer
is required to provide an implementation of the TokenDeclaration interface to
specify the set of tokens of the embedded language, as well as an implementa-
tion of the ExpressionCompiler interface to specify how EDSL expressions are
to be translated. The former implicitly configures the staging step, the latter
corresponds directly with the custom processing step mentioned in section 3.

void m() {
 ···
 Matrix d =
 add(add(a, b),
 mul(c, sca(5, 3.0)));
 ···
}

.class.java

Java Compiler Java VM Implicit Staging Java Agent

$execute(a, b, c, 5, 3.0)

Matrix $execute(···)
 { ··· }

Staging Unstaging

Processing
(Translation)

Staged Expression

Embedded Language ExpressionCompilerTokenDeclaration

Fig. 3. Java prototype overview

Implicit Staging of EDSL Expressions 11

Figure 3 shows a simplified, combined workflow for the usage as well as
the inner workings of our prototype. EDSL users, e.g. application developers,
may write EDSL expressions as they traditionally could with pure embedding
approaches. After all, the tokens (i.e. methods or method calls) may exist inde-
pendently of our framework. User programs are compiled as usual and deployed
with application startup configured to use the implicit staging framework.

At the core of our prototype lies a custom Java programming language agent
(of java.lang.instrument) which intercepts class loading. When an end user
starts the application, the JVM feeds classes to be loaded to the agent and sub-
sequently finalizes the loading of the returned, potentially transformed classes.
Staging, processing, and unstaging are all performed within this agent.

During staging, the bytecode in method bodies is analyzed and all contained
EDSL expressions are extracted according to the token declaration provided
by the EDSL developer. Note that in the interest of simplicity, figure 3 only
shows this simplified for a single expression. Then, for the EDSL-specific custom
processing all expressions are eventually translated to static methods one by one
using the provided expression compiler. Finally, unstaging consists of replacing
the original EDSL expressions with calls to the corresponding methods.

4.2 Staging: Expression Extraction

The staging process is configured and guided by the token declaration of an
EDSL. It specifies which methods2 belong to the EDSL and is provided as an
implementation of the TokenDeclaration interface with the following methods:

– boolean isToken(CtMethod method), a characteristic function for mem-
bership of a method in the set of EDSL tokens.

– boolean hasTokens(CtClass clazz), a method to help quickly exclude
classes that do not contain EDSL tokens.

Our implementation uses the hasTokens method to skip the analysis of classes
which do not refer to classes containing EDSL tokens. It only serves optimization
purposes. The classes CtMethod and CtClass are reified method and class types
similar to java.lang.reflect.Method and java.lang.Class<T>, provided by
the Javassist library [6] used in our implementation. Additionally, our prototype
offers a helper class which allows simple registration of tokens and implements
the interface by standard semantics for superclass and interface lookup.

Being equipped with the information necessary to distinguish between general
and EDSL-specific parts of a program, we can perform staging using a simple
abstract interpretation (forward flow) data-flow analysis approach [12]. A trivial
parsing of the input bytecode is not sufficient, since compound EDSL expressions
are not guaranteed to be neatly clustered after compilation and depend on the
flow of data and control.

2 This could be extended to fields but in our current implementation we limit ourselves
to methods.

12 Maximilian Scherr and Shigeru Chiba

The idea of implicit staging extends beyond mere syntactic extraction. In-
stead, we attempt to statically interpret tokens as if they were deeply embedded
and thus retrieve a static, anticipated shape of compound EDSL expressions. For
the sake of simple API design and implementation complexity, our prototype is
still very limited in that it only extracts expressions on a mostly local scale.

Intermediate Representation. The staged IR in terms of section 3 is simply
a list of the contained EDSL expressions’ ASTs. In the following we will discuss
their representation. Every instance of Expression holds at least:

– Its positions, i.e. the positions of the instructions that caused the original
expressions to be placed on the operand stack (before a potential merge).

– Its type, i.e. the type of the value this expression would have during actual
execution (as specific as this can be determined statically).

– Its value number, i.e. a number that can be used to determine whether two
expressions would yield the same concrete result during execution.

Type analysis and value numbering analysis are currently performed as part
of the same data-flow analysis. The latter is currently very simple and only tracks
storing and loading of local variables and some stack operations such as dupli-
cation, the former follows a similar pattern as is found in bytecode verification
in the JVM. In fact, our data-flow analysis is an extension of such type-analysis
component already present in Javassist3. Hence, for the sake of brevity, we will
omit value numbering and type analysis for the rest of our description.

Local variables, or StoredLocal (loc) instances, store the same information
with the difference that it holds stored-by positions instead of positions, i.e. the
positions of the instructions that caused the storing of the local variable.

There is currently only one type of expression that is considered EDSL-
specific: InvocationExpression (inv). In addition to the general information,
it holds both the EDSL token method and its arguments as a sequence of expres-
sions. A similar expression type is ConversionExpression (cnv) that wraps a
convertee expression. It integrates with the parameters of invocation expressions
to bookkeep for potential conversions (casting, boxing, unboxing).

The following expressions constitute the terminal leaves of a resulting expres-
sion AST and are considered parameter expressions (ParameterExpression) as
they stand for the parameters to domain-specific computation:

– LocalAccessExpression (lac) holds the stored local variable that is accessed
and its potential indices in the local variable array.

