
Composable User-Defined Operators
That Can Express User-Defined Literals

Kazuhiro Ichikawa

The University of Tokyo

ichikawa@csg.ci.i.u-tokyo.ac.jp

Shigeru Chiba

The University of Tokyo

chiba@acm.org

Abstract
This paper proposes new composable user-defined operators,
named protean operators. They can express various language ex-
tensions including user-defined literals such as regular expression
literals as well as user-defined expressions. Their expressiveness is
equivalent to Parsing Expression Grammar (PEG). The operators
have two important features to be parsed in pragmatic time: over-
loading by return type and a precedence rule for operators. They
can be parsed efficiently even if they express user-defined literals
since ambiguities in the grammar are removed by these two fea-
tures. The overloading by return type enables us to consider static
types as non-terminal symbols in the grammar. The compiler can
use static type information for parsing. It can resolve ambiguities
of the rules with the same syntax but a different type. Protean op-
erators with the same return type require programmers to declare
the precedence among them. These precedence rules enable com-
pletely removing ambiguities from the grammar since all the rules
applicable to the same place are ordered. Thus, the expressions
including protean operators can be parsed in pragmatic time. We
have implemented a language that is a subset of Java but supports
protean operators. We present an experiment to show that the pro-
grams including user-defined literals cannot be parsed in pragmatic
time in existing approaches but can be efficiently parsed in our
approach.

Categories and Subject Descriptors D.3.3 [Programming Lan-
guages]: Language Constructs and Features

General Terms Languages, Algorithms, Experimentation

Keywords user-defined operators; parsing; syntax extensions

1. Introduction
A Domain Specific Language (DSL) is a simple programming
language specially designed for only a limited purpose. Since a
DSL is specialized for its application domain, its source code is
more concise and intuitive than the equivalent code written in a
general purpose language. An internal DSL [11] (or Embedded
DSL) is a DSL that is implemented as a library in a general purpose
language. It can be used together with the general purpose language

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

Modularity ’14, April 22–26, 2014, Lugano, Switzerland.
Copyright is held by the owner/author(s). Publication rights licensed to ACM.
ACM 978-1-4503-2772-5/14/04. . . $15.00.
http://dx.doi.org/10.1145/2577080.2577092

(called the host language) since a program written in the DSL is still
a valid program in the host language. It can be also used together
with another DSL implemented on the same host language since
both DSL programs are host language programs. An advantage of
internal DSLs is this feature, composability. On the other hand,
internal DSLs have drawbacks in the syntax – the syntax of internal
DSLs is restricted by their host language. This paper aims to relax
the restriction of the DSL syntax.

Composable user-defined operators are a useful tool for imple-
menting internal DSLs since we can consider that they define their
own syntax and semantics. The overloaded operators in C++ are
simple user-defined operators but there have been user-defined op-
erators that enable syntax extension. Mixfix operators [7] are one of
the most powerful implementation of composable user-defined op-
erators. However, the expressiveness of the mixfix operators is still
limited and they cannot express certain kinds of syntax for internal
DSLs. A typical problem is that they cannot express user-defined
literals. A number of DSLs have their own literals that are not in-
cluded in general purpose languages for describing programs con-
cisely and safely. For example, flex [15], which is a DSL for gen-
erating a scanner, has literals for expressing regular expressions.
Without user-defined literals, they must be expressed by character
strings; it weakens maintainability and safety since the compiler
does not check that the string character fits the literal syntax. User-
defined literals introduce a large number of ambiguities and user-
defined literals are included at a number of places in the source pro-
gram. Thus, the parser cannot parse a program in pragmatic time.

In this paper, we propose new composable user-defined opera-
tors, named protean operators. They can express user-defined liter-
als such as regular expressions and they are designed to be parsed
in pragmatic time. There are two important features for efficient
parsing: operator overloading and a precedence rule of operators.
The first one is that a protean operator is overloaded on its re-
turn type and its parameter types. It enables us to consider static
types as non-terminal symbols in the grammar. The compiler can
use static type information for parsing. It resolves ambiguities of
the rules with the same syntax but a different type. Furthermore, it
also guarantees their composability. The second feature is that pro-
tean operators with the same return type require that the precedence
among them is explicitly specified. These precedence rules com-
pletely remove ambiguities from the grammar since all the rules
applicable to the same place are ordered. The parser can efficiently
parse expressions including protean operators since the grammar
has no ambiguities.We have developed ProteaJ, which is a subset
language of Java supporting protean operators. We have conducted
an experiment for demonstrating that ProteaJ can parse expressions
including user-defined literals efficiently even though a naive pars-
ing method cannot parse them in pragmatic time.

In the rest of this paper, we first show the limitation of existing
composable user-defined operators. Then we propose new compos-

for (int i = 0; i < 10; i = i + 1) {
print("Loop " + i + "\n");

}

Figure 1. An example of composable operators

val v1 = calc1()
val v2 = calc2()
v1 should be (0)
v2 should not be (0)

Figure 2. Composable user-defined operators with new syntax

able user-defined operators, named protean operators, and we show
the parsing method for them in Section 3. In Section 4, we present
a programming language supporting protean operators, named Pro-
teaJ. Section 5 mentions an experiment for demonstrating the effi-
ciency of our parsing method for protean operators. Section 6 is on
related work. We conclude in Section 7.

2. Motivation
Composable user-defined operators are useful for implementing in-
ternal DSLs [11]. “Composable” means that operators with similar
syntax can be used together at the same time safely. For example,
composable operators are distinguished by static types. Figure 1
shows an example of composable operators. In this figure, there
are three + operators. The first + operator expresses addition of in-
teger values. The second + operator expresses concatenation of a
string and an integer. The third + operator expresses concatena-
tion of two strings. Although these three operators share the same
syntax, they are distinguished by their parameter types. In some
languages, progammers can define new operators that are not only
predefined operators such as +. Figure 2 shows a unit test program
using user-defined operators that introduce their own syntax. Line 3
in the figure consists of a binary infix operator should and a func-
tion call be(0). Line 4 in the figure also includes two binary infix
operators should and be. We can write a unit test program by using
these operators as if it is written in a domain-specific or “natural”
language. We can consider that composable user-defined operators
make a new language on the host language since they have their
own syntax and they are separated from the host language syntax,
for example, by static types. Programmers can compose a library
of composable user-defined operators as an internal DSL.

Mixfix operators [7] are a powerful implementation of com-
posable user-defined operators. Mixfix indicates prefix, postfix, in-
fix, or outfix. Mixfix operators can take operands and each two
operands are separated by an operator-name. For example, the fol-
lowing syntax can be expressed by mixfix operators:

if _ then _ else _ // prefix
_ [_] // postfix
_ < _ < _ // infix
| _ | // outfix

here, an underscore _ indicates an operand. Mixfix operators
adopted in several languages such as Isabelle [16], Agda [1], and
Pure [12].

However, mixfix operators do not have sufficient syntactic ex-
pressiveness for implementing a certain kind of internal DSLs.
Mixfix operators cannot express complicated literals since they do
not support literal-level syntax extension. The following code is an
example of a regular expression literal:

Regex r = hel+o ;

the right-hand side of = is a regular expression literal that denotes
helo, hello, helllo, and so on. Expressing user-defined liter-
als by mixfix operators is difficult since the definition of tokens
read by the scanner cannot be changed. For example, the literal
hel+o should be tokenized into [h, e, l, +, o], but it is tok-
enized into three tokens [hel, +, o] in typical general purpose
languages such as C and Java.

