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Abstract
A software product line is a family of similar software products built from
common software artifacts. One approach to develop a product line is to de-
compose software into features and customize the resulting product by select-
ing a subset of those features. Feature-oriented programming is a paradigm
that offers mechanisms for modularizing features. It allows implementing
code related to a feature separately into a feature module. The key technique
for the separation is destructive class extensions, which can extend the defini-
tion of existing classes from the outside of those classes. Developers generate
products by combining feature modules. Aspect-oriented programming also
supports destructive class extensions, and hence it is usable for implementing
feature modules.

However, naive combination of feature modules may cause problematic
behavior if the features interact with each other. Feature interaction is es-
sential behavior between a specific combination of features. Programmers
must implement interaction so that such combinations of feature modules
work correctly. A modular approach is to implement interaction separately
in derivatives, but the number of the derivatives is too large to maintain.

Interaction in aspect-oriented programming is conflict of aspects, which
happens when multiple advices extend the same method. Programmers need
to specify how conflicting advices are executed. An incomplete approach for
advice composition used in the existing languages is to specify precedence
order to conflicting aspect to linearize them. This is because some combina-
tions of aspects do not have acceptable order.

To address these problems, this dissertation proposes two language exten-
sions with mechanisms for implementing feature interaction: FeatureGluonJ
and Airia. FeatureGluonJ introduces a new module system for features sup-
porting inheritance. Inheritance of feature module enables to implement a
generic derivative reusable for multiple combinations of features, which re-
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duces the total number of derivatives.
Airia, a language extension to AspectJ, provides a novel kind of advice

called a resolver for advice composition. Resolvers implement aspect com-
position separately from conflicting aspect. They can execute part of the
conflicting aspects and merge the result of the execution by using proceed()
calls extended in Airia.
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Chapter

1
Introduction

As more and more software products get available these days, how to develop
the software products efficiently is becoming a fundamental goal of software
engineering. Software products are not only applications running on laptops
or web servers. Most modern electrical products equip micro processors; they
require their own software. Thereby, the scale of such software products have
been increased, and hence developing them from scratch is not possible with
regard to both the number of the products and the size of them.

Fortunately, all of the products are not unique. Some products have com-
monality with each other. Thereby, they can be implemented by reusing a
part of their source code or other software artifacts. An example of this
scenario is found in the 1970’s, which is the development of power-plant con-
trolling systems. Although their software is different for each plant depending
on its output scale or requirement for an electric power industry, most es-
sential part of the software is common among them. Generating products
from a software template allowed developing such family of similar software
products.

Another successful family of software products is the Linux kernel. It
is a set of customizable operating system kernel modules, widely used from
supercomputers to embedded systems. The developers can choose CPU ar-
chitectures, device drivers, and functionalities such as file systems, for their
own kernels. Various kernels are generated from its single source-code tree;
the C preprocessor allows compiling the code regions corresponding to the
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architectures or the functionalities selected for the kernel. The Linux ker-
nel also provides tools for customizing a kernel and a language for defining
selectable components and managing their dependencies.

The methodologies for developing a family of similar software products
were established recently; such a family is now called a software product line.
In 1990, Kang et al. proposed feature-oriented domain analysis (FODA)
[42], where a product family is decomposed into what are called features. A
feature is a user-visible property of software products. The CPU architectures
and the functionalities of the Linux kernel can be considered as features in
FODA. To build a product, developers select features used for it so that
the selected features will satisfy the purpose of that product. By classifying
features as optional features and mandatory features, FODA helps developers
understand the possible variations of the product family. Based on the idea
of FODA, various approaches for designing, managing, and evolving product
lines have been developed.

The research community has proposed several programming paradigms
for software product lines to supersede the approaches by preprocessor di-
rectives. Feature-oriented programming (FOP) is a language paradigm that
aims modularization of features. Since fragments for different features tend
to be tangled in a single module in the preprocessor approach, FOP separates
the code fragments for a feature into an independent module. We call the in-
dependent module a feature module. After selecting the features necessary for
a product, that product is generated by compiling the corresponding feature
modules. AHEAD tool suite [18] provides a feature-oriented programming
language supporting a class-like construct called a refinement. Refinements
allow grouping the code for each feature by destructive class extensions [23].
From the outside of an existing class, they can add new fields to that class.
Refinements can also replace methods of that class with their methods. As
in a method overriding the corresponding method in the super class, the new
method of refinements can invoke the original methods. Programmers can
implement part of class declaration separately in a refinement if it is specific
to a feature. If the programmers use that feature for a product, they compile
the refinement together with the class; the AHEAD compiler inserts fields
and/or methods of that refinement to the class.

The support of features is not limited to the languages designed for FOP.
Aspect-oriented programming (AOP) allows to separate the code related to
a feature into independent module, an aspect. In a typical AOP language,
AspectJ, aspects can insert new fields into existing classes and can separate
code fragments related to a feature into a method-like construct, an advice.
The code written in the advices will be executed when program execution
reaches the points where the code fragments were. Other language mecha-
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Motivating Problems

nisms such as virtual classes [56, 30] also support modularization of features.

1.1 Motivating Problems

Although the existing FOP languages achieve modularization by grouping
the code related to the same feature, other properties of modularization for
FOP, including composability, code reuse, and information hiding, have been
an open question [46]. Composability is the ability that allows to combine
multiple modules together without modification but with permissive efforts.
Composability is an essential property for developing product lines in FOP
because it enables to developers to generate a product from a subset of pre-
pared feature modules without modifying any code.

Naive composition of feature modules may cause problematic behaviour
if some of the features interact with each other. Feature interaction is both
positive and negative effects from one feature to another [20]. It happens in
a software product when the product uses those features together. Program-
mers must implement extra code for the combinations of interacting features
so that the features can work as expected and it can produce synergy.

A modular approach is to implement such interaction into an indepen-
dent feature module, called derivative [54]. A derivative is compiled together
for products including the interacting features A typical kind of interac-
tion is structural interaction; it happens when one feature needs to perform
additional behavior when a methods of another feature is executed. If pro-
grammers implement the behavior in that method, it will be executed even
in a product without the former feature, and if they naively implement it as
a destructive extension to that method, they cannot select the former fea-
ture without selecting the latter feature since the products without the latter
feature do not contain the extended method. They should separate such a
destructive extension into a derivative between those features.

Nevertheless, since product developers should be able to build a product
just by selecting necessary features, programmers must prepare derivatives
for every possible combination of interacting features. The scalability of
the number of derivatives for a product line is still under discussion in the
research community; the number of derivatives might become too large to
maintain.

Another interaction among features is conflicts among aspects. Aspects
conflict when their advices extend the same method and they are to be ex-
ecuted at the same time. The composed behavior of the conflicting aspects
is determined by the compiler through the process called aspect composition.
The behavior might be different from programmers’ intention even though
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Solution by This Dissertation

each of the aspects is correct. This situation is called aspect interference,
which have been a crucial problem in the AOP community. Programmers
sometimes need to specify how the compiler combines conflicting aspects de-
fined in different feature modules. Some AOP languages including AspectJ
provide mechanisms for controlling conflicting aspects and allow program-
mers to implement derivatives for advice composition by using those mech-
anisms.

An incomplete aspect-composition approach adopted in AspectJ is to lin-
earize conflicting advices naively according to their precedence order. When
the execution of the program reaches the join point where the advices conflict,
the advice with the highest precedence is executed first. AspectJ provides a
special call proceed() for executing another conflicting advice. However, there
is not acceptable order among some combinations of aspects. Moreover, each
conflicting advice must contain the code for working with the others; they
should contain at least proceed() to invoke another aspect. Since program-
mers must be aware of other aspects and their advices, aspect conflicts may
restrict to independently develop the aspects.

The composability of the mechanisms for advice composition is also a
problem. If they are composable, the composition code (i.e., the code for
aspect composition) for a set of aspects can be obtained just by combining
the composition code for its subsets without modification. While mechanisms
dedicated to aspect composition such as declare precedence in AspectJ provide
composability, there are approaches that are expressive but are not compos-
able. For example, several AOP systems provide meta-programming facilities
for manipulating conflicting aspects. In such systems, it is not possible to
obtain the composition of a set of aspects from the methods manipulating
its subsets. Besides, if the composition mechanisms are not composable,
conflicts among such mechanisms is another problem; we need to introduce
another mechanism for the new conflict problem.

1.2 Solution by This Dissertation

This dissertation addresses the problems mentioned above on software prod-
uct line development in feature-oriented programming by designing two lan-
guages: FeatureGluonJ and Airia. FeatureGluonJ is a new feature-oriented
programming language based on an existing AOP language, GluonJ [23]. Fea-
tureGluonJ offers language mechanisms for feature interactions and reduces
the number of derivatives. The other language, Airia, is a language extension
to AspectJ and aims to provides expressible and composable mechanisms for
advice composition.
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Solution by This Dissertation

FeatureGluonJ

FeatureGluonJ is a FOP language with destructive class extensions called
revisers, introduced by GluonJ. Revisers can extend other classes in a sim-
ilar way to refinements. Thereby, GluonJ can be used for feature-oriented
programming. FeatureGluonJ extends GluonJ by adding new language con-
structs specific to feature-oriented programming. One of them is a module
system for features. It enables to explicitly group classes and revisers for
each feature.

FeatureGluonJ also provides an inheritance mechanism for feature mod-
ules. Features often make an is-a relation, i.e., generalization of another
feature. In FeatureGluonJ, programmers can implement specialized features
as sub-feature modules of an abstract one. FeatureGluonJ adopts virtual
classes for the inheritance of the modules consisting of multiple classes. Sub-
feature modules inherit classes from the super feature module; at that time,
the sub-feature modules may override the inherited classes to add the be-
havior particular to the sub-features. FeatureGluonJ integrates revisers into
virtual classes; sub-feature modules also inherit and reuse revisers defined in
their super feature module.

The inheritance mechanism facilitates to reduce the number of deriva-
tives. This is because the derivatives among groups of specialized features
tend to be redundant. A super feature module works as a programming in-
terface among its sub-feature modules, which specifies virtual classes that the
sub-feature modules must contain. FeatureGluonJ provides generic feature
modules, which are parametric feature modules used for templates of deriva-
tives. A generic feature module takes a feature module from each group as a
parameter and implements derivatives for those groups. It accesses feature
modules given as parameters via the interfaces their super feature modules
define.

Airia

Since aspect composition is not a trivial task, Airia enforces programmers to
implement composed behavior of conflicting aspects. In Airia, the composed
behavior is implemented in what is called a resolver separately from the
conflicting aspects. A resolver is a new kind of advice for advice composition,
and it is executed only when specified advices conflicts.

Airia still supports linearization to reuse conflicting advices. Moreover,
it can execute only a part of conflicting advices and can merge the results
of their execution instead of calling one by one by proceed() calls written in
a resolver. The conflicting advices do not need to be aware of composition.
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Position of This Dissertation

Airia extends the proceed() call of AspectJ so that it will allow removing
unnecessary advices as well as giving precedence order among conflicting
advices. The precedence order defined by the proceed() call is effective until
the invoked advice returns. A resolver may contain multiple proceed calls
that define different precedence order to change it depending on the dynamic
context.

Furthermore, resolvers themselves are advices and hence they are also
composable by the same language construct, a resolver. If a resolver conflicts
at the same join points with other advices, then programmers can describe
another resolver that implements the composition between the resolver and
the advice. Airia adopts static composition of advices, which is an advan-
tage for finding ambiguity or inconsistency of advice composition at compile
time. If resolvers do not define composed behavior consistently, the compiler
reports errors.

1.3 Position of This Dissertation

Although a number of programming languages designed for advanced mod-
ularity have been proposed, only a few practical product lines are written in
such programming languages; most product lines are still written with pre-
processor directives even though the modularity is low. One of the reasons
is the absence of a mechanism for expressing feature interaction. This dis-
sertation extends the definition of the optional feature problem [48] to cover
the problem that the number of derivatives is often huge. The optional fea-
ture problem was originally defined as a problem that structural interaction
among features cannot be implemented in modules of these features. It has
been said that a solution of the problem is separating interactions into deriva-
tives. We believe that the practicality of product-line development in FOP
or AOP will be enhanced by this dissertation, which addresses the problem
of feature interaction.

The approach in this dissertation follows the history of programming lan-
guages. We have introduced new language mechanisms that are expressive
but are dedicated to specific problems. A naive approach for addressing
problems is using meta-programming. For example, some AOP languages
support meta-programming for advice composition. Meta-programming is
sufficiently powerful for controlling almost everything in a program. How-
ever, in the history of programming languages, implementation techniques
using meta-programming have been replaced with different techniques using
simpler language mechanisms in order to achieve better understandability
or composability. The aspects in AOP are such a simpler mechanism to
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The Structure of This Dissertation

avoid the use of meta-programming. Airia does not take AspectJ back to the
language extensively using meta-programming.

A drawback with this approach is that adding new constructs may make
the programming language complex. Our languages have been designed to
reduce complexity as much as possible. First, a resolver in Airia is a new
mechanism added to AspectJ but it is just a new kind of advice; it is not
a completely new mechanism unlike other advice composition mechanism.
This decision prevents another composability problem, which requires an-
other mechanism for the composition of that new mechanism. Next, Fea-
tureGluonJ does not support the full capability of virtual classes. Feature
modules in FeatureGluonJ are modules only for implementing features and
hence they are implicitly instantiated when the features are selected for a
product. Since the original aim of virtual classes is to make a reusable library
consisting of multiple classes that mutually refer each other, programmers
can freely instantiate a module containing virtual classes in the program. In
this dissertation, we consider the original semantics of virtual classes is too
expressive for FOP.

This dissertation addresses only limited range of feature-oriented prod-
uct line development. CIDE is an integrated development environment (IDE)
that allows modularizing features virtually. Other abstraction mechanisms
such as operating systems, frameworks, and shared libraries can achieve vari-
ability of software products. For example, operating system allows executing
a software product on various devices without modifying the source code of
that product.

1.4 The Structure of This Dissertation

Chapter 2: Feature-oriented Software Development

This chapter first explains a development approach of product lines, feature-
oriented software development, and programming languages in which features
can be modularized. Then, it also mentions feature interactions addressed
in this dissertation.

Chapter 3: FeatureGluonJ

This chapter introduces a new feature-oriented programming language named
FeatureGluonJ. It provides inheritance mechanism for feature modules. A
super feature module works as an interface among its sub-features and en-
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ables to implement interaction between multiple combinations of features in
a single module to reduce the number of derivatives.

Chapter 4: Airia

For the composition of complicatedly conflicting advices, Airia provides a
new kind of advice called a resolver. It can implement composed behavior of
conflicting aspects by calling part of them through Airia’s extended proceed()
call. A resolver can also address conflicts among resolvers and normal advices.

Chapter 5: Concluding Remarks

This chapter concludes this dissertation.

8 INTRODUCTION



Chapter

2
Feature-oriented Software

Development

Feature-oriented software development (FOSD) is a paradigm for the con-
struction, customization, and synthesis of large-scale software systems in-
cluding software product lines [6]. In FOSD, developers concentrate on fea-
tures consisting the software systems in every stage of the development pro-
cess, i.e., analyzing application domain, designing, implementing, and testing
product lines. A product can be considered as a subset of the features com-
prising of the product lines.

There are many languages with linguistic mechanisms that can modu-
larize features. One of the mechanisms is destructive class extensions [23]
(aka. aspects in aspect-oriented programming). Destructive extensions al-
low extending behavior and/or attributes of classes from the outside of the
extended class. The extensions are not visible from the extended class. This
property of the extensions is known as obliviousness [34] in aspect-oriented
programming.

The last of this chapter mentions the problems of feature-oriented prod-
uct lines development addressed in this dissertation. One is the optional
feature problem, which is difficulty in implementing structural feature inter-
action, i.e., a situation in which an optional feature need to extend a class
of another optional feature. In product-line development in aspect-oriented
programming languages, conflict of aspects at the same join points is another
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problem. However, the existing mechanisms for aspect composition are not
satisfactory because there is no acceptable order among some combinations
of advices for naive linearization. Moreover, such composition mechanisms
does not provide sufficient composability.

2.1 Software Product Lines

Software product lines (SPLs) refer to families of similar software products.
SPLs development facilitates to reduce implementation cost by developing
each product by combining what is called core assets instead of building it
from scratch. The core assets are software artifacts or resources reusable
among the product line; developers gain or produce them during the devel-
opment. First, the software artifacts are categorized as below:

Software components are units of software for abstraction or reuse. They
are often represented by language constructs, for example, classes in
object-oriented programming languages.

Domain models are abstract representations of a software system from a par-
ticular view point. It is often expressed by a graph in the Unified
Modeling Language, such as a use case diagram.

Test cases are pairs of inputs and expected outputs against the inputs, which
can be source codes for unit testing frameworks.

Documents include both end-user manuals and ones for developers such as
API references.

On the other hand, the resources includes knowledge of the problem domain,
experience of implementation, and budgets for developing the products.

Figure 1 (1)–(5) depicts a development scenario of a product line. Suppose
the development of two similar products, A and B. (1) First, developers break
down these products into core assets, which are indicated by rectangles, so
that they can reuse a part of the core assets between the products. Next,
they develop the core assets. For example, programmers implement classes
shared between the products. What can be reused in this scenario is not
only the implementations of the classes; since the same programmers involve
in implementing both products, it can be considered that they can reuse the
experience in one product for the other product. (2) Finally, to build the
products, the developers combine the subset of the core assets needed for
each of the products.
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Fig. 2.1: Development of a product line and management of its variations

Evolution of product lines after building initial products is important in
product-line development. For the evolution, the developers add new core
assets or update the existing ones. (3) Suppose that the company decide to
develop a new product, C by adding new functionalities to product A. During
the development of C, the developers not only add new core assets but may
also modify the core assets that have been already used for A and B. For
example, they find security vulnerability in one of the core assets and fix it.
They combines these core assets for the product C. (4) The new and updated
core assets for C are fed back to the collection of core assets shared among
the product line.