– StringConstantExpression (str) and NullExpression (nul) stand for (and
hold) constant values. This can be easily extended to other constants.

– StandaloneExpression (sta) wraps an expression that is to be treated as
standalone.

– UnknownExpression (>) stands for a value resulting from unknown, usually
EDSL-external, computation.

3 javassist.bytecode.analysis.Analyzer

Implicit Staging of EDSL Expressions 13

Figure 4 shows the AST resulting from staging the expression add(add(a, b),

mul(c, sca(5, 3.0))) (cf. listing 1). The reason for the two rightmost leaf
expressions being > is that we currently do not handle numeric constants. We
would get the same result if the two values came from non-EDSL method calls.

Fig. 4. AST for add(add(a, b), mul(c, sca(5, 3.0)))

The StandaloneExpression type requires additional explanation. Consider
the following expression: add(a, d = mul(b, c)). The mul(b, c) part is re-
quired to be considered standalone, as it could be shared with EDSL-external
code. For the current discussion it can be considered equivalent to >.

Abstract Interpretation (Transferring States). The subject states of our
data-flow analysis are JVM stack frames containing the contents of the operand
stack (i.e. expressions) as well as local variables. Our abstract interpretation
models the effect of bytecode instructions using a transfer function (as is common
in data-flow analysis) which transfers the state before interpreting an instruction
to that after it. We informally describe this function as follows:

(i) If we encounter an invocation instruction for a method m, we first check
whether m is a token of the EDSL using isToken. If so, we pop the num-
ber of parameters for this method from the stack, create a new invocation
expression (inv) with these parameters and the instruction’s position, and
add this expression to a (global) list of extracted expressions. If the method
returns a value, we also push the expression onto the stack. If m is not a
token but one of the auto-boxing and unboxing methods, we pop an ex-
pression from the stack, wrap it into a conversion expression (cnv) with the
instruction’s position, and push it onto the stack. Checked cast instructions
are handled in a similar fashion.

(ii) If we encounter a store instruction, we pop an expression from the stack
and create a stored local variable (loc) with the instruction’s position and
place it at the desired index into the local variable array of the stack frame.
We also mark the positions of the popped expression as standalone.

(iii) In case of a load instruction, we retrieve the associated stored local variable
(loc), then create a new local access expression (lac) containing this (with
its index) as well as the instruction’s position, and push it onto the stack.

(iv) Handling the various constant instructions is trivial.

14 Maximilian Scherr and Shigeru Chiba

(v) Any other instruction or case that causes popping of the stack marks the
popped expression’s positions as standalone. Any push onto the stack that
is not part of the aforementioned cases causes an unknown expression (>)
with the instruction’s position to be pushed onto the stack.

Abstract Interpretation (Merging States). When our abstract interpre-
tation encounters a branching instruction, it needs to explore all the branches.
When these branches join back together (e.g. after an if statement), the states
of these branches are merged. For our stack frames we do this by pointwise merg-
ing of the contained expressions and local variables using a merge function (as
is common in data-flow analysis). It can be briefly summarized as follows:

(i) Positions and local variable indices are merged using set union.
(ii) Merging stored local variables (loc) yields a stored local variable (loc) with

merged elements.
(iii) Merging constant expressions yields the same constant if they share the

same value and are of same type, otherwise > with merged positions.
(iv) Merging invocation expressions (inv) yields an invocation expression (inv)

with merged elements (arguments, etc.) if they share the same token, oth-
erwise > with merged positions.

(v) Merging different types of expressions and merging any expression with >
always yields > with merged positions.

(vi) Merging expressions of same type and not of the aforementioned cases
yields the same expression with merged elements.

Merging with a yet undefined element of the stack frame is realized by simply
overwriting. Merging stack frames of different size should not happen and when
detected produces an error.

Post-processing. After a fixed point is reached, i.e. transferring and merging
of states do not produce new results, the data-flow analysis stops. In a final
post-processing step the global list of expressions is then purged of true subex-
pressions, and expressions whose positions have been marked standalone are
turned into standalone expressions.

Having introduced this, we can now illustrate the effects of the abstract
interpretation. Consider the expression mul(a, x > 0 ? add(b, c) : mul(b,

c)). Java’s ternary operator is not reconstructed by our analysis. Instead, the
analysis deals with this situation by merging the stack frames at the end of the
two branches. For the case that x is greater than zero we have this expression
at the top of the abstract operand stack:

e1 = inv
(
{pos4}, Matrix.add,

[
lac({pos2}, bloc , {bi}), lac({pos3}, cloc , {ci})

])
For the case that x is at most zero we get the following expression at the top of
the stack:

e2 = inv
(
{pos7}, Matrix.mul,

[
lac({pos5}, bloc , {bi}), lac({pos6}, cloc , {ci})

])

Implicit Staging of EDSL Expressions 15

Our data-flow analysis needs to merge these two expressions when control-flow
merges, yielding >({pos4, pos7}). Hence, the outer expression will be:

e3 = inv({pos8}, Matrix.mul,
[
lac({pos1}, aloc , {ai}),>({pos4, pos7})

])
This means that our analysis would yield all three expressions e1, e2, and e3
separately. Note that if both e1 and e2 were invocations of the same method this
would not be the case, since both would merge into a true subexpression of an
expression similar to e3 but with a known second argument.

