
A Framework for Multiplatform HPC Applications

Masayuki Ioki
Tokyo Institute of Technology
www.csg.ci.i.u-tokyo.ac.jp

Shigeru Chiba
The University of Tokyo

www.csg.ci.i.u-tokyo.ac.jp

Abstract
This paper proposes a framework for building multi-platform appli-
cations in Java for High Performance Computing (HPC). It allows
HPC developers to write their programs in Java but dynamically
translate part of the programs into C programs using MPI or CUDA
so that the translated code can be executed on multi-platforms. The
source of the translated code is written in Java but with extensions
for MPI and CUDA supports. The implementations for different
platforms are switched by object-oriented mechanisms such as dy-
namic method dispatch. However, object oriented mechanisms are
major sources of execution overheads. To reduce these overheads,
the proposed framework requires that the translated code is subject
to our coding rules, in which object-oriented mechanisms are avail-
able only in limited contexts. All objects except arrays must be im-
mutable and most class types must be leaf classes. Only the types of
method parameters and instance fields can be non-leaf class types.
These restrictions allow our framework to statically determine ob-
ject types during the code translation while they still enable build-
ing a practical class library for HPC with respect to customizabil-
ity. This paper presents examples of the class libraries built on top
of our framework. Their performance is sometime better than the
performance of the programs written in C++ with equivalent class
libraries since C++ is a general-purpose language and thus its ex-
pressiveness does not perfectly fit our problem domain, HPC appli-
cations.

Categories and Subject Descriptors D.3.4 [Programming Lan-
guages]: Processors

General Terms Languages, Performance

Keywords Java, Software Productivity, MPI, CUDA

1. Introduction
In the High Performance Computing (HPC) domain today, develop-
ers need to consider not only execution performance but also soft-
ware productivity. Modern super computers have heterogeneous ar-
chitectures and thus, for portability, HPC programs should support
various platforms such as GPUs.

To modularly implement HPC programs and improve develop-
ers’ productivity, a classic approach is to divide the programs into

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
PMAM 2014, February 15, 2014, Orlando, FL, U.S.A..
Copyright is held by the owner/author(s). Publication rights licensed to ACM.
ACM 978-1-4503-2655-1/14/02. . . $15.00.
http://dx.doi.org/10.1145/2560683.2560693

platform-neutral code and the code depending on a particular plat-
form. It allows developers to build a program for a specific plat-
form by only switching the platform-dependent code while reusing
the platform-neutral code as it is. However, this approach has been
less appealing in the HPC domain since it often heavily uses modu-
larization mechanisms of the programming language, for example,
classes and dynamic method dispatch in object-orientation. They
often imply non-negligible performance costs, which do not meet
the performance requirements in HPC.

This paper presents a framework for developing a class library
to build multi-platform HPC applications with acceptable perfor-
mance overheads. The applications on top of our framework are
written in Java with simple extensions but the kernel code can
be dynamically translated into optimized C (or CUDA) code for
a specific platform such as MPI and GPU. During the transla-
tion, the code is highly optimized by using runtime type infor-
mation and thus reduce performance overheads due to the modu-
larization by object-orientation in Java. The HPC applications on
our framework achieve comparable execution performance to the
equivalent C++ code using template meta-programming. The opti-
mization performed by our framework consists of devirtualization
[4, 8] and object inlining [5, 6, 18]. These are classic optimization
techniques, which the just-in-time compiler of most commercial
Java virtual machines adopt, but our framework aggressively ap-
plies them to all dynamic method dispatches and object references
within the translated Java code. This paper presents the effects of
this optimization by showing the results of our experiments on the
TSUBAME 2.0 super computer [17].

The translated kernel code is written in plain Java although the
language provides simple extensions to support CUDA and/or MPI
programming. It also provides a foreign function interface to di-
rectly invoke library functions implemented in C. It does not have
any syntactic extensions; the programs can be compiled by the stan-
dard Java compiler. However, to enable the aggressive optimiza-
tion, the translated code cannot exploit the full set of language fea-
tures of Java. It must be written to meet the coding rules of our
framework. For example, the use of dynamic method dispatch is
restricted within specific contexts. These coding rules still enable
building a practical class libraries. This paper presents a stencil-
computation application built on top of our framework.

Since the translated code is written in plain Java but in a re-
stricted coding style, our approach is similar to Delite [2], the ap-
proach using a domain specific language (DSL) for describing the
kernel code to obtain optimized performance. Our contribution is
that we show a DSL for building a class library where platform-
dependent code is clearly separated and switchable with small run-
time costs. Our DSL is not for describing application logic with
domain-specific abstraction. An advantage of our approach is that
the developers have only to learn the coding restrictions for their
familiar language. Our approach also has an advantage against the
approach based on template meta-programming in C++ since the
optimization is automated by our framework. Furthermore, the tem-

plate meta-programming in C++ has a problem with respect to the
expressiveness. Our approach is applicable not only to Java. We
chose Java since a Java program is relatively simple and easy to
analyze for optimization.

The rest of this paper is organized as follows. Section 2 shows a
motivating example of multi-platform application in HPC. Section
3 presents our framework and the restrictions applied to the trans-
lated code. In Section 4, we present the results of our experiments.
Related work is discussed in Section 5. Finally, in Section 6, we
conclude this paper.

2. Stencil computations
Writing class libraries, where a different feature (or concern) is sep-
arately implemented in a different class, has been widely accepted
as an approach to improve programmers’ productivity. Figure 1
shows a feature model [12] that an application for stencil computa-
tion should implement. Feature modeling is widely used as a tool
for design, especially when designing software product lines [14].
A feature represents a functionality that a user programmer can se-
lect. For example, Dimension has three sub-features, each of which
specifies the dimension of simulation space. Parallelism is an op-
tional feature for specifying a platform; if a problem size is small,
a programmer will not select this feature or its sub-features such as
GPU. A user programmer will select those features and construct
an application.