Management of variation of product lines is also essential. (5) After
the evolution of the product line, the existing variations, A and B, must be
still valid; they can be generated without compile errors. Since some core
assets used in A and B are updated for C, the resulting products containing
the updated core assets are not exactly the same as the original products.
Nevertheless, the core assets should be updated so that the existing variations
of the product line can provide the same capabilities or functionalities as
before while the security problem is resolved.
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Expression

Integer String

PrintingBackendDataType optional

or

mandatory

Interpreter Compiler

alternative

Fig. 2.2: A feature-model diagram

2.2 Features in Software Product Lines

What are criteria for dividing core assets? Kang et al. introduced a new
concept, a feature and proposed feature-oriented domain analysis (FODA)
[42, 43]. They advocate that focusing on features comprising a product line
is important for the successful development. This is because a feature is a
user-visible characteristic, capability, or functionality of a software system
although there are several definitions of a feature. Features can be often
found in product development scenario from upper process to lower process.
For example, to develop new product C as shown in Section 2.1, the company
plans and implements new features for that product. After they complete
the product, they advertise the new features for its sales promotion.

In the design phase of a product line, developers analyze features in it
and decompose it into features. An important purpose of the decomposition
is to understand the commonalities and the variabilities among the products.
While the commonalities are features used for all the product in a product
line, variabilities are represented by features used only in some products; such
features are called variation points. Selecting a subset of features generates
varieties of products. The variation points must be implemented so as to be
unplugged from the other features.

In order to understand features consisting of a product line, feature model
is often used for describing the result of feature decomposition. The model is
illustrated as a tree diagram. The tree diagram shown in Figure 2.2 is for an
expression product line, which provide simple interpreters or compilers for
evaluating given expressions. On that diagram, a node represents a feature
in the product line, and an edge between the features represents aggregation
(aka. has-a) or generalization (aka. is-a). The aggregation is used when a
feature is divided into small features. For example, the relationship between
the Expression feature and its children is aggregation. The Expression has
three features DataType, Backend, Printing. Product lines often provide spe-
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cialized variations of features. The generalization is a relationship between
such specialized variations and their abstraction. The relationship between
the Integer and the String features is generalization; they are generalized by
DataType.

Developers can also intuitively understand variations available in the
product lines from variation points on that diagram. An edge ending with a
white circle indicates an optional feature. The developers may select optional
features for products. If they do not select an optional feature, the feature
is not implemented in that product. Alternative and or features are also
important variation points. A filled segment (i.e., part of a circle) drawn
among children represents alternative. Developers choose exactly one from
the children. On the other hand, they must at least one feature from or
features, which are indicated by an arc drawn among children. Note that
alternative or or features are not used for constraints for feature selection
such that a feature requires another feature or conflicts with another.

2.3 Automated Generation of Software
Products

FOSD aims at automated generation of software products. This is a major
difference from other software development styles where developing a product
from software-component libraries generically reusable among products. In
that development style, programmers need to assemble components imple-
menting features by writing code for initializing and connecting them when
they build a product. On the other hand, FOSD allows developers to gen-
erate a product just by selecting necessary features from the feature model
diagram.

There are several tools that facilitate to select features and build prod-
ucts. They include guidsl [15], FeatureIDE [76], Autotools (Autoconf [1]
and Automake [2]), and make menuconfig — a tool for customizing a Linux
kernel. For example, after developers select features for a product on GUI
or CUI to customize their Linux kernel, it defines preprocessor variables as-
signed to the selected features; features are surrounded by #ifdef–#endif in
the source files. The variables are passed to the preprocessor, and only code
regions of selected features are compiled together. Programmers do not need
to implement additional code for building products. Although tool support
is out of the scope of this dissertation, the existing tools can be used for the
approaches in this dissertation.
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class Application {
#ifdef PHOTO

PhotoListScreen photoListScreen;
PhotoController photoController;

#endif
#ifdef MUSIC

MusicListScreen musicListScreen;
MusicController musicController;

#endif

public void startApp() {
#ifdef PHOTO

photoListScreen = new PhotoListScreen();
photoController = new PhotoController();

#endif
#ifdef MUSIC

musicListScreen = new MusicListScreen();
musicController = new MusicController();

#endif
// : other initialization

}

public static void main(String[] args) {
Application app = new Application();
app.startApp()
// :

}}

List. 2.1: Implementing an SPL with preprocessor directives

2.4 Approaches for Implementing Features

2.4.1 Conditional Compilation

A conventional approach for generating products by selecting features is mak-
ing code snippets for unused features removable by conditional compilation.
List. 2.1 shows an example of implementation of a product line written in
Java with C/C++-like preprocessor directives. In the Application class, code
snippets including field declarations, specific to optional features are sur-
rounded by the preprocessor directives.

A drawback with this approach is that the code snippets from differ-
ent features are tangled in one language construct. In other words, the
boundaries between the features are not clear. For example, a feature might
accidentally refer to a variable defined by another feature. If programmers
change the code referring the variable, it might affect the behavior of other
features.

This representation is not suitable for a unit of code for feature-oriented
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development. Source code is sometimes managed for each source file, for
example, in a version control system. A developer responsible for a feature
need to take care changes to source files implementing the feature. However
the changes may be for the other features sharing the same source files.
Moreover, since the source files are reused as core assets among products,
a product may have source files that textually contain unnecessary code for
that product.

2.4.2 AspectJ

AspectJ [50] is a typical aspect-oriented programming language based on
Java. The aim of aspect-oriented programming is to group code that im-
plements the same concern that scatters over a class hierarchy in object-
oriented design. Such concerns are called cross-cutting concerns. AspectJ
allows to implement cross-cutting concerns into its unique module, aspect
with its linguistic mechanisms, an advice and a pointcut. AspectJ achieves
the separation by executing code written in advice at appropriate timing of
the execution of the program. Join points are an abstraction of the tim-
ing and the pointcut is a mechanism for selecting join points. Every advice
has a pointcut expression to specify the join points when the advice is exe-
cuted. From the classes under the join points, the concerns separated from
the classes into the aspect are not visible. This property is known as oblivi-
ousness [34].

A feature can be regarded as a cross-cutting concern; it cannot be im-
plemented by only its classes, but it requires code in classes belonging to
other features. Since AspectJ allows separating features into aspects, several
product lines such as the feature-oriented version of Berkeley DB [44] and
MobileMedia [78] have been developed in AspectJ.

An advice is a method like construct with parameters and a return type,
but it is invoked implicitly at the join points specified with its pointcut.
AspectJ provides three kinds of advices: around, before, and after. An around
advice replaces computation at the join points selected by its pointcut. For
example, programmers can override existing methods by an around advice by
using an execution pointcut, which picks up join points when the body of the
method given to the pointcut is executed. When the method is invoked, the
advice is executed as if the method is overridden in a subclass. The advice
returns a value instead of the method.

An around advice can execute the original method with a proceed() call,
which is similar to a super call in Java. Thereby an around advice can wrap
the original computations associated with the join points; namely, it adds
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actions before and after the original computations. The return value of the
computation is forwarded to the return value of proceed() call. On the other
hand, before and after advices execute additional actions before/after the join
points and always run the original action. These advices can be rewritten to
around advices. The following before advice:

before(): execution(void Application.startApp()) {
System.out.println("Application started");

}

can be rewritten to the next around advice:

void around(): execution(void Application.startApp()) {
System.out.println("Application started");
proceed();

}

A mechanism called an inter-type declaration allows an aspect to add a
new field and/or method into an existing class. It is written as a field/method
declaration in the aspect, but the name of the extended class is specified
before the name of the field/method. For example, the following aspect adds
a field with the PhotoController type into the Application class:

aspect Photo {
PhotoController Application.photoController;

}

Inter-type field declaration can be used to separate field declarations be-
longing to a feature if the feature is different from the feature of the class
containing the fields.

2.4.3 AHEAD Tool Suite

AHEAD 1 Tool Suite [18] provides models, domain-specific languages (DSLs),
and tools for step-wise refinements, which enables to develop incrementally
large-scale complex programs from a simple program. A goal of AHEAD is
to develop SPLs by feature refinements, which is to add features to the cores
of the product lines. The origin of AHEAD is in the two customizable fam-
ilies of software products and their generator [17]: Genesis—a customizable
database management system—and Avoca—network software suites consist-
ing of communication protocols. These families can be regarded as software
product lines.

The contribution of AHEAD is an algebraic model that can represent both
code artifacts (e.g., Java source code) and non-code artifacts (e.g., grammar

1Algebraic Hierarchical Equations for Application Design
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of languages). In AHEAD, a software product is expressed by an equation
with the composition operator • and sets of constants. Suppose two features,
f and g, in a product line. The features are expressed by the sets of artifacts
as the following:

f = {Af , Bf}
g = {Bg, Cg}

Here, Af , Bf , Bg, and Cg are artifacts; and A, B, and C are names assigned
to the artifacts. Both of those features provide the artifacts named B, which
may have different contents. Let us consider these artifacts are classes in
Java program in this example. The class B is a class shared by two features.

A product made up with the features f and g is denoted by f • g. The
composition operator yields a new set of artifacts from both operands. If the
operands have the artifacts with the same name, the artifacts are composed
recursively by the operator:

f • g = {Af , Bf} • {Bg, Cg}
= {Af , Bf •Bg, Cg}

Artifacts in the equations might be compound artifacts constituted by
other artifacts. AHEAD applies composition operator recursively to such
artifacts. Assume that the class Bf contains methods mXf and mYf , and
Bg contains methods mYg and mZg. Bf • Bg in the equation above results
in:

Bf •Bg = {mXf ,mYf} • {mYg,mZg}
= {mXf ,mYf •mYg,mZg}

Although AHEAD aims composition of general artifacts, it provides a
DSL named Jak for describing artifacts that are to be composed into Java
code. List. 2.2 shows artifacts in the Jak language. The syntax of Jak
language is almost the same as Java. A class-like construct with refines
keyword is a refinement, which is unique to Jak. Refinements are used for
describing artifacts, which are to be composed with classes of other features.

The AHEAD tool suite defines the semantics of the method composition,
which are similar to ones of around advices in AspectJ. The method of a
refinement placed on the left of the composition operator wraps the right
method of a normal class or another refinement. Jak provides Super() instead
of proceed() in AspectJ. Let us consider the composition of ApplicationPhoto

(List. 2.2 (a)) and ApplictionBase (List. 2.2 (b)). Both the refinement and
the class have the startApp() methods. The resulting Application class is as
shown in List. 2.3. Developers can generate a product by giving equation of
that product to AHEAD’s source-to-source translator.
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refines class Application {
PhotoListScreen photoListScreen;
PhotoController photoController;

public void startApp() {
photoListScreen = new PhotoListScreen();
photoController = new PhotoController();
Super().startApp();

}
}

(a) ApplicationPhoto
........................................................................................
class Application {

public void startApp() }
// other initialization

}
}

(b) ApplictionBase

List. 2.2: A refinement in the Jak language

2.4.4 GluonJ

GluonJ [22, 23] is an AOP language and a natural enhancement of object-
oriented programming language, Java; it provides AOP functionalities with-
out pointcuts and advices, which are typical AOP-specific language mecha-
nisms. GluonJ provides functionalities such as destructive class extensions,
limited scope, and modular compilation. They allow implementing features
separately and building products from combinations of features.

GluonJ introduces a new language construct called a reviser for destruc-
tive class extensions. It looks like a subclass of an existing class as shown
in List. 2.4. It destructively extends the target class written after the revises
keyword from the outside of the class without modifying the source code of
the target class. A reviser adds fields and methods defined in it into its target
class as inter-type declarations in AspectJ do. If a reviser contains a method
that has the name same as one in its target class, the reviser overrides the
existing method as an around advice with an execution pointcut does. In
List. 2.4, the startApp() method overrides startApp() of Application. The
method contains a super call (super.startApp()). The super call corresponds
to proceed() in AspectJ and invokes the overridden method.

To implement a product line in GluonJ, programmers implement every
feature with revisers and classes that contain only code related to the feature.
GluonJ has two stages for code generation. It first compiles those revisers and
classes separately regardless of whether or not they are used by a product.
Next, it links the classes and revisers. At the link time, developers give only
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class Application {
PhotoListScreen photoListScreen;
PhotoController photoController;

public void startApp() {
photoListScreen = new PhotoListScreen();
photoController = new PhotoController();
startApp$$one(); //

}

public void startApp$$one() {
// other initialization

}
}

List. 2.3: The resulting class generated by AHEAD

class PhotoInitializer revises Application {
PhotoListScreen photoListScreen;
PhotoController photoController;

public void startApp() {
photoListScreen = new PhotoListScreen();
photoController = new PhotoController();
super.startApp();

}
}

List. 2.4: A reviser in GluonJ

the classes and the revisers of the features used for the resulting product.
If a reviser is linked to the other part of a product, the reviser extends its
target class by adding fields and replacing methods.

Classes and revisers in GluonJ are compiled separately, which is an impor-
tant capability for developing large-scale software including software product
lines. GluonJ achieves separated type-checking with its constructs: requires
and using. When a reviser refers fields or methods defined in another reviser
X, it must have requires X to ensure that X is always applied before it uses
such fields or methods. If a normal class need to access the fields or the
methods, programmers must put using X in its source file. Note that GluonJ
is mostly modular; it requires global knowledge for reasoning when multiple
revisers extends the same class. Approaches such as conditional compilation
and AHEAD Jak language does not support separate compilation for each
feature; depending on combinations of features, they may cause compile er-
rors since it cannot be ensured that accessed variables or methods are always
defined although there are literature on the type system for annotation-based
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product lines [47].

2.4.5 Prehofer’s Feature-oriented Programming

Prehofer is first to introduce a new programming paradigm named feature-
oriented programming (FOP) and a language mechanism specialized to fea-
tures [67]. Although this work did not originate from FODA, he noticed that
an object is composed of several features. That language mechanism allows
separating code related to a feature from its class into independent a mixin-
like module. This separated module is used when an object is instantiated.
Programmers select the features used for the object with the extended new
expressions.

In Prehofer’s FOP, a customizable stack class family is implemented as
shown in List. 2.5. It consists of two features, Counter for counting the
elements and Lock for preventing other thread from using the stack. The
constructs with feature is the module for implementing a feature separately.
The Stack feature can be considered as a normal class implementing the basic
operations of stacks. IStack and ICounter are the Java interfaces that simply
define methods such as push() and inc().

The Counter feature (List. 2.5 (b)) consists of two feature modules, which
can be considered as refinements to Stack class. Unlike refinements, the
implementation of a feature is divided into two parts; the methods and the
fields introduced by the feature; and the methods overriding the existing
one. The latter part is especially called a lifter and represented by a feature
module with a lifts keyword.

For example, to make a stack object with Counter, programmers write:

new Counter(Stack);

Counter(Stack) represents the class that has fields and methods defined in
the Stack feature and the Counter feature, where the methods from Stack are
overridden by the lifter of Counter. The Lock feature is implemented in the
same way to Counter as shown in List. 2.5 (c). The following code:

new Lock(Stack);

instantiates a stack object with the Counter feature.
Prehofer’s FOP is, however, not sufficient for implementing SPLs since

features in SPLs are rather cross-cutting concerns than properties of a single
class; code related to a feature spreads over multiple classes in a product.
Even though a feature is cleanly implemented in classes, the code that instan-
tiate those classes exists in classes belonging other features including base
code, which is necessary for all variations of products and has an entry point
of the program.
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feature Stack implements IStack {
Node head = null;
public Object pop() {
Object result = head.getValue();
head = head.getNext();
return result;

}
public void push(Object value) {
Node n = new Node(head, value);
head = value;

}
}

(a) The Stack feature
........................................................................................
feature Counter implements ICounter {

int size;
private void inc() { size++; }
private void dec() { size--; }
public int size() { return size; }

}

feature Counter lifts IStack {
public Object pop() {
this.dec(); return super.pop();

}
public void push(Object) {
this.inc(); super.push(o);

}
}

(b) The Counter feature
........................................................................................
feature Lock implements ILock {

private ReentrantLock l = new ReentrantLock();
public void lock() { l.lock() }
public void unlock() { l.unlock() }

}

feature LockFeature lifts IStack {
Object Object pop() {
this.lock();
Object result = super.pop();
this.unlock();
return result;

}
void push(Objcet o) {
this.lock();
super.push(o);
this.unlock();

}
}

(c) The Lock feature

List. 2.5: A customizable stack class in Prehofer’s feature-oriented program-
ming
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2.4.6 Virtual Classes

The programming language BETA introduced virtual classes [56], which are
nested classes and overridable attributes of objects as virtual functions (aka.
methods) can be overridden by their subclasses. The gbeta language [30]
generalized the virtual classes so as to implement concerns involving multiple
classes that mutually refers each other. Its goal is similar to aspect-oriented
programming. A subclass can add fields to virtual classes of other features
and change the behavior of the methods of the classes without modifying
them. CaesarJ [12] (including Caesar [61]) and Object Teams [37] support
this generalized virtual classes.

Virtual classes have been used to implement feature-oriented product
lines. For example, Dungeon SPL [35] is a product line of games that players
explore labyrinths collecting useful items. The developer of the SPL adopted
virtual classes to separately modularize the features by modifying the classes
with virtual classes instead of aspects or refinements. The literature [32] also
uses an example of virtual classes implementing features for an interpreter.

CaesarJ

The List. 2.6 shows classes written in CaesarJ and implements a simple in-
terpreter SPL, which supports only integer literal and the addition of integer
values. Although CaesarJ is a language based on Java, it uses the cclass
keyword to define classes. The Base class contains the code necessary for all
variations of the product line. It consists of three nested classes, Expression,
Literal, and Plus, representing the AST nodes of the interpreters. Before
programmers uses these nested classes, they instantiate the outer class, Base
since virtual classes are attributes of an object. The following code instanti-
ates the Literal class:

Base base = new Base();
base.Literal lit = base.new Literal();

Programmers need to specify an object of the outer class when they access
to the nested classes from the outside of the nesting class. Here, base.new
Literal() denotes instantiation of a class bound to the virtual class reference
Literal of base.

In CaesarJ, all nested cclasses are virtual classes. The important capabil-
ity of virtual classes is that a virtual class can override another virtual class
contained by the super class of the outer class. Virtual-class overriding is
similar to virtual function overriding in C++ or method overriding in Java.
A reference to virtual class is not resolved lexically. As a virtual function call
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public abstract cclass Base {
public abstract cclass Expression {}

public cclass Literal extends Expression {
protected int i;

public Literal(int i) {
this.i = i;

}
}

public cclass Plus extends Expression {
protected Expression left;
protected Expression right;

public Plus(Expression left, Expression right) {
this.left = left;
this.right = right;

}
}

public class Application {
public Expression testTree;

public abstract void test() {
this.testTree = this.new Plus(

this.new Literal(1),
this.new Literal(2));

}
}

}

List. 2.6: The base classes for a simple interpreter in CaesarJ

may executes a method defined in the subclass by dynamic dispatch, the ref-
erence is resolved dynamically depending on an object of the class enclosing
them.