4.3 Processing: Expression Translation

The expressions resulting from staging are wrapped into so-called expression sites
(ExpressionSite) one by one and provided to the expression compiler provided
by the EDSL developer. Expression sites represent the place and context in which
an expression was staged and offer methods to support expression translation.

Translation to Source Code. Implementing the ExpressionCompiler inter-
face directly allows EDSL developers to provide meaning to staged expressions
in the form of Java source code. This interface only requires one method to be
implemented: void compile(ExpressionSite expressionSite).

Connecting parameter expressions with runtime values is accomplished in-
directly. Namely, the passed ExpressionSite instance offers utility methods to
generate source code for value access from ParameterExpression nodes.

The translated code for the whole expression is passed to the given expression
site via an instance method on it, called setCode.

Translation to Live Objects. Since compiling from our intermediate repre-
sentation AST format to source code can be a daunting task, we also offer a
high-level alternative: Translation to live objects. To this end, we provide the
abstract class ExpressionToCallableCompiler which implements the low-level
ExpressionCompiler interface.

EDSL developers implement the compileToCallable method which returns
an instance of Callable<T>. Eventually, our framework implementation will
replace the original EDSL expression (site) with a call to the call method of
the returned Callable<T> instance. Our Callable<T> interface is similar to the
interface of the same name found in the Java API but its call method takes an
argument of type Environment. During execution time, this environment serves
as storage for the actual arguments passed to the staged EDSL expression.

Environment elements can be accessed through instances of the Variable<T>
class, which trivially implements the Callable<T> interface. Internally, these
variables are wrapped indices into the environment and provide access methods.
The ExpressionToCallableCompiler class provides factory methods to create
variables from parameter expressions or fresh ones that can be used as interme-
diate values. Glue code generated by our framework implementation establishes

16 Maximilian Scherr and Shigeru Chiba

that during execution time, retrieving the value of a variable created from a
parameter expression will yield the value of the associated argument.

ExpressionToCallableCompiler implements the low-level compile method
in three steps. First, compileToCallable is called. Then, an accessor class is
created and the return value from the first step is written to a static field of
this accessor class (using runtime reflection). Finally, glue code is generated
which creates an Environment instance filled with the expression’s arguments
and calls the Callable<T> instance via its accessor class. This code includes
boxing, unboxing, and checked casting if required.

As a concrete illustration, consider an expression representation for our ma-
trix EDSL as a tree with node types Add, Mul, and Sca which implement our
Callable<T> interface with semantics close to the shallow embedded methods
of similar names introduced in section 2.1. We also consider two additional
types: AddN, representing n-ary matrix addition (using a single accumulator),
and Scale, representing the scaling of a matrix by a given factor.

Fig. 5. Optimized Callable<T> tree for add(add(a, b), mul(c, sca(5, 3.0)))

Take again the expression add(add(a, b), mul(c, sca(5, 3.0))) (cf. fig-
ure 4). A high-level expression compiler can be defined by the EDSL developer
to optimize and translate this expression to the tree presented in figure 5. As
described, the compiler keeps a mapping between parameter expressions and
variables for generating the correct glue code to fill the environment with val-
ues. Listing 5 shows this glue code, assuming the generated accessor class is
called $CallableAccessor.

Listing 5. Glue code (shortened) in $execute method

1 static Matrix $execute(Matrix u, Matrix v, Matrix w, int x, double y) {
2 Object [] values =
3 new Object [] { u, v, w, Integer.valueOf(x), Double.valueOf(y) };
4 Environment environment = $CallableAccessor.createEnvironment(values);
5 return (Matrix) $CallableAccessor.callable.call(environment);
6 }

Glue code generation happens behind the scenes and can safely be ignored
by EDSL developers. All of this allows the definition of an expression’s semantics
via an essentially static computational object entry point. What this actually
looks like internally is in the hands of the EDSL developer.

Implicit Staging of EDSL Expressions 17

4.4 Unstaging: Relinking Expression Sites

Having translated all expressions and provided Java method bodies (e.g. as in
listing 5) for the expression sites, our framework implementation then needs to
establish the appropriate links in the user program.

For every expression site, a (uniquely named) static method (like $execute

in figure 4 and listing 5) with the expression site’s (flattened) type signature
is added to the surrounding class, and its body is set to the provided source
code. Javassist comes with an inbuilt, custom compiler that makes this possible.
Subsequently, every instruction associated with non-parameter subexpressions
of an EDSL expression site are removed from the bytecode. Finally, a call to the
associated method is inserted at the expression site’s position.

For the sake of brevity, we omitted the description of some minor details
of the implementation here, like the exact method of bytecode editing and the
treatment of issues such as a potential exceeding of the maximum number of
method parameters (as imposed by the JVM).

5 Evaluation

The evaluation of our prototype is split into two parts. We first discuss the
limitations of our current IR and data-flow analysis and give hints at potential
extensions. In the second part we present simple EDSLs and experiments on the
runtime performance impact of implicit staging.