Figure 2 shows the class diagram of the class library for the sten-
cil applications implementing the feature model in Figure 1. The
main components are StencilRunner, PhysQuantity, and Stencil-
Solver. The StencilRunner class implements how to run a program
in parallel. If the StencilGPU4DblB MPI class is selected, the pro-
gram is run with double buffering on multiple nodes with GPUs
communicating by MPI. If the StencilCPU4DblBuffer class is se-
lected, the program is sequentially run with double buffering; it
does not use GPUs or MPI. The PhysQuantity class implements a
physical-model feature. The StencilSolver is a class implementing
a kernel operation applied to every grid element. A programmer
only writes a subclass of this class. An example is the Dif1DSolver
class in Listing 1. Its solve method implements a solver of a one-
dimensional diffusion equation. Note that it is independent of other
features such as Parallelism.

These classes are selected to compose an application. Listing 2
is an example of the main program. The parameter n specifies the
grid size. The program instantiates several classes selected from
the provided classes and user-written classes and finally creates a
runner object of the StencilRunner type. The stencil computation
starts when the invoke method is called on runner. This is a typical
code structure of the main program with class libraries. It instanti-
ates several component classes and combines the instances to com-
pose a larger object representing the application, which actually
starts when the start method such as invoke is called on this com-
posed object. Note that in most cases the composed object never
changes during runtime since it mainly represents the application
logic but it does not represent the data processed in the application.

Although our class library shown above improves program-
mers’ productivity, it involves two problems. The first one is per-
formance penalties due to object orientation, which is indispensable
for building a class library. The abstraction and modularity by ob-
ject orientation are not free of charge. Figure 3 shows a comparison
among three implementations of simulation of three-dimensional
diffusion equation. Java refers to the simulation program using our
class library written in Java. C++ refers to the program naively
written in C++ to be equivalent to our class library in Java. Finally,
C refers to the program written in C without a class library; it is
optimized by hand. All the three programs ran by a single thread
without a GPU or MPI. The figure illustrates that Java and C++ are

!"#$%&'()*+,-(!

!'.'((-(%$/!

*!0! 1!2!

3%/-)

45+(67+8!

9+(5%8:)

!;4<!

*+8=-)

>'.(+!

*-/+.#)

*'8':-/-8=!

;+6?(-)

?6@-.%8:! >+(+.%8:)

A+68,'.#)

>+8,%7+8)
;%/-8$%+8)

9"'.-,)*-/+.#!

B!B! !-.%+,%&) C.--)48,) B!

!"#$%&'()

D6'877-$!

E8-) 3F+)

B!

EG!

H(=-.8'75-!*'8,'=+.#!

EI7+8'(!

3".--)

9=-8&%()>+/I6='7+8$!

J+8)!"#$%&'()*+,-(!

K+::%8:!

Figure 1. A feature model for stencil computation

Figure 2. The class diagram of a stencil-computation class library

Listing 1. One-dimensional diffusion solver
class Dif1DSolver

extends OneDSolver <ScalarFloat , FloatGridDblB ,
EmptyContext > { ...

@Override public ScalarFloat solve(
ScalarFloat left , ScalarFloat right ,
ScalarFloat self ,
FloatGridDblB q, EmptyContext context){

float value = a * (left.val() + right.val ())
+ b * self.val ();

return new ScalarFloat(value);
}}

more than ten times slower than C. It reveals that the main source
of the performance overhead is not Java but object orientation.

The other problem is that Java programs run on the Java vir-
tual machine and hence it cannot directly exploit the capability of
the underlying hardware. A typical supercomputer today has ded-
icated hardware for inter-node communication and provides a li-
brary, such as MPI, for exploiting it. However, such a library is
usually available only in Fortran and C. Although Fujitsu FX10 su-
percomputer provides a Java binding to MPI (a Java library to call
the MPI library in C), its execution performance is not comparable
to direct accesses in C since runtime costs of bridging between Java
and C are not negligible. This problem is also serious when GPUs
are available. Since the current Java virtual machine does not sup-
port GPUs, a software solution is needed to enable a Java program
to execute some computation on GPUs.

3. WootinJ
To enable multiplatform HPC applications in Java, we have devel-
oped a framework named WootinJ. This framework allows devel-
opers to build a class library that are written in Java but can partly
run on GPUs and/or multiple nodes communicating through MPI.

Listing 2. Run the solver with MPI and GPU
public static void mpiGpuRun(int n, int mpiSize){

SimulationConfig conf; ...
StencilSolver solver = new Dif1DSolver ();
DblBuffer buf = new FloatGridDblB(

new FArrayOnGPU(n, new OneDIndexer ()) ,
new FArrayOnGPU(n, new OneDIndexer ()));

SizeDTO mpiSizeDto = new SizeDTO(mpiSize);

StencilRunner runner
= new StencilGPU4DblB_MPI(conf , solver ,

buf , mpiSizeDto);

runner.invoke ();
}

 0

 50

 100

 150

 200

 250

 300

 350

Java

C
++

C

M
F

LO
P

S

Figure 3. The performance of the 3D diffusion (128× 128× 128)
in Java, C++, and C

In WootinJ, a selected Java method can be dynamically — just
in time (JIT) — translated into C or CUDA code. Since WootinJ
processes Java bytecode, the source code is not necessary for this
translation. Then the translated code is compiled by a C/CUDA
compiler and it is invoked through JNI (Java Native Interface) with
the given arguments on the specified hardware such as GPUs. If
MPI is used, the translated code is invoked by the mpirun com-
mand.