If a subclass provides virtual classes with the same name as ones of its su-
per class, the subclass overrides such virtual classes. List. 2.7 shows the Eval-
uationFeature class, which is a subclass of Base and contains virtual classes
named Expression, Literal, and Plus. Those classes override the corresponding
classes of the Base class. Suppose that the actual class of base is Evaluation-
Feature. Within base, the virtual class reference Expression written in Base
refers to Expression defined in EavluationFeature. A virtual class reference
from the outside of Base is also resolved depending on the actual class of
the outer class. Thus, base.Expression also refers to EvaluationFeature’s Ex-
pression. Note that a virtual class inherits the methods and fields defined in
overridden class; for example, the left and right fields are also available in
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public cclass EvaluationFeature extends Base {
public abstract cclass Expression {
public abstract int eval();

}

public cclass Literal {
public int eval() {

return i;
}

}

public cclass Plus {
public void eval() {

return left.eval() + right.eval();
}

}

public cclass Application {
public void test() {

super.test();
System.out.println(testTree.eval());

}
}

}

List. 2.7: The evaluation feature implement as a subclass of Base

EvaluationFeature’s Expression.
A subclass of Base can modularize a feature. The EvaluationFeature class

adds the interpreter the capability for evaluating expressions crosscutting
over AST classes as shown in List. 2.7. It adds eval() methods for every class;
the method returns the result of the evaluation. A product is represented by
an object of EvaluationFeature:

class InterpreterWithEvaluation {
public static void main(String[] args) {

EvaluationFeature product = new EvaluationFeature();
product.test();

}
}

This product always uses AST classes extended by EvaluationFeature. To
make an expression for testing this interpreter, it executes the buildTestTree()
method defined in List. 2.6 on the product variable through the test()method.
The buildTestTree() method instantiates the Plus class assigned to this. Since
actual class of this is EvaluationFeature, Plus refers to Plus of EvaluationFea-
ture, not Base.

CaesarJ supports to build a product from multiple features. List. 2.8
shows another feature that allows the interpreters to print expressions as
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public cclass PrinterFeature extends Base {
public abstract cclass Expression {
public abstract String print();

}

public cclass Literal {
public String print() {

return Integer.toString(i);
}

}

public cclass Plus {
public String print() {

return left.print() + " + " + right.print();
}

}

public cclass Application {
public void test() {

super.text();
System.out.println(testTree.print);

}
}

}

List. 2.8: The printer feature for the expression product line

character strings. It is also implemented as a subclass of Base; it extends
AST classes defined in the super class and add print() method to each of
them.

Since CaesarJ supports multiple inheritance of classes, a product with the
evaluation and the printer features is represented by a class inheriting from
EvaluationFeature and PrintFeature. The class can be implemented as shown
in List. 2.9. CaesarJ uses & operator in order to specify multiple classes to an
extends clause. Note that CaesarJ adopt mixin composition, a style of mul-
tiple inheritance. If multiple super classes contains virtual classes with the
same name, they merge the virtual classes into one virtual class. For example,
the ProductWithEvalPrint class inherits the Plus classes from its super classes
and their super common super class also contains the Plus class. In this case,
PrintFeature’s Plus overrides one of Base, and then EvaluationFeature’s Plus
overrides one of PrintFeature. Thus, within the ProductWithEvalPrint, both
the eval() and the print() methods are available.
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public cclass ProductWithEvalPrint
extends EvaluationFeature & PrinterFeature {

public void test() {
Expression expr = this.buildTestTree();
System.out.println(expr.print() + " = " + expr.eval());

}

public static void main(String[] args) {
ProductWithEvalPrint product = new ProductWithEvalPrint();
product.test();

}
}

List. 2.9: The evaluation feature written as a subclass

2.4.7 Hierarchical Implementations of Features

Object Teams and CaesarJ adopt another implementation architecture of
features, which is hierarchical implementations of features, to implement
the authentication and authorization library product line [39], and a stock
information broker application [62], respectively. Note that these languages
aim at dynamic selection of features differently from languages for static
composition of product lines. They support to implement a relation among
objects as a feature. They provide reusability of classes among different
product lines by adapting classes of a feature to other classes manually and
flexibly.

The characteristic of those languages is that they provide both destruc-
tive extensions and virtual classes, which is considered as a non-destructive
mechanism. CaesarJ allows extending the behavior of arbitrary classes by an
AspectJ-like advice although virtual class can extend the behavior of another
class nested by its super class. On the other hand, Object Teams can forward
a method call on an object to another method defined in what is called a role
class. This mechanism is called call-in binding, and it can replace methods
of any classes with ones of role classes.

Those languages introduce AspectJ-like advices and call-in binding for the
different purpose from that of virtual class overriding. In an object-oriented
implementation of features, a feature is often not behavior of a single object
but behavior of a collaboration of classes [39]. Such a collaboration of classes
fits to a set of virtual classes nested by the same class, and the outer class
represents the feature.

Inheritance of the outer class and virtual class overriding is used to imple-
ment features specializing an abstract feature. Those features are illustrated
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public class Application {
public void start() {
//

}

public static void main() {
Application app = new Application();
app.start();

}
}

List. 2.10: The common part of the interpreter product lines

as alternative features or or features on the feature model diagram. A class
and its virtual classes implement the common code among the features, and
its subclasses implement them by overriding the virtual classes.

Every feature must contain code extending behavior of classes of other
features. Otherwise, the code of the feature will be never executed. Hier-
archical feature implementation uses destructive extensions for this purpose
instead of virtual class overriding. The implementation design only with vir-
tual classes, mentioned in Section 2.4.6, requires that all the classes extended
by some features should be nested classes of the Application class. However,
since destructive extensions allow extending classes whenever the classes are
defined, programmers only need to separate classes and destructive exten-
sions implementing the same feature into a class in hierarchical designs.

The remaining part of this section explains the syntax of CaesarJ and
Object Teams for hierarchical designs. As List. 2.10 shows, the Application
class is now an independent class shared by multiple features, which will be
used for the following two examples written in those languages.

In CaesarJ, the features that provide operations of expressions are rep-
resented by subclasses of ExpressionBase in List. 2.11. It contains an around
advice, which is executed when the Application.start() method is executed,
and splits code of the feature from the other part. A constructor-call-like
constructs without new is unique to CaeasrJ and returns a wrapper object
of the Application class. CaesarJ uses wrapper objects to keep values related
to features without providing inter-type declarations in AspectJ. CaesarJ fa-
cilitates to implement a wrapper class with its wraps clause. The wrapper
object is an instance of the ApplicationWithTest class, which is a virtual class
of ExpressionBase. It keeps an expression used in the test() method. The
wrapper accesses always returns the same object for the same triple of the
value before the dot, the wrapper class, and wrapped object.

In List. 2.12, a subclass of ExpressionBase, Evaluation implements the Eval-
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public abstract cclass ExpressionBase {
public abstract cclass Expression {}

public cclass Literal extends Expression {
protected int i;
public Literal(int i) {

this.i = i;
}

}

public cclass Plus extends Expression {
protected Expression left;
protected Expression right;
public Plus(Expression left, Expression right) {

this.left = left;
this.right = right;

}
}

public cclass ApplicationWithTest wraps Application {
protected Expression testTree;

public void test() {
testTree = new Plus(new Literal(1), new Literal(2));

}
}

void around(Application t):
execution(void Application.start()) && this(t)

{
proceed(t);
this.ApplicationWithTest(t).test();

}
}

List. 2.11: The super class for the features providing operations of expres-
sions (CaesarJ)
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public deployed cclass Evaluation extends ExpressionBase {
public abstract cclass Expression {
abstract public int eval();

}

public cclass Literal {
public int eval() {

return i;
}

}

public cclass ApplicationWithTest {
public void test() {

super.test();
System.out.println(testTree.eval());

}
}

public cclass Plus {
public void eval() {

return left.eval() + right.eval();
}

}
}

List. 2.12: The Evaluation feature in the hierarchical designe (CaesarJ)

uation feature, which provides the evaluation of the expressions. A subclass
inherits advices from its super class. The Evaluation class has an around ad-
vice defined in ExpressionBase. If this in the advice refers to an Evaluation
object, the wrapper access returns an object of the ApplicationWithTest rede-
fined in Evaluation since a subclass also overrides wrapper class in the same
way as normal virtual classes.

Although advices in AspectJ are implicitly called if they are compiled,
advices in CaesarJ are not executed until programmers manually deploy the
objects containing the advices. The Evaluation class has the deployed mod-
ifier. It indicates that the class is implicitly instantiated, and the around
advice is executed when the program execution reaches its join points. If the
Evaluation class is compiled, its advice calls the test() method of Evaluation’s
ApplicationWithTest. In CaesarJ, programmers instantiate an object with ad-
vices manually and deploy it by using a deploy statement. An advice can be
executed multiple times if programmers deploy multiple objects of the class
containing it.

In ObjectTeams, a feature is implemented as a team class consisting of
virtual classes, called role classes. It supports to implement a team by inher-
iting another team as CaesarJ does. List. 2.13 shows another implementation
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of the ExpressionBasis, which was shown in List. 2.11. The ExpressionBasis
class contains four role classes although the Test class is not a nested class
of ExpressionBasis. import team declaration enables to write role classes of a
team in an independent source file separately from the team definition.

To extend the behavior of class in the outside of the team, Object Teams
provide role binding, which binds a role instance to an instance of the class
specified in a playedBy clause. The Test role of the ExpressionBasis is in-
stantiated implicitly and bound to an object of Application similarly to the
wrapper class in CaesarJ. Object Teams also provide call-in binding, which
allows forwarding method calls on classes playing a role to the method of
the role. It is similar to advices in AspectJ or CaesarJ. The <- operator
and the replace keyword written in the last of the Test role are constructs
for call-in binding. The replace keyword replaces calls to the method on the
right hand side with a method on the left hand side as an around advice does.
By test <- replace start, calling the start method on an Application object
invokes the test method of the Test class.

The Evaluation feature in List. 2.14 is represented by a sub-team of Evalua-
tionBase in Object Teams as well as CaesarJ. The language semantics related
to sub-team is similar to CaesarJ; sub-teams inherit all the roles from their
super team. The Evaluation team overrides the Test role class to run evalu-
ation of an expression. The Test role of Evaluation inherits a call-in binding
and is played by Application. Note that Object Teams require to activate
call-in binding manually by the activate method of each team. Otherwise,
the test() method is never executed. In this example, only the Evaluation
team is activated as shown in the bottom of List. 2.14. Thus, only the Test
role overridden by Evaluation is executed.

2.4.8 Delta-oriented Programming

Delta-oriented programming (DOP) [70] is a language paradigm designed for
developing software product lines. DOP introduces a new concept, program
deltas and allows implementing a feature as a set of program deltas. A delta
is comprised of addition and deletion of program fragments. A delta can add
new methods implementing a feature into an existing class as refinements
of AHEAD can. Moreover, it can remove unnecessary classes or methods.
DOP, thereby, enables the product lines style in which developers implement
a product with full features and implement another feature by removing
unnecessary code from that product.

List. 2.15 is the implementation of the Evaluation feature written in Delta-
Java, a DOP extension to Java. DeltaJava provides a language construct,
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public team class ExpressionBasis {
public abstract class Expression {}

public class Literal extends Expression {
int i;
public Literal(int i) {

this.i = i;
}

}

public class Plus extends Expression {
protected Expression left;
protected Expression right;

public Plus(Expression left, Expression right) {
this.left = left;
this.right = right;

}
}

}
........................................................................................
import team ExpressionBase;

public class Test playedBy Application {
protected Expression testTree;

callin void test() {
base.test();
testTree = new Plus(new Literal(1), new Literal(2));

}

test <- replace start;
}

List. 2.13: The super class for the variations of the feature (Object Teams)
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public team class Evaluation extends ExpressionBase {
public abstract class Expression {
public abstract int eval();

}

public class Plus {
public int eval() {

return left.eval() + right.eval();
}

}

public class Literal {
public int eval() {

return i;
}

}

public class Test {
callin void test() {

tsuper.test();
System.out.println(testTree.eval());

}
}

}
........................................................................................
Evaluation e = new Evaluation();
e.activate();

List. 2.14: The Evaluation feature in the hierarchical designe (ObjectTeams)

32 FEATURE-ORIENTED SOFTWARE DEVELOPMENT



Approaches for Implementing Features

delta DEvalationFeature when Evaluation {
modifies class Expression {
adds int eval() {}

}

modifies class Literal {
adds int eval() {

return i;
}

}

modifies class Plus {
adds void eval() {

return left.eval() + right.eval();
}

}
}

List. 2.15: The Evaluation feature in DeltaJava

delta modules, representing program deltas. It consists of additions, modifi-
cations, and removals of classes. In the delta module for the Evaluation fea-
ture, class definitions with modifies keyword are class modifications, which
correspond to refinements of AHEAD and extend the existing versions of
those classes.

In DOP, multiple delta modules may implement a feature. A when key-
word of a delta module specifies the condition on which the module takes
effect. Every feature has a variable that become true if and only if the feature
is selected, and that condition is represented by logical expression consisting
of such variables. The DEvaluationFeature in List. 2.15 has when Evaluation,
and hence it modifies classes when the Evaluation feature is selected.

2.4.9 The Package Templates

The package templates [14, 52] provides mechanisms for reusing a set of
classes based on virtual classes. A template is a reusable module consisting
of virtual classes. If a template is instantiated in a package, the virtual classes
in the template become available in the package, and such virtual classes are
overridable. A template can be also instantiated within other templates
to define a new template by reusing that template. While instantiating a
template, the package templates allows to rename virtual classes defined in
the template. As CaesarJ supports, it also allows to merge virtual classes
into a virtual class.

List. 2.16 shows the common classes of the interpreter product line writ-
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ten in the package templates. List. 2.17 implements the Evaluation feature.
To reuse the virtual classes defined in the ExpressionBase template, The Eval-
uation template instantiates the ExpressionBase template by the inst declara-
tion, and then overrides the classes contained in the instantiated template
by adding methods and/or fields, which are given after the adds keywords.

A product is represented by a package and its nested classes. The Pro-
gram package in List. 2.18 implements a product with the evaluation feature.
It instantiates the two templates, Evaluation and Base. It renames classes
defined in the Evaluation template. The Exp class is available as the Expres-
sion class in the Program package. Two Application classes are merged to
one Application class in the package. One of them is defined in Evaluation
and renamed from App to Application. The other Application class is defined
in Base template. Although both Application classes have the start() meth-
ods, package templates can not linearize these methods. Programmers must
implement a new start() in the Program package and call those methods man-
ually by using Super[. . . ] calls, which invoke the methods of given merged
classes.
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template ExpressionBase {
abstract class Exp {}

class Lit extends Exp {
int i;
Literal(int i) {

this.i = i;
}

}

class Add extends Exp {
Expr left;
Expr right;

Add(Exp left, Expr right) {
this.left = left;
this.right = right;

}
}

class App {
void startApp() {

test();
}

Expr testTree;

void test() {
this.testTree = this.new Plus(

this.new Literal(1),
this.new Literal(2));

}
}

}
........................................................................................
template Base {

class Application {
void startApp() {

// initialization
}

}
}

List. 2.16: The base classes of the expression product line in the package
templates
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template Evaluation {
inst ExpressionBase;

class Expression adds {
int eval();

}

class Literal adds {
int eval() {

return i;
}

}

class Plus adds {
int eval() {

return left.eval() + right.eval();
}

}

class Application adds {
void test() {

super.test();
System.out.println(testTree.eval());

}
}

}

List. 2.17: The evaluation feature in the package templates

package Program {
inst Evaluation with
Exp => Expression,
Lit => Literal,
Add => Plus,
App => Application;

inst Base;

class Application adds {
void start() {

Super[Application].start();
Super[App].start();

}
}

}

List. 2.18: The package representing a product with the evaluation feature
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2.5 Implementations of Feature Interaction

When we develop products by combining features, the features used to-
gether sometimes interact with each other. Feature interaction, coined in
the telecommunication system community, is both positive and negative ef-
fects from one feature to another [20]. Especially the negative effects are
called interference. Developers need to carefully treat combinations of fea-
tures so that they can obtain positive effect from the features and avoid
interference. The typical example of the feature interaction is interaction
between a call-waiting feature, which answers automatically to ask the caller
to wait for a moment, and a call-forwarding feature, which forwards call to
another phone. When these features are used together, the useful interaction
between the features is to concurrently forward a call to another phone while
answering to the caller.

However, the existing feature-oriented programming approaches do not
provide sufficient support to deal with the interaction. Thus the compos-
ability, an ability to use multiple modules together without modifying them,
for building product lines is limited. This dissertation addresses the problem
on a mechanism for implementing extra code that makes interaction good
effects; the problem is called the optional feature problem.

The aspect-oriented programming community also has been studying in-
teraction of aspects [69]. Especially, several works aims at detecting and/or
resolving interference caused by independent aspects woven into the same
join points [3, 25, 26, 27, 49, 53, 57, 58, 63, 74]. Such join points are called
shared join points [63]. This dissertation describes such a situation as an
advice conflict at shared join points. The advice conflict is a significant
factor of the interference. When the execution of a program reaches at a
join point shared by multiple advices (aspects), it is not trivial how these
advices are executed. Moreover, since an advice may changes the contexts,
the other conflicting advices at the join points might be executed under the
unexpected environment. While some languages including AspectJ supports
around advices, it may prevent the other conflicting advices to be executed.

Typical AOP languages linearize conflicting advices according to the
precedence order. An approach for avoiding the interference is to allow pro-
grammers to control that precedence order so that the conflicting advices
behave as expected. However, among some combinations of advices, there is
no correct precedence order with which the composed behavior of the advices
is acceptable.

FEATURE-ORIENTED SOFTWARE DEVELOPMENT 37



Implementations of Feature Interaction

2.5.1 The Optional Feature Problem

Naive combination of features does not produce synergies between them. De-
velopers need to implement code to obtain the useful interaction between the
features. The features of the telecommunication system require extra code
that checks whether both of the call-waiting feature and the call-forwarding
feature are enabled and executes them in parallel.