5.1 IR and Staging Limitations

We kept our prototype simple both for illustration purposes as well as for the
simplification of implementation and API design. This means that the vision
outlined in section 3.2 has by no means been fully achieved. The most signifi-
cant limitations currently stem from the very simple data-flow analysis used for
the extraction of EDSL programs. Namely, only domain-specific code originally
occurring as compound expressions is extracted. Furthermore, these expressions
are treated in a very isolated fashion.

While not discussed in section 4, we have actually experimented with allowing
the inspection of variable accesses (lac) to offer some level of non-local view.
Take for instance the code snippet in listing 6. During expression translation
our prototype allows the inspection of the accesses to t in order to optimize all
multiplications referring to it, e.g. to perform appropriate scalar scaling instead
of matrix multiplication.

Listing 6. Non-local, interleaved EDSL code example

1 t = sca(5, 3.0);
2 u = mul(a, t);
3 if (/* Omission */) { v = mul(u, t); } else { v = add(u, t); }

However, we found it challenging to devise an easy-to-use API on the current
level of processing single expressions that would also allow dealing with the

18 Maximilian Scherr and Shigeru Chiba

removal of line 1. Whether it can be removed or not depends on the EDSL and
whether it is actually inlined by all other expressions and external uses. We
believe it is necessary to expose more details (for instance as graphs of shared
expression usage) to EDSL developers to handle these non-local aspects.

Note that with deep embedding the aforementioned case is not an issue. Fur-
thermore, at the end of the given code snippet, v would be a dynamically staged
program that depends on the actual flow of control. However, in a static setting
we cannot predict what path will be taken. One way around this would be to
pre-optimize expressions for every possible shape they may take. However, in the
general case this is likely to cause intractable code explosion. Another approach
currently under consideration is to implicitly switch to runtime staging for these
dynamic, interleaved code situations using site-specific type conversions.

Listing 7 provides another example trivially solved by staging at runtime.
However, in cases like this, a more powerful data-flow analysis could actually stat-
ically determine that this code can be unrolled to stand for t = add(add(add(a,

b), b), b). Doing so, we enter the realm of partial evaluation to improve the
prediction of the concrete shape of EDSL code, while still allowing its processing
to be guided by the EDSL developer.

Listing 7. Constant EDSL expression generation example

1 t = a;
2 for (i = 0; i < 3; i++) { t = add(t, b); }

To some extent this notion could be extended to staging occurring over sev-
eral method calls. However, in Java and many other OOP languages it is not
always possible to statically determine the exact target of a method call. Such
highly dynamic cases are best left to deep embedding, not precluding the aid of
implicit staging (cf. 3.2) within method bodies.

5.2 Experiment A: Matrix EDSL

For evaluation purposes we implemented three versions of the matrix EDSL
appearing throughout this paper, using shallow embedding, implicit staging per
our prototype (with compilation to Callable<T>) imitating the look-and-feel of
the shallowly embedded version, and deep embedding. The latter two perform
optimizations as indicated in section 4.3, i.e. fusing binary additions and turning
multiplications with scaling matrices into scaling operations with further fusion
when applicable. We made the utmost effort to keep these implementations as
comparable as possible to each other.

We set up an experiment to assess not only how effective our optimizations
actually are, but also to get a rough idea of how often they might actually be
applicable. To this end, we considered randomly generated matrix operation
expressions up to a depth of 5 for which we counted Matrix variables and sca

expressions as leaves. For each depth we have 30 such expressions, once occurring
in a warm-up loop and once in a loop for which execution time is measured. We
generated random 8 × 8 matrices and scalar values of type double to serve as
parameters for these expressions and assign them to local variables as we were

Implicit Staging of EDSL Expressions 19

not interested in the literal generation time. This generated benchmark was also
adapted for the deeply embedded language version. Note that all randomness
was only part of the benchmark code generation.

Initially we ran the benchmark code ten times for each version with 100000
loop iterations for warm-up and measurement, each on a 3 GHz Intel Core i7
machine with 8 GB of RAM with JRE 74. Due to measurement fluctuations,
we opted to increase the number of loop iterations to 10000000 and reran the
benchmark code, this time only three times per EDSL implementation version
due to the increased running time per benchmark. Apart from the much lower
fluctuations between the results, on average these new measurements match very
closely with the results of the earlier, shorter experiment. We will mainly discuss
the results of the 10000000 iterations experiment here.

Depth 1 Depth 2 Depth 3 Depth 4 Depth 5
0

20

40

60

80

100

120

140

T
im

e
(s

ec
on

d
s)

Shallow Embed.

Implicit Staging

Deep Embedding

Fig. 6. Random matrix expr. results

Depth 1 Depth 2 Depth 3 Depth 4 Depth 5
0

10

20

30

40

50

60

70

T
im

e
(s

ec
on

d
s)

Shallow Embed.

Implicit Staging

Deep Embedding

Fig. 7. Biased matrix expr. results

Figure 6 shows the results of our experiment with random expressions. Due
to space concerns, we summarize the results by averaging over all 30 expression
execution times per expression depth. For expressions at depth 1, implicit staging
was faster than shallow embedding for 7 of the 30 expressions and faster than
deep embedding for 21 of the 30 expressions. This can be explained by the
low probability of optimization opportunities for expressions of depth 1 and
the added overhead of boxing and Callable<T> calling. Still, the maximum
slowdown experienced at depth 1 was only by about 6.1% compared to shallow
embedding and 4.7% compared to deep embedding. On average, implicit staging
was 22.9% faster than shallow embedding and 7.6% faster than deep embedding.

