
Composable User-Defined Operators
That Can Express User-Defined Literals

Kazuhiro Ichikawa, Shigeru Chiba
The University of Tokyo

1

Modularity'14

User-Defined Operators
useful for implementing internal DSLs

•  can introduce DSL-like syntax
•  can be used together with other operators

2

val	ids	=	from	(DB.students)	(s	=>		
												where	(s.entranceYear	==	2013)	select	(s.id))	
for	(id	<-	ids)	{	
		id	should	fullyMatch	regex	"48-13(6|7)6[0-9]{2}"	
}	

An example program using internal DSLs (in Scala)
Squeryl (OR Mapper)�

ScalaTest (unit test DSL)� regular expression�

Existing User-Defined Operators
Their syntax is strictly restricted
In Scala, users can define only infix binary operators
and postfix unary operators.

3

val	ids	=	from	(DB.students)	(s	=>		
												where	(s.entranceYear	==	2013)	select	(s.id))	
for	(id	<-	ids)	{	
		id	should	fullyMatch	regex	"48-13(6|7)6[0-9]{2}"	
}	

An example program using internal DSLs (in Scala)
() cannot be removed!�

combination of infix binary operators�
literals cannot be expressed by operators�

Existing User-Defined Operators
Their syntax is strictly restricted
In Scala, users can define only infix binary operators
and postfix unary operators.

4

val	ids	=	from	(DB.students)	(s	=>		
												where	(s.entranceYear	==	2013)	select	(s.id))	
for	(id	<-	ids)	{	
		id	should	fullyMatch	regex	48-13(6|7)6[0-9]{2}	
}	

An example program using internal DSLs (in Scala)

integer number (not regular expression)�

Desired User-Defined Operators
Accept flexible syntax

•  not only infix, prefix, postfix, or outfix
•  not only unary, binary, ...
•  can express literals by combining operators

5

ResultSet	ids	=	select	id	from	DB.students	
																		where	entranceYear	==	2013;	
for	(String	id	:	ids.toList())	{	
		id	should	match	48-13(6|7)6[0-9]{2};	
}	

An example program using operators (in Java)

select	_	from	_	where	_�

_	should	_� match	_� user-defined literals !�

Problem: Parsing is Difficult
The grammar may be highly ambiguous

•  A DSL developer cannot know all DSLs that are
used together with his/her DSL

•  Every operator expresses an expression
‒ Expression's rule would be complex

•  Especially, literal rules introduce a large number
of ambiguities. (cf. regex)

6

Naïve Solution is Inefficient
Generate all possible parse trees
and then choose the most suitable one

•  Common scanner-less CFG parser takes O(n3) time
if the grammar is ambiguous
*  n = # of characters

•  The number of trees might exponentially explode
*  choosing the most suitable tree is difficult in a naïve way

7

Proposal:
Using Expected Type Info for Parsing

Parser uses only operators with the
expected return type

•  when the parser tries to parse an expression
•  an operand is parsed by operators whose return
type is the operand type.

•  it can reduce ambiguities since operators with the
same syntax can be distinguished by types

8

Parsing Algorithm

1)  parse a statement by the host language rules
until the parser encounters an expression part

2)  determine expected type of the next expr

3)  pick up an operator with expected return type,
and try to parse the expr by the operator's rule

4)  if the parser encounters an operand, go to 2

5)  if an attempt succeeds, return the result.
otherwise, go to 3 and try another operator

9

Parsing Algorithm

1)  parse a statement by the host language rules
until the parser encounters an expression part

2)  determine expected type of the next expr

3)  pick up an operator with expected return type,
and try to parse the expr by the operator's rule

4)  if the parser encounters an operand, go to 2

5)  if an attempt succeeds, return the result.
otherwise, go to 3 and try another operator

10

Parsing Algorithm

1)  parse a statement by the host language rules
until the parser encounters an expression part

2)  determine expected type of the next expr

3)  pick up an operator with expected return type,
and try to parse the expr by the operator's rule

4)  if the parser encounters an operand, go to 2

5)  if an attempt succeeds, return the result.
otherwise, go to 3 and try another operator

11

Parsing Algorithm

1)  parse a statement by the host language rules
until the parser encounters an expression part

2)  determine expected type of the next expr

3)  pick up an operator with expected return type,
and try to parse the expr by the operator's rule