Multiplatform:
A method translated by WootinJ is written in Java but with simple
extensions. If a method is annotated with @Global, it is translated
into a global function in CUDA. A call to a @Global method in
Java is considered as a call to a global function in CUDA, that is,
starting multi-threaded execution on a GPU. For MPI functions,
WootinJ provides the MPI class in Java. Since this class is not a
wrapper class that accesses the MPI functions in C through JNI,
no runtime penalties are involved in this class. A call in Java to a
method in the MPI class is translated by WootinJ into a direct call
in C to the corresponding MPI function. Note that making other
C functions available in Java as well as MPI functions is easy for
WootinJ users; WootinJ provides a mechanism for programmers
to define a method call that are translated into a direct call to the
corresponding C function.

Optimization:
To overcome overheads due to object orientation, WootinJ aggres-
sively applies devirtualization [4, 8] and object inlining [5, 6, 18]
to the translated Java code. WootinJ translates all occurrences of
dynamic method dispatch into static function calls in C so that a
runtime penalty due to method calls will be eliminated (devirtu-
alization). It also transforms an object into a set of primitive-type
variables and then translates all field accesses into simple accesses

to the local variables (object inlining). This requires that the JIT
compiler of WootinJ can statically determine the actual type of the
target object at every object reference. Since statically determining
all the types is not possible in general, the Java code translated by
WootinJ must be subject to our coding rules. This allows the JIT
compiler to perform devirtualization and object inlining for every
object reference by simple program analysis. Note that only the
Java code dynamically translated by WootinJ into C/CUDA code is
subject to the coding rules. The rest of the program does not have
to follow the rules.

In the code subject to the coding rules, objects are mostly
immutable; we call this property semi-immutable as shown later.
Furthermore, all class types appearing in the code must be leaf-
class types except method parameters and object fields. We will
later mention this property named strict-final. These properties
obviously make static analysis easier and enable devirtualizing all
object references. On the other hand, they considerably restrict
the design of class libraries built on WootinJ. According to our
observation shown in the previous section, however, this restriction
is practical in our problem domain since instances of library classes
do not change after they are initialized and the start method such
as invoke is called. We will later show that the class library in the
previous section can be built on WootinJ.

3.1 Client View
To illustrate how to build a class library on WootinJ, we present a
simple example, which is a class library for the one-point stencil
computation using GPU and MPI. Listing 3 shows a program
written by the user of the class library. It includes three classes:
PhysDataGen for generating a data grid, PhysSolver defining a
kernel operation applied to every grid element, and Main for the
main method. The former two classes implement the interfaces
provided by the class library, Generator and Solver.

The main method first makes a Stencil object. Stencil is the
main class of the class library and represents a stencil application.
It has the run method, which first generates a data grid by calling
the make method on the Generator object. Then it iterates applying
the kernel operation implemented by the Solver object to every grid
element. The arguments to the run method specify the grid size and
the number of the iteration.

Unlike an application written with a typical class library, the
main method does not directly call the run method on the Sten-
cil object. Rather, it calls the jit4mpi method in WootinJ (or the
jit method unless the program uses MPI) to translate the bodies of
the run method and the methods called from run into the C/CUDA
code using MPI. Since the run method indirectly calls methods on
the PhysDataGen and PhysSolver objects, these methods are also
translated. The translated code is then compiled by the CUDA/MPI
compiler. The annotation @WootinJ indicates that the class def-
inition satisfies the coding rules of WootinJ and hence it can be
translated. Note that the arguments passed to the run method are
also given to jit4mpi. They are recorded and used for optimization
during the translation. After calling jit4mpi, the main method calls
set4MPI to configure the execution environment for MPI and then
it calls invoke to invoke the mpirun command, which executes the
translated code with the arguments recorded in jit4mpi.

Listing 4 presents the class library’s classes including the Sten-
cilOnGpuAndMPI class. Note that they are written by not library
users but library developers, who have deeper knowledge about
GPU and MPI. Their implementations are hidden from the library
users, who write Listing 3. Hence those library classes are low-level
code specific to GPU and MPI and they are written in Java with
extensions for supporting GPU and MPI. For example, a method
with the @Global annotation is translated into a C function with
global , which is a modifier introduced by CUDA. Since a global

Listing 3. A program written by the class library user
@WootinJ class PhysDataGen implements Generator{

...
@Override float [] make(int length , int seed) { ... }}

@WootinJ class PhysSolver implements Solver{ ...
@Override float solve(float self , int index){ ... }}

class Main{
public static void main(String ... args){

int length , updateCnt;
...
Generator generator = new PhysDataGen ();
Solver solver = new PhysSolver ();
Stencil stencil =

new StencilOnGpuAndMPI(generator , solver);

JitCode code =
WootinJ.jit4mpi(stencil , "run", length , updateCnt);

code.set4MPI (128, "./ nodeList");
code.invoke ();
... }}

function in CUDA takes special arguments surrounded by <<< >>>,
the method annotated with @Global instead takes a CudaConfig ob-
ject as the first argument. It specifies the special arguments. Woot-
inJ also provides the @Shared annotation for specifying that the
annotated field represents shared memory. dim3 is another class
provided by WootinJ. It represents the dim3 type in CUDA. CUDA
and MPI are also classes provided by WootinJ. They have utility
methods to access library functions of CUDA or MPI.

The run method in Listing 4 is straightforward Java representa-
tion of the one-point stencil program written in CUDA and using
MPI. The only object-orientation found is the dynamic method dis-
patch from the runGPU method to the solve method on solver. This
method dispatch is an essence of component composition provided
by the class library. Since it is devirtualized during the translation,
the code generated by WootinJ is a typical CUDA/MPI program
shown in Listing 5. Now the call to runGPU is translated into a
special call to a global function with <<< >>>. It starts a number of
threads computing the runGPU function on a GPU in parallel.