Scannerless parsing is one of the implementation techniques of
parsers that handle every character as a token and it enables us
to handle literals as non-terminal symbols constructed by tokens.
Since each character is a token, the syntax rules of user-defined
literals can be handled by a parser. For instance, the literal hel+o
is tokenized into [h, e, l, +, o] in a language implementing
by a scannerless parser, and we can express the literal hel+o
by six operators: four operandless operators (h, e, l, and o) for
recognizing a single character as a sub-expression, an nameless
operator (_ _) for concatenating sub-expressions, and a postfix
operator (_ +). Mixfix operators can express user-defined literals
when the host language is implemented by using a scannerless
parser and they support nameless operators.

A typical parser for user-defined operators generates all possi-
ble parse trees to parse an expression. Then the compiler selects
the most suitable parse tree from all possible trees by using the lan-
guage semantics since the syntax of a user-defined operator should
be allowed to conflict with another operator or the host language
syntax. This is for flexible DSL definitions. The type checker is
usually used for selecting the suitable parse tree since the type in-
formation holds the semantics of programs – what the program-
mer intends. For example, the expression hel+o has some possi-
ble parse trees and the interpretation of the expression should be
changed by the context. It should be interpreted as an addition of
integers if it is used as follows:

int i = hel+o;

but it should be interpreted as a regular expression literal if it is
used as follows:

Regex r = hel+o;

Therefore, the syntax including regular expression literals should
be an ambiguous grammar such as in Figure 3 and the ambiguities
must be resolved by the type checker.

A typical scannerless parser is inefficient when parsing a pro-
gram including user-defined literals. It must generate all possible
parse trees but the number of these trees tends to be extremely large
due to the ambiguity introduced by user-defined literals. Scanner-
less Generalized LR (SGLR) [25][23] parser is a well-known im-
plementation of a scannerless parser. The parsing time of SGLR
parsers is proportional to the degree of ambiguities (nondetermin-
istics) in the grammar, and the worst-case time complexity is O(n3)
(n is the input length). Note that n in this complexity is the number
of tokens and it is equal to the number of characters in the program
when an SGLR parser is used. n is sometimes larger than 10000.
For example, the definition of the ArrayList class in OpenJDK
7 includes more than 12000 characters excluding comments and
white-spaces.

3. Proposal: Protean Operators
We propose new composable user-defined operators, named pro-
tean operators. They can express user-defined literals such as reg-
ular expressions and parse them in pragmatic time. There are two
important features of protean operators for efficient parsing : (1)
overloading based on return type, and (2) parsing precedence. The
overloading by return type enables the parser to resolve grammar
ambiguities by using type information at parse time. The parsing

Stmt → Type Id "=" Expr ";"
Expr → Regex | Sum
Regex → Star+
Star → Letter "+" | Letter
Sum → Sum "+" Id | Id
Id → Letter+

Figure 3. An example of grammar including regular expression
literals

precedence resolves the remaining ambiguities after the type check-
ing by (1). Since these features resolve all the grammar ambiguities
at parse time, protean operators that express user-defined literals
can be parsed even in pragmatic time.

3.1 Protean Operators
Protean operators are composable user-defined operators that can
have any number of operator-names and operands. Unlike mixfix
operators, a protean operator is not only infix, prefix, postfix, and
outfix; for example, a “nameless” operator, which is an operator
without an operator-name, is a protean operator. Nameless opera-
tors are useful for implementing a concise internal DSL since they
are invisible. Protean operators support operator precedence and as-
sociativity for ease of use. Protean operators are totally ordered by
operator precedence. Figure 4 shows examples of protean opera-
tors that express regular expression literals. To express a protean
operator, we introduce the following notation: [S]:T represents
that an operator has syntax S and a return-type T. A double-quoted
string denotes an operator-name and _:T denotes an operand of
type T. The optional part enclosed by curly braces indicates an op-
erator associativity. left-assoc is left-associative and non-assoc is
non-associative. The operator precedence is shown in the last two
lines in the figure. The literal hel+o is parsed as a regular expres-
sion literal as shown in Figure 5. The literal hel+o consists of four
literals h, e, l+, and o and they are connected with a nameless op-
erator. The nameless operator takes literals as operands and it re-
turns a new literal expressing a regular expression constructed by
the concatenation of the given regular expressions.

The details of the parsing of hel+o are the following. We as-
sume that any single character is recognized as a token. First, each
alphabetic token is interpreted as a simple Letter literal by the
corresponding operator taking the token as an operator name such
as ["h"]:Letter and ["e"]:Letter. These operators can
be considered as a simple user-defined literal, which consists of
one token. Each Letter literal is converted into a Regex literal
by the nameless operator [_:Letter]:Regex at (D) in Figure
4. This nameless operator takes a Letter object as an operand
and it returns an object expressing a regular expression that ac-
cepts the given letter. It is used as implicit type coercion. The
two Regex literals, h and e, are tied by the nameless operator [
_:Regex _:Regex]:Regex at (A) in Figure 4. The nameless op-
erator takes two operands of type Regex, and it expresses a se-
quence of regular expressions. In this part, it takes the two Regex
literals, h and e, as operands and it returns an object expressing
a regular expression that accepts he. l+ forms a literal of a regu-
lar expression constructed by a postfix unary operator [_:Regex
"+"]:Regex shown at (C) in Figure 4. It represents a regular ex-
pression that accepts one or more sequences of l. Then he and
l+ tied by [_:Regex _:Regex]:Regex, and they make a lit-
eral expressing hel, hell, helll, and so on. Finally, hel+ and o
make a literal that expresses the complete regular expression by [
_:Regex _:Regex]:Regex.

Protean operators are overloaded by their return types and their
parameter types. Overloading by return type allows defining opera-
tors that have the same syntax but a different return type. The inter-

(A) [_:Regex _:Regex]:Regex { left-assoc }
(B) [_:Regex "++"]:Regex { non-assoc }
(C) [_:Regex "+"]:Regex { non-assoc }
(D) [_:Letter]:Regex { non-assoc }
(E-a) ["a"]:Letter
(E-b) ["b"]:Letter
...

(E-z) ["z"]:Letter

operator precedence:
(A) < (B) = (C) < (D) < (E-a) = (E-b) = ... = (E-z)

Figure 4. The protean operators expressing regular expression lit-
erals

Figure 5. The parse tree for the literal hel+o

pretation of the expression is changed by the expected type there.
This fact is useful for developing internal DSLs since an operator is
used only where it is required. For example, an expression hel+o
can be interpreted as either of the following two patterns:

int hel = 2;
int o = 3;
int x1 = hel+o; // 5
Regex x2 = hel+o; // helo, hello, helllo, ...

The expression hel+o in the third line is interpreted as an addi-
tion expression of integers since the right hand of the assignment
expects an integer value. Only the expression hel+o in the fourth
line is interpreted as a regular expression literal since a Regex ob-
ject is expected. It can be considered that the expected type of an
expression determines the parsing of the expression.