There is another type of interaction, called structural interaction, which
is found in the customizable stack family implemented in Prehofer’s feature-
oriented programming in List. 2.5. The Counter feature and the Lock feature
interact because the size() method introduced by Counter must lock the stack
by using the methods of Lock when a product uses those features together. If
this interaction was implemented straightforwardly, the size() method would
be:

public void size() {
this.lock(); // Lock
int result = size; // Counter
this.unlock(); // Lock

}

Since code implementing the interaction is necessary only when the com-
bination of features used together, the code above cannot be implemented
in either of the interacting features if the features are optional. The Counter
feature cannot contain that size() method since it causes unexpected depen-
dency; the Counter feature cannot be compiled without the Counter feature.

A modular approach is to implement such interaction separately in a
lifter or a derivative [54]. The interaction between Lock and Counter can be
separated as the next lifter:

feature Lock lifts Counter {
public void size() {

this.lock();
super.size(); // executes the Counter feature
this.unlock();

}
}

This size()method overrides the definition of size() in Counter; the super.size()
executes the original method in Counter. This lifter is automatically merged
into a stack class only when both Lock and Counter is used as the following:

new Lock(Counter(Stack));

The derivative, which is almost the same to a lifter, is a module that
contains only refinements to methods introduced by another feature. It is
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represented as a partial derivative in AHEAD’s algebraic model. The deriva-
tive module between Counter and Lock is written as ∂counter/∂Lock where
counter indicates introductions of new methods and fields by the Counter
feature.

A derivative is now used as a terminology for a module implementing
interaction. It may also include fields definitions used for the interaction,
not only methods overriding to existing ones. The capabilities necessary for
implementing a derivative are the same as ones for implementing features.
Thereby, language mechanisms such as aspects are sufficient for derivatives.
A derivative can be considered as a special feature module that is selected
only when the specific combination of features is used together.

The scalability of derivatives is, however, still under discussion in the
research community. Suppose that n optional features interact with each
other. There are 2n − n− 1 combinations of features among the n features,
and every combination requires its own derivative in the worst case.

If the derivatives are composable, then they facilitate to reduce the num-
ber of derivatives. Prehofer’s FOP advocates that if developers prepare lifters
for every pair of interacting features, then the lifters can implement inter-
action between any combinations of the features. For example, if there are
a lifter between A and B and one between C and D, interaction among A,
B, C, and D can be obtained just by combining these lifters into products.
Although it is not clear that this statement is true for all cases, the number
of the necessary lifters thereby can be reduced to 1

2
(n2 − n).

In practical product lines, all the features do not interact with each other,
but they still require a number of derivatives. For example, in Berkeley
DB refactored in FOP [44] consisting of 38 features, 53 pairs of features
have implementation dependencies, which must be separated into derivatives
[48]. The paper [46] concludes that the difficulty in implementing features is
mainly due to the interaction among the features.

In this dissertation, the optional feature problem refers to the difficulty in
implementing the feature interaction. One is that there is no suitable feature
for implementing interaction on a feature model diagram; the feature inter-
action is sometimes an implementation issue [48], and hence the interaction
is not aware during analyzing the features. Another is unmaintainability due
to a huge number of derivatives. The effort to implement the derivatives will
increase as the size of the product line grows up.

Delta-oriented programming is designed so as to address the optional
feature problem. A when clause of a delta module may have not only a
single variable representing a feature but also expressions constructed from
the variables and logical operators. Thereby a delta module that is applied
only when Count and Lock are selected is implemented as the following:
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delta DCountLock when Count && Lock {
modifies class Stack {

...
}

}

Nevertheless, delta-oriented programming does not provide mechanisms to
reduce the number of such delta modules. We believe that it cannot solve
the entire optional feature problem in this dissertation.

2.5.2 Aspect Interference Caused by Conflicting Advices

2.5.2.1 Aspect Composition

When multiple advices (aspects) conflict at join points, compilers or language
runtimes must determine how they execute those advices. This process is
called aspect composition [63].

The aspect composition is not often a trivial task. Programmers may need
to give hints for the aspect composition to the compiler or explicitly specify
code that defines how conflicting advices should be executed. Otherwise,
those advices may cause interference. A naive composition of conflicting ad-
vices is to execute them sequentially; at the shared join point, one of them is
firstly executed, and then the other is executed. Programmers need to care-
fully give the execution order of the advices since different order sometimes
leads a program into different results [3].

The initial work on aspect interaction was done by R. Douence et al.
They developed a formal framework to detect conflicting aspects [27, 26]. It
also allows programmers to specify composition code explicitly. The frame-
work introduces a unique model of aspect called stateful aspects. A stateful
aspect is a sequence of pairs consisting of a crosscut (i.e. pointcut) and an
insert (i.e. advice body). Their semantics and representation are based on
communicating sequential processes. An aspect is written in the following
form:

Aclick = µa. ˆonClick() ▷ skip; ˆonClick() ▷ print(”Clicked twice!”); a

where the left of ▷ is a crosscut, and the right is an insert. Every aspect has
state indicating the current pairs of a crosscut and an insert. The initial state
is the first pair of the aspect. Whenever the program execution advances,
the framework evaluates the current crosscut; if the crosscut matches to the
current join point, then it executes the current insertion and shifts the current
state to the next pair. Since skip means doing nothing, the aspect above
prints the message when the onClick() method is called twice. Note that
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µa. A1; . . . ;An; a represents that the last a is replaced with the expression
following µa. recursively.

When a program has multiple aspects, the aspects are combined with
parallel || operators. Those aspects might conflict with each other. Suppose
that two aspects:

Aclick || Alog

are combined. The framework checks if each of the current crosscuts of Aclick

and Alog matches to the current join point. If both crosscuts matches to the
same join point, it executes (Iclick ▷◁ Ilog) where I1 and I2 are current inserts
of Aclick and Alog, respectively. The ▷◁ is a non-deterministic function rep-
resenting a conflict, which returns (Iclick; Ilog) or (Ilog; Iclick). For example,
Aclick || Alog conflicts if:

Alog = µa. ˆonClick() ▷ print(”onClock()”);

However one of (Iclick; Ilog) or (Ilog; Iclick) might not be acceptable. To
avoid the interference or the ambiguity of the resulting behavior of the con-
flicting aspects, the framework allows programmers to specify transformation
of the ▷◁ operators in order to define how (Iclick ▷◁ Ilog) is to be executed.
The transformation is defined separately from the aspects. For example, the
following transformation:

Aclick ||seq Alog where seq = µa. true ▷ (id⊕ seq); a

always transforms (Iclick ▷◁ Ilog) into (Iclick; Ilog) during the evaluation of
those aspects. Since this seq transformation is often used, the framework
provides it as one of generic transformations, ||seq. The framework can check
if the aspects are transformed explicitly and have no conflict.

2.5.2.2 Limitations of Naive Linearization

A typical approach for advice composition is linearization of conflicting ad-
vices. AspectJ adopts this approach. Assume that there are two around
advices woven at the same join point. The AspectJ compiler implicitly com-
bines them. When the program execution reaches at the join point, one of
the conflicting advices is executed. If those advices are not defined in the
same aspect, it is undefined which advice is selected. Then if the first advice
call proceed(), it invokes the other advice. When the second advice returns
a value, it becomes the return value of the proceed() call, and the execu-
tion goes back to the first advice. The second advice may execute original
computation at the join point by its proceed() call.
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If the implicit composition causes interference, programmers need to com-
bine them manually. The only mechanism for advice composition in AspectJ
is to change the precedence order among aspects. At the shared join point,
the advice of the aspect with the highest precedence is executed first, and its
proceed() call invokes the advice with the second highest one. In AspectJ,
programmers can specify the precedence order as the following:

declare precedence: A1, A2;

Here, A1 and A2 are names of aspects. This declares that aspect A1 has
higher precedence than aspect A2.

However, naively changing the order of advice execution is not sufficient to
resolve interference among conflicting advices. Some combinations of aspects
have no acceptable order. AspectJ does not provide mechanisms by which
programmers add extra computation so that such conflicting advices work
in a coordinated manner. The limitation of the linearization is common to
the method composition of mixins, which is incomplete classes with implicit
super classes for multiple inheritance. Suppose that several mixins have
different definitions of methods with the same name. If a class inherits those
mixins, those methods are linearized in that class and executed one by one
with their super() calls. A suitable ordering of such methods may be difficult
to find or may not exist [28, 71].

A workaround for executing such aspects/methods in the linearization
is to modify every advice/method by taking others into account. However,
it causes another problem, dispersal of glue code [28, 71]. The glue code is
code necessary for the composition with another conflicting advices/meth-
ods executed next. At least, to execute code written in all the conflicting
advices/methods, each of them needs to call super()/proceed() and glue the
results of that call and the computation unique to itself. This workaround
is not possible if the aspects are implemented independently; the program-
mers of one aspect cannot be aware of the others. If the aspects are parts of
libraries, they cannot modify those aspects at all.

Since the naive linearization is not sufficient, several AOP systems pro-
vide mechanisms for preventing a part of conflicting advices from being ex-
ecuted. The stateful aspect framework allows programmers to define a new
transformation executing only one of the conflicting advices. The follow-
ing transformation executes only Aclick when the aspects conflicts after the
quiet() method is executed:

Aclick ||f Alog where f = ˆquiet() ▷ (id⊕ ▷◁); µa. true ▷ (id⊕ fst); a

The (id⊕fst) transforms (Iclick ▷◁ Ilog) to (Iclick). Note that the composition
is also stateful. Programmers define transformations in the same way as
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aspects and hence they can transform ▷◁ to the composed behavior according
to the dynamic context.

Reflex AOP kernel is a library that introduces reflective APIs for AOP to
Java. It provides powerful operators for aspect composition. A characteristic
ability of the operators is to execute two around advices sequentially without
linearizing them. Suppose conflicting advices r1 and r2. By using Reflex’s ord
operator, if ord(r1, r2) is given to the kernel, r1 is executed first and proceed()
calls in r1 invokes original computation at the join point instead of r2. After
r1 exits, r2 is executed, and it may executes the original computation by
proceed. A composition operator for linearization is also available in Reflex.
To linearize r1 and r2, programmers gives nest(r1, r2) to the kernel.

With regard to method composition in object-oriented programming,
traits [28, 71] resolve the dispersal of glue code of mixin, enforcing program-
mers to write a glue method when different traits contain methods with the
same name. In the glue method, programmers must invoke the conflicting
method directly and explicitly merges the result of the conflicting methods.
Suppose a class built from two traits with toString() methods. The methods
defined in those traits become available as if they are defined directly in that
class due to the flattening property. No method in the traits takes prece-
dence over the method of the other trait. To avoid the method conflicts, a
composed class can rename methods imported from the traits. Programmers
need to change the toString() methods to toString1() and toString2(), for ex-
ample. Otherwise, that class is invalid and results in a compile error. They
can implement a new toString() method in that class; it may call toString1()
and toString2() and concatenate the results of those methods.

Multi-dimensional separation of concern [75], subject-oriented program-
ming [24, 65], and their implementation, Hyper/J offers mechanisms for
merging methods from different modules implementing a subject (i.e., a fea-
ture) into one. Programmers must explicitly how conflicting advices are
executed. A mechanism unique to Hyper/J is a summary function. It is a
function that receives the return values of conflicting methods as an array
and reduces them to one value. Programmers can write a summary functions
in Java code.

These expressive composition mechanisms, nevertheless, cannot be naively
applied to AOP languages such as AspectJ. One difficulty is support for
around advices with return values. Stateful aspects do not have around ad-
vices, and it is not clear how Reflex treats the return values of around advices
executed sequentially.

Another difficulty is that conflicts of advices are fluid compared with
traits or modules implementing subjects. Although a class combining traits
can reason which methods conflicts statically, advices may be executed on
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the one join point but may not be executed on another if they have a pointcut
depending on dynamic context. Thereby, it is difficult to invoke conflicting
advice directly.

2.5.2.3 Composability of Composition Code

Composability of mechanisms for advice composition is also an important
property of AOP language. If they are composable, the composition code
(i.e., code for aspect composition) for a set of aspects can be obtained just
by combining the composition code for its subsets without modification. Sup-
pose that there are two sets of aspects {A, B} and {C, D}, and each set has
composition code. For example, in AspectJ, the composition code can be
written as the following:

aspect AandB {
declare precedence: A, B, X;

}

aspect CandD {
declare precedence: X, C, D;

void around(): ... {
...

}
}

where X is a commonly used aspect. When programmers need those five as-
pects together in an application, they can reuse those aspects implementing
composition for those five aspects since declare precedence is partially com-
posable. They simply need to compile AandB and CandD together for that
application. The composed composition code is equivalent with:

aspect AandBandC {
declare precedence: A, B, X, C, D;

}

AspectJ and other AOP systems adopt a declarative approach using
precedence for the aspect composition. A benefit of this approach is sta-
bility with regard to whether aspects are actually executed or not. Even
though the aspect B is not woven at the join point, the composition code
above is still valid. When aspect A calls proceed(), it simply invokes an ad-
vice of X instead of B. If the advice executed next was explicitly defined
as B::m() as in C++, it would be fragile with regard to the changes of the
linearized advices (methods) [71, 28].

44 FEATURE-ORIENTED SOFTWARE DEVELOPMENT



Implementations of Feature Interaction

Another benefit is that programmers can insert new aspects into an ex-
isting execution order. Assume that new aspect Y, which should be executed
between A and B. AspectJ allows such composition by declare precedence:

aspect AandBandY {
declare precedence: A, Y, B;

}

This composition code can be used with AandBandC shown above.
A problem with declare precedence is that AspectJ does not have a mech-

anism that overwrites existing declare precedence. Suppose that only when
A, B, C, D, and X are used together, they must be executed in the order, A,
B, C, D, and X. The following code declares the precedence order for that
composition:

declare precedence: A, B, C, D, X;

However, the existing aspect, CandD cannot be compiled with this declare
precedence and hence the advice of CandD is not reusable. This is because:

declare precedence: X, C, D;

from the aspect conflicts with the former declare precedence; one declares
that C precedes X, but the other declares that X precedes C. Such a conflict
causes a compile error in AspectJ, and to avoid the error, programmers must
modify CandD.

István et al. proposed more expressive mechanisms for declaring prece-
dence order [63]. They include two kinds of precedence constraints. presoft(x, y)
declares that aspect x precedes y, which is similar to declare precedence of
AspectJ. On the other hand, prehard(x, y) also gives higher precedence to x
than y. Besides, y can be executed after x is executed at the same join point.

They also propose a mechanism that controls the execution of the aspects
according to the result of one of the advices. condsoft(x, y) declares that
aspect y can be executed only when aspect x returns true or x does not run.
condhard(x, y) allows y to be executed after x is executed and returns true.

Context-Aware Composition Rules [57, 58] extends AspectJ and intro-
duced mechanisms to remove unnecessary advices or reorder conflicting ad-
vices at shared join point. The uniqueness of this mechanism is to specify
rules for the precedence order among the advices for each join point. The
rules are written within an advice-like construct, declare rule as shown in
List. 2.19. It takes a pointcut for selecting join points when the rules inside
are applied. The declare rule in the AspectComposition aspect has a advices()
pointcut. It is a pointcut that captures join points when the advice given to
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public aspect AspectComposition {
declare rule AandB: advices(A.a, B.b) && if (...) {
Prec(A.a, B.b);

}
}

public aspect A {
void around() a: ... {
:
proceed();
:

}
}

public aspect B {
void around() b: ... {
:
proceed();
:

}
}

List. 2.19: Specifying precedence order in Context-Aware Composition
Rules

its parameter is executed. To identify every advice, the language extension
allows giving a unique name to every advice. Note that declare rule may have
a if pointcut, programmers can change the rules depending on the dynamic
context.

In the language extension, four kinds of rules are available. Prec(x, y)
declares advice x precedes y as declare precedence does. First(x)/Last(x)
executes x at the first/last, at their conflicting join point. Ignore(x) prevents
x from being executed. Programmers can specify combinations of those rules
in the body of declare rule.

There are mechanisms for advice composition that are powerful but not
enough composable. JAsCo [73] and POPART [25] provide meta-programming
facilities, which allow writing meta-program executed at conflicting join points
in order to control the execution order of the advices. List. 2.20 shows a typ-
ical meta-program available in those systems. This meta-code written as
a subclass of ConflictManager gives precedence order between two logging
aspects. The ConflictManager class is a part of the meta-APIs, and its on-
Conflict() method is executed at the every join point when advices conflict.
The method receives a list of meta-aspects (meta-objects representing as-
pects) corresponding to the conflicting advices. Programmers can specify
the precedence order among the aspects by sorting that list. The onCon-
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class Precedence1 extends ConflictManager {
void onConflict(List<Aspect> aspects, JoinPoint jp) {
if (containsItemWithName(aspects, "TraceLogging") &&

containsItemWithName(aspects, "ArgumentLogging")) {
Collections.sort(aspects, new Comparator<Aspect>() {

int compare(Aspect a1, Aspect a2) {
if (a1.getName().equals("TraceLogging") &&

a2.getName().equals("ArgumentLogging")) {
return HIGHER_PRECEDENCE;

} else if (a1.getName().equals("ArgumentLogging") &&
a2.getName().equals("TraceLogging")) {

return LOWER_PRECEDENCE;
} else {

// How can programmers implement here?
}

}
});

}}}

List. 2.20: Giving precedence order by meta programming

flict() method sorts the list by using the sort() method of the standard Java
API.

The comparator passed to the sort() method, however, must determine
the total ordering of all the aspects conflicting at a join point. Unlike declare
precedence, the comparator for a set of conflicting aspects cannot be com-
posed from the comparator for its subsets. Thus, the composability of the
comparators is low. Although it is possible to sort aspects multiple times
by using different comparators and override the order sorted by the existing
one, the composability is still, nevertheless, not sufficient.

Another mechanism that is powerful but not composable is to modify the
behavior of existing aspects. Aspect-oriented languages such as Aspectual
Mixin Layers [8, 9, 10] and JastAdd [29] support aspect refinements, which
allow programmers to override existing advices from the outside of the as-
pects in the similar way to class refinements of AHEAD. They can avoid
interference by modifying conflicting advices so that these advices work to-
gether.

OARTA [59], which is an extension to AspectJ, makes it possible for
aspect to modify the pointcuts of the existing advices for the sake of advice
composition. Programmers can prevent one of the conflicting aspect from
being executed in a particular context by appending an if (. . . ) pointcut to
the advice. The following code in OARTA appends an if pointcut:
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public aspect Composition {
andpointcut: (* * Cache.*(*)): if (!Debug.isEnabled());

}

Here, andpointcut declaration takes a pattern selecting advices and a point-
cut. It replaces the every pointcut of the selected advices with a conjunction
of the original and the given pointcut. * * Cache.*(*) selects all advices of
the Cache aspect. Assume that Cache has the following advice:

void around evalCache(): execution(* Expression+.eval(*)) {
...