The translated code is executed in a separate memory space. If
a part of the translated code is executed on a GPU, it is executed
in another memory space; it cannot transparently access the data
used by the rest of the translated code running on a CPU or the
data used by the Java program not translated. When the translated
code starts running, the arguments are deeply copied from the Java
memory space to the memory space used by the translated code.
The arguments to the GPU code are also deeply copied when it
is invoked. The modified data are not copied back to the original
memory space when the translated code terminates. We chose this
design since the abstraction of transparent memory access should
be provided by not WootinJ but a class library on top of WootinJ.

3.2 Code Translation
We next show an overview of the code translation by WootinJ. The
code translated by WootinJ has to follow the coding rules.

Definitions
Before presenting the coding rules, we introduce two properties:
strict-final and semi-immutable. First, we define strict-final, which
means a leaf-class type with fields of leaf-class types.

A type T is strict-final if either:

1. T is a primitive type,

2. T is an array type and the element type is strict-final, or

Listing 4. The classes in the class library
@WootinJ class StencilOnGpuAndMPI extends Stencil {

Solver solver;
Generator generator;
CUDA cuda = new CUDA ();
...
public StencilOnGpuAndMPI(Solver _solver ,

Generator _generator) {
... }

void run(int length , int updateCnt){
int rank = MPI.rank ();
float [] array = generator.make(length , rank);
float [] arrayOnGPU = cuda.copyToGPU(array , length);

dim3 block = new dim3(length);
CudaConfig conf = new CudaConfig(block);
for(int i=0; i < updateCnt; i++)

runGPU(conf , arrayOnGPU);
... }

@Global void runGPU(CudaConfig conf , float [] array){
int x = cuda.threadIdx.x;
array[x] = solver.solve(array[x],x); }}

@WootinJ interface Solver {
float solve(float self , int index); }

@WootinJ interface Generator {
float [] make(int length , int seed); }

Listing 5. The CUDA/MPI code generated after the translation
float* make(int length , int seed){ ... }

__device__
float solve(float self , int index) { ... }

__global__ void runGPU(int* array){
int x = threadIdx.x;
array[x] = solve(array[x], x);

}

void run(int length , int updateCnt){
int rank;
MPI_rank (&rank);
float* array = make(length , rank);
float* arrayOnGPU;
cudaMemcpy(arrayOnGPU , array ,

sizeof(float)*length , cudaMemcpyHostToDevice)

dim3 block(length);
for(int i=0; i < updateCnt; i++)

runGPU <<<1, block >>>(arrayOnGPU);
...

}

int main(int argc , char* argv []){
MPI_Init (&argc , &argv);
int length , updateCnt;
...
run(length , updateCnt);
MPI_Finalize (); }

3. T is a class type, it is a final class (i.e. no subclasses), and all the
fields of the class and its super classes are of strict-final types.

The last condition means that T is a leaf class that has only fields
of leaf-class types. Thus, if a variable is of a strict-final type, all the
objects reachable from the variable are also of a strict-final type.

Next, a type S is semi-immutable if either:

1. S is a primitive type,

2. S is an array type and the element type is semi-immutable and
strict-final, or

3. S is a class type satisfying all the following preconditions:

(a) All the fields of the class are of semi-immutable types.

(b) All super classes of S are of semi-immutable types. The
Object class is a semi-immutable type.

(c) Unless a field of the class is of an array type, then it is a
constant. Once the field is initialized in a constructor, the
value of the field is never modified. A subclass constructor
can modify the value of the field declared and initialized in
the super class (thus, the field is not necessarily a final field).

(d) In constructors, conditional branches, such as if, for, and the
conditional operator (?:), method calls or this variable are
not available.

(e) S is not a recursive type.

An instance of a semi-immutable class is immutable except array-
type fields. All the fields reachable from the instance are immutable
except arrays. Only the array-type fields can be modified during
runtime to change the array object that the field refers to. An ar-
ray element is also modifiable. Another property of being semi-
immutable is that the actual types of any objects reachable from
the instance are statically determined if the actual types of the con-
structor arguments are given since the constructor does not include
conditional branches. Here, giving the actual type of the argument
includes giving the actual types of all the objects reachable from
the argument.

Coding rules
The translated code by WootinJ consists of methods annotated with
@WootinJ. It must be subject to the following coding rules, which
basically require that all the objects are immutable and most types
are leaf-class types:

1. All the types appearing in the code are semi-immutable.

2. All the types appearing in the code are also strict-final except
method parameters and field types. Local-variable types, return
types, and cast types are strict-final.

3. All method parameters are constant (i.e. final).

4. A type parameter T has the upper bound S and all the direct
subclasses of S are strict-final and semi-immutable. A type
argument given for T must not be S; it must be a subclass of
S. A wild card is not used.

5. All static fields are constant (i.e. final) and not an array type.

6. Recursive calls are not used.

7. The conditional operator (?:) or the reference equality operators
(== and !=) are not used.

8. Exception handling, reflection, multithreading, native access
(for example IO), .class, instanceof, or null literals are not used.

These rules allow WootinJ to perform devirtualization and ob-
ject inlining for every object reference by simple program analysis.
In compensation, these rules significantly restrict developers’ cod-
ing style although they are applied to only the Java code dynami-
cally translated by WootinJ.

Since an array object is major storage of data in HPC, our
coding rules do not require that an array object is immutable; the
value of an array element can be updated at any time if the element
type is a primitive type.