If two protean operators share the same return type, the user
must specify the parsing precedence among them. This precedence
determines which operator should be selected when multiple in-
terpretations are possible during parsing. In this paper, the earlier
declared operator has the higher parsing precedence. For example,
the possessive quantifier [_:Regex "++"]:Regex has higher
precedence than the greedy quantifier [_:Regex "+"]:Regex
since [_:Regex "++"]:Regex is a special case of [_:Regex
"+"]:Regex. An operator with higher precedence is applied for
parsing before operators with lower precedence. If the operator
with higher precedence is successfully applied, then the other oper-
ators with lower precedence are not applied. The literal hel++o is
interpreted as he(l++)o by applying [_:Regex "++"]:Regex
rather than he((l+)+)o by [_:Regex "+"]:Regex since the
former has higher precedence. The literal hel+o is interpreted as

he(l+)o since [_:Regex "++"]:Regex is applied first and
fails and then [_:Regex "+"]:Regex is successfully applied.

A drawback of protean operators is a limited kind of places
where the operators are available. Protean operators are available
only in the expressions whose expected type are statically deter-
mined before parsing the expression. The places where protean op-
erators are available depend on a host language. For example, in
typical general purpose languages such as Java, protean operators
can be used in the right-hand side of an assignment but they cannot
be used in the left hand of an assignment. The expected type of the
right hand of an assignment is determined since it is the same type
of the left-hand side. However, the expected type of the left-hand
side of an assignment is not known before parsing the assignment
expression. If we use a protean operator on the left-hand side of an
assignment, the compiler emits a parse error. It is a drawback that
the compiler cannot distinguish between a syntax error and a type
error. Table 1 lists the expected types of every kind of expressions
in Java. It reveals that protean operators are available in any kind
of expression in Java except the left-hand side of an assignment,
the target of a member access, and the operand of a cast. Since the
left-hand side of an assignment is usually a simple expression, pro-
tean operators would not be desirable there. The target of a member
access could be a complicated expression like:

boolean b = (hel+o).matches("hello");

In such case, the programmers must rewrite the code as follows:

Regex r = hel+o;
boolean b = r.matches("hello");

Or, they must rewrite by using another protean operator as follows:

boolean b = hel+o matches "hello";

Here, matches is a binary infix operator. In Java, protean operators
are not available in the operand of a cast operator. A cast operator
that expresses a type conversion from S (source) to T (target) takes
the target type T but it does not take the source type S. Thus, the
compiler cannot know the expected type of the operand of a cast
since it is the source type S. For example, assuming that ["sin"
_:double]:double is an operator that returns the sine value of
the given angle, in the following code, the expected type of (sin
0.0) is unknown:

int a = (int)(sin 0.0);

If the cast operator explicitly specified the source type as follows:

int a = (double -> int)(sin 0.0);

Then the expected type of (sin 0.0) would be known as double.
In the argument of throw statement in Java, it is difficult to

determine available protean operators properly. According to Ta-
ble 1, the expected type of the argument of throw statement is
Throwable; however, it is not proper because, it must throw ei-
ther an Error, a RuntimeException, an exception declared in
the throws clause, or an exception caught in surrounding catch
clauses. Our current compiler does not consider this.

This drawback, protean operators are available only in the
expressions whose expected type are statically determined, also
makes an obstacle to use generics. Assuming that the generic type
List[T] is available, we would like to define the following opera-
tor:

["length" "of" _:List[T]]:int

In this operator, the type parameter T cannot be inferred from the
return type. Hence, the expected type List[T] of the argument
cannot be determined. We cannot use protean operators at the
operand of this operator. Since we currently do not have a good
solution of this problem, our compiler introduced in section 4 does
not support generics.

Place Expected type
left hand of an assignment unknown
right hand of an assignment the left-hand side type
target of a method call unknown
target of a field access unknown
operand of a cast unknown
argument of a method call corresponding parameter type
argument of a constructor corresponding parameter type
argument of an operator corresponding parameter type
condition of if, for, while boolean
argument of switch, case char or int
argument of throw Throwable
return expression the return type of the method
statement expression void
initial value of a field the field type

Table 1. The expected types of Java expressions

3.2 Parsing
To efficiently parse an expression including protean operators, we
developed a parsing method based on packrat parsing [9] support-
ing left recursion [26]. This parsing method is a recursive descent
parsing with backtracking and it consides type information. In this
section, we do not regard operator precedence since a grammar hav-
ing operator precedence can be translated to a grammar that does
not have it. (see 3.3)

Before parsing statements, the definition of protean operators
available in the program is parsed. The compiler parses the defi-
nitions excluding the body parts of the definitions. It collects the
meta-information of the protean operators such as the syntax and
type signature of the operator. The collected information is sorted
by the return types and the parsing precedences for later use.

The parser first attempts to parse a given piece of code as a
statement such as if until it encounters a non-terminal symbol rep-
resenting an expression. The protean operators cannot be used for
statement-level syntax since a protean operator and its operands
constitute only an expression. The statements are parsed by using
only the syntax rules of the host language. Once the parse encoun-
ters an expression, it first determines the expected type of the ex-
pression by analyzing the code that the parse has already read. For
example, an assignment statement is parsed by this rule:

Assignment → Id "=" Expr

The right-hand side of the statement Expr is parsed under the
expected type obtained from the L-value, in this case, the variable
named Id.

The parser first chooses the protean operator that returns the
expected type and has the highest parsing precedence. Then it
attempts to parse the expression by assuming that the expression is
of the chosen operator. If this attempt succeeds, the parser returns
the resulting parse tree of the expression. If it fails, the parser
backtracks and tries the protean operator with the next highest
parsing precedence. If there is no other operator, the parser parses
the expression by using the syntax rules of the expressions in the
host language. When the parser parses an expression as a protean
operator, it performs the following action for each element in the
syntax definition of the operator:

• An operator name "n" : read tokens by assuming that they
match n

• An operand _:T : parse the successive tokens as an expression
of the expected type T

Figure 6 shows the pseude code of the parsing algorithm for
statements. We assume that the language supports several control
flow statements such as while and it also supports local variables.

The procedure parseStmt is an entry point of the parser. The pro-
cedure parseWhileStmt parses a while statement. Since the con-
dition expression in the while statement must return a boolean
value, the expected type of the condition expression is boolean.
Thus the call parseExpr(Boolean, ops, env) parses it. The
procedure scan performs token analysis and returns Success if
the next token matches the given string, otherwise Failure. The
procedure parseVarDecl parses a local variable declaration. The
initialization expression of the declaration is parsed by using the ex-
pected type specified by the type of the declared variable. The name
and the type of the variable is stored into the environment env. The
procedure parseExpr parses an expression. It takes an expected
type as a parameter and attempts to parse an expression returning
a value of that type. If all the attempts fail, it calls another proce-
dure parseExprByPredefinedRule to parse an expression in the
host language. The procedure parseExprByOperator parses ac-
cording to the syntax of each protean operator. If it encounters an
operand, it recursively calls parseExpr. It passes the operand type
to parseExpr as the expected type.

In this figure, memoization is not shown for simplicity; how-
ever, it can be easily applied to the algorithm. To apply memo-
ization, the algorithm must be modified so that the result will be
memoised before it is returned and parseExpr will first look up the
memoization table to avoid redundant parsing attempts.