}

The declaration replaces the pointcut of the evalCache() advice with:

execution(* Expression+.eval(*)) && if (!Debug.isEnabled())

In OARTA, orpointcut declarations are also available; it replaces the pointcut
with a disjunction of the original and the given pointcut. Note that OARTA
also extends the syntax of AspectJ to distinguish advices with their unique
name.

However, since both the meta-programming and the aspect-modification
approaches introduce new mechanisms for aspect composition, they cause an-
other problem; those new mechanisms may also conflict with each other. For
example, what happens if multiple conflict manager objects are available in
shared join points? If two refinements extend the same advice, they may re-
quire manual composition. It is not clear how multiple andpointcut/orpointcut
declarations modifying the same advice behave.

2.5.2.4 Advice-level Ordering

Although declare precedence in AspectJ gives precedence order among not ad-
vices but aspects, there are some combinations of advices that require advice-
level ordering [55, 57, 58, 59]. List. 2.21 shows two aspects: ABasicFeature
and ADependingFeature. Assume that programmers need to execute the first
before advice of ABasicFeature due to dependency between the two aspects
when the initializeApp() method is executed. The following code:

declare precedence: ABasicFeature, ADependingFeature;

allows executing the two before advices in such order. However, when fi-
nalizeApp() method is executed, they cannot execute the before advice of
ADependingFeature first although the components should be finalized in the
reverse order of the initialization. Note that if the two advices executed at
the initializeApp() method can be implemented as after advices, the following
declaration:
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aspect ABasicFeature {
before(): execution(void Application.initializeApp(void)) {
...

}

before(): execution(void Application.finalizeApp(void)) {
...

}
}
........................................................................................
aspect ADependingFeature {

before(): execution(void Application.initializeApp(void)) {
...

}

before(): execution(void Application.finalizeApp(void)) {
...

}
}

List. 2.21: Conflicting aspects requiring advice-level ordering

declare precedence: ADependingFeature, ABasicFeature;

lets the advice of ADependingFeature run before the advice of ABasicFeature.
The implementation of the base code might not allow to implement them as
after advices.
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A challenge in FOP is the optional feature problem [48]. If multiple op-
tional features interact with each other, any of feature modules for those
features should not contain the code for the interaction since the code must
be effective only when those interacting features are selected. Although a
possible approach is separating such code into independent modules called
derivatives [48, 54], the number of derivatives tends to be large as the num-
bers of features increases.

This chapter proposes a design principle to reduce the effort in imple-
menting derivatives. A group of features indicating specialization of another
feature is implemented by inheriting a common super feature module. The
super feature module works as an interface among its sub-features and al-
lows implementing a derivative in a reusable manner for every combination
of sub-features. To demonstrate this principle, we developed a new FOP
language, FeatureGluonJ. It provides a language construct called a generic
feature module for the reusable implementations of derivatives as well as a
feature-oriented module system supporting inheritance.
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Fig. 3.1: The feature model of MobileMedia

3.1 The Optional Feature Problem in
MobileMedia

This section explains the optional feature problem in a family of multimedia-
management application for mobile devices, named the MobileMedia SPL.
MobileMedia is widely used in the research community of SPLs. This chapter
uses the six features from MobileMedia: MediaType, Photo, Music, Video,
Copy, and SMS. Fig. 2.2 illustrates the feature model diagram consisting
of features used in this example. Photo, Music, and Video are children of
MediaType. The arc drawn among the children represents an or -relation
and developers must select at least one feature from them if their parent is
selected.

In FOP, a feature should be implemented as an independent feature mod-
ule. If a feature is selected, the corresponding module is compiled together
with other selected feature modules. In case of the original MobileMedia im-
plemented in AspectJ if a feature is selected, aspects belonging to the feature
are compiled and linked. If a feature is not selected for a product, its aspects
do not affect the product.

However, a group of optional features may interact [20] with another
group. For example, the Photo feature interacts with the Copy feature in
MobileMedia. If both features are selected for a product, then the command
for copying a photo is displayed in the pull-up menu of the screen, i.e.,
window, showing that photo. This command should not be implemented in
a feature module for Photo or Copy since the command is not activated unless
Copy is selected. It should not be in a feature module for Copy since Copy
may be selected without Photo. If so, the Copy feature module must not add
the command to the menu. No matter where the command is implemented,
Photo or Copy, the resulting code would cause undesirable dependence among
optional features and lower the variability of a product line.
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public aspect CopyAndPhoto {
after(Image image) returning (PhotoViewScreen f):

call(PhotoViewScreen.new(Image)) && args(image); {
f.addCommand(new Command("Copy", Command.ITEM, 1));

}}

(a) CopyAndPhoto.aj
........................................................................................
public aspect CopyAndMusic {

pointcut initForm(PlayMediaScreen mediaScreen):
execution(void PlayMediaScreen.initForm()) &&
this(mediaScreen);

before(PlayMediaScreen mediaScreen): initForm(mediaScreen) {
mediaScreen.form.addCommand(

new Command("Copy", Command.ITEM, 1));
}}

(b) CopyAndMusic.aj

List. 3.1: The derivatives for Copy and Photo/Music written in AspectJ

A more modular approach is to implement such interaction into an in-
dependent module called a derivative. A derivative is described as a normal
feature module in AspectJ. We show a derivative for the combination of Photo
and Copy in List. 3.1. This code is a part of the MobileMedia Lancaster1,
a MobileMedia implementation in AspectJ [33]. The CopyAndPhoto aspect
implements the derivative. It has an advice executed after a constructor call
for the PhotoViewScreen in order to add the command for copying a photo.

Note that feature interaction is often observed between feature groups.
Suppose that two feature groups have n and m features. If a feature from
one group interacts with one from the other, other pairs between the two
groups will also interact with each other due to the similarity of features.
Such interaction will require n ×m derivatives in total. Furthermore, these
derivatives will be similar to each other. They are redundant and should be
merged into a single or only a few derivatives.

A group is often represented by a parent-children relation in a feature-
model diagram. In Fig. 2.2, MobileMedia contains a group consisting of
Photo, Music, and Video. We call this group the MediaType group named
after the parent node. There is another group that the developers of the
original MobileMedia did not recognize. It is a group consisting of Copy and
SMS, which enable the users to send a photo shown on the screen by SMS.
The two groups involve close interaction. Copy interacts with Music as well
as Photo. The derivative for Copy and Music in List. 3.1 (b) is similar to

1We show simplified code for explanation. The original code is available from:
http://mobilemedia.sourceforge.net/.
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CopyPhoto in List. 3.1 (a). SMS also interacts with Photo, Music and Video2;
if these features are selected, a command to send each medium must be added
to the menu. Thus, MobileMedia requires 6 derivatives for the two groups.

The MediaType group is an extension point of MobileMedia. One of the
goals of FOP is step-wise, i.e. incremental, development of large-scale soft-
ware [18], and hence one of realistic development scenarios is adding a new
media type as a new feature. Suppose that developers add plain-text docu-
ments as a new medium. Then they will have to implement derivatives for
the combination of the plain-text feature and Copy and SMS.

3.2 Implementing Feature Interactions in
FeatureGluonJ

Our feature-oriented programming language named FeatureGluonJ 3 pro-
vides language constructs to reduce redundancy of derivatives among feature
groups. FeatureGluonJ is an extension of GluonJ, which is an aspect-oriented
language based on Java. While GluonJ adds a new language construct called
a reviser to Java, FeatureGluonJ also adds a generic feature module as well
as a feature-oriented module system.

FeatureGluonJ provides an inheritance mechanism for feature modules.
Features often make is-a relations [39, 42]. In MobileMedia, the Photo feature
is a MediaType feature. Thus, in FeatureGluonJ, the Photo feature module,
which is the implementation of Photo, is a sub-feature module of MediaType
as shown in Fig. 2. It can not only add new classes but also redefine the
classes contained in the MediaType feature module. The MediaType feature
module works as a common interface to this feature group including Photo
and Music. The interface represents which classes are commonly available
in the feature group. The hierarchical implementations of features are not
novel; they are provided by CaesarJ [12, 61, 62] and Object Teams [37, 39]
as explained in Section 2.4.7. However, they are not studied in the context
of modularity of feature modules [46, 72]; this paper focuses on how to use
this inheritance mechanism to efficiently implement derivatives.

Another unique mechanism in FeatureGluonJ is a generic feature mod-
ule. It is a feature module taking feature modules as parameters. Suppose
that there are two feature modules. Then the derivatives for combinations

2The original MobileMedia does not support to send a music or a video by SMS. It is
not clear that this limitation is caused by the optional feature problem.

3The FeatureGluonJ compiler is available from:
http://www.csg.ci.i.u-tokyo.ac.jp/projects/fgj/
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Fig. 3.2: An overview of the feature modules consisting MobileMedia in
FeatureGluonJ

of their sub-feature modules are often almost identical. For example, in Fig.
2, the derivative for Photo and Copy is almost identical to the derivative
for Music and SMS since they are for combinations between MediaType and
MediaOperation. A generic feature module enables to describe such deriva-
tives in a generic manner by using the interfaces specified by MediaType and
MediaOperation. Note that the task of a typical derivative is to modify the
classes in the feature modules that the derivative works for. These classes
are often ones specified by the interfaces of the super feature modules such
as MediaType and MediaOperation.

3.2.1 FeatureGluonJ

This section describes the overview of FeatureGluonJ to show how developers
can implement an SPL. FeatureGluonJ provides a module system called fea-
ture modules. A feature module implements a feature and a derivative. It is
represented by two constructs, a feature definition and a feature declaration.
A feature definition is described in a separate file, and it defines a feature
name and its relation to other features. List. 3.2 (a) defines the MediaType
feature, which is an abstract feature for other features that are to support a
media type. The body of this feature is empty in this example, but it may
contain import feature declarations shown later.

A feature declaration is similar to a package declaration in Java. It is
placed at the beginning of a source file and specifies that the classes and
revisers in that source file belong to the feature modules. For example, the
second lines of the List. 3.2 (b)–(e) are feature declarations. They declare
that those three classes and a reviser belong to the MediaType feature. Note
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abstract feature MediaType {
// MediaType has an empty body.

}

List. 3.2: The definition of MediaType feature module

that each class declaration is separated into an independent file.

An abstract feature may represent a group made by is-a relationships;
a sub-feature module of that abstract module defines a feature belonging to
that group. Here, the Photo feature module is a sub-feature of MediaType,
which is specified in the extends clause in List. 3.5 (a). Photo reuses the
model-view-controller relation defined in MediaType.

After compilation of each feature, developers select feature modules needed
for a product. Only the selected feature modules are linked together and in-
cluded in the product. Which features are selected is given at link time.
Note that they cannot select abstract features. If an abstract feature module
like MediaType must be included in a product, the developers must select a
sub-feature of that abstract feature.

To implement feature modules, FeatureGluonJ provides three kinds of
class-extension mechanisms: subclasses, virtual classes, and revisers. The
difference of those mechanisms is the range of effects. The first one is a
normal subclass in Java and affects in the narrowest range. The extended
behavior takes effect only when that subclass is explicitly instantiated.

The next class extension mechanism is virtual class overriding [31, 56].
Virtual classes enable to reuse a family of classes that refer to each other
through their fields or new expressions. All classes in a feature module are
virtualized in FeatureGluonJ; a reference to a virtual class is late-bound. A
sub-feature module can implement a virtual class extending a virtual class in
its super feature. It overrides the virtual class in the super feature with the
new class, i.e., class references to the overridden class is replaced with one to
the new class. Virtual class overriding is effective only within the enclosing
feature module, which includes its super feature module executed as a part
of the sub-feature. It does not affect new expressions in the siblings of the
sub-feature.

The syntax of virtual classes in FeatureGluonJ is different from other
languages. To override a virtual class, developers must give a unique name
to the new virtual class instead of the same name as the overridden class.4

List. 3.5 (b) shows the PhotoViewScreen class that overrides MediaViewScreen
of MediaType. An overridden class is specified by an overrides clause, placed

4Programmers can give the same name by implementing them in a different package.
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package mobilemedia.controller;
feature MediaType;
import javax.microedition.lcdui.*;
import mobilemedia.ui.*;

public abstract class MediaController extends AbstractController {
protected boolean handleCommand(Command command) {
if (command == OPEN) {

open(getSelected());
return true;

} else if (...) { ... }
}

protected void open(String s) {
MediaListScreen scr = new MediaViewScreen(s);
scr.setCommandListener(this);
Display.setCurrent(scr);

}}

(b) MediaController.java
........................................................................................
package mobilemedia.ui;
feature MediaType;
import javax.microedition.lcdui.*;

public abstract class MediaViewScreen extends Canvas {
protected void initScreen() {
this.add(new Command("Close"));

}}

(c) MediaViewScreen.java
........................................................................................
package mobilemedia.ui;
feature MediaType;
import javax.microedition.lcdui.*;

public class MediaListScreen extends List {
// forward command to controller if an item is selected

}

(d) MediaListScreen.java
........................................................................................
package mobilemedia.main;
feature MediaType;
import mobilemedia.ui.MediaListScreen;
import mobilemedia.controller.MediaController;

class MediaTypeInitializer revises Application {
private MediaListScreen screen;
private MediaController controller;
public void startApp() {
controller = new MediaController();
screen = new MediaListScreen(controller);
super.startApp();

}}

(e) MediaTypeInitializer.java

List. 3.3: The classes of MediaType feature module
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package mobilemedia.main;

public class Application {
public static void main() {
Application app = new Application();
app.startApp();

}

public void startApp() {
// initializing this MobileMedia application

}
}

List. 3.4: The Application class, which has program entry point

feature Photo extends MediaType {}

(a) Photo.feature
........................................................................................
feature Photo;
package mobilemedia.ui;
import javax.microedition.lcdui.*;

public class PhotoViewScreen overrides MediaViewScreen {
public PhotoViewScreen(String s) {
// : load selected image

}
protected void paint(Graphics g) {
// : draw the selected photo on this screen.

}}

(b) PhotoViewScreen.java

List. 3.5: The Photo feature in FeatureGluonJ
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in the position of an extends clause. Another difference in syntax is that
virtual classes cannot be syntactically nested, as separated into each class to
a single file.

We adopt lightweight family polymorphism [68] to make the semantics
and the type system simple by avoiding dependent types. A feature module
cannot be instantiated dynamically. It can be regarded as a singleton object
instantiated when it is selected at link time.

The third mechanism is a reviser. A reviser can extend any class in a
product; the extended behavior affects globally.5 A reviser plays a similar
role to the one of aspect in AspectJ; its code overrides classes appearing in
any other feature module. The class-like mechanism with a keyword revises
in List. 3.2 (e) is a reviser. The reviser has the startApp() method, which
replaces the startApp() method in the class specified in its revises clause, i.e.,
the Application class in List. 3.2 (f). Whenever the startApp()method is called
on an Application object, the reviser’s startApp() method is first executed. By
calling super.startApp(), the replaced method is executed. A reviser can also
add new fields to an existing class. The reviser in List. 3.2 (e) adds the two
fields, screen and controller, to the Application class.

Revisers in a feature module are also virtualized. A feature module de-
rives revisers as well as virtual classes from its super feature to reuse struc-
ture made by revisers and classes defined there. The Photo feature module in
List. 3.5 does not contain any classes and revisers except the PhotoViewScreen
class, but it also derives virtual classes such as MediaController and the Medi-
aTypeInitializer reviser from MediaType (Fig. 3.2). A reviser will be executed
only if a feature enclosing or deriving that reviser is selected. If Photo is
selected, MediaTypeInitializer derived by the Photo is executed in the con-
text of Photo. Within this MediaTypeInitializer, new MediaListScreen(. . . )
will create an object of the class derived by Photo. The expression new Medi-
aViewScreen() in List. 3.2 (b) on that object will instantiate PhotoViewScreen.
The MediaTypeInitializer reviser might be derived by siblings of Photo. Sup-
pose the Music feature module in List. 3.6 is implemented in the same way
as the Photo. If both Photo and Music are selected, two copies of MediaType-
Initializer will be executed in the startApp() method but in different contexts.

These class extension mechanisms provided by FeatureGluonJ are an ab-
straction of the factory method pattern. For virtual-class overriding, each
selected feature has its own factory. It receives a name of virtual class and
returns an object of the class overriding the given class. Every new expres-
sion can be considered as a factory method call. Each virtual class has a
reference to such factories. When a factory creates an object, it assigns itself

5GluonJ does not support global modifications [11].
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feature Music extends MediaType {}

(a) Music.feature
........................................................................................
feature Music;
package mobilemedia.ui;
import javax.microedition.lcdui.*;

public class PlayMediaScreen overrides MediaViewScreen {
public PlayMediaScreen(String s) {
// : load selected image

}
protected void paint(Graphics g) {
// : draw music player

}}

(b) PlayMediaScreen.java

List. 3.6: The Music feature module in FeatureGluonJ

to the object. A factory used in a reviser is given by the linker when its
feature module is selected. This factory is one used for virtual classes in the
feature module containing or deriving that reviser.

A reviser, on the other hand, can be emulated by a factory shared among
all the classes in a product. If a class given to a new expression is not a
virtual class, the global factory will create an object. This global factory is
also used inside of a factory for each feature. Note that it is unrealistic to
manually implement factory methods for every class. Moreover, a factory
method pattern degrades type safety.

3.2.2 Derivatives in FeatureGluonJ

FeatureGluonJ provides two other constructs for referring to virtual classes
in other modules. One is import feature declarations. To make coupling of
other features explicit, developers have to declare the features required in a
derivative by import feature declarations. These declarations just open the
visibility scope to virtual classes of imported features. Note that when a
feature module with import feature is selected, the imported features are also
selected. Since an abstract feature module is never selected, it cannot be
imported.