For expressions at depth 2 to 5, implicit staging was faster than shallow em-
bedding for more than 25 of the 30 expressions each. At depth 2, deep embedding
was still faster than implicit staging for 17 of the 30 expressions, but for deeper
expressions implicit staging was faster than deep embedding for more than 26
of the 30 expressions each. It appears that in the cases where deep embedding

4 Java(TM) SE Runtime Environment (build 1.7.0 21-b12)
Java HotSpot(TM) 64-Bit Server VM (build 23.21-b01, mixed mode)

20 Maximilian Scherr and Shigeru Chiba

was faster, boxing of double values is to blame for the slowdown. Overall (depth
averages), implicit staging sped up execution compared to shallow embedding at
minimum by 22.9% and at maximum by 74.3%. Compared to deep embedding,
implicit staging sped up execution at minimum by 2.5% and at maximum by
10.8%.

We also generated the same type of benchmark with a bias towards optimiz-
able expressions. Figure 7 shows the results of our experiment with this bench-
mark code. It is no surprise that shallow embedding did not fare well in this
experiment. Even deep embedding seems to fare worse than it did in the non-
biased expressions experiment. Even so, there are cases, i.e. expressions, where
implicit staging was slower than shallow embedding (at maximum by 7.6%) and
slower than deep embedding (at maximum by 7.9%). Again, these cases can most
likely be attributed to the aforementioned boxing overhead. Overall (depth av-
erages), implicit staging sped up execution compared to shallow embedding at
minimum by 100.4% and at maximum by 257.5%. Compared to deep embed-
ding, implicit staging sped up execution at minimum by 9.4% and at maximum
by 29.7%.

We also wanted to explore worst-case performance for our implementations.
To this end, we chose the expression mul(mul(add(sca(5, 2.0), sca(5, 2.0))

, add(sca(5, 2.0), sca(5, 2.0))), add(sca(5, 2.0), sca(5, 2.0))). It
lends itself as a worst-case specimen, since no optimizations (though possible)
were implemented for adding scaling matrices.

Implicit staging was 103.2% slower than shallow embedding. However, deep
embedding fared no better with a slowdown by 104.5%. This indicates that the
overhead caused by expression tree (or Callable<T> tree) evaluation is signif-
icant. In order to further test this case, we implemented an expression com-
piler that generates Java code identical to the original expression instead of a
Callable<T>. This implementation was only 1.1% slower (for our worst-case
expression) than shallow embedding. Hence it seems advisable to move away
from the simpler Callable<T> compilation for final versions of an implicitly
staged EDSL implementation. It may be worthwhile to investigate how we can
automate this code generation from a compiled Callable<T> instance.

Implicit Staging Overhead. Unfortunately, our implicit staging implemen-
tation incurs substantial overhead at class-loading time. In our experiments,
expressions at a certain depth were collected in their own class whose static ini-
tializers we used for measuring the time class loading took. As a basis for com-
parison, we took our earliest ten runs experiment and therein the class loaded
last, i.e. the one for depth 5, as we can assume the runtime environment to be
warmed up at this point. For this case, we measured that our implementation
slowed down the class-loading process by 529.4 ms. That was 138.3 times slower
than without using implicit staging.

It is important to note that this overhead is incurred only once per class and
only if this class actually contains code potentially referring to EDSL expressions.
In a large code base, this overhead might indeed become problematic but to a

Implicit Staging of EDSL Expressions 21

certain degree it is an inevitable side effect of our approach. We will still attempt
to further optimize at least the fixed parts of our framework implementation
(data-flow analysis, expression site relinking, etc.).

Implementation Complexity. Although only of limited reliability, we use
lines of code as a metric to estimate the implementation complexity for each
of the approaches. The shallow embedding implementation was accomplished in
about 100 lines of code, the implicit staging implementation took up about 360
lines of code, and the deep embedding implementation took up about 300 lines of
code. It appears that implicit staging does not incur much more implementation
complexity than deep embedding. Of course, this can mainly be attributed to
the fact that we tried (and managed) to stay as similar as possible with our
implementations.

5.3 Experiment B: Chained Filtering and Mapping EDSL

Our previous example language used static method call nesting for its syntax. Of
course, it is also possible to implicitly stage EDSLs which use method chaining.

We implemented an abstract data type FunSequence<T> which allows for
(immutable) list operations as are common in functional programming, i.e. fil-
tering (filter with Predicate<T>) and mapping (map with Function<T, R>).
Two concrete classes implement this data type, the list-backed FunList<T>, and
the array-backed FunArray<T>. Again, we started out with a naive shallow em-
bedding.

Consider the code snippet presented in listing 8 and assume that the func-
tions and predicates used as arguments are defined outside. Every mapping or
filtering creates a new list and makes this compound expression rather memory
demanding and slow.