3.3 Parsing Speed and Expressiveness
Our parsing method is sufficiently fast to parse protean operators
even if they express user-defined literals since the operators can
be regarded as Parsing Expression Grammar (PEG) [10] with left
recursion as shown later. Our parsing method can be regarded as
a variant of recursive descent parsing with memoization for the
PEG generated from the operators. The memoization is used for
eliminating the cost of backtracking. Our method can be used for
scannerless parsing since its parsing-time complexity is O(n). The
original packrat pasing does not support left recursion, however,
we added the left-recursion support by a small extension. Unfortu-
nately, the worst-case time complexity of the packrat parsing sup-
porting left recursion is not O(n) but such a case seldom occurs in
practical programming languages [26]. Most user-defined literals
defined by protean operators are also parsed in linear time. Most
practical language grammar can be parsed in linear time.

The expressiveness of protean operators is equivalent to PEG.
Any protean operator can be expressed by PEG syntax and any
PEG syntax can be expressed by protean operators. Each rule of
PEG has the form A ← e, where A is a non-terminal symbol and
e is a parsed expression. A parsed expression consists of terminal
symbols, non-terminal symbols, the empty string, sequence opera-
tors e1e2, and ordered-choice operators e1/e2. Here, e1 and e2 are
a parsed expression. The other operators such as optional operators
can be expressed by the above operators.

We can translate any protean operator to PEGs by replacing
the types of the protean operator with non-terminal symbols. For
example, the following protean operator:

[_:Regex "+"]:Regex

can be translated into the following PEG syntax:

Expr<Regex> → Expr<Regex> "+"

Here, Expr<Regex> denotes a non-terminal symbol representing
an expression of the expected type Regex. A protean operator
returning a value of different type is translated into a different non-
terminal symbol. If an operator returns Letter, it is translated into
a non-terminal symbol Expr<Letter>. The parsing precedence is
translated into the ordered-choice rule in PEG. For example, see
the following protean operators:

// entry point
// ops is the definitions of the operators collected before parsing
// env is variable environment
def parseStmt(ops, env) {
r = parseWhileStmt(ops, env)
if (r is Success) return r
else backtrack
[parse by the other control flow rules similarly]
r = parseVarDecl(ops, env)
if (r is Success) return r
else backtrack
[parse by the other statement rules similarly]
r = parseExprStmt(ops, env)
if (r is Success) return r
return Failure

}

// WhileStmt → "while" "(" Expr<Boolean> ")" Stmt
def parseWhileStmt(ops, env) {
w = scan("while")
l = scan("(")
c = parseExpr(Boolean, ops, env)
r = scan(")")
s = parseStmt(ops, env)
if (w is Success && l is Success && c is Success &&
r is Success && s is Success) return WhileStmt(c, s)
else return Failure

}

// VarDecl → TypeName<T> Identifier "=" Expr<T>
def parseVarDecl(ops, env) {
t = parse by the identifier rule
n = parse by the identifier rule
e = scan("=")
v = parseExpr(get a type whose name is t, ops, env)
if (t is Success && n is Success &&
e is Success && v is Success) {
add a variable n whose type is t to env
return VarDecl(t, n, v)

}
else return Failure

}

// ExprStmt → Expr<Void> ";"
def parseExprStmt(ops, env) {
e = parseExpr(Void, ops, env)
s = scan(";")
if (e is Success && s is Success) return ExprStmt(e)
else return Failure

}

// typ is expected type
def parseExpr(typ, ops, env) {

// operators have been sorted by parsing precedence
operators = get operators returning typ from ops
for (op in operators) {
r = parseExprByOperator(op, ops, env)
if (r is Success) return r
else backtrack

}
return parseExprByPredefinedRule(typ, ops, env)

}

// op is an operator
def parseExprByOperator(op, ops, env) {
for (e in the syntax of op) {
if (e is an operator-name) {
if (scan(e to string) is Failure) return Failure

}
else if (e is an operand) {
r = parseExpr(e’s type, ops, env)
if(r is Failure) return Failure
else append r to the parse tree

}
}
return the parse tree

}

// variable access rule is a predefined
def parseExprByPredefinedRule(typ, ops, env) {
r = parse by the identifier rule
v = get a variable by the name of r from env
if (r is Success && v’s type is typ) return VarAccess(v)
else backtrack
[parse by any other predefined rules]
return Failure

}

Figure 6. the parsing algorithm for statements

PEG protean operators
parsing rule A ← e → an operator op that returns A

and the syntax of op is e
terminal a → an operator-name ”a”
non-terminal T → an operand _ : T
empty string ε → an operator-name ””
sequence e1e2 → a sequence e1e2
ordered-choice e1/e2 → an operand _ : X

and operators op1 > op2
op1 and op2 return X
and the syntax of opi is ei

Table 2. The translation from PEGs to protean operators

[_:Regex "++"]:Regex
[_:Regex "+"]:Regex

Here, the two different protean operators return the same type.
The first operator has higher parsing precedence than the second
operator. We traslate these operators into the following PEG syntax:

Expr<Regex> → Expr<Regex> "++"
| Expr<Regex> "+"

Note that the ordered choice | chooses the left operand first and
then the right operand. So the operator with a higher precedence is
the left operand.

On the other hand, any PEG rule can be translated into protean
operators. Table 2 presents the translation from PEG to protean op-
erators. In this table, op1 > op2 denotes that op1 has a higher pars-
ing precedence than op2. Terminal symbols in PEG are translated
into an operator-name of protean operator. Non-terminal symbols
at the left-hand side of→ are translated into the return types while
non-terminal symbols at the right-hand side are translated into the
operand types. The left and right operands of an ordered choice are
translated into distinct two protean operators. The operator for the
left has a higher parsing precedence than the operator for the right.

Operator precedence and associativity
We show below how to translate the protean operators with opera-
tor precedence and associativity into the protean operators with-
out them. Assume that operator precedence is represented by a
non-negative integer number and the larger number indicates the
higher precedence. We show the translation from the protean oper-
ator [S]:T having operator precedence P and associativity A. The
operator syntax S involves n operands and each operand has the
type Ti. First, the return type T is translated into the type TP. Here,
the subscript P is a non-negative integer number that is equivalent
to the operator precedence. Second, each operand _:Ti in the op-
erator syntax S is translated into the operand _:TiP+1 if the operand
is not the left-or-right-most element in the syntax. The left-most
operand _:T1 is translated into _:T1P if the operator associativity A
is left-assoc. Otherwise, it is translated into _:T1P+1 like the other
operand. The right-most operand _:Tn is also translated into _:TnP
if the operator associativity A is right-assoc. Otherwise, it is trans-
lated into _:TnP+1. For example, the following operator:

[_:Regex _:Regex]:Regex { left-assoc }

with the operator precedence 0, is translated into:

[_:Regex0 _:Regex1]:Regex0

Then we add an additional operator [_:TP]:TP−1 for each return
type TP if P is not 0. This operator converts a given argument to the
operand to a value of type TP−1 and returns it. Note that the parsing
precedence of the added operator [_:TP]:TP−1 is set to the lowest
among the operators with the return type TP−1. Finally, we add the

[_:Regex0]:Regex
[_:Regex0 _:Regex1]:Regex0
[_:Regex1]: Regex0
[_:Regex2 "++"]:Regex1
[_:Regex2 "+"]:Regex1
[_:Regex2]: Regex1
[_:Letter3]:Regex2
[_:Letter0]:Letter
[_:Letter1]:Letter0
[_:Letter2]:Letter1
[_:Letter3]:Letter2
["a"]:Letter3
...
["z"]:Letter3

Figure 7. The definition of the regular expression literals without
operator precedence or associativity (the translation from Figure 4)

operator [_:T0]:T for each return type T0. It converts an operand
from T0 to T. For example, the protean operators in Figure 4 are
translated into the operators in Figure 7.