Although most types must be leaf-class types (i.e. strict-final),
the types of fields and method parameters can be non leaf-class

types. This enables a class library user to customize a component
by giving an instance of a different class. However, the fields and
the method parameters must be constant and the objects that they
refer to must be immutable. It is prohibited to assign a new value to
a method parameter. Thus, if the initial value of a method parameter
of class type X is an instance of a subclass of X, the value of the
method parameter is never updated to an instance of a different
subclass of X.

3.3 Translation from Java to C
The translation from Java bytecode into C/CUDA code using MPI
is fairly straightforward except a few kinds of language constructs.
We below present a brief overview of the translation.

Class declaration. A class declaration in Java is simply re-
moved. After the translation, an instance of the class is represented
by a set of local variables of primitive types. Each variable corre-
sponds to a field. A static field is translated into a set of global
variables. These global variables are initialized by copying the val-
ues of the static field when the translated code starts running. Note
that the coding rules require that the static field is constant.

Method declaration. When WootinJ translates given Java code,
it receives not only the entry method but also the arguments passed
to the entry method. Assuming that the actual types of the given
arguments are the formal parameter types of the method, WootinJ
translates the declaration of the entry method into a function decla-
ration in C. Note that @Global annotating a method declaration is
translated into the global modifier in CUDA.

Method calls. When a method call is encountered during the
translation of a method body, WootinJ statically determines the
actual type of the receiver object. This can be done by a simple
program analysis. First, since the types of local variables and the
return types of methods are strict-final, determining the actual type
of the expression computing the receiver object is straightforward.
Note that the use of the conditional operator is prohibited. Hence,
the following code never appears:

(i > 0 ? new IntGrid() : new FloatGrid()).size()

The types of fields and method parameters are exceptions; they
can be non strict-final. However, the coding rules require that the
method parameters are constants. Moreover, all the objects are of
semi-immutable types. Thus, the actual types of the fields reachable
from the method parameters can be also statically determined if the
actual types of the method arguments (and all the objects reachable
from the method parameters) are given. For example,

parameter.grid.size()
local.grid.size()
new Stencil(new FloatGrid()).grid.size()

Here, parameter is a method parameter and local is a local variable.
The actual type of the grid field is statically determined for all
the expressions shown above. Since the type of the local variable
is strict-final, the actual type of the object that local refers to is
equivalent to the variable type. If Stencil is a semi-immutable type,
the actual type of grid is statically determined by analyzing the
constructor body if the actual type of the constructor argument is
given.

After determining the actual type of the receiver object, Woot-
inJ selects the method implementation for that type and translates it
into a function declaration in C. The method call is translated into
a call to this function. When translating the method implementa-
tion, WootinJ specializes the generated function declaration for the
actual types of the arguments. Note that the actual types of the ar-
guments can be statically determined in the same algorithm as the
receiver type. Thus, WootinJ may generate multiple function dec-

larations from a single method implementation for different types
of the arguments.

In CUDA, a global method can call only device methods. When
translating a method implementation called from a global function,
WootinJ adds the device modifier to the function declaration
generated for the method implementation.

Local variables and method parameters. In Java, a variable
of class type holds a reference to an object in heap memory. Since
the actual type of an object is statically determined as shown above,
after the translation into C, an object is inlined; it is implemented
by a set of local variables on stack. The objects reachable from it
are also inlined. A variable does not hold a reference but directly
represents the object. If the value of a variable is assigned to another
variable or if it is passed to a method, (a copy of) it is stored or
passed instead of a reference. This does not break the semantics of
the code since all the objects are semi-immutable. The this variable
is treated in the same manner as a local variable.

Constructors. If a new object is instantiated within the trans-
lated code, the constructor call is inlined in the body of the gener-
ated function in C.

Array. An array type is also an exception. An array object
is allocated in heap memory and an array-type variable holds a
reference to it. If an array element is a not-array object, the element
directly holds the object as a value. It does not hold a reference to
the object. Since the coding rules require that the element type of
an array object is strict-final, the size of the array elements can be
statically computed.

Other issues. To support the shared memory in CUDA, if a field
of an array type has the @Shared annotation, it is translated into
a variable with shared . Garbage collection or array boundary
checks are not provided by the code after the translation. They are
developers’ responsibility. For garbage collection, the free function
provided by WootinJ must be explicitly called.

4. Evaluation
This section presents the results of our performance measurement
of applications written with WootinJ. They were executed on the
TSUBAME 2.0[17] super computer at Tokyo Institute of Technol-
ogy. Every node of the computer is equipped with two Intel Xeon
2.9 GHz CPUs (with 6 cores) and three NVIDIA M2050 GPUs
with 54GB main memory and 3GB GPU memory. The Java virtual
machine is IBM J9 VM (Java version 1.6.0). The C compiler is icc
(version 13.0.0.079).

We wrote two class libraries on top of WootinJ. The first one is a
class library for stencil computation that has been already shown in
Section 2. The other is a small class library for computing matrix
multiplication. For comparison, we wrote one program in C and
three programs in C++ for each class library. We below call them C,
C++, Template, and Template w/o virt.. C, the program written in
C, implements the same algorithm as the WootinJ equivalence but
without considering code reuse or modularity of components. C++
is a program in C++ providing the same abstraction as WootinJ.
It naively uses virtual functions for dynamic method dispatch.
Template is another C++ program in that dynamic method dispatch
is devirtualized by template meta-programming. All occurrences
of the -> operator are replaced by the . (dot) operator. Finally,
Template w/o virt. is a C++ program in that virtual functions are
not used at all. To emulate method overriding, all the methods
in the super classes have been manually copied into the subclass
body. This makes a significant impact upon the code reuse and
modularity.

The C++ programs have other differences from the WootinJ
program. First, since virtual function calls by -> operator in CUDA
on GPUs were unstable in our environment, we did not use virtual
function calls by -> operator in the kernel functions for CUDA.