Listing 8. FunSequence usage example

1 FunSequence <Integer > res = inputSeq.map(sqrt).map(square).map(increment)
2 .filter(even). filter(greaterThanZero)
3 .map(invert).map(invert).map(increment)
4 .filter(divisibleByFour);

Running this code (warmed up) in a loop with 10 iterations, inputSeq initialized
to 6000000 random elements with values between -100 and 100, took on average
across 10 runs about 14613.4 ms (σ = 1178.2 ms) with FunArray<T> and about
31221 ms (σ = 2192.2 ms) with FunList<T>5.

With the help of implicit staging, we implemented optimizations for this
EDSL, notably the fusion of filtering and mapping operations into a single loop.
Its implementation was encapsulated in an non-type-safe method and should
thus not be exposed publicly. Though artificial this example may seem, it show-
cases that implicit staging can be used to expose optimized but unsafe function-
ality in a type-safe fashion.

5 In the latter case it was necessary to increase the maximum heap space size.

22 Maximilian Scherr and Shigeru Chiba

Running the aforementioned benchmark with implicit staging took 8786.3
ms on average (σ = 180.2 ms) with FunArray<T> and about 9790.8 ms (σ =
934 ms) with FunList<T>. The former was faster by 66.3% compared with pure
shallow embedding, the latter by 218.9%.

5.4 Experiment C: Safe Arithmetic EDSL

Our last example is a language for performing integer arithmetic with overflow
detection. It is based on one of the methods described in “The CERT Oracle
Secure Coding Standard for Java” [13], which involves conversion to values of
BigInteger type.

Listing 9. Safe addition

1 public static final int add(int left , int right) {
2 return intRangeCheck(
3 BigInteger.valueOf(left).add(BigInteger.valueOf(right))). intValue ();
4 }

Listing 9 shows the implementation for addition, where intRangeCheck will
throw a runtime exception in case of detected overflow. Other operations are
implemented in a similar fashion. Warmed up, executing the loop shown in
listing 10 takes across 10 runs on average 2490.3 ms (σ = 21.8 ms).

Listing 10. Safe arithmetic EDSL benchmark

1 for (int i = 0; i < 10000000; i++) {
2 int j = i % 100;
3 res = mul(mul(add(a, j), add(a, j)), add(a, b));
4 }

We also implemented an implicitly staged version, which does away with
the redundant conversion of intermediate values. All parameters are converted
to BigInteger and only at the end, before converting back to int, overflow
checking is performed. This simple optimization reduces the running time of the
benchmark (with implicit staging) on average to 2372.9 ms (σ = 35.3 ms). This
may not seem much, but consider that our prototypical EDSL implementation
causes additional boxing, unboxing, and Callable<T> calling overhead. With
an additional common subexpression elimination optimization, the benchmark
running time is reduced to 2066.7 ms (σ = 17.5 ms). Of course, this effect is
more drastic the more common subexpressions occur.

Note that implicit staging here effectively changes the semantics. Namely, it is
fine for intermediate results to exceed the int extrema as long as the end result is
within them. The expression sub(add(Integer.MAX VALUE, 5), 5) will throw
an exception in the shallowly embedded implementation, whereas our implicitly
staged implementation would return Integer.MAX VALUE. This is intentional,
since we want to consider compound expressions of the EDSL as closed entities.
This may seem as an unfair advantage against shallow embedding but the fact
that implicit staging allows us to do so is in the first place is exactly what we
want to highlight here.

Implicit Staging of EDSL Expressions 23

6 Related Work

DSLs and little ad-hoc languages have been advocated for use in domain-specific
tasks at least since Bentley’s article on “Little Languages” [14]. Syntactic ex-
tension allows general-purpose languages to embed such languages. There exist
general-purpose languages such as Converge [15] or Lisp with powerful compile-
time metaprogramming features that allow this in an integrated fashion.

Converge is a dynamically typed language with a strong focus on allowing
custom and rich syntax extensions in combination with splicing annotations
for DSL development. Domain-specific code (with custom syntax) is explicitly
marked as DSL blocks or shorter DSL snippets. In most Lisp dialects syntactic
extension are somewhat limited in the framework of S-expressions, yet powerful
macro systems effectively allow for a great deal of linguistic customizations and
domain specialization. Template Haskell [16] allows compile-time metaprogram-
ming in a type-safe fashion with explicit notation for compile-time expansion.

It is important to note that these compile-time facilities rely on the availabil-
ity of source code user programs and consider syntactic entities. Our load-time
implicit staging approach for Java is based on data-flow analysis instead, which
manages to recover EDSL code snippets while hiding non-EDSL code.

As shown in section 5.2, there is a substantial overhead associated with our
current prototype and undeniably with our load-time approach in general. This
issue is not shared by traditional compile-time metaprogramming approaches.
However, for these approaches it is much harder or impossible to avoid deploya-
bility issues and to enable cross-stage persistence in a way that allows generated
code to access data available during the staging phase. At load time, the latter
becomes a trivial issue. Furthermore, while our current prototype is still limited
in scope and might in fact somewhat resemble a load-time hygienic macro system,
we believe its abstract EDSL token interpretation approach is more amenable
to further extensions, as indicated in section 3.2 and 5.1.

Even without syntactic extension capabilities or macro functionality, embed-
ded DSLs have been shown to be feasible using deep or shallow embedding, or
combinations thereof [7]. Hudak [1] and Elliot et al.[17] have shown that Haskell
is well suited for this. Yet, even languages with stronger restrictions on syntax
and more verbosity, such as Java, have been used to implement EDSLs [2,3,5].

