Implementing Feature Interactions with
Generic Feature Modules

Fuminobu Takeyama
Tokyo Institute of Technology

Shigeru Chiba
The University of Tokyo / JST, CREST

N

Core Software Group, The University of Tokyo

2013/6/19 F. Takeyama and S. Chiba, Implementing Feature Interactions with Generic Feature Modules, SC13

Software product lines and features

A family of similar software products

MobileMedia SPL [T. Young, et al., AOSD 2005 demo]

A multimedia management application SPL
e.g. Only music for character-display devices

Developed by selecting features = Song of
softwa
M Code
MobileMedia Cllanan;:dio
JD \O l mandatory
MediaType Copy SMS
J) optional
Photo Music Video d.b or
' N
or-features: select at least one Core Software Group, The University of Tokyo

2013/6/19 F. Takeyama and S. Chiba, Implementing Feature Interactions with Generic Feature Modules, SC13

How can we implement features?

class Application {
#ifdef PHOTO

CO N d |t| ONna I com p| I ati on PhotoListScreen photolListScreen;
PhotoController photoController;
removes unnecessary feature #endif

#ifdef MUSIC
MusicListScreen musiclListScreen;

MU|'l'|p|e featu res Shares MusicController musicController;
#endif
the same file
limits development for each

public void startApp {
#ifdef PHOTO

photoListScreen = new PhotoListScreen();
featu re photoController = new PhotoController();
#endif
No encapsulation, etc... #ifdef MUSIC
musicListScreen = new MusicListScreen();
musicController = new MusicController();
#endif
}

public static void main(String[] args) {
Application app = new Application();

app.startApp();
1 N

Core Software Groun The llni\/prci’r\'/ fa)i Tnk\'/n

2013/6/19 F. Takeyama and S. Chiba, Implementing Feature Interactions with Generic Feature Modules, SC13

Features implementation in AQOP

Many languages allows separating features
Aspect), GluonlJ, AHEAD’s Jak, (Feature House), ...

The PhotoInit reviser

[S. Chiba et al., OOPSLA 2009]

add fields to Application destructively
overrides startApp method executes it instead of the original

class PhotoInit revises Application {
PhotoListScreen screen;
PhotoController cont;

public void startApp() {
screen = new PhotolListScreen();
cont = new PhotoController();
super.startApp();

)

-«

G

class Application {
. screen;
cont;

public void startApp() {
screen = ..;
cont = ..;
.. other initializations ...

1} \

CUTT oUTtWarce Jdroupy, 111 UTHVETSILY Ul IUI\YO

2013/6/19

F. Takeyama and S. Chiba, Implementing Feature Interactions with Generic Feature Modules, SC13

Feature interaction

Additional behavior for combination of features

needed when they are used together in a product

cannot be obtained by naively combining the implementations of
features

Show “SMS” on the photo viewer
if Photo and SMS features are used

Core Software Group, The University of Tokyo

2013/6/19 F. Takeyama and S. Chiba, Implementing Feature Interactions with Generic Feature Modules, SC13

Derivatives [J. Liu et al., ICSE 2006]

Implement feature interactions separately
A special feature used only when interacting features used

Classes and aspects for interacting features should not
contain code for the interaction
Necessary only when all of them are used

classes & aspects classes & aspects classes & aspects
only for Photo for this derivative only for SMS

N

Core Software Group, The University of Tokyo

2013/6/19 F. Takeyama and S. Chiba, Implementing Feature Interactions with Generic Feature Modules, SC13

[J. Liu et al., ICSE 2006]

The optional feature problem | \Gneretal spic 2009]

Exponential explosion?
2"-n-1
if all combination of features interacts

53 interactions in 38 features [c. Kastner, et al. SPLC 2009]
An Aspect) implementation of Berkley DB has

6 derivatives between
{Photo, Music, Video}, {Copy, SMS}

Derivatives must be prepared SOBY WE

.]] Photo PhotoCopy PhotoSMS
to build products just by selecting . S ——

features without writing code Video VideoCopy VideoSMS

...Copy ..SMS...

Photo...
Music...

Video...