4)  if the parser encounters an operand, go to 2

5)  if an attempt succeeds, return the result.
otherwise, go to 3 and try another operator

12

Parsing Algorithm

1)  parse a statement by the host language rules
until the parser encounters an expression part

2)  determine expected type of the next expr

3)  pick up an operator with expected return type,
and try to parse the expr by the operator's rule

4)  if the parser encounters an operand, go to 2

5)  if an attempt succeeds, return the result.
otherwise, go to 3 and try another operator

13

Parsing Algorithm

1)  parse a statement by the host language rules
until the parser encounters an expression part

2)  determine expected type of the next expr

3)  pick up an operator with expected return type,
and try to parse the expr by the operator's rule

4)  if the parser encounters an operand, go to 2

5)  if an attempt succeeds, return the result.
otherwise, go to 3 and try another operator

14

Example

15

ResultSet	ids	=	select	id	from	DB.students	
																		where	entranceYear	==	2013;	
for	(String	id	:	ids.toList())	{	
		id	should	match	48-13(6|7)6[0-9]{2};	
}	

An example program using operators (in Java)

local variable declaration statement�

Example

16

ResultSet	ids	=	select	id	from	DB.students	
																		where	entranceYear	==	2013;	
for	(String	id	:	ids.toList())	{	
		id	should	match	48-13(6|7)6[0-9]{2};	
}	

the expected type is	ResultSet�

An example program using operators (in Java)

Example

17

ResultSet	ids	=	select	id	from	DB.students	
																		where	entranceYear	==	2013;	
for	(String	id	:	ids.toList())	{	
		id	should	match	48-13(6|7)6[0-9]{2};	
}	

parsed by	select	_	from	_	where	_�

An example program using operators (in Java)

returns	ResultSet

Example

18

ResultSet	ids	=	select	id	from	DB.students	
																		where	entranceYear	==	2013;	
for	(String	id	:	ids.toList())	{	
		id	should	match	48-13(6|7)6[0-9]{2};	
}	

expression statement�

An example program using operators (in Java)

Example

19

ResultSet	ids	=	select	id	from	DB.students	
																		where	entranceYear	==	2013;	
for	(String	id	:	ids.toList())	{	
		id	should	match	48-13(6|7)6[0-9]{2};	
}	

expects	void�

An example program using operators (in Java)

Example

20

ResultSet	ids	=	select	id	from	DB.students	
																		where	entranceYear	==	2013;	
for	(String	id	:	ids.toList())	{	
		id	should	match	48-13(6|7)6[0-9]{2};	
}	

parsed by _	should	_�

An example program using operators (in Java)

returns	void

Example

21

ResultSet	ids	=	select	id	from	DB.students	
																		where	entranceYear	==	2013;	
for	(String	id	:	ids.toList())	{	
		id	should	match	48-13(6|7)6[0-9]{2};	
}	

parsed by _	should	_�

An example program using operators (in Java)

Matcher String

Example

22

ResultSet	ids	=	select	id	from	DB.students	
																		where	entranceYear	==	2013;	
for	(String	id	:	ids.toList())	{	
		id	should	match	48-13(6|7)6[0-9]{2};	
}	

expects	Matcher�

An example program using operators (in Java)

Example

23

ResultSet	ids	=	select	id	from	DB.students	
																		where	entranceYear	==	2013;	
for	(String	id	:	ids.toList())	{	
		id	should	match	48-13(6|7)6[0-9]{2};	
}	

parsed by match	_�

An example program using operators (in Java)

returns	Matcher

Parsing Precedence
For efficient parsing, we also propose to
introduce parsing precedence.

•  precedence rule among operators
with the same return type
(and the same operator precedence)

•  which operator is chosen if an expr is ambiguous
•  can remove all ambiguities,
but may change the grammar

24

Efficiency
O(n) time for practical grammar

•  ambiguities are removed by
*  using static types as non-terminal symbols
*  parsing precedence

•  using memoization
*  for reducing the cost of backtrack
*  packrat parsing supporting left-recursion

25

Benefits
Operators can express literals

•  literal is an expression with special whitespace rule
•  literals overloads token rules

26

ResultSet	ids	=	select	id	from	DB.students	
																		where	entranceYear	==	2013;	
for	(String	id	:	ids.toList())	{	
		id	should	match	48-13(6|7)6[0-9]{2};	
}	

An example program using operators (in Java)

_	_			:	sequence	
_	|	_	:	alternative	

_	{	_	}			:	repetition	N	times	
[_	-	_]	:	character	class	

Drawbacks
Limited places where operators are available

•  only in expressions whose expected type is statically
determined before parsing

•  depends on the host language
•  e.g. the receiver of a method call in Java

27

not available available
a = b a = b
a.method(x, y) a.method(x, y)
a.field e;
(Type)a return a;

...