Listing 6. Mutual type reference
class MPIThread implements OuterThread{

OuterThreadBody body;
void start(Matrix a, ...){

...
body.run(this , a, ...);

} ... }

class FoxAlgorithm implements OuterThreadBody{
void run(OuterThread thread , Matrix a, ...){

... }}

Program Compiler options
C++ -ipo -O3 -rcd -i-static -parallel
Template -ipo -O3 -rcd -i-static -xHost -parallel
Template w/o virt. -ip -O3 -rcd -i-static -xHost -parallel
C -ipo -O3 -rcd -xHost -parallel

Table 1. The compiler options for the 3D diffusion equation

Hence, with respect to the GPU code, the C++ programs provide
modularity inferior to the WootinJ program.

Furthermore, if the program includes mutually referential classes,
we could not rewrite these classes into template classes. In List-
ing 6, the MPIThread class has a reference to an OuterThread-
Body object. To devirtualize a call on the OuterThreadBody
object, we must parameterize the actual type of this object and
modify the MPIThread class into a template class such as MP-
IThread<FoxAlgorithm>. However, for devirtualization, the Fox-
Algorithm class must be also a template class taking the actual type
of the OuterThread object passed to the run method. In our exam-
ple, this actual type is MPIThread<>, which mutually refers to
FoxAlgorithm in the template argument. In our experiment, since
we could not naturally rewrite such classes into template classes,
these classes are not fully composable. We abandoned code reuse
and wrote classes specialized for a specific combination of compo-
nents, for example, the FoxAlgorithmForMPIThread, in which all
the occurrences of the type name OuterThread are replaced with
the concrete class MPIThread. Therefore, the C++ programs using
templates are inferior to the WootinJ program with respect to code
reuse and modularity.

4.1 Three-dimensional diffusion equation
To evaluate our class library for stencil computation, we wrote a
solver of three-dimensional diffusion equation. The main compo-
nent of the solver program is a Dif3DSolver class, which imple-
ments the three-dimensional diffusion equation we solve. It is a
subclass of ThreeDSolver from the class library. The program also
uses the FloatGridDblB (a float array with double buffering) class
from the class library. For switching execution hardware, we se-
lected an appropriate subclass of StencilRunner from the class li-
brary. All the programs were compiled with the options listed in
Table 1.

Figure 4 shows the weak scalability of the solvers running on
multiple nodes communicating through MPI. Only one CPU/thread
was used per node and no GPUs were used. The problem size was
128 × 128 × 128 per node. We also compared the strong scalability
of the solvers between C and WootinJ. The problem size was 128
× 128 × (128 × 8). Figure 5 shows the result.

We also ran the program on GPUs. We used one GPU per node
and all the computation was performed on GPUs (CPUs were not
used for the computation). Figure 6 shows the weak scalability on
GPUs. The problem size was 384 × 384 × 384 per GPU. It requires

The scalability of the 3D diffusion equation

Figure 4. The weak
scalability on CPUs

Figure 5. The strong
scalability on CPUs

Figure 6. The weak
scalability with GPUs

Figure 7. The strong
scalability with GPUs

Figure 8. The class diagram of our class library for matrix multi-
plication

Program Compiler options
C++ -ipo -O3 -rcd -i-static -xHost
Template -ipo -O3 -rcd -i-static-xHost
Template w/o virt. -ipo -O3 -rcd -i-static -xHost -parallel
C -ip -O3 -rcd -i-static

Table 2. The compiler options for matrix multiplication

the whole memory of GPUs. The strong scalability on GPUs is
showed in Figure 7. The problem size was 384 × 384 × (384 × 4).

4.2 Matrix multiplication
We also wrote a class library for computing matrix multiplication in
different algorithms. Figure 8 shows the class diagram of this class
library. The class library consists of three kinds of components:
Thread, ThreadBody, and Matrix, which are implemented by
interfaces. Thread represents how to run the kernel computation in
parallel. The class library users can choose MPIThread for using
MPI, CPULoop for computing only on CPUs, and GPUThread for
using GPUs. ThreadBody represents a parallel algorithm of matrix
multiplication such as the Fox algorithm. Matrix represents the data
structure implementing a matrix. The class library users can choose
a normal dense matrix or a sparse matrix.

For evaluation, we wrote a program combining the library
classes SimpleMatrix (for a dense matrix), SimpleOuterBody, and
OptimizedCalculator. The program was compiled with the options
listed in Table 2. We chose these options since they showed the best
performance.

Figure 9 shows the weak scalability of the program running on
multiple nodes communicating through MPI. Only one CPU/thread
was used per node and no GPUs were used. The problem size was

sec
Matrix Mul. (single CPU) 1.405 ± 0.046
Matrix Mul. (MPI) 3.060 ± 0.696
Matrix Mul. (MPI & GPU) 4.138 ± 1.246
3D diffusion (single CPU) 2.039 ± 0.258
3D diffusion (MPI) 3.273 ± 1.097
3D diffusion (MPI & GPU) 3.781 ± 1.289

Table 3. The compilation time by WootinJ

2048 × 2048 × 2048 per node. Figure 10 shows the strong scala-
bility of the programs C and WootinJ. The problem size was 2048
× 2048 × (2048 × 8). Figure 11 shows the weak scalability of the
programs running on GPUs. All the computation was performed
on GPUs and CPUs were used only for inter-node communica-
tion. The problem size was 14592 × 14592 × 14592 per GPU. It
requires the whole memory of GPUs. The strong scalability with
GPUs is showed on Figure 12. The problem size was 14592 ×
14592 × (14592 × 8).