4. Implementation: ProteaJ
We have developed ProteaJ, which is a subset language of Java and
supports protean operators. ProteaJ recognizes a single character as
a token. It enables protean operators to express user-defined literals.
For convenience, a white space is recognized as a token separator
by default, however, it can be recognized as a token by using a
special keyword readas.1ProteaJ provides a module system called
operator modules to implement and export user-defined operators.
Programmers can use these operators by importing the modules.
We give some examples of DSLs that are implemented in ProteaJ
to show the expressiveness of the protean operators. We also give
examples in which multiple DSLs are used. We implemented the
compiler of ProteaJ in Java. ProteaJ does not support generics
since there is a problem when protean operators and generics use
together (see section 3.1). ProteaJ also does not support inner
classes because they make the compiler complicated. For the same
reason, ProteaJ does not support annotations and the other facilities
introduced in Java 1.5 or above.

4.1 Definitions of Protean Operators
The definitions of protean operators in ProteaJ are similar to the
class and method definitions in Java. Figure 8 shows the definition
of protean operators that express regular expressions. This code
defines an operator module named RegexOperators. This module
defines four protean operators. For example, the third one of them
defines the greedy quantifier operator [_:Regex "+"]:Regex.
The keyword readas indicates that this operator expresses a user-
defined literal. It specifies that a white space is recognized as a
normal token rather than a token separator. The details on readas
are mentioned later (see 4.2). Regex next to readas represents the
return type of the operator. The following part r "+" represents
the syntax of the operator. The identifier r represents the operand
of the operator and the double-quoted string "+" represents the
operator-name of the operator. The parameter type of the operand r
is described in the following part enclosed in parentheses (Regex
r). It denotes that the type of the operand named r is Regex. The
following : priority = 250 represents the operator precedence.
The remaining part enclosed in curly braces is the operator body. It
is equivalent to the method body of a method declaration.

1 The keyword readas means that the parser reads the next input as an
instance of a specified type.

operators RegexOperators {
readas Regex rs+ (Regex... rs): priority = 200 {
return new RegexList(rs);

}
readas Regex r "++" (Regex r): priority = 250 {
return new RegexPossessivePlus(r);

}
readas Regex r "+" (Regex r): priority = 250 {
return new RegexPlus(r);

}
readas Regex l (Letter l): priority = 300 {
return new Regex(l);

}
}

Figure 8. The definition of protean operators expressing regular
expressions

Figure 9 is the syntax of the declarations of protean operators in
ProteaJ. In ProteaJ, an operator is defined in an operator module.
An operator declaration consists of two parts, a header and a body.
The body part is described as a method body. The header of a dec-
laration consists of modifiers, a return type, syntax, throwable ex-
ceptions, and an operator priority. Protean operators can have mod-
ifiers rassoc, nonassoc, and readas. The modifiers rassoc and
nonassoc specify operator associativity: rassoc specifies right-
associative and nonassoc specifies non-associative. The default
operator associativity is left-associative. ProteaJ provides several
notations like PEG notations for describing the syntax of the oper-
ator more concisely. ?, *, and + are an annotation for the operand of
the operator and they are annotated after the operand. ? indicates an
optional operand of the operator. It is used with a default argument
as follows:

readas Regex r "+" a? (Regex r, Anno a = Anno.greedy)
: priority = 250 {
return new RegexPlus(r, a);

}
readas Anno "+" () : priority = 300 {
return Anno.possessive;
}

* indicates zero or more repetitions, and + indicates one or more
repetitions. They are used with variable arguments. The lines from
2 to 4 in Figure 8 is an example using +. The operator [_+:Regex
]:Regex, which concatenates one or more regular expressions,
are defined there. & and ! are a predicate that can be used in the
operator syntax. They represent look-ahead; they check the next
inputs and might fail parsing by the condition of checking but they
do not conume the inputs. They take a type name after the symbol.
& T is a predicate that tries to parse the next inputs assuming that an
expected type is a given type T and fails when the look-ahead fails.
! T is similar to & T but it fails when the look-ahead succeeds.

To use protean operators, the ’using’ declaration is needed to
import the operator module. For example, regular expression liter-
als defined in Figure 8 can be used as follows:

using RegexOperators;
...
Regex r = hel+o;

the protean operators defined in RegexOperators are used for
the code hel+o. The using-declaration is written at the beginning
of programs.Multiple operator modules can be imported in one
source file by writing multiple using-declarations. For example,
GrepOperators, RegexOperators, and FilePathOperators
are used together in the following code:

OpModule → "operators" Id "{" OpDef* "}"
OpDef → Header Body
Header → Mod* Type Syntax Params Throws Prty
Mod → "rassoc" | "nonassoc" | "readas"
Syntax → (OpName | Operand | Opt | Rep | Pred)+
OpName → StringLiteral
Operand → Id
Opt → Id "?"
Rep → Id ("*" | "+")
Pred → ("&" | "!") Type
Params → "(" Param ("," Param)* ")"
Param → Type VarArgs? Id DfltArg?
VarArgs → "..."
DfltArg → "=" Expr
Prty → ":" "priority" "=" IntConst

Figure 9. The syntax of the protean operator declarations in Pro-
teaJ

using RegexOperators;
using FilePathOperators;
using GrepOperators;

GrepResult r = grep -i hel+o ~/src/Main.java;

4.2 Readas Operators, Operator Precedence, Parsing
Precedence

In ProteaJ, protean operators can be devided into two categories:
expression operators and readas operators, which begins with
readas. When parsing an expression operator, a white space is
reccognized as a separator of tokens. On the other hand, when
parsing a readas operator, a white space is a token. The operands of
readas operators must be expressions of readas operators. Readas
operators are mainly used for defining literals. Readas operators
are inconvenient for user-defined expressions since token separa-
tors must be explicitly inserted into the definition of the syntax.
For convenience, if readas is not specified, a white space is auto-
matically recognized as a separator. The operators defined without
readas are called expression operators.

The operator precedence of protean operators are specified by
integer values.In ProteaJ, the value of a precedence is larger, the
binding of an operator is tighter. For example, the third operator in
Figure 8 [_:Regex "+"]:Regex is bound tighter than the first
operator in the figure [_+:Regex]:Regex.

Parsing precedence of protean operators are specified by the
order of definitions in ProteaJ. The precedence of an operator
defined earlier is higher. For example, the second operator in Figure
8 [_:Regex "++"]:Regex has higher parsing precedence than
the third operator [_:Regex "+"]:Regex.

Operator precedence and parsing precedence are closed in each
operator module. The entire operator precedence and parsing prece-
dence are finally determined by the order of using-declarations.
Operators in a module that is imported earlier have lower parsing
precedence. Operators imported earlier binds tighter than operators
imported later.