Implementation: ProteaJ
A subset of Java with

•  flexible user-defined operators
•  provides a module system for operators
•  does not support generics

Source and test programs are available from:
https://github.com/csg-tokyo/proteaj.git

28

Operators in ProteaJ
Operator syntax = { name | operand }+

•  Not only infix, prefix, unary, binary, ...
•  Expressiveness is equivalent to PEG
Extra features

•  operator precedence and associativity
•  two whitespace rules : expression / literal level

29

ResultSet	"select"	col	"from"	table	"where"	cond	
		(Column	col,	Table	table,	Condition	cond)	{	
		return	prepareSQLStmt(col,	table,	cond).execute();	
}	

A definition of an operator in ProteaJ

return	
type�

name� operand�

Experiment
Our compiler vs. JSGLR parser
JSGLR: well-known scanner-less CFG parser
It can generate all possible trees

Problem settings
•  grammar: arithmetic operators + file path
•  input: a/a/a/.../a (input size = # of a)
note: In the ProteaJ experiment, the input is embedded in a minimal
program. In the case of JSGLR, it parsed as is.

30

Experiment Environment
 CPU: 2.67 GHz Core i5
 Memory: 8GB
 OS: OpenSUSE 12.1
 Java: OpenJDK 1.7.0

Result (semi-log graph)

31

1"

10"

100"

1000"

10000"

100000"

0" 2" 4" 6" 8" 10" 12" 14" 16" 18" 20"

(me"(ms)�

input"size�

JSGLR"

ProteaJ"

input size
 (the number of a)

Compilation time by ProteaJ (linear-scale)

32

0"

200"

400"

600"

800"

1000"

1200"

1400"

0" 100" 200" 300" 400" 500" 600" 700" 800" 900" 1000"

,me"(ms)�

input"size�
input size
 (the number of a)

Related Work: User-Defined Operators

Mixfix operators
•  a class of user-defined operators
•  only infix, prefix, postfix, or outfix
•  Coq, Agda, Pure, OBJ3, Isabelle, ...

Mixfix operators + implicit (empty) operators
•  mixfix + operator having no name
•  poorly supports user-defined literals
•  OBJ3, Isabelle

33

Related Work: Parsing
CFG parser + type-based disambiguation

•  generate all ASTs => type check
•  inefficient for highly ambiguous grammar
•  Metaborg, Agda, OBJ3, Isabelle, ...

Type-oriented island parsing [Silkenson '12]
•  bottom-up parsing using type information
•  cannot define new (complex) literals

34

Conclusion
Parsing method for flexible operators

•  using expected type information
•  precedence rule: parsing precedence
•  O(n) parse time for practical grammar

Benefits
•  Operators can express literals

Drawbacks
•  Limited places where operators are available

35

Efficiency
O(n) time for practical grammar

•  ambiguities are removed by
*  using static types as non-terminal symbols
*  parsing precedence

•  operators ≒ PEG including left-recursion
*  operator name ≒ terminal
*  return type, operand type ≒ non-terminal
*  parsing precedence ≒ ordered choice

36

Parsing Precedence
For efficient parsing, we also propose to
introduce parsing precedence.