The results of our experiments revealed that the WootinJ pro-
grams still involves runtime penalties against the C programs. For
the comparison to the C++ programs, the WootinJ programs are
significantly faster than the plain C++ programs using virtual func-
tions but the performance difference between the WootinJ programs
and the C++ programs using templates depends on how well the
optimization works. In the case of the diffusion equation on CPUs,
Template w/o virt. outperformed the WootinJ program whereas it
showed unsatisfactory performance in the case of matrix multipli-
cation on CPUs. When the programs ran on GPUs, Template al-
ways showed similar performance to the WootinJ program. How-
ever, as we have already mentioned, the C++ programs using tem-
plates have drawbacks with respect to code reuse and modularity.
The C programs also share those drawbacks.

4.3 Compilation time
A major factor of the execution overhead of WootinJ is compilation
time during runtime. Table 3 shows the compilation time by Woot-
inJ. It is about four to five seconds. The compilation time includes
the time for code generation by WootinJ and the compilation of the
generated code by an external compiler. Since this overhead is get-
ting relatively smaller as the translated code runs longer and also it
is independent of the problem size, we show the strong scalability
of the WootinJ program excluding compilation time in Figure 13
to 16. These figures show that the execution performance of the
WootinJ programs are comparable to the C programs written by
hand without considering code reuse and modularity.

The scalability of the matrix multiplication

Figure 9. The weak
scalability on CPUs

Figure 10. The strong
scalability on CPUs

Figure 11. The weak
scalability with GPUs

Figure 12. The strong
scalability with GPUs

The strong scalability without compilation time

Figure 13. The matrix
multiplication on CPUs

Figure 14. The matrix
multiplication with GPUs

Figure 15. The 3D
diffusion equation on CPUs

Figure 16. The 3D
diffusion equation with GPUs

4.4 Comparison to Java
The basic architecture of WootinJ is similar to the just-in-time
compilation of the Java virtual machine (JVM). To investigate this
similarity, we ran the programs written for our experiments on
a single CPU/thread without a GPU and then compared to the
performance of the Java program running without WootinJ. Note
that the class libraries written with WootinJ are Java programs and
hence the application programs built on these class libraries can run
without WootinJ unless they use MPI or GPUs.

Figure 17 shows the performance of the programs for the three-
dimensional diffusion equation. It is an extension of Figure 3. The
problem size is 128 × 128 × 128. Figure 18 shows the perfor-
mance of the matrix multiplication. The problem size is 1024 ×
1024 × 1024. These figures show that WootinJ achieved consid-
erably better performance than Java running on the JVM. Since
WootinJ requires that the translated code is subject to our coding
rules, which help the optimization, it can perform aggressive de-
virtualization and object inlining. On the other hand, the JVM ex-
ecutes the program as a pure Java program and thus the capability
for the optimization is restricted. The figures also show that Woot-
inJ achieves relatively better performance for the three-dimensional
diffusion solver, which is a more complex class library. Such a class
library involves more objects and more dynamic method dispatches
and thus it has larger room for optimization.

5. Related Work
5.1 Java (bytecode) on GPUs
There have been several tools for providing foreign function inter-
faces from Java to CUDA. For example, JCuda [11] allows pro-
grammers to call from Java a CUDA function running on a GPU.
The programmers do not have to use JNI (Java Native Interface),
which is known as a complicated system. JCUDA [19] also pro-
vides foreign function interfaces from Java to CUDA. It extends

 0

 50

 100

 150

 200

 250

 300

 350

Java

C
++

Tem
plate

Tem
plate w

/o virt.

C W
ootinJ

M
F

LO
P

S

Figure 17. The performance of the 3D diffusion (128×128×128)

the syntax of Java to enable natural syntax to call a CUDA func-
tion. Since these tools provide foreign function interfaces, a func-
tion running on a GPU is written in not Java but CUDA by hand
although WootinJ allows writing it in Java.

Like WootinJ, Aparapi [1] and Rootbeer[16] allow program-
mers to write a function in Java and run it on a GPU. Aparapi
is a translator from a subset of Java to OpenCL [13] on AMD
GPUs. Unlike WootinJ, however, Aparapi does not support objects
or dynamic method dispatch. Rootbeer does not support dynamic
method dispatch as well.

JCudaMP [7] is an OpenMP [3] framework for Java. This
framework translates Java bytecode into CUDA including OpenMP
directives. Unlike WootinJ, it does not support dynamic method
dispatch. JConqurr [9] is a toolkit for many-core programming in
Java. For GPU programming, this tool helps developers convert
a for loop in Java code into an equivalent GPU function. Unlike
WootinJ, JConqurr is not a tool for translating a Java method into a
function running on a GPU.

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 500

 550

Java

C
++

Tem
plate

Tem
plate w

/o virt.

C W
ootinJ

M
F

LO
P

S

Figure 18. The performance of the matrix multiplication (1024 ×
1024 × 1024)

JaBEE [20] is the execution environment for Java bytecode on
a GPU. It fully supports object-oriented features of Java, including
dynamic method dispatch. Since the aim of this work is to fully sup-
port object orientation and execute normal Java bytecode, JaBEE
does not support aggressive devirtualization or object inlining per-
formed by WootinJ. Firepile [15] is a runtime compiler for translat-
ing Scala code into OpenCL code. Like JaBEE, it supports dynamic
method dispatch appearing in the functions running on a GPU. The
aim of Firepile is also the full support of object orientation. The ag-
gressive devirtualization or object inlining performed by WootinJ
are not supported.

5.2 Optimization techniques
The class hierarchy analysis has been used as a simple technique for
devirtualization [4, 8]. If the target method of devirtualization has
only a single implementation, the method call can be replaced with
static method dispatch. To minimize the overheads due to guard
tests, Ishizaki et al. proposed a technique called direct devirtual-
ization with the code patching mechanism [10]. The approach of
WootinJ to devirtualization is different since WootinJ assumes that
the translated code satisfies the coding rules, which simplify devir-
tualization.