To overcome runtime performance issues, Hudak [1] has proposed partial
evaluation. Czarnecki et al. [18] have presented an effective approach using staged
interpreters which requires a host language with multi-stage programming (MSP)
support [9,11]. Bagge et al. [19] have used a source-to-source transformation
solution for the C++ language, enabling optimizations via rewrite rules. Guyer
et al. [20] have introduced a compiler architecture for the C language which
enables domain-specific optimizations not on the syntactic level but on the data-
flow level. In fact, Guyer et al. [20] claim not to target the optimization of DSLs,
but that of the domain-specific aspects of software libraries. These optimizations
are communicated to the compiler by analysis and action annotations (written
in their own dedicated language). It is similar to implicit staging in its (external)

24 Maximilian Scherr and Shigeru Chiba

specification of domain-specific procedures as well as its detachment from the
mere source code syntax level.

The aforementioned ideas either rely on non-mainstream host languages or
compiler extensions. Rompf et al. [10] have introduced a method called Light-
weight Modular Staging (LMS) which is a purely library based approach. LMS
brings MSP support to the Scala [21] language as a library, where lifted Rep[T]

data-types stand for staged code. Using Scala’s traits, it is easy to extend this
library and implement EDSLs with it.

When optimizing EDSL programs, it is similar to the deep embedding ap-
proach but more elegantly hides its nature by employing Scala’s type inference,
trait composition, and implicit conversion features. LMS has been used to im-
plement several EDSLs with the Delite [22,23] back end, such as OptiML [24]
and OptiCVX [25], with great results. However, while the usage of EDSLs imple-
mented using LMS is mostly seamless, the unstaging (i.e. the code generation,
compilation, and loading) of staged code is triggered explicitly.

JIT macros as described by Rompf et al. in Project Lancet [26], a very
ambitious and promising JVM implementation, resemble parts of our load-time
staging approach. Combined with LMS, JIT macros are described as allowing
domain-specific optimizations at JIT-compile time. However, their expansion or
handling necessitates the localized, explicit triggering of JIT compilation in user
programs, a feature of Lancet.

7 Conclusion

To address the issue of DSL (expression) embedding, we proposed implicit stag-
ing, an impure approach to language embedding. We have further concretely
implemented and introduced an instance of implicit staging for the Java lan-
guage using load-time reflection. Our prototype implementation has shown to
be an effective tool for implementing EDSL expression semantics in a customized
fashion, while letting EDSLs expose a shallow interface. By moving the process
of staging to load time, we gain an advantage in reducing overhead compared to
deep embedding.

Our prototype offers an improvement over pure shallow embedding and we
believe it can serve as an alternative to deep embedding in many cases. Namely,
when true, dynamic runtime staging of EDSL code is not mandatory. However,
it remains to be seen how our approach scales beyond the small examples we
evaluated. We intend to investigate this in the future.

Despite its current limitations we believe our framework can be used as step-
ping stone to more elaborate implicit staging (at load time) systems. It is our
future work to explore designs, implementations, and use cases for exploiting
static and dynamic contextual information both within user programs as well as
the runtime system.

Implicit Staging of EDSL Expressions 25

References

1. Hudak, P.: Modular domain specific languages and tools. In: Proceedings of the
5th International Conference on Software Reuse. ICSR ’98, Washington, DC, USA,
IEEE Computer Society (1998) 134–142

2. Freeman, S., Pryce, N.: Evolving an embedded domain-specific language in java.
In: Companion to the 21st ACM SIGPLAN Symposium on Object-oriented Pro-
gramming Systems, Languages, and Applications. OOPSLA ’06, New York, NY,
USA, ACM (2006) 855–865

3. https://code.google.com/p/guava-libraries/ (retrieved: 2013-12-2)

4. Giarrusso, P.G., Ostermann, K., Eichberg, M., Mitschke, R., Rendel, T., Kästner,
C.: Reify your collection queries for modularity and speed! In: Proceedings of the
12th Annual International Conference on Aspect-oriented Software Development.
AOSD ’13, New York, NY, USA, ACM (2013) 1–12

5. http://www.jooq.org/ (retrieved: 2013-12-2)

6. Chiba, S.: Load-time structural reflection in java. In Bertino, E., ed.: ECOOP
2000 Object-Oriented Programming. Volume 1850 of Lecture Notes in Computer
Science. Springer Berlin Heidelberg (2000) 313–336

7. Svenningsson, J., Axelsson, E.: Combining deep and shallow embedding for EDSL.
In Loidl, H.W., Pea, R., eds.: Trends in Functional Programming. Volume 7829 of
Lecture Notes in Computer Science. Springer Berlin Heidelberg (2013) 21–36

8. Gosling, J.: Java intermediate bytecodes: Acm sigplan workshop on intermediate
representations (ir’95). In: Papers from the 1995 ACM SIGPLAN Workshop on
Intermediate Representations. IR ’95, New York, NY, USA, ACM (1995) 111–118