4.3 Case Study
The rest of this section, we show several internal DSLs imple-
mented in ProteaJ.

Ruby-like print statement
In ProteaJ, programmers can define a new statement since Pro-
teaJ allows programmers to define an operator returning void. Pro-
grammers can use such an operator as if an expression of the op-
erator is a user-defined statement since a statement expression is

operators RegexOperators {
readas Regex l "|" r (Regex l, Regex r): priority = 100
readas Regex rs+ (Regex... rs): priority = 200
readas Regex r "?+" (Regex r): priority = 250
readas Regex r "*+" (Regex r): priority = 250
readas Regex r "++" (Regex r): priority = 250
readas Regex r "??" (Regex r): priority = 250
readas Regex r "*?" (Regex r): priority = 250
readas Regex r "+?" (Regex r): priority = 250
readas Regex r "?" (Regex r): priority = 250
readas Regex r "*" (Regex r): priority = 250
readas Regex r "+" (Regex r): priority = 250
readas Regex r "{" n "}" (Regex r, Nat n): priority = 250
readas Regex "[" es+ "]" (ClsElm... es): priority = 270
readas ClsElm f "-" t (Letter f, Letter t): priority = 280
readas ClsElm l (Letter l): priority = 300
readas Regex "." (): priority = 300
readas Regex l (Letter l): priority = 300
}

Figure 10. regular expression literals as an internal DSL

considered as an expression that expects void type. The following
code is a definition of an operator returning void:

operators OutputOperators {
void "p" msg (String msg): priority = 0 {
System.out.println(msg);

}
}

and we can use this as follows:

using OutputOperators;
...
p "Hello world!";

In the above code, the last line is a statement expression. We can
use p statement, which takes a string argument and prints the string
since OutputOperators provides the operator [p _:String
]: void.

Regular Expression
Programmers can define complex literals by using readas operators.
For example, regular expression literals can be defined as in Figure
10. This operator module RegexOperators provides Regex liter-
als, which express regular expressions. The following code is an
example using RegexOperators:

using OutputOperators;
using RegexOperators;
...
Regex stnumber = [0-9]{2}(B|M|D)[0-9]{5};
Matcher m = stnumber.matcher(text);
if(m.find()) {
p "match : " + m.group();

}

Regex literals are used in the statement of line 4 in the above
code. This regular expression literal consists of many operators:
[_+:Regex]: Regex, [_:Regex | _:Regex]: Regex, [
_:Regex { _:Nat }]: Regex, [[_+:ClsElm]]: Regex,
and so on. Parentheses (_) are an operator provided by ProteaJ.
They reset the parsing precedence and the operator precedence of
the expression within them.

Simple Optimization
Another usage of protean operators is performance optimization.
For example, the binary operator [_:String + _:String]:
String, which is used for string concatenation, is not efficient

operators ExStringOperators {
String buf (StringBuilder buf): priority = 200 {
return buf.toString();

}
StringBuilder l "+" r
(StringBuilder l, String r): priority = 250 {
return l.append(r);

}
String l "+" r (String l, String r): priority = 300 {
return l.concat(r);

}
StringBuilder s1 "+" s2 "+" s3
(String s1, String s2, String s3): priority = 350 {
StringBuilder buf = new StringBuilder();
return buf.append(s1).append(s2).append(s3);

}
}

Figure 11. Optimized string concatenation operators

when it is successively used more than once. To be more efficient,
we should instead use the StringBuilder class. Protean operators
in ProteaJ can be used in this case.

The definition in Figure 11 is the operators module that defines
the optimized string concatenation. When the operators module is
used, the single string concatenation such as "foo" + "bar" is
interpreted as "foo".concat("bar"), but the successive string
concatenation such as "foo" + "bar" + "baz" is interpreted as
the following:

new StringBuilder().append("foo")
.append("bar").append("baz").toString()

Like this, protean operators enables us to optimize the expressions
that conform to the typical patterns. An important fact is that the
optimizations are defined by the library, not the compiler.

SQL
In ProteaJ, programmers can implement more complex inter-
nal DSLs. For example, they can implement a subset of SQL.
We implemented two operator modules, FilePathOperators
and SQLOperators. FilePathOperators module enables us to
write a file path like ˜/Documents/file.txt. The definition of
FilePathOperators is shown in Figure 12. SQLOperators mod-
ule defines some SQL operators, for example, select, create table,
and insert into. The definitions of these operator modules are avail-
able from our web site.2With these modules, programmers can
write a program shown in Figure 13, for example.

5. Experiment
We have conducted an experiment for demonstrating that Pro-
teaJ can efficiently parse expressions including user-defined literals
even though a naive parsing method such as SGLR cannot parse
them in pragmatic time. We used JSGLR parser [2], that is a well-
known implementation of a SGLR parser in Java, as a parser of a
naive parsing method for mixfix operators supporting user-defined
literals. Since the parser of ProteaJ cannot be detached from the
compiler, we compared a compile time (parse time + code gener-
ation time) by ProteaJ and a parse time by JSGLR. The machine
used for the experimentation had 2.67GHz Core i5 processor and
8 GB memory. The installed operating system on the machine was
OpenSUSE 12.1. We used openJDK 1.7.0.

2 The source code of ProteaJ and DSLs introduced in this section is
available from: http://www.csg.ci.i.u-tokyo.ac.jp/~ichikawa/
ProteaJ.tar.gz

// PrimitiveOperators are predefined operators module
// and they are imported implicitly like java.lang
operators PrimitiveOperators {
...
int a + b (int a, int b): priority = 900 { ... }
int a - b (int a, int b): priority = 900 { ... }
int a * b (int a, int b): priority = 1000 { ... }
int a / b (int a, int b): priority = 1000 { ... }
...

}
operators FilePathOperators {
readas FilePath dir? name
(DirPath dir = CurDir.v, Identifier name)
: priority = 100 { ... }
readas DirPath parent? name "/"
(DirPath parent = CurDir.v, Identifier name)
: priority = 200 { ... }
readas DirPath dir? "./" (DirPath dir = CurDir.v)
: priority = 200 { ... }
readas DirPath dir? "../" (DirPath dir = CurDir.v)
: priority = 200 { ... }
readas DirPath "/" (): priority = 200 { ... }
readas DirPath "~/" () : priority = 200 { ... }

}

Figure 12. File path operators module

The problem setting of the experiment is as follows:

• Grammar: basic arithmetic operators and file path literals.
The grammar for the experiment of JSGLR is shown in Figure
14. ProteaJ uses the two operator modules in Figure 12 as the
grammar.

• Input: a/a/a/.../a (a sequence of a separated by /)
The input size is the number of a in the input. For example, the
input size of a/a/a is 3.
In the experiment of ProteaJ, the input source is more complex
since it should be a valid ProteaJ source code. Figure 15 shows
the input source for ProteaJ.

• Measurement: an average parse or compile time of ten execu-
tions.

The grammar shown in Figure 14 is a simple grammar only includ-
ing basic arithmetic operators and file path literals. It has ambigu-
ities, for example, a can be parsed as both of a variable and a file
name. a/a might be a division expression of two numbers, a divi-
sion expression of a number and a file name, a division expression
of two file names, and a file path literal. The possible parsing results
of the input a/a/.../a explode exponentially. The two operator
modules shown in Figure 12 express the same grammar as in Fig-
ure 14. When the two modules are imported by using-declarations,
ProteaJ can parse any expressions that can be expressed by the
grammar in Figure 14. Note that the grammar in Figure 12 is more
powerful than Figure 14 since identifiers are not only a. We have
measured the parse or compile time by changing the input size.