The object inlining is also a well-known technique. Dolby et al.
developed a static compiler for object inlining in C++ [5, 6]. This
compiler performs whole program analysis and checks whether it
can perform object inlining. Wimmer et el. proposed automatic
feedback-directed object inlining for the JVM [18]. The JVM au-
tomatically analyzes field accesses and applies object inlining to
frequently accessed fields if it is possible. These approaches are dif-
ferent from WootinJ’s since WootinJ requires that all references in
the program satisfy the preconditions of object inlining and hence
WootinJ does not check object inlining is applicable.

6. Conclusion
We proposed a framework for multiplatform HPC applications in
Java. The applications built on this framework achieve execution
performance comparable to C++ code heavily using the template
meta-programing technique, which often results in complicated,
difficult-to-read code. To support MPI and/or GPU programming
in Java, our framework adds simple extensions to Java, which are
implemented with annotations but without syntax extension. The
annotated Java code is dynamically translated into the CUDA or
C code using MPI according to the underlying platform. Since our
framework aggressively applies devirtualization and object inlin-
ing, our framework requires that the translated code is subject to
our coding rules. Although the coding rules significantly restrict
the coding style, this paper presented that we could develop a class
library for stencil computing running on CPUs or GPUs in paral-

lel through MPI. It achieved execution performance comparable to
C++ code optimized by template meta-programming. Our future
plans include to develop larger class libraries in the HPC domain
and evaluate the practicality of our framework.

References
[1] Aparapi. AMD developer central.

http://developer.amd.com/zones/java/aparapi/Pages/
default.aspx.

[2] H. Chafi, A. K. Sujeeth, K. J. Brown, H. Lee, A. R. Atreya, and
K. Olukotun. A domain-specific approach to heterogeneous paral-
lelism. SIGPLAN Not., 46(8):35–46, Feb. 2011. ISSN 0362-1340.
. URL http://doi.acm.org/10.1145/2038037.1941561.

[3] L. Dagum and R. Menon. OpenMP: an industry standard API for
shared-memory programming. Computational Science & Engineer-
ing, IEEE, 5(1):46–55, 1998.

[4] J. Dean, D. Grove, and C. Chambers. Optimization of object-oriented
programs using static class hierarchy analysis. In ECOOP ’95, pages
77–101. Springer-Verlag, 1995.

[5] J. Dolby. Automatic inline allocation of objects. In PLDI ’97, pages
7–17. ACM, 1997.

[6] J. Dolby and A. Chien. An automatic object inlining optimization and
its evaluation. In PLDI ’00, pages 345–357. ACM, 2000.

[7] G. Dotzler, R. Veldema, and M. Klemm. JCudaMP: OpenMP/Java
on CUDA. In Proceedings of the 3rd Int’l Workshop on Multicore
Software Engineering (IWMSE ’10), pages 10–17. ACM, 2010.

[8] M. F. Fernández. Simple and effective link-time optimization of
Modula-3 programs. In PLDI ’95, pages 103–115. ACM, 1995.

[9] G. Ganegoda, D. Samaranayake, L. Bandara, and K. Wimalawarne.
JConqurr - a multi-core programming toolkit for Java. Int’l Journal of
Computer and Information Engineering, 3(4), 2009.

[10] K. Ishizaki, M. Kawahito, T. Yasue, H. Komatsu, and T. Nakatani. A
study of devirtualization techniques for a Java just-in-time compiler.
In OOPSLA ’00, pages 294–310. ACM, 2000.

[11] jcuda.org. jcuda.org - Java bindings for CUDA.
http://www.jcuda.de.

[12] K. C. Kang, S. G. Cohen, J. A. Hess, W. E. Novak, and A. S. Peterson.
Feature-oriented domain analysis (FODA) feasibility study. Technical
report, DTIC Document, 1990.

[13] Khronos OpenCL Working Group. The OpenCL specification, 2008.
[14] C. Mellon. Software product lines — overview.

http://www.sei.cmu.edu/productlines.
[15] N. Nystrom, D. White, and K. Das. Firepile: run-time compilation for

GPUs in Scala. In Proc. of the 10th ACM int’l conf. on Generative
Programming and Component Engineering (GPCE ’11), pages 107–
116. ACM, 2011.

[16] P. C. Pratt-Szeliga, J. W. Fawcett, and R. D. Welch. Rootbeer: Seam-
lessly using GPUs from Java. In High Performance Computing and
Communication & 2012 IEEE 9th International Conference on Em-
bedded Software and Systems (HPCC-ICESS), 2012 IEEE 14th Inter-
national Conference on, pages 375–380. IEEE, 2012.

[17] Tokyo Institute of Technology. TSUBAME computing services.
http://tsubame.gsic.titech.ac.jp.

[18] C. Wimmer and H. Mössenböck. Automatic feedback-directed object
inlining in the Java hotspot virtual machine. In Proc. of the 3rd int’l
conf. on Virtual Execution Environments (VEE ’07), pages 12–21.
ACM, 2007.

[19] Y. Yan, M. Grossman, and V. Sarkar. JCUDA: A programmer-friendly
interface for accelerating Java programs with CUDA. In Euro-Par,
pages 887–899, 2009.

[20] W. Zaremba, Y. Lin, and V. Grover. Jabee: framework for object-
oriented Java bytecode compilation and execution on graphics proces-
sor units. In Proc. of the 5th Annual Workshop on General Purpose
Processing with Graphics Processing Units (GPGPU-5), pages 74–83.
ACM, 2012.