•  precedence rule among operators
with the same return type
(and the same operator precedence)

•  which operator is chosen if an expr is ambiguous
•  parsing precedence ≒ ordered choice rule
•  it is declared by programmers

37

User-Defined Literals
Protean operators can express literals

38

ResultSet	ids	=	select	id	from	DB.students	
																		where	entranceYear	==	2013;	
for	(String	id	:	ids.toList())	{	
		id	should	match	48-13(6|7)6[0-9]{2};	
}	

An example program using protean operators (in Java)

_	_			:	sequence	
_	|	_	:	alternative	

_	{	_	}			:	repetition	N	times	
[_	-	_]	:	character	class	

Motivation: Internal DSL
DSL implemented as a library

•  It can be used as a part of its host language
•  e.g. parser combinator, OR mapper

DSL (Domain Specific Language)
•  specialized language for a specific purpose
•  e.g. yacc, SQL

39

Pros/Cons of Internal DSL
Pros: Composability
It can be used together with other DSLs

Cons: Syntax
The syntax is restricted by its host language

40

Pros/Cons of Internal DSL
Pros: Composability
It can be used together with other DSLs

Cons: Syntax
The syntax is restricted by its host language

41

val	ids	=	from	(DB.students)	(s	=>		
												where	(s.entranceYear	==	2013)	select	(s.id))	
for	(id	<-	ids)	{	
		id	should	fullyMatch	regex	"48-13(6|7)6[0-9]{2}"	
}	

An example program using internal DSLs (in Scala)
Squeryl (OR Mapper)�

ScalaTest (unit test DSL)�

cannot be
removed �

regular expression�

Goal: Composable Syntax Extension
Enabling a DSL to introduce its own syntax

•  the syntax is not restricted by the host lang.
•  the syntax includes literal-level syntax

Without breaking composability
•  multi-DSLs can be used together safely
•  without critical penalty of compilation time

42

Proposal: Protean Operators
A class of user-defined operators

•  consist of names and operands
*  not only infix, prefix, postfix, and outfix

•  overloaded by its return type
*  an operator is available only at an expression
where the return type is expected

•  have a special rule: parsing precedence
*  Programmers should declare the precedence
among operators with the same return type

43

Protean Operators Introduce DSL Syntax

DSL syntax can be expressed
by protean operators !

44

ResultSet	ids	=	select	id	from	DB.students	
																		where	entranceYear	==	2013;	
for	(String	id	:	ids.toList())	{	
		id	should	match	48-13(6|7)6[0-9]{2};	
}	

An example program using protean operators (in Java)

select	_	from	_	where	_�

_	should	_� match	_� regular expression literals�

Protean Operators Introduce DSL Syntax

DSL syntax can be expressed
by protean operators !

45

ResultSet	ids	=	select	id	from	DB.students	
																		where	entranceYear	==	2013;	
for	(String	id	:	ids.toList())	{	
		id	should	match	48-13(6|7)6[0-9]{2};	
}	

An example program using protean operators (in Java)

select	_	from	_	where	_�

_	should	_� match	_� regular expression literals�

_	_			:	sequence	
_	|	_	:	alternative	

_	{	_	}			:	repetition	N	times	
[_	-	_]	:	character	class	

Protean Operators are Composable
Compiler can distinguish operators by
types even if they have the same syntax !

46

ResultSet	ids	=	select	id	from	DB.students	
																		where	entranceYear	==	2013;	
for	(String	id	:	ids.toList())	{	
		id	should	match	48-13(6|7)6[0-9]{2};	
}	

An example program using protean operators (in Java)

This part is parsed by regex operators
because Regex is expected here !�

2013	is	an	integer	literal	
because	int	is	expected.�

Parsing
We developed a parsing method that
uses expected type information.
1)  parse a statement by the host language rules
until the parser encounters an expression part

2)  determine the expected type of the next
expression

3)  parse the expression by the operators that return
the expected type

4)  if the parser encounters an operand, go to 2
47

Parsing
We developed a parsing method that
uses expected type information.

48

ResultSet	ids	=	select	id	from	DB.students	
																		where	entranceYear	==	2013;	
for	(String	id	:	ids.toList())	{	
		id	should	match	48-13(6|7)6[0-9]{2};	
}	

An example program using protean operators (in Java)

local variable declaration statement�

Parsing
We developed a parsing method that
uses expected type information.

49

ResultSet	ids	=	select	id	from	DB.students	
																		where	entranceYear	==	2013;	
for	(String	id	:	ids.toList())	{	
		id	should	match	48-13(6|7)6[0-9]{2};	
}	

An example program using protean operators (in Java)

the expected type is	ResultSet�

Parsing
We developed a parsing method that
uses expected type information.