Figure 16 shows the result of the experiment. It is a semilog
graph. The vertical axis is the parsing time, and the horizontal
axis is the input size. The diamond is an average parse time by
JSGLR, and the rectangle is an average compilation time (parse
time + code generation time) by ProteaJ. This graph is plotted
for the input size from 0 to 20. According to the figure, JSGLR
parser is getting slow as the input size is getting large. The parsing
time increases exponentially. The worst-case time complexity of a
GLR parser is O(n3) if it is implemented carefully. This fact shows
that implementing an efficient scannerless GLR parser is difficult.
Moreover, JSGLR could not parse when the input size is more than
20, due to a lack of memory.

import java.sql.*;

using FilePathOperators;
using SQLOperators;
using OutputOperators;
using ExStringOperators;

public class Main {
private static boolean existTable
(String tbl) throws Exception
{
ResultSet tables = select tablename from sys.systables

where tablename = tbl.toUpperCase();
return tables.next();

}

private static void insertMember
(int id, String name) throws Exception
{
insert into members (user_id, name) values (id, name);

}

public static void main(String[] args) throws Exception {
connect to ./database.db;
if(existTable("members")) drop table members;
create table members (
user_id int not null primary key,
name varchar(64) not null

);

if(existTable("posts")) drop table posts;
create table posts (
id int not null generated always as identity,
date timestamp default current timestamp,
user_id int,
comment long varchar

);

insertMember(123, "ichikawa");
insertMember(345, "ohtani");
insertMember(567, "hiramatsu");
insert into posts (user_id, comment)

values (123, "Ohayo!");

ResultSet rs = select * from members;
while(rs.next()) {
p rs.getInt(1) + " " + rs.getString(2);

}
commit;
disconnect;

}
}

Figure 13. A program using SQLOperators

S → Expr
Expr → AddE
AddE → AddE "+" MulE | AddE "-" MulE | MulE
MulE → MulE "*" Primary | MulE "/" Primary | Primary
Primary → "a" | FilePath
FilePath → DirPath FileName | FileName
DirPath → DirPath FileName "/" | FileName "/"

| DirPath "./" | "./"
| DirPath "../" | "../"
| "/" | "~/"

FileName → "a"

Figure 14. The grammar of the language only supporting file-path
names and arithmetic calculations

The compilation time by ProteaJ increases linearly with the
input size. Figure 17 presents the compilation time by ProteaJ and
the input size. The vertical axis is the compilation time and the
horizontal axis is the input size. This figure presents the same data
as Figure 16 but on a different scale. The graph is plotted with the
input size from 0 to 1000. The vertical axis of Figure 16 is on a
logarithmic scale, but one of Figure 17 is on a linear scale.

using FilePathOperators;

public class Test {
public static void main(String[] args) {
FilePath path = a/a/.../a;
System.out.println(path.getAbsolutePath());

}
}

Figure 15. The input source for the experiment of ProteaJ

Figure 16. Comparison between ProteaJ compiler and JSGLR
parser

Figure 17. The compilation time by ProteaJ

6. Related Work
The idea of this paper is initially published as ACM Student Re-
search Competition [13]. The detailed discussion and the experi-
ments are new materials of this paper.

Macros
Syntactic macros are a common language facility to extend lan-
guage semantics. They are based on Abstract Syntax Tree (AST)
transformation. We can use them for implementing a new language
construct. Lisp is the most famous language that supports syntac-
tic macros. Syntactic macros are powerful especially in Lisp since
Lisp programs are represented by simple syntax, S-expressions. We
can define any kinds of special form if the syntax is an expression
surrounded with parentheses. A drawback of syntactic macros is
that they cannot lexically extend the syntax of the host language
since they are applied after parsing a program. There are many

languages supporting syntactic macros, besides Lisp. For instance,
Dylan [4], MetaML [17], Template Haskell, Nemerle [20], and
Scala [3] support syntactic macros. They have the same drawback
as Lisp macros.

Common Lisp has syntactic macros and it also has a syntax
extension system that is known as reader macros. Reader macros
switch the scanner and the parser to user-defined ones when a spe-
cial token is read. We can define a new syntax by using reader
macros and we can define the semantics of it by using syntactic
macros. Reader macros are very powerful, however, they are not
composable. Multiple syntax definitions in different read macros
cannot be used at the same time. User-defined scanners and parsers
used in reader macros may be implemented by different program-
mers. Since it is difficult to merge them, the syntax defined in them
would be difficult to be used together. Template Haskell [18] and
Converge [22] have the same facilities.

Nemerle also provides another macro system like C/C++ lexi-
cal macros. It allows programmers to define new syntax, and the
semantics of the syntax can be defined by a compile-time meta-
program. The restriction on the syntax is that the first token of the
syntax must be unique. User-defined literals are difficult to imple-
ment in Nemerle since the syntax must begin with an identifier in
the host language.

Mixfix Operators with Empty Syntax
Isabelle [16] and Maude [6] are programming languages support-
ing mixfix operators with empty syntax. The empty syntax support
a nameless operator syntax like the protean operator [_:Regex
_:Regex]:Regex. Arbitrary Context Free Grammar can be ex-
pressed by mixfix operators with empty syntax. Although the mix-
fix operators with empty syntax have good expressiveness, they
cannot express user-defined literals. A naive extension to them by
using a scannerless parser is not practical due to the efficiency of
the parsing as we mentioned.

External Tools
JastAdd [8] and Silver [24] are language construction systems
based on attribute grammar [14]. These systems allow us to de-
scribe a language definition in declarative and modular fashion. We
can extend an existing language by defining a new language ex-
tension module. Since they are systems for language developers to
implement a new or extended language, they are not suitable in our
case; as far as we know, there is no system where programmers can
reflectively extend the underlying parser.

Metaborg [5] is a meta-programming toolkit that enables us
to create syntax extensions. Since Metaborg uses SGLR parser,
programmers can define both of user-defined expressions and user-
defined literals on the same way. Metaborg is designed to be used
for creating an extended language that has new language features.
It is not designed to combine a number of language extensions that
are selected by users (not language developpers). It is not suitable
in our case.

Type-Oriented Island Parsing
Type-oriented island parsing [19] is a parsing algorithm based on
island parsing [21], which is a parsing algorithm for CFG, but
uses type information for efficient parsing. It can efficiently parse
expressions including composable user-defined operators even if
the operators introduce a number of ambiguities into the grammar.
It uses static type information to prune parsing paths that will make
ill-typed parse trees. However, it is unclear whether or not the type-
oriented island parsing can be applied to scannerless parsers since
the type-oriented island parsing uses heuristics for parsing tokens.

7. Conclusion
In this paper, we proposed new composable user-defined opera-
tors, named protean operators. They can express various language
extensions including user-defined literals as well as user-defined
expressions. They can have any number of operator-names and
operands, and their order is arbitrary. Protean operators have two
important features for the efficient parsing: overloading by return
type and parsing precedence. The overloading by return type en-
ables the parser to resolve grammar ambiguities by using type in-
formation at parse time. The parsing precedence resolves the re-
maining ambiguities after the type checking by the overloading by
return type. Since these features resolve all the grammar ambigu-
ities at parse time, protean operators can be parsed in pragmatic
time. We showed an efficient parsing method for protean opera-
tors based on packrat parsing supporting left recursion. This pars-
ing method is a recursive descent parsing with backtracking and
considering type information. A drawback of protean operators is
a limited kind of places where the operators are available. Protean
operators are available only in the expressions whose expected type
are statically determined before parsing the expression.