An import feature declaration is described in the body of a feature declara-
tion. List. 3.7 (a) contains two import feature declarations. An identifier after
a colon indicates a feature module used in this module. The left one before
the colon is an alias to the imported feature module. Then feature-qualified
access is available as a reference to a virtual class of the imported feature
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feature CopyPhoto {
import feature c: Copy;
import feature f: Photo;

}

(a) CopyPhoto.feature
........................................................................................
package mobilemedia.copy;
feature CopyPhoto;
import mobilemedia.ui.*;

class AddCopyToPhoto revises f::PhotoViewScreen {
protected void initScreen() {
super.initScreen();
this.addCommand(new c::CopyCommand());

}}

(b) AddCopyToPhoto.java

List. 3.7: The derivative between Copy and Photo rewritten from List. 3.1

module. The access is represented by a :: operator. The left of :: must be
an alias declared in the feature module and the right of :: is the name of
a virtual class in the feature module expressed by the alias. For example,
List. 3.7 implements a derivative straightforwardly rewritten from List. 3.1.
In the AddCopyToPhoto, p::PhotoViewScreen refers to the PhotoViewScreen
class in the Photo feature since p is an alias of Photo. The reviser extends
PhotoViewScreen and adds a command for copying a medium, which is now
represented by the CopyCommand class in the Copy feature module shown in
List. 3.8 (c) and (d).

The reason FeatureGluonJ enforces programmers to use feature-qualified
access is that multiple feature modules may contain virtual classes with the
same name if they extend the same module. For example, both of Photo and
Music contains the MediaController class derived from MediaType, which are
distinguished by aliases.

3.2.3 Generic Feature Modules

We found that if features are implemented by a feature module with an ap-
propriate interface, most derivatives can be implemented by a special feature
module that takes the name of required sub-features as parameters. Fea-
tureGluonJ provides a generic feature module, which is a reusable feature
module to implement derivatives among features extending common feature
modules. The Copy feature and the SMS feature, which is not shown but
implemented in the same way in List. 3.8, are sub-feature modules of Me-
diaOperation in List. 3.8 (a) and (b). Now the generic derivative among
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abstract feature MediaOperation {}

(a) MediaOperation.java
........................................................................................
package mobilemedia.ui;
feature MediaOperation;
import javax.microedition.lcdui.Command;

public abstract class MediaOperationCommand extends Command {
public MediaOperationCommand(String labelText) {
super(labelText, ...);

}}

(b) MediaOperationCommand.java
........................................................................................
feature Copy extends MediaOperation {}

(c) Copy.feature
........................................................................................
package mobilemedia.ui;
feature Copy;

public class CopyCommand overrides MediaOperationCommand {
public CopyCommand(String labelText) {
super(labelText);

}}

(d) CopyCommand.java
........................................................................................
package mobilemedia.controller;
feature Copy;
import mobilemedia.ui.*;

public class CopyController revises MediaController {
protected boolean handleCommand(Command command) {
if (command instanceof CopyCommand) {

:
} else { return super.handleCommand(); }

}}

(e) CopyController.java

List. 3.8: The Copy feature module implemented by extending the Media-
Operation
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abstract feature MediaOperationMediaType {
abstract import feature o: MediaOperation;
abstract import feature t: MediaType;

}

(a) MediaOperationMediaType.java
........................................................................................
package mobilemedia.mediaop;
feature MediaOperationMediaType;
import mobilemedia.ui.*;

class AddCommandToMediaType revises t::MediaViewScreen {
protected void initForm() {
super.initForm();
this.addCommand(new o::MediaOperationCommand());

}}

(b) AddCommandToMediaType.java

List. 3.9: A generic derivative implementing common part of derivatives
among MediaOperation and MediaType

sub-features of MediaOperation and MediaType takes sub-features of those
modules as parameters and behaves for a derivative among the given fea-
tures.

A generic feature module is represented by an abstract feature module. It
may contains import feature declarations with an abstract keyword. An alias
defined by this abstract import feature works as a parameter; the alias is late-
bound to a concrete module, which must be a sub-feature of one apparently
assigned to the alias. An abstract import feature may import an abstract
feature module. List. 3.9 shows a generic feature modules for derivatives
between sub-features of MediaType and MediaOperation. The generic feature
modules contains two abstract import declarations that import FileOperation
and MediaType with the aliases, t and o, respectively.

The AddCommandToMediaType reviser in List. 3.9 (b) is almost the same
to AddCopyToPhoto expecting for the specific parts to Copy and Photo. The
reviser extends a class indicated by t::MediaViewScreen and adds command
indicated by o::MediaOperationCommand. Since t and o must be bound to
sub-features of the imported features, it is ensured that they provide virtual
classes overriding MediaOperationCommand and MediaViewScreen. If those
aliases are bound to Copy and Photo, this reviser is semantically the same as
AddCopyToPhoto.

A feature module can extend a generic feature module and bound aliases
declared in its super feature to concrete feature modules. If a feature module
imports another feature module with the same alias as one used in its super
feature, the alias is bound to that feature module also in the super feature.
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feature CopyPhoto extends MediaOperationMediaType {
import feature o: Copy;
import feature t: Photo;

}

List. 3.10: Another derivative for Copy and Photo extending the generic
derivative

Suppose another implementation of the CopyPhoto feature module, which
is implemented by in List. 3.10 by extending the generic feature module in
List. 3.9. It assigns o and t to Copy and Photo respectively.

3.2.4 A Composition Language for Trivial Feature

Modules

If each interacting feature is properly implemented, a derivative may not
contain its own reviser nor class; we call such derivative is trivial. The
derivatives among MediaType and MediaOperation including CopyPhoto in
List. 3.10 are trivial. This is because operations such as copying a medium
or sending it by SMS are reduced to operations against streams of bytes.

FeatureGluonJ also provides a composition language to define such trivial
derivatives implicitly. It includes a construct defines forevery. If our linker
interprets a feature module with defines forevery, it defines sub-features of this
derivative automatically at linking time. defines forevery receives one or more
aliases to feature modules. If the given alias is declared in an abstract import
feature, it represents a set of its sub-features that are selected for the linker.
The linker will define and select sub-feature modules for every combination
from each given set. Let a1, a2, .., an be aliases given to the defines forevery
and

Si = {f |f ∈ Sub(ai) ∩ f is selected}

where Sub(a) is a function returning the set of the sub-features that might be
bound to a. A sub-derivative is created for each element of S1×S2× . . .×Sn.
If a is an alias of a concrete feature, Sub(a) returns the set containing the
concrete feature only.

List. 3.11 shows derivatives for sub-features of MediaOperation and Me-
diaType including derivative between Copy and Photo. The defines forevery
clause allows programmers to omit concrete feature modules such as one in
List. 3.10. Even when developers add a new feature for a new media type,
they would not implement new derivatives if this generic derivative is appli-
cable for the new feature. Otherwise, programmers would implement extra
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feature MediaOperationMediaType defines forevery(o, t) {
abstract import feature o: MediaOperation;
abstract import feature t: MediaType;

}

(a) MediaTypeFileOp.java
........................................................................................
package mobilemedia.mediaop;
feature MediaOperationMediaType;
import mobilemedia.ui.*;

class AddCommandToMediaType revises t::MediaViewScreen {
protected void initForm() {
super.initForm();
this.addCommand(new o::MediaOperationCommand());

}}

(b) AddCommandToMediaType.java

List. 3.11: Our final version of derivatives among MediaOperation and Me-
diaType by defines forevery

behavior for the specific combinations of feature modules as a new derivative.

3.2.5 Discussion

We discuss on the limitations of our language. Unfortunately, all derivatives
do not become trivial after refactoring. Some derivatives are essential, which
must be implemented manually. We can find essential derivatives in the
expression product line [46]. Derivatives among a feature for an operator and
feature for evaluating expressions is unique to each combination of features.
If the feature has redundant parts, FeatureGluonJ allows to reuse it with a
generic-feature module.

Although inheritance allow us to implement generic derivatives, it may
cause extra effort to implement an SPL. We introduced the common super
class between PhotoViewScreen and PlayMediaScreen. As shown in List. 3.1 (a)
and (b), the original derivative uses different methods to add their commands
to the menus; in Photo, it is the constructor of PhotoViewScreen, but inMusic,
it is the initForm()method. We add the common super classMediaViewScreen
and its initScreen()method in List. 3.2 (c) to unify those methods among both
features. We also defines Copy and SMS by extending MediaOperationCom-
mand to make the derivatives trivial. The implementations of these feature
modules are in a sense composition aware.

Our observation is that whether or not we should implement each feature
considering composition is a design decision. The MediaType group and the
MediaOperation group are extension points; in other words, a new feature will
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be added to these groups in the future. The cost of making these features
composable is much lower than a large number of derivatives.

3.3 A Case Study

While investigating the original MobileMedia, we also found three other im-
plementation problems to make classes and aspects reusable within the con-
fines of the existing FOP approach, namely AspectJ. This section shows how
we can address these problems in FeatureGluonJ.

Refactoring aspects into virtual classes

In the original implementation of MobileMedia, the specialized features con-
tain aspects destructively extending the class commonly used among the
features instead of making its subclass for each of those features. These
conflicting aspects cause a maintenance problem. The controllers for Photo
and Music features were implemented by aspects that destructively extend
the common class, MediaController as shown in List. 3.12. Suppose that we
have two instances of MediaController for Photo and Music. Both of those
aspects are always executed regardless of the actual feature of the instance
of MediaController. Thereby, the aspects distinguish the current feature by
the label of a pushed button. The aspect for Photo opens its photo viewer
screen only when the label is ”View”. The label must be unique among the
features providing types of medium. If the Video feature used ”Play” for its
label, the Music and Video features would conflict when they are selected
together in a product.

FeatureGluonJ allows implementing those controllers in virtual classes
without redundancy. The redundant aspects above are implemented by the
MediaListController in List. 3.3. The code snippets used only for Photo are
implemented in PhotoController in List. 3.5 overriding MediaListController.
This overriding does not affect Music.

Rewriting || pointcut operator to a derivative

A || pointcut is useful to extend different methods by a single advice in
AspectJ, but using || pointcut might make aspects fragile and break grouping
of related code. Here, we introduce the Sorting feature, which enables to sort
a list of media according to how many times they were shown or played. It
is implemented as the Sorting aspect in List. 3.13. It contains an after advice
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class MediaController {
void handleCommand(Command command) {
// invoked when buttons on screens are pushed.

}
}
........................................................................................
aspect PhotoAspect {

boolean around(MediaController cont, Command command):
execution(boolean MediaController.handleCommand(Command)) &&
this(cont) && args(command) {

if (proceed()) {
return true;

} else if (command.getLabel().equals("View")) {
showImage(getSelected());
return true;

} else {
return false;

}
}
........................................................................................
aspect MusicAspect {

boolean around(MediaController cont, Command command):
execution(boolean MediaController.handleCommand(Command)) &&
this(cont) && args(command) {

if (proceed()) {
return true;

} else if if (command.getLabel().equals("Play")) {
playMusic(getSelected());
return true;

} else {
return false;

}
}

List. 3.12: Dynamic dispatch with values
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aspect Sorting {
after(String selected):
(execution(void MediaController.show(String) ||
execution(boolean MediaController.play(String)))) &&

args(selected) {
// : increment a counter of a selected item

}
}

List. 3.13: Reusing the Sorting aspect with a || pointcut

feature SortingMediaType defines forevery(m, s) {
abstract import feature m: MediaType;
import feature s: Sorting;

}
........................................................................................
feature SortingMediaType;

reviser IncrementsCounter extends s::MediaController {
void open(String selected) {
super.open();
// : increment a counter of selected item

}
}

List. 3.14: The Sorting feature in FeatureGluonJ

that extends show() method and the play() method so that it can counts the
number of times of opening media. The || pointcuts allows extending these
two methods by the single advice. Even though the advice depends on two
features, show() in Photo and play() in Music, it still works when only either
of those features is selected. This is because AspectJ permits to specify
undefined methods to execution pointcuts; such pointcuts does not much
anywhere. These semantics of AspectJ is double-edged; even if programmers
forget to modify the pointcut when the play() method is renamed, the aspect
is still valid. Furthermore, programmers must append a new || pointcut
operator to the aspect when they implement a new feature like Video.

The advice should be separated into a derivative between Sorting and
Photo and one between Sorting and Music. In FeatureGluonJ, the advice can
be separated into a derivative, SortingMediaType as shown in List. 3.14. The
implementation in FeatureGluonJ unifies the show() and the play() meth-
ods into open(), and subclasses of MediaController overrides that method
for Photo and Music. The defines clause of SortingMediaType applies the
IncrementCounter reviser to classes overriding MediaController according to
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feature Video extends Music {}
........................................................................................
feature Video;

class VideoListScreen overrides MusicListScreen {
: //music-specific codes
void paintItem(Graphics g, MediaData m) {
// draw a thumbnail of a video

}
}

class VideoController overrides MusicController {...}
class VideoPlayerScreen overrides MusicPlayerScreen {...}

List. 3.15: The Video feature implemented by extending Music

selected features.6 Programmers would not need to modify the derivative to
add a new feature providing a type of medium.

Resolving redundancy by inheriting a non-abstract feature

The implementation of the Video feature is also redundant since it equips
similar interfaces to the Music feature. In FeatureGluonJ, programmers can
implement the Video feature intuitively in FeatureGluonJ by extending the
Music feature as shown in List. 3.15. The MediaTypeInitializer reviser in the
MediaType feature is also executed in the context of the Video feature. The
controller for Video can be implemented by overriding and reusing the Mus-
icController class.

3.4 Comparison to the Existing Approaches

Feature-oriented programming

Most of feature-oriented approaches such as AHEAD Tool Suite [18], Fea-
tureHouse [7], and Delta-oriented programming [70] are based on the idea
that a feature is represented as a layer comprising of classes and refinements.
A product is simply represented as a layer stacked linearly [17]. Those ap-
proaches do not provide mechanisms for implementing features including
derivatives by reusing other modules.

6A reviser in a feature module with a defines clause can be considered as a global
modification [11].
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Although FeatureGluonJ does not provide tools for selecting features or
algebra models, the existing approaches can be used for feature modules
implemented in FeatureGluonJ. This is because a concrete feature module
defined by extending another feature module still a set of classes and refine-
ments.

Virtual classes

As explained in Section 2.4.6, virtual classes are capable of implementing
feature-oriented product lines without using virtual revisers. However, the
implementations involve code redundancy. Suppose that we implement the
MobileMedia in some language with multilevel-nested virtual classes, variant
path types [40], and CaesarJ-like multiple inheritance. See the PhotoFeature
class in List. 3.16. It contains two first-level virtual classes, Application and
Photo. Application is used like a reviser; it overrides another Application class
in the Base class, which is the super feature of the PhotoFeature. ˆThis is
a construct for variant path types. It expresses the outer class of an actual
class. ˆThis.Photo.Controller is a virtual class reference to the PhotoFea-
ture.Photo.Controller class. Since this pseudo language is a lightweight ap-
proach, it is not needed to instantiate an outer class before using its nested
classes. The Photo class contains virtual classes used for this feature. These
virtual classes are directly corresponds to the virtual classes in List. 3.5.
The common code snippets between Photo and Music are extracted into the
MediaType class of the Base class.

The two Application classes in PhotoFeature and MusicFeature are redun-
dant although this problem can be resolved by a virtual reviser in FeatureGlu-
onJ. We could not resolve this redundancy even if we wrote:

new ˆThis.MediaType.Controller();

at the place (A) in List. 3.16 and removed the two startApp() methods in
PhotoFeature and MusicFeature. Since no class overrides MediaType (it is only
extended), the virtual reference ˆThis.MediaType.Controller does not refer to
Photo.Controller or Music.Controller. If the Application class is moved to the
place (B) within the body of MediaType, then that virtual reference will
work. However, this produces two distinct versions of the Application class,
one for Photo and the other for Music. The startApp() method does not
create both Photo’s and Music’s controllers. This behavior is different from
our original intention. To fix this, we need a mechanism to tell the two
versions of Application are merged.

Package templates [14, 52] allows merging the two versions of Application
into one Application class while a package instantiates templates implement-
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class Base {
class Application {
void startApp() {

// (A)
}

}

abstract class MediaType {
class Controller { ... }
// (B)

}
}
........................................................................................
class PhotoFeature extends Base {

class Application {
private ˆThis.Controller cont;
void startApp() {

new ˆThis.Photo.Controller();
super.startApp();

}
}

class Photo extends MediaType {
class Controller { ... }
// :

}
}
........................................................................................
class MusicFeature extends Base {

class Application {
private ˆThis.Controller cont;
void startApp() {

new ˆThis.Music.Controller();
super.startApp();

}
}

class Music extends MediaType {
class Controller { ... }
// :

}
}
........................................................................................
class PhotoMusic extends PhotoFeature, MusicFeature {

public static void main(String[] args) {
(new Application()).startApp();

}
}

List. 3.16: A MobileMedia implementation with the second-level nested
classes
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ing Photo and Music. However, as shown in Section 2.4.9, programmers must
implement a package for each product. Furthermore, they need to specify
how the Application classes and their methods are merged in the package.

Dependent classes

Our reusable derivatives implemented by abstract import feature are similar
to dependent classes [36] and their lightweight variation [41]. A dependent
class is a parameterized class that behaves polymorphically depending on its
parameters. On the other hand, a virtual class can be regarded as a class that
behaves polymorphically depending on a single implicit parameter, which is
the actual class of its outer class. In FeatureGluonJ, behavior of virtual
classes depends on imported features as well as their actual feature modules.

Dependent classes are not suitable for implementing features because they
do not straightforwardly fit to feature modules. Moreover, dependent classes
do not resolve the redundancy problem common to other virtual-class ap-
proaches. Dependent revisers could resolve that problem, but they are virtual
revisers in FeatureGluonJ.

Hierarchical implementations of feature modules

FeatureGluonJ offers mechanisms for hierarchical implementations of feature
modules as CaesarJ [12] and Object Teams [37] do. The difference from those
languages is language support for generic derivatives. Object Teams provides
a dependent team, which behaves polymorphically depending on a given
instance of a team. The origin of the dependent team is a dependent class
[36]. However current specification of Object Teams [38] does not allow teams
dependent to multiple teams. Dependent teams hence cannot be used for
derivatives among groups. Those languages may be able to demonstrate our
design principle by their first-class features although they require boilerplate
code for instantiating such features for each product.

Destructive extensions with scoping

Virtual class overriding can be regarded as destructive extension that is effec-
tive only within limited scope. There is literature on scope mechanisms for
destructive extensions. ClassBox/J [19] extends Java’s package mechanism
and provides a destructive extension construct like a reviser. A package
can import classes from another package and destructively extends them.
The effect of the extension is limited within that package. The semantics
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of ClassBox/J is much similar to lightweight virtual classes; packages corre-
sponds classes enclosing virtual classes, and importing classes from another
package can be considered as inheriting them from another class. However,
ClassBox/J is not designed so that different extensions to the same class can
be used together in a package. Moreover, since it does not provide destruc-
tive extensions to classes of other packages, it also involves the redundancy
problem common to virtual classes.