50

ResultSet	ids	=	select	id	from	DB.students	
																		where	entranceYear	==	2013;	
for	(String	id	:	ids.toList())	{	
		id	should	match	48-13(6|7)6[0-9]{2};	
}	

An example program using protean operators (in Java)

parsed by	select	_	from	_	where	_�

Parsing
We developed a parsing method that
uses expected type information.

51

ResultSet	ids	=	select	id	from	DB.students	
																		where	entranceYear	==	2013;	
for	(String	id	:	ids.toList())	{	
		id	should	match	48-13(6|7)6[0-9]{2};	
}	

An example program using protean operators (in Java)

expression statement�

Parsing
We developed a parsing method that
uses expected type information.

52

ResultSet	ids	=	select	id	from	DB.students	
																		where	entranceYear	==	2013;	
for	(String	id	:	ids.toList())	{	
		id	should	match	48-13(6|7)6[0-9]{2};	
}	

An example program using protean operators (in Java)

expected	void�

Parsing
We developed a parsing method that
uses expected type information.

53

ResultSet	ids	=	select	id	from	DB.students	
																		where	entranceYear	==	2013;	
for	(String	id	:	ids.toList())	{	
		id	should	match	48-13(6|7)6[0-9]{2};	
}	

An example program using protean operators (in Java)

parsed by _	should	_�

Parsing
We developed a parsing method that
uses expected type information.

54

ResultSet	ids	=	select	id	from	DB.students	
																		where	entranceYear	==	2013;	
for	(String	id	:	ids.toList())	{	
		id	should	match	48-13(6|7)6[0-9]{2};	
}	

An example program using protean operators (in Java)

expected	Matcher�

Parsing
We developed a parsing method that
uses expected type information.

55

ResultSet	ids	=	select	id	from	DB.students	
																		where	entranceYear	==	2013;	
for	(String	id	:	ids.toList())	{	
		id	should	match	48-13(6|7)6[0-9]{2};	
}	

An example program using protean operators (in Java)

parsed by match	_�

Implementation: ProteaJ
A subset of Java + protean operators

•  provides module system for operators
•  not supports generics

Source and test programs are available from:
www.csg.ci.i.u-tokyo.ac.jp/~ichikawa/ProteaJ.tar.gz

56

Expressiveness of Protean Operators
Pros: They can express any PEGs

•  non-terminal => static type
•  PEG (Parsing Expression Grammar) is
a type of formal grammar like CFG

Cons: They cannot express declarations
•  They do not use meta-programming

57

Efficiency of Our Parsing Method
O(n) for practical grammar

•  n: input source length (# of letters)
•  use memoization to reduce back-track cost

Naive method is inefficient
•  generate all possible ASTs and then
choose most suitable one by using types

•  parser that can generate all possible ASTs is
inefficient against highly ambiguous grammar

58

Experiment
Our compiler vs. JSGLR parser
JSGLR: well-known scanner-less CFG parser
It can generate all possible trees

Problem settings
•  grammar: arithmetic operators + file path
•  input: a/a/a/.../a (input size = # of a)
note: The input for our compiler is more complex
 since it must be a valid ProteaJ program.

59

Experiment Environment
 CPU: 2.67 GHz Core i5
 Memory: 8GB
 OS: OpenSUSE 12.1
 Java: OpenJDK 1.7.0

Result (semi-log graph)

60

1"

10"

100"

1000"

10000"

100000"

0" 2" 4" 6" 8" 10" 12" 14" 16" 18" 20"

(me"(ms)�

input"size�

JSGLR"

ProteaJ"

Related Work: User-Defined Operators

Mixfix operators
•  a class of user-defined operators
•  only infix, prefix, postfix, or outfix
•  Agda, Pure, OBJ3, Isabelle, ...

Mixfix operators + empty operators
•  mixfix + operator having no name
•  cannot define new (complex) literals
•  OBJ3, Isabelle

61

Related Work: Parsing
CFG parser + type-based disambiguation

•  generate all ASTs => type check
•  inefficient for highly ambiguous grammar
•  Metaborg, Agda, OBJ3, Isabelle, ...

Type-oriented island parsing [Silkenson '12]
•  bottom-up parsing using type information
•  cannot define new (complex) literals

62

Conclusion
Protean operators

•  expressiveness is equivalent to PEG
•  multiple operators can be used safely

Parsing method
•  uses expected type information
•  O(n) for practical grammar

63