9. Westbrook, E., Ricken, M., Inoue, J., Yao, Y., Abdelatif, T., Taha, W.: Mint: Java
multi-stage programming using weak separability. In: Proceedings of the 2010 ACM
SIGPLAN Conference on Programming Language Design and Implementation.
PLDI ’10, New York, NY, USA, ACM (2010) 400–411

10. Rompf, T., Odersky, M.: Lightweight modular staging: A pragmatic approach to
runtime code generation and compiled DSLs. Commun. ACM 55(6) (June 2012)
121–130

11. Taha, W., Sheard, T.: MetaML and multi-stage programming with explicit anno-
tations. Theor. Comput. Sci. 248(1-2) (October 2000) 211–242

12. Kildall, G.A.: A unified approach to global program optimization. In: Proceedings
of the 1st Annual ACM SIGACT-SIGPLAN Symposium on Principles of Program-
ming Languages. POPL ’73, New York, NY, USA, ACM (1973) 194–206

13. https://www.securecoding.cert.org/confluence/display/java/NUM00-J.+Det

ect+or+prevent+integer+overflow (retrieved: 2013-12-2)

14. Bentley, J.L.: Programming pearls: Little languages. 29(8) (August 1986) 711–721

15. Tratt, L.: Domain specific language implementation via compile-time meta-
programming. TOPLAS 30(6) (2008) 1–40

16. Sheard, T., Jones, S.P.: Template meta-programming for haskell. SIGPLAN Not.
37(12) (December 2002) 60–75

17. Elliott, C., Finne, S., De Moor, O.: Compiling embedded languages. J. Funct.
Program. 13(3) (May 2003) 455–481

18. Czarnecki, K., O’Donnell, J., Striegnitz, J., Taha, W.: DSL implementation in
MetaOCaml, Template Haskell, and C++. In Lengauer, C., Batory, D., Consel, C.,
Odersky, M., eds.: Domain-Specific Program Generation. Volume 3016 of Lecture
Notes in Computer Science. Springer Berlin Heidelberg (2004) 51–72

https://code.google.com/p/guava-libraries/
http://www.jooq.org/

26 Maximilian Scherr and Shigeru Chiba

19. Bagge, O.S., Kalleberg, K.T., Haveraaen, M., Visser, E.: Design of the CodeBoost
transformation system for domain-specific optimisation of C++ programs. In Bink-
ley, D., Tonella, P., eds.: Third International Workshop on Source Code Analysis
and Manipulation (SCAM 2003), Amsterdam, The Netherlands, IEEE Computer
Society Press (September 2003) 65–75

20. Guyer, S., Lin, C.: Broadway: A compiler for exploiting the domain-specific se-
mantics of software libraries. Proceedings of the IEEE 93(2) (Feb 2005) 342–357

21. http://www.scala-lang.org/ (retrieved: 2013-12-2)
22. Brown, K.J., Sujeeth, A.K., Lee, H.J., Rompf, T., Chafi, H., Odersky, M., Oluko-

tun, K.: A heterogeneous parallel framework for domain-specific languages. In:
Proceedings of the 2011 International Conference on Parallel Architectures and
Compilation Techniques. PACT ’11, Washington, DC, USA, IEEE Computer So-
ciety (2011) 89–100

23. Chafi, H., Sujeeth, A.K., Brown, K.J., Lee, H., Atreya, A.R., Olukotun, K.: A
domain-specific approach to heterogeneous parallelism. In: Proceedings of the 16th
ACM Symposium on Principles and Practice of Parallel Programming. PPoPP ’11,
New York, NY, USA, ACM (2011) 35–46

24. Sujeeth, A.K., Lee, H., Brown, K.J., Chafi, H., Wu, M., Atreya, A.R., Olukotun,
K., Rompf, T., Odersky, M.: Optiml: an implicitly parallel domainspecific language
for machine learning. In: in Proceedings of the 28th International Conference on
Machine Learning, ser. ICML. (2011)

25. http://stanford-ppl.github.io/Delite/opticvx/index.html (retrieved: 2013-
12-2)

26. Rompf, T., Sujeethy, A.K., Browny, K.J., Lee, H., Chazy, H., Olukotuny, K., Oder-
sky, M.: Project lancet: Surgical precision JIT compilers. Technical report (2013)

http://www.scala-lang.org/
http://stanford-ppl.github.io/Delite/opticvx/index.html

	Implicit Staging of EDSL Expressions:A Bridge between Shallow and Deep Embedding
	Introduction
	Implementation of Embedded DSLs
	Shallow Embedding
	Deep Embedding: Staging at Runtime
	No Middle Ground?

	Implicit Staging
	Staging by Static Token Reinterpretation
	The Approach's Potential
	Design Aspects

	Implicit Staging at Load Time
	Prototype Overview
	Staging: Expression Extraction
	Intermediate Representation.
	Abstract Interpretation (Transferring States).
	Abstract Interpretation (Merging States).
	Post-processing.

	Processing: Expression Translation
	Translation to Source Code.
	Translation to Live Objects.

	Unstaging: Relinking Expression Sites

	Evaluation
	IR and Staging Limitations
	Experiment A: Matrix EDSL
	Implicit Staging Overhead.
	Implementation Complexity.

	Experiment B: Chained Filtering and Mapping EDSL
	Experiment C: Safe Arithmetic EDSL

	Related Work
	Conclusion