Open modules [4, 64] are mechanisms for preventing a specific aspect
from being executed on a class. Since open modules uses AspectJ’s point-
cut language to specify conditions for executing an aspect, it controls the
execution of aspects according to the dynamic context obtained by cflow or
if pointcuts. In order to emulate family polymorphism, programmers must
manually embed a value for distinguishing current feature to each object.

Other approaches

In annotation-based approaches for SPLs, code regions implementing a fea-
ture is annotated with syntactical blocks, #ifdef and #endif. CIDE [45]
represents such annotations as background colors of code snippets on text
editors of integrated development environment. Code snippets with the same
color means they belong to the same feature. It also enables virtual sepa-
ration of features by hiding unnecessary features from the editors. Since
feature interaction is indicated by intersections of the annotated regions [16],
programmers can understand interactions more intuitively than derivative
modules. However, the reusability of feature modules and derivatives is not
clear in annotation based approach. Our language-based approach enables to
reuse code snippets multiple times for different features in a single product.

3.5 Implementation

We have implemented a FeatureGluonJ compiler built on the existing Glu-
onJ compiler and weaver7. Our compiler consists of three tools as illustrated
in Figure 3.3. We have modified the GluonJ compiler so that it can deal
with our extended syntax and semantics, and append meta-information nec-
essary for the subsequent process. We also introduced a new tool, the Feature
Configurator, which generates classes and revisers depending on selected fea-
tures. The FeatureGluonJ compiler uses GluonJ’s weaver as it is. We have
implemented the compiler by writing about 2500 lines of code as shown in

7http://www.csg.ci.i.u-tokyo.ac.jp/projects/gluonj/
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FeatureGluonJ Compiler Feature Configurator

JastAddJ Frontend

GluonJ Frontend

FeatureGluonJ Frontend

parse, type check,

add annotations

devirtualize, link

*.class
with GluonJ annotations

*.java, *.feature

an added module in FeatureGluonJ

GluonJ Weaver

*.class

*.feature weave

selected features list

code generation

Fig. 3.3: An overview of FeatureGluonJ implementation

Physical lines of code
JastAdd Aspects added to GluonJ 722
AST definitions and parsing rules 103
Configurator 650
The feature definition parser, etc. 992

Table 3.1: The code size of components of FeatureGluonJ

Table 3.1, due to JastAdd and the Javassist bytecode manipulation library
[21] used for Feature Configurator.

The compilers of both FeatureGluonJ and GluonJ have been developed by
using the JastAdd compiler-compiler framework [29], which supports exten-
sible implementation of compilers. It provides an aspect-oriented system to
implement manipulation of abstract syntax. A Java compiler implemented
by JastAdd, JastAddJ, consists of syntax rules, AST classes and aspects
that execute name analysis, type checker, and code generation. Not only to
group related code, introducing a new aspect allows to customize an existing
compilation process without modifying the original code. Since GluonJ is
an extension to Java, its compiler is implemented by combining syntax rules
and an aspect unique to it with ones of JastAddJ. The compiler translates
revisers into classes with the @Reviser annotations used for annotation-based
representation of GluonJ.

To implement our compiler, we added several aspects to the GluonJ com-
piler. The aspects implement name analysis and type checking of virtual
classes. If they do not detect a type error, they translate construct of Fea-
tureGluonJ into normal Java classes with annotations similarly to GluonJ.
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The compiler translates a feature declaration of each file into the @Feature
annotations and appends them to all the classes in the file. It also converts a
virtual class with overrides into a normal subclass of its overridden class and
appends the @Overrides annotation to the subclass. Since Java 7 does not
support appending annotations to a type access, Java annotations cannot
express the feature-qualified accesses. Thereby, we adopt an approach that
mangles (i.e., encodes) the class names referred by using feature-qualified
accesses.

The FeatureGluonJ Configurator is a tool that generates classes and re-
visers of the resulting product according to the selected features for that
product; it gets rid of virtual classes of unused features. It also automati-
cally implements sub-features of feature modules with abstract import feature,
applying the selected feature modules to the aliases, for every combination
of the selected features. The output of this tool is class files with GluonJ
annotations, which are passed to the weaver and revisers are to be woven
into classes.

We employed an approach that devirtualizes virtual classes and virtual
revisers into non-virtual ones instead of emulating them by using the factory
method pattern. This is because all the virtual references can be resolved
statically. The procedure of the devirtualization is as the following:

1. The tool duplicates virtual classes for each actual feature. The input
of the tool is FeatureGluonJ classes represented by the annotations
as shown in List. 3.17 (a). Suppose that we have selected the Photo
and Music features for the MobileMedia. The tool makes copies of all
the virtual classes and revisers defined in their super feature module,
MediaType, for them. For example, we will have two copies of the
MediaViewScreen class of MediaType; one of them is for Photo and it is
represented as Photo$$MediaViewScreen in List. 3.17 (b); the other is for
Music. Copies of the MediaController class and the MediaTypeInitializer
reviser will be also generated for the selected features.

2. Next, the configurator processes virtual classes in the sub-features. A
virtual class overriding another class is translated into a subclass of the
copy of the overridden class generated for the sub-feature. In Mobile-
Media, PhotoViewer is a virtual class of the Photo feature and overrides
MediaViewScreen. The configurator changes PhotoViewScreen to a sub-
class of Photo’s copy of MediaViewScreen; in List. 3.17 (b), the copy is
Photo$$MediaViewScreen.

3. Then, all the virtual class references including ones in new expressions
are resolved by the configurator. References to overridden classes in the
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@Feature("MediaType")
class MediaViewScreen extends Canvas { ... }

@Feature("MediaType")
class MediaController extends AbstractController {

... new MediaViewScreen(...);
}

@Feature("MediaType") @Reviser
class MediaTypeInitializer extends Application {

... new MediaController();
}

@Feature("Photo") @Overrides
class PhotoViewScreen extends MediaViewScreen { ... }

(a) The classes of the MobileMedia given to the configuration tool
........................................................................................
class Photo$$MediaViewScreen extends Canvas { ... }

class Photo$$MediaController extends AbstractController {
... new MediaViewScreen(...);

}

@Reviser
class Photo$$MediaTypeInitializer extends Application {

... new MediaController();
}

@Feature("Photo") @Overrides
class PhotoViewScreen extends Photo$$MediaViewScreen { ... }

(b) The classes after step 1 and step 2
........................................................................................
class Photo$$MediaViewScreen extends Canvas { ... }

class Photo$$MediaController extends AbstractController {
... new PhotoViewScreen(...);

}

@Reviser
class Photo$$MediaTypeInitializer extends Application {

... new Photo$$MediaController();
}

class PhotoViewScreen extends Photo$$MediaViewScreen { ... }

(c) The classes after step 3

List. 3.17: The class transformation by the Feature Configuration Tool
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copies of virtual classes and revisers for a sub-feature are replaced with
references to the overriding class defined in that sub-feature. In the
Photo’s copy ofMediaController (Photo$$MediaController in List. 3.17 (c)),
it replaces all the references to MediaViewScreen with ones to Pho-
toViewScreen. In the Music’s copy, all the references to that class are
replaced with ones to PlayMediaScreen. All the virtual class references
in the copied reviser are also replaced.

A limitation of this approach is the size of binary code. Numbers of copies
of virtual classes are included in the resulting products. Using the factory
method pattern for instantiating virtual classes allows avoiding duplicating
virtual classes.

3.6 Summary

In this chapter, we have shown how derivatives among feature groups are
implemented efficiently in FeatureGluonJ. First, designing feature modules
hierarchically makes features modular, and it is important for implement-
ing derivatives. FeatureGluonJ facilitates to implement generic derivatives
among feature groups represented by the inheritance. Such derivatives are
written by using super features as interfaces.

FEATUREGLUONJ 77





Chapter

4
Airia

An Advice for Advice Composition in AspectJ
Fuminobu Takeyama and Shigeru Chiba.
In Benôıt Baudry, and Eric Wohlstadter, editors, Software Composition, vol-
ume 6144 of Lecture Notes in Computer Science, pages 122–137, Springer
Berlin Heidelberg, 2010

In aspect-oriented programming, an application is composed of classes
and aspects. The aspects often conflict with each other, i.e. they are woven
into the same join point. Since some aspects implement concerns interacting
with others, they are often woven into the same join point. These conflicting
advices sometimes interfere with each other and hence cause unexpected
behavior. This unexpected behavior is called advice interference. This has
been a well-known problem in the research community of aspect-oriented
programming.

A naive and troublesome solution for avoiding interference is implement-
ing advices to cooperatively work with other conflicting advices. Such as-
pects will be linearized by declare precedence and proceed() calls so that they
will be executed one by one and show consistent composed behavior. How-
ever, this is not a desirable solution since programmers have to be aware
of the composition with other advices when they are implementing an indi-
vidual aspect. The code for consistent composition crosscuts over the bod-
ies of conflicting advices. Although meta-programming allows programmers
to describe composition code separately from conflicting advices, the exist-
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ing meta-programming approaches do not provide sufficient functionality for
composition.

This chapter takes a new approach to solve this aspect-interference prob-
lem. This approach enforces programmers to explicitly describe the com-
posed behavior of conflicting advices. A compiler statically check this. The
code implementing that behavior is instead executed at the join points when
the advices conflict with each other. To make this approach feasible, this
chapter also proposes a new language construct named resolver and new lan-
guage Airia, which is an extension of AspectJ [50] but provides resolvers.
A resolver allows programmers to flexibly combine existing advices to easily
implement the composed behavior. For example, declare precedence of As-
pectJ is a simple mechanism for advice composition. It statically linearizes
advices in specified order. On the other hand, a resolver can dynamically
give appropriate precedence to conflicting advices and invoke them. It can
also remove some of them and introduce new advices at the join points as
helpers. Our language Airia thereby gives better composability to advices.
In Airia, advices are not only simply combined but also overridden if they
are not necessary to implement the composed behavior of them.

Furthermore, since a resolver is a special kind of advice, it is also the
first-class entity that is composable by using the same language construct —
a resolver. If a resolver implementing the composed behavior of conflicting
advices also conflicts with other advices, then programmers can describe an-
other resolver that implements the composed behavior of the former resolver
and the other advices. Thus, the resolver hierarchically implements the com-
posed behavior of all the conflicting advices. It is also possible to describe a
resolver that implements the composed behavior of multiple other resolvers.
Combining resolvers may cause inconsistent or ambiguous specifications of
precedence order. Our compiler provides compile time check of conflict reso-
lution. If the resolvers do not define consistent composed behavior, it reports
a compile error.

In summary, the contributions of this chapter are the followings:

• We propose a new advice composition mechanism for resolving advice
interference. It gives flexible composability to advices.

• Since our new advice composition mechanism is a special kind of ad-
vice, it is also composable by using the same mechanism. This allows
hierarchical composition.

• Our compiler statically checks the composition is consistent.
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public class Expression extends ASTNode {...}

public class Plus extends Expression {
private Expression left;
private Expression right;

public Plus(Expression left, Expression right) {...}

public Expression getLeft() {...}
public Expression getRight() {...}
// :

}

public class Constant extends Expression {
Object value;
public Constant(Object value) {
this.value = value;

}}

aspect Evaluation {
public Object Expression.eval() {
return null;

}}

List. 4.1: Classes representing the AST

4.1 An Example of Aspect Interference

We first show an example of aspect interference that is unavoidable with
existing composition mechanism.

A Simple Interpreter

We present a simple interpreter with a binary operator +, which is written
in AspectJ. List. 4.1 shows classes representing AST (Abstract Syntax Tree)
nodes. The Plus class expresses a binary operator +. It has two fields,
left and right, representing its operands and it extends the Expression class.
We declare a method for evaluating an AST in the EvaluationAspect aspect.
Since our interpreter currently does not support any data types, this aspect
appends an empty eval() method to the Expression class by an inter-type
declaration.

Now a programmer extends the interpreter to support integer values. She
does not have to modify the existing classes. She has only to write a new
aspect shown in List. 4.2. The around advice in the IntegerAspect aspect is
invoked when the Plus.eval() method is executed; it returns a summation of
the two operands. The following code makes an AST representing 1 + 2.
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aspect IntegerAspect {
Object around(Plus t):

target(t) && execution(Object Plus.eval()) {
Object lvalue = t.getLeft().eval();
Object rvalue = t.getRight().eval();
if (lvalue instanceof Integer && rvalue instanceof Integer) {

// not for composition
return (Integer)lvalue + (Integer)rvalue;

} else {
return proceed(t);

}}}

List. 4.2: An aspect for integer values

aspect IntegerAspect {
Object around(Plus t):

target(t) && execution(Object Plus.eval()) {
return (Integer)t.getLeft() + (Integer)t.getRight;

}}

List. 4.3: An aspect that does not consider other data types

When e.eval() is executed on this tree, it returns 3:

Expression e = new Plus(new Constant(1), new Constant(2));

If the interpreter supports only integer values, she might write an aspect in
List. 4.3. However, since the interpreter will be extended to support other
data types, List. 4.3 is not appropriate. She has to write an aspect in List. 4.2.

Next, another programmer extends the original interpreter to support
character strings. Again, he does not have to modify the existing classes.
This extension is implemented by the StringAspect in List. 4.4. Since the
operator + now represents concatenation of character strings, the around
advice implements the new behavior of the eval() method.

We can easily build an interpreter supporting both integers and charac-
ter strings. It can be composed just by compiling the classes and aspects
provided by the two programmers. However, these two aspects conflict with
each other, i.e. multiple advices are woven at the same join point. Despite
this conflict, those advices works together and they do not cause interference
since they are designed in advance to be composable by linearization. Since
AspectJ provides proceed() calls, those advices are connected by proceed() to
make a single chain. The interpreter can deal with the AST e constructed
by this code:
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aspect StringAspect {
Object around(Plus t):

target(t) && execution(Object Plus.eval()) {
Object lvalue = t.getLeft().eval();
Object rvalue = t.getRight().eval();
if (lvalue instanceof String || rvalue instanceof String) {

String lstr = lvalue.toString();
String rstr = rvalue.toString();
return lstr + rstr; // not for composition

} else {
return proceed(t);

}}}

List. 4.4: An aspect for character strings

aspect StringAspect {
Object around(Plus t):

target(t) && execution(Object Plus.eval()) {
return (String)t.getLeft() + (String)t.getRight();

}}

List. 4.5: The composition-unaware StringAspect aspect

Expression e = new Plus(
new Constant("Str"), new Constant("1"));

Suppose that IntegerAspect is executed first when e.eval() is called. Since the
both of the given operands are not Integer and it cannot handle the operands,
it calls proceed() to invoke the next advice. This code can be regarded as
an AspectJ version of the chain of responsibility pattern. Then StringAspect
returns a character string ”Str1”.

However, these advices are not satisfactory from the software engineering
viewpoint. The programmers of each aspect need global reasoning for im-
plementing the aspect to be composable; they must be aware of composition
with other (maybe unknown yet) advices. Programmers have to design a
composition protocol for the advice chain before implementing each advice
body. The protocol design is not easy since the advices must be able to
correctly work with and without other advices.

The composition of advices is a crosscutting concern. Note that most
statements in List. 4.2 and 4.4 are for the composition by linearization. Only
the two return statements marked by a comment implement the behavior of
the eval() method in the Plus class. IntegerAspect in List. 4.3 and String-
Aspect in List. 4.5 are ideal since they are not aware of their composition.
However, if we compile these aspects together, we cannot obtain the expected
behavior; the advices cause advice interference. The compiler will throws a
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aspect IntegerStringAspect {
Object resolver plusEvalIntStr(Plus t)

and(IntegerAspect.plusEvalInt(t),
StringAspect.plusEvalStr) {

Object lvalue = t.getLeft().eval();
Object rvalue = t.getRight().eval();
if (lvalue instanceof String && rvalue instanceof String) {

return [StringAspect.plusEvalStr].proceed(t);
} else if (lvalue instanceof Integer &&

rvalue instanceof Integer) {
return [IntegerAspect.plusEvalInt].proceed(t);

} else {
assert lvalue instanceof String ||
rvalue instanceof String;
return lvalue.toString() + rvalue.toString();

}}}

List. 4.6: An aspect for combining IntegerAspect and StringAspect

ClassCastException evaluating the following ASTs:

Expression e = new Plus(
new Constant("Hello "), new Constant("world!"));

or return a character string ”12” although both operands are integer values:

Expression e2 = new Plus(new Constant(1), new Constant(2));

4.2 A New Mechanism for Advice Composition

To resolve the problem mentioned above, we propose a novel language ex-
tension of AspectJ. This new language named Airia allows programmers to
separately describe the composed behavior of advices. The behavior is used
as specialized one only when those advices conflict with each other. The
original advices are not used unless the resolver explicitly invokes them. We
propose resolving conflicts by describing the composed behavior. The com-
posed behavior is separately described in a new kind of around advice called a
resolver. It is not described in conflicting advices. Hence the implementation
of each conflicting advice is independent of the other conflicting advices and
their composition protocol.

List. 4.6 is an example of an aspect including a resolver. It resolves the
advice interference presented in the previous section. Note that the resolver
controls the composition of the conflicting advices by proceed() calls (details
of this resolver are mentioned later). Since the code for resolving interference
is separated into this resolver, the other advices are not aware of composition.

84 AIRIA



A New Mechanism for Advice Composition

aspect Evaluation {
public Object Expression.eval() {
return null;

}
}

aspect IntegerAspect {
Object around plusEvalInt(Plus t):

target(t) && execution(Object Plus.eval()) {
return (Integer)t.getLeft().eval() +

(Integer)t.getRight().eval();
}

}

aspect StringAspect {
Object around plusEvalStr(Plus t):

target(t) && execution(Object Plus.eval()) {
return (String)t.getLeft().eval() +

(String)t.getRight().eval();
}

}

List. 4.7: Aspects written in our language

See List. 4.7, which presents three advices written in our language. They are
simpler than the equivalent aspects shown in List. 4.2 and 4.4. They are
almost the same as the ideal aspects in List. 4.3 and 4.5 except that every
advice has a unique name. The resolver users these advice names.