2013/6/19 F. Takeyama and S. Chiba, Implementing Feature Interactions with Generic Feature Modules, SC13

Derivatives are often redundant

Found in MobileMedia

Only minor difference in class names.
So they cannot be merged into one derivative

Since derivatives are implemented like normal features

class AddSMSToPhoto revises PhotoViewScreen {
void initForm() {
t.addCommand(new SMSCommand());
super.startApp()

)

class AddCopyToMusic revises MusicPlayerScreen {
void initForm() {
t.addCommand(new CopyCommand());
super.startApp();

3}

2013/6/19 F. Takeyama and S. Chiba, Implementing Feature Interactions with Generic Feature Modules, SC13

Solution: Generic derivatives

Write a template and generate derivatives for every
combination

Template parameters are features

Automate enumeration of all the combination

F::C—feature F’'s class C

PhotoViewScreen

mt = Photo = mt::X = Photo::PhotoViewScreen

Derivative(mt, mo)

modifies mt::X
new mo::Y

MusicPlayerScreen

mt = Music = mt::X = Music::MusicPlayerScreen @

Core Software Group, The University of Tokyo

2013/6/19 F. Takeyama and S. Chiba, Implementing Feature Interactions with Generic Feature Modules, SC13

FeatureGluonlJ: a new FOP language

FOP: Feature-oriented programming language

Interface among feature modules

Specifies the classes that a feature module must contain

For “type-safe” templates
when using a feature as a template parameter

Feature module

Contains classes and revisers (aspect)

Can inherit from an abstract feature module,

which works as an interface.
Also found in Caesar) and ObjectTeams

mMediaType Cooy {Photo, Music, Video} is a MediaType
Photo Music Video N

Core Software Group, The University of Tokyo

2013/6/19 F. Takeyama and S. Chiba, Implementing Feature Interactions with Generic Feature Modules, SC13

Inheritance for feature modules

A sub feature module can

Use the classes and revisers in the super module

Rename a class in the super module

Add new classes, methods, and fields.

Modify a class in the super module by revisers (or aspects)

MediaType

MediaController MediaViewScreen

with lightweight semantics ;

Like virtual classes

——————————————————— [e ———————
E MediaViewScreen ' ' MediaController ||

i1 . . |
1
I Eiitabetetvuphael -
PhotoViewScreen ! ‘ MusicPlayerScreen
new MediaMiewSereen new MediaMiewSereen
=» PhotoViewScreen =>» MusicPlayerScreen (WA

ore Software Group, The University of Tokyo

2013/6/19 F. Takeyama and S. Chiba, Implementing Feature Interactions with Generic Feature Modules, SC13

Generic derivatives in FeatureGluon)

Implement by a template feature module
Parameters are feature modules.

forevery

Automatically enumerate every combination of feature modules
and Instantiate the template

MediaOpMediaTypeFE

feature MediaTypeFileOp defines forevery(mt, mo) {
abstract import feature mt: MediaType;
abstract import feature mo: MediaOp;

} Photo::PhotoViewScreen

class AddCmdToView revises mt::MediaViewScreen

void initMenu() { . Music::MusicPlayerScreen
addCommand (new mo: :MediaOpCommand());

super.initMenu();

i3 always provided by mt::MediaViewScreen

2013/6/19 F. Takeyama and S. Chiba, Implementing Feature Interactions with Generic Feature Modules, SC13

Incremental implementation of derivatives

Can manually instantiate a template (if needed)
for customizing the generated feature modules.

MediaOpMediaType

abstract import feature mt: MediaType;
abstract import feature mo: MediaOp;

class AddCmdToView rev. mt::.. { | |class AClass
. new mo: :FileOpCommand() extends mo: :FileOpCommand {

b }

import feature mt: Photo;
import feature mo: SMS;

'AddCmdToview

ANewClass U\

Core Softw _ ~of Tokyo

2013/6/19 F. Takeyama and S. Chiba, Implementing Feature Interactions with Generic Feature Modules, SC13

Related work

Languages with virtual aspects + virtual classes

Caesarl, Object Teams

designed for reusable collaboration of classes and aspects
across product lines
require to combine classes (glue code) for each product

Object Teams supports dependent team (collaboration)
but it can depends on only a team

Annotation based approach

tifdef—#endif, CIDE

How reduce redundancy of code for interaction?
especially between or-features

N

Core Software Group, The University of Tokyo

2013/6/19 F. Takeyama and S. Chiba, Implementing Feature Interactions with Generic Feature Modules, SC13

Conclusion

FeatureGluon)

A generic feature module as a template for derivatives
Automatic template instantiation

The template instantiation is “type-safe”
by introducing a feature interface

Future work

Case study and evaluation
few appropriate SPLs (e.g. non OOP)
Algebra model, formal definition of semantics

Feature local variables, method, ...

N

Core Software Group, The University of Tokyo

2013/6/19 F. Takeyama and S. Chiba, Implementing Feature Interactions with Generic Feature Modules, SC13