We have developed ProteaJ, which is a subset language of Java
and supports protean operators. ProteaJ provides a module sys-
tem called operator module to implement and modularize user-
defined operators. We implemented the compiler of ProteaJ in Java.
It is available from our web site mentioned in section 4.3. We
have conducted an experiment for demonstrating that ProteaJ can
efficiently parse expressions including user-defined literals even
though a naive parsing method such as SGLR cannot parse them in
pragmatic time. Currently, the entire operator precedence and pars-
ing precedence are determined by the order of using-declarations;
however, it is not clear that this means resolve conflicting operators
in any case. To find better composable precedence rules is future
work.

References
[1] Agda Wiki. http://wiki.portal.chalmers.se/agda/pmwiki.

php.

[2] JSGLR: An SGLR Parse Table Evaluator for Java. http://
strategoxt.org/Stratego/JSGLR.

[3] Scala Macros. http://scalamacros.org/.

[4] J. Bachrach and K. Playford. D-Expressions: Lisp Power, Dylan Style.
Technical report, 1999.

[5] M. Bravenboer and E. Visser. Concrete syntax for objects: domain-
specific language embedding and assimilation without restrictions.
In Proceedings of the 19th annual ACM SIGPLAN conference on
Object-oriented programming, systems, languages, and applications,
OOPSLA ’04, pages 365–383, New York, NY, USA, 2004. ACM.
ISBN 1-58113-831-8. . URL http://doi.acm.org/10.1145/
1028976.1029007.

[6] M. Clavel, F. Durán, S. Eker, P. Lincoln, N. Martí-Oliet, J. Meseguer,
and J. F. Quesada. Maude: Specification and Programming in
Rewriting Logic. Theor. Comput. Sci., 285(2):187–243, Aug.
2002. ISSN 0304-3975. . URL http://dx.doi.org/10.1016/
S0304-3975(01)00359-0.

[7] N. A. Danielsson and U. Norell. Parsing mixfix operators. In Pro-
ceedings of the 20th international conference on Implementation and
application of functional languages, IFL’08, pages 80–99, Berlin, Hei-
delberg, 2011. Springer-Verlag. ISBN 978-3-642-24451-3. URL
http://dl.acm.org/citation.cfm?id=2044476.2044481.

[8] T. Ekman and G. Hedin. The Jastadd System — Modular
Extensible Compiler Construction. Sci. Comput. Program., 69(1-3):
14–26, Dec. 2007. ISSN 0167-6423. . URL http://dx.doi.org/
10.1016/j.scico.2007.02.003.

[9] B. Ford. Packrat parsing:: simple, powerful, lazy, linear time, func-
tional pearl. In Proceedings of the seventh ACM SIGPLAN interna-

tional conference on Functional programming, ICFP ’02, pages 36–
47, New York, NY, USA, 2002. ACM. ISBN 1-58113-487-8. . URL
http://doi.acm.org/10.1145/581478.581483.

[10] B. Ford. Parsing expression grammars: a recognition-based syntactic
foundation. In Proceedings of the 31st ACM SIGPLAN-SIGACT sym-
posium on Principles of programming languages, POPL ’04, pages
111–122, New York, NY, USA, 2004. ACM. ISBN 1-58113-729-X. .
URL http://doi.acm.org/10.1145/964001.964011.

[11] M. Fowler. Language Workbenches: The Killer-App for Domain
Specific Languages? http://martinfowler.com/articles/
languageWorkbench.html, 2005.

[12] A. Gräf. The Pure Programming Language. http://code.google.
com/p/pure-lang/.

[13] K. Ichikawa. Powerful and Seamless Syntax Extensions on a Statically
Typed Language. In Proceedings of the 12th Annual International
Conference Companion on Aspect-oriented Software Development,
AOSD ’13 Companion, pages 41–42, New York, NY, USA, 2013.
ACM. ISBN 978-1-4503-1873-0. . URL http://doi.acm.org/
10.1145/2457392.2457411.

[14] D. Knuth. Semantics of context-free languages. Mathematical systems
theory, 2(2):127–145, 1968. ISSN 0025-5661. . URL http://dx.
doi.org/10.1007/BF01692511.

[15] J. Levine. Flex & Bison: Text Processing Tools. O’Reilly Media, 1
edition, 8 2009. ISBN 9780596155971.

[16] L. C. Paulson. Isabelle: a Generic Theorem Prover. Number 828 in
Lecture Notes in Computer Science. Springer – Berlin, 1994.

[17] T. Sheard. Using MetaML: a Staged Programming Language. In
IN ADVANCED FUNCTIONAL PROGRAMMING, pages 207–239.
Springer-Verlag, 1999.

[18] T. Sheard and S. P. Jones. Template meta-programming for Haskell.
SIGPLAN Not., 37(12):60–75, Dec. 2002. ISSN 0362-1340. . URL
http://doi.acm.org/10.1145/636517.636528.

[19] E. Silkensen and J. Siek. Well-Typed Islands Parse Faster. In H.-
W. Loidl and R. PeÃśa, editors, Trends in Functional Programming,
volume 7829 of Lecture Notes in Computer Science, pages 69–84.
Springer Berlin Heidelberg, 2013. ISBN 978-3-642-40446-7. . URL
http://dx.doi.org/10.1007/978-3-642-40447-4_5.

[20] K. Skalski, M. Moskal, and P. Olszta. Meta-programming in Nemerle,
2004.

[21] O. Stock, R. Falcone, and P. Insinnamo. Island parsing and bidirec-
tional charts. In Proceedings of the 12th conference on Computational
linguistics - Volume 2, COLING ’88, pages 636–641, Stroudsburg,
PA, USA, 1988. Association for Computational Linguistics. ISBN
963 8431 56 3. . URL http://dx.doi.org/10.3115/991719.
991768.

[22] L. Tratt. Domain specific language implementation via compile-time
meta-programming. ACM Trans. Program. Lang. Syst., 30(6):31:1–
31:40, Oct. 2008. ISSN 0164-0925. . URL http://doi.acm.org/
10.1145/1391956.1391958.

[23] M. G. J. van den Brand, J. Scheerder, J. J. Vinju, and E. Visser. Disam-
biguation Filters for Scannerless Generalized LR Parsers. In Proceed-
ings of the 11th International Conference on Compiler Construction,
CC ’02, pages 143–158, London, UK, UK, 2002. Springer-Verlag.
ISBN 3-540-43369-4. URL http://dl.acm.org/citation.cfm?
id=647478.727925.

[24] E. Van Wyk, D. Bodin, J. Gao, and L. Krishnan. Silver: An Extensible
Attribute Grammar System. Electron. Notes Theor. Comput. Sci., 203
(2):103–116, Apr. 2008. ISSN 1571-0661. . URL http://dx.doi.
org/10.1016/j.entcs.2008.03.047.

[25] E. Visser. Scannerless generalized-LR parsing. Technical report, 1997.

[26] A. Warth, J. R. Douglass, and T. Millstein. Packrat parsers can sup-
port left recursion. In Proceedings of the 2008 ACM SIGPLAN sym-
posium on Partial evaluation and semantics-based program manipu-
lation, PEPM ’08, pages 103–110, New York, NY, USA, 2008. ACM.
ISBN 978-1-59593-977-7. . URL http://doi.acm.org/10.1145/
1328408.1328424.