Since a resolver is just a new kind of advice, it is composable like nor-
mal advice. A conflict caused by that composition can be resolved like a
conflict between normal advices. Programmers can resolve that conflict by
giving another resolver. The resolver implements the composed behavior used
when that conflict happens. Suppose that we write a new aspect CachedE-
valuationAspect and its advice conflicts with the advices in IntegerAspect and
StringAspect. For resolving conflict among these three advices, we can write a
new resolver. Since we already have the resolver in IntegerStringAspect, which
resolves the conflict between IntegerAspect and StringAspect, the new resolver
can provide the composed behavior of the three advices by reusing the re-
solver of IntegerStringAspect. It will be described as if it resolves a conflict
between the resolver in IntegerStringAspect and the advice in CachedEvalua-
tionAspect.
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4.2.1 A Resolver

In Airia, a resolver is a special around advice, which is declared with a key-
word resolver instead of around. The syntax of resolver declaration is the
following:

RetrunType resolver ResolverName(ArgumentType ArgumentName, ...)
and|or(ConflictingAdviceName[(BoundArgumentName, ...)], ...)
[uses HelperAdviceName, ...] { Body }

The resolver keyword is followed by a resolver name. A parameter list to the
resolver follows the resolver name if any. Unlike normal advices in AspectJ,
it does not take a pointcut but it takes an and/or clause, which specifies
a list of potentially conflicting advices. The resolver is expected to resolve
conflict among these advices. Except the resolver keyword, its name, and the
and/or clause, a resolver is the same as an around advice. The return type
of a resolver is Object if the join points bound to the resolver have different
return types. The body of the resolver may include a proceed() call.

In List. 4.6, a resolver is named plusEvalIntStr and takes an and clause,
which lists the names of the around advices in the two aspects IntegerAspect
and StringAspect. Note that an advice in Airia also has a unique name. See
List. 4.7. The IntegerAspect aspect has an advice named plusEvalInt and the
StringAspect has an advice named plusEvalStr. IntegerAspect.plusEvalInt and
StringAspect.plusEvalStr are their fully-qualified names.

A resolver is executed at the join points specified by an and/or clause.
Since the resolver in List. 4.6 has an and clause, it is executed at the join
points that all the given advices are bound to, that is, when the eval()method
in the Plus class is executed. Note that those advices of the two aspects
IntegerAspect and StringAspect conflict at those join points. A resolver has
higher precedence than the advices specified by its and/or clause. Hence,
it overrides all the conflicting advices at the join points. In our example,
when the eval() method in the Plus class is called, the body of the resolver is
executed first.

The advices given to the and/or clause of a resolver work as pointcuts.
Thus, a resolver can take parameters and pass them to those advices. For
example, the resolver in List. 4.6 takes a parameter t and passes it to the
advice in the IntegerAspect. The parameter t is bound to the value that this
advice binds its parameter to, that is, the target object of the call to the
eval() method.

A resolver may have an or clause. This specifies that the resolver is
executed at the join points that at least one advice given to the or clause is
bound to. For example, the next resolver is executed at the join points that
either advice A, B, or C is bound to:
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Object resolver precedence() or(A, B, C) {
return [A, B, C].proceed();

}

The or clause can be used for specifying precedence order among advices as
we do with declare precedence in AspectJ. The resolver shown above specifies
that the precedence order is A, B, and C. [A, B, C].proceed() executes the
three advices in that order (we below mention this proceed() call again).

We introduced an or clause for reducing the number of necessary resolvers.
If we could not use an or clause, we would have to define a number of resolvers
for all possible combinations of potentially conflicting advices. Suppose that
we have three advices A, B, and C. We would have to define resolvers for
every combination: A and B, B and C, C and A, and all the three, if only
two of them conflict at some join points (and the other advice is not bound
to those join points). Since we expect that resolvers for those combination
would share the same body, using an or clause would reduce the number of
resolvers we must describe.

Join points selected by an and/or clause are the intersection/union of the
join point shadow [60] selected for the advices given to that and/or clause,
respectively. Dynamic pointcuts such as cflow and target are ignored. Thus,
a resolver may be executed at the join points that the advices in its and/or
clause are not bound to.

We adopted this language design since it is extremely difficult to detect
conflicts among advices even at runtime. Since an advice in AspectJ can
change the dynamic contexts, after its body is executed, an advice with
a lower precedence than that advice may be removed from the set of the
executable advices at that point. Suppose that the pointcut of an advice in-
cludes if (Expr.flag) and the value of Expr.flag is true. If an advice with higher
precedence than that advice sets Expr.flag to false before calling proceed(),
the advice with if (Expr.flag) will not be executed by the proceed() call.

4.2.2 A Proceed Call with Precedence

To implement composed behavior for resolving a conflict, a resolver can call
proceed() to invoke another advice with the next highest precedence. The
proceed() call from a resolver must explicitly specify the precedence order of
the advices given to the and/or clause, which will be invoked by the proceed()
call. The precedence order is described between brackets preceding .proceed.

Precedence order is given to each invocation by proceed(). Different prece-
dence order can be given to different proceed() calls in the same resolver.
Suppose that there are two advices A and B and they conflict at the join
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point selected by a pointcut pc(). We assume that there is no other advices.
Then resolver AorB can call proceed() twice with different precedence order:

void resolver AorB() or(A, B) {
[A, B].proceed();
[B, A].proceed();

}

pointcut pc(): ...;

void around A(): pc() {
proceed();

}

void around B(): pc() {
proceed();

}

Except for giving precedence, the semantics of proceed() call in a resolver is
the same as original AspectJ. When [A, B].proceed() is called, A is invoked. B
is invoked by a proceed() call in A. A proceed() call in B executes the original
computation at the join point. On the other hand, when [B, A].proceed() is
called, B is invoked. A is the next. Note that [A, B].proceed() does not mean
that executing A and then B. It means that A has higher precedence than B;
A or B may not be executed when their pointcuts do not match the current
join point.

A proceed() call can remove advices from the set of the remaining ad-
vices, which will be invoked by later proceed() calls. If the advice list
between brackets does not include an advice given to the and/or clause,
that advice is removed. In List. 4.6, both proceed() calls remove one ad-
vice. The former removes IntegerAspect.plusEvalInt() and the other removes
StringAspect.plusEvalStr(). For example, [IntegerAspect.plusEvalInt].proceed()
invokes the plusEvalInt() advice in IntegerAspect and then, if a proceed() is
called later, the original eval() method is invoked. The plusEvalStr() advice
in StringAspect is never invoked.

4.2.3 Composability of Resolvers

Since a resolver is a special around advice, conflicts among resolvers and
normal advices can be resolved by other resolvers. Hence a resolver is com-
posable like normal advice. An and/or clause may include a resolver. A
proceed() call with precedence can specify precedence order among resolvers.

Let us consider a new advice shown in List. 4.8. The join point of this
advice is the execution of the eval() method. Thus, this advice conflicts
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aspect CachedEvaluationAspect {
Object Expression.cachedValue;
boolean Expression.isChanged = false;
void around plusEvalCache(Expression t):

execution(Object Plus.eval()) && target(t) {
if (t.isChanged) {

cachedValue = proceed(t);
t.isChanged = false;

}
return cachedValue;

}

after changed(Expression t): ... {
t.isChanged = true;

}}

List. 4.8: The EvaluationCacheAspect aspect

aspect IntegerStringCacheAspect {
Object resolver evalIntStrCache():

and(IntegerStringAspect.evalIntStr,
EvaluationCacheAspect.plusEvalCache)

return [EvaluationCacheAspect.plusEvalCache,
IntegerStringAspect.evalIntStr].proceed();

}}

List. 4.9: A resolver resolving conflicts between a normal advice and another
resolver

with the two advices in IntegerAspect and StringAspect shown in List. 4.7.
Since the conflict between these two advices has been already resolved by
the resolver in IntegerStringAspect, we reuse this resolver to describe the
composed behavior of these two advices and the new advice. See List. 4.9.
This resolver in IntegerStringCacheAspect has an and clause, which lists the
new advice in CachedEvaluationAspect and the resolver in IntegerStringAspect.
It resolves conflicts between these advice and the resolver.

The behavior of a resolver resolving conflicts among other resolvers (and
advices) is the same as that of resolvers resolving conflicts among normal
advices. When the eval() method is called, the resolver in IntegerString-
CacheAspect is invoked first since it has higher precedence than the other
advices and resolver. When this resolver calls proceed() with precedence, the
advice with the next highest precedence is executed, which is the advice in
CachedEvaluationAspect. Then, if the advice calls proceed(), the resolver in
IntegerStringAspect is executed. Note that this resolver does not explicitly de-
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scribe how the conflicts between IntegerAspect and StringAspect are resolved.
It is encapsulated in the resolver of IntegerStringAspect. The composition by
IntegerStringCacheAspect is hierarchical.

Existing resolvers can be removed when it cannot be reused. To imple-
ment a new resolver that must change the precedence order given by another
resolver, programmers can explicitly remove the existing resolver. For ex-
ample, if a new resolver requires the resolver in IntegerStringAspect should
have higher precedence than the advice in CachedEvaluation, the resolver
in IntegerStringCacheAspect is removed as if a resolver removes a normal ad-
vice. The removed resolver is not executed; the new resolver can define a new
precedence order different from the order declared by the removed resolver.

In Airia, advices and resolvers are linearized according to the precedence
order specified by proceed() calls. Airia does not provide language constructs
similar to declare precedence in AspectJ. The reason we do not use declare
precedence is partially composable; if we have the next code:

declare precedence: A, B;
declare precedence: B, C;

then the compiler automatically computes precedence order, which is that
A precedes B and B precedes C. However, declare precedence cannot remove
other declare precedece statements. On the other hand, a resolver can re-
move existing resolvers when they are not needed. Furthermore resolvers
can flexibly specify different precedence order to a different control-flow path
by a proceed() call with precedence. The precedence order in Airia must be
explicitly specified. There is no default precedence order unlike in AspectJ.

4.2.4 A Compile Time Check of Conflict Resolution

Our language Airia requires that all conflicts among advices should be explic-
itly resolved by resolvers. Our compiler checks this requirement at compile
time. If programmers declare inconsistent precedence or forget to specify
precedence among advices, then our compiler will report errors.

The compiler checks this requirement conservatively. Since the checks
is statically done at compile time, the compiler recognized that two advices
conflict with each other if they share the same join point shadow (hence
they may not be executed at the same join points). Programmers must pro-
vide resolvers for all combinations of advices sharing the join point shadow.
Otherwise, an error is reported.

A conflict among advices/resolvers is resolved if the resolvers with the
highest precedence is uniquely determined at a given join point and at every
proceed() call. In Airia, only resolvers and proceed() calls with precedence
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Construct Precedence relations

Type resolver R() and/or(A, B, C) R ≺ A, R ≺ B, R ≺ C
[A, B, C].proceed() A ≺ B, B ≺ C

Table 4.1: Precedence relations declared by constructs in Airia

declare precedence order (Table 4.1). An and/or clause declares that the
resolver has higher precedence than the advices or resolvers listed in it. pro-
ceed() calls also declare the precedence order among the advices/resolvers
between the brackets. Let X ≺ Y represent that X has higher precedence
than Y. This relation is transitive, i.e., if X ≺ Y and Y ≺ Z then X ≺ Z.
Suppose there are three advices A, B, C and they share the same join point
shadow and thus conflict with each other. Assume that there are no other
advices conflict with them. Then suppose that we describe the following
resolvers:

void resolver R() and(S, T, A) {
[S, T, A].proceed();

}
void resolver S() and(A, B) {
[A, B].proceed();

}
void resolver T() and(B, C) {
[B, C].proceed();

}

They resolve the conflict among A, B, and C. First, R is executed at the join
point (shadow) since R has the highest precedence, which is specified by the
and clauses of the three resolvers. proceed() calls are ignored at this time.
When R calls proceed(), S is executed since it has the highest precedence
among the remaining advices and resolvers. Note that we cannot determine
S is the highest by the and clauses of the resolvers but now the proceed() call
in R declares that S ≺ T ≺ A. Then, when S calls proceed(), T is executed.
Although the proceed() call in S does not declare the precedence of T, we
can determine that the next is T because the proceed() call in R declares T
≺ A. The proceed() call in T invokes not B but A since the proceed() call in
S declares A ≺ B and the proceed() call in T declares B ≺ C.

If the definition of the resolver R were the following:

void resolver R() and(S, T) {
[S, T].proceed();

}

Then the conflict among A, B, and C would not be resolved. When S calls
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proceed(), no resolver with the next highest precedence is determined since
precedence order between A and T is not given.

The precedence order declared by an and/or clause cannot be removed.
Even if S is removed by another resolver in the example above, S ≺ A and S ≺
B declared by the and clause of S are not removed; they are effective. Without
this rule, the check of conflict resolution would be extremely complicated.
The following resolvers would be valid:

void resolver U() and(V, D) {
[D].proceed(); //remove U

}
void resolver V() and(U, D) {
[D].proceed(); //remove T

}

Their and clauses declare U ≺ V and V ≺ U and thus the precedence order
seems to have a cycle. However, if we first pick up U, since U removes V,
the result would be only U ≺ V and U ≺ D, which has no cycle. On the
other hand, if we first pick up V, since V removes U, the result would be
different precedence order including no cycle. We introduce the rule to avoid
this complication and ambiguity.

Some resolver’s body may include multiple proceed() calls declaring dif-
ferent precedence order. The advice invoked at a proceed() call is determined
by using only the declarations by that proceed() call and the chain of pro-
ceed() calls executed so far until the current join point. Our compiler checks
conflict resolution along every conservatively possible control path.

The compiler statically checks that a program will never report an er-
ror when advices are executed under the semantics mentioned here. Airia
executed advices at a given join point (shadow) in the order determined by
the following steps. (1) First, Airia collects all the (potentially) conflicting
advices and resolvers at the given join point. During this collection, the dy-
namic part of the pointcut , such as cflow pointcut of an advice is ignored.
Then the compiler makes a directed graph D(V,E) where a vertex v ∈ V
represents an advice or a resolver and an edge u ≺ v ∈ E represents that an
advice u has higher precedence than another advice v. If a resolver r has an
and/or clause listing a, b, ..., then r ≺ a, r ≺ b, ... the compiler also makes
an empty set M , whose elements are vertices v ∈ V .

(2) Airia finds a top advice t in D, where t ≺ v for any v ∈ V \M . Here,
V \M represents a set of the elements contained in V but not in M . If V \M
is empty, there is no other advice. Airia executes the original computation
at the join point. If there is no unique t or if the graph D has a cycle, an
error is reported. Otherwise, Airia executes the body of the top advice t.

92 AIRIA



A New Mechanism for Advice Composition

aspect TraceLogging {
before log(): ... {
Logger.getInst().debug(thisJoinPointStaticPart.toString());

}}

aspect ArgumentLogging {
before log(): ... {
Object[] args = thisJoinPoint.getArgs();
Logger.getInst().debug("Args: " + Arrays.toString(args));

}}

List. 4.10: Aspects for two kinds of logging

(3) When a proceed() call is encountered during the execution of the body
of t, Airia adds t into M . If the proceed() call has precedence order [a, b,
c, ...], Airia adds t ≺ a, a ≺ b, b ≺ c, ... to the graph D. If an advice v
is included in the and/or clause of t but v is not included in the list of the
precedence order of the proceed() call, then v is added to M . Then Airia
goes back to Step (2) to execute a top advice t.

(4) If a proceed() call is not encountered, the execution at the join point
finishes.

4.2.5 A Helper Advice

To implement composed behavior, a resolver can introduce a new normal
advice and give it arbitrary precedence. It usually gives intermediate prece-
dence so that the new advice is executed between the advices the resolver
resolves the conflict among.

Suppose that we have two logging aspects shown in List. 4.10. The advice
in the TraceLogging aspect records executed methods during program execu-
tion. The ArgumentLogging aspect records the values of arguments when a
method is invoked. If the precedence order is that TraceLogging is executed
before ArgumentLogging, then a printed method name is followed by argu-
ment values. However, if a program is multi-threaded, the two advices must
be atomically executed. Otherwise, printed log messages will be interleaved
as the following:

[DEBUG] execution(Object Main.run(String))
[DEBUG] execution(void Test.test())
[DEBUG] Args: []
[DEBUG] Args: [--debug]

Here, the fourth line shows the value of the argument to the run() method.
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aspect LoggingWithSync {
before lock() {
Logger.getInst().lock(); //reentrant lock

}

before unlock() {
Logger.getInst().unlock();

}

void resolver sync()
and(TraceLogging.log, ArgumentLogging.log)
uses lock, unlock {

[lock, TraceLogging.log, ArgumentLogging.log,
unlock].proceed();

}}

List. 4.11: A resolver for atomically executing two aspects

List. 4.11 shows a resolver for atomic execution of the two logging advices.
This resolver uses two helper advices lock() and unlock(). Note that this
resolver has a uses clause, which specifies the helper advices for that resolver.
The pointcut of a helper advice is not explicitly specified; a helper advice
is bound to the same join points that the resolver using that helper advice
is bound to. The helper advices can be included in the precedence order of
proceed(). In List. 4.11, the proceed() call gives the lock() advice the highest
precedence while it gives the unlock() advice the lowest precedence among
the four advices. Thus, the lock() advice acquires a lock, the logging advices
print messages, and then the unlock() releases before the method logged by
the aspects is executed. Without these helper advices, the resolver could not
implement atomic execution. Since a lock has to be released after logging
advices but before the original computation at the join point, introducing
helper advices is the only option. For example, the following resolver does
not work:

void resolver sync()
and(TraceLogging.log, ArgumentLogging.log) {

Logger.getInst().lock();
[TraceLogging.log, ArgumentLogging.log].proceed();
Logger.getInst().unlock();

}

Multiple resolvers may use the same helper advice. If those resolvers
are bound to the same join points, that helper advice is executed only once
at every join point (shadow). If a resolver removes another resolver using
a helper advice, that helper advice is not removed together. It must be
explicitly removed.
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4.3 Case Studies

To evaluate Airia, we have rewritten advice conflicts used for case studies
in the existing literature. We also compare the existing AOP approaches
with regard to capabilities to implement advice composition separately. The
advice conflicts used here are listed in Table 4.3 (1–9), which includes ones
introduced in this dissertation. Table 4.4 describes if the existing languages
and systems can implement advice composition for the advice conflicts (1–9).

As shown in the first row on Table 4.4, Airia provides sufficient express-
ibility for those advice composition overall although it shows limitations in
the advice conflicts that require resolution techniques called conditional ex-
ecution and/or control of after advices. The results of other languages or
systems also tend to depend on resolution techniques required for the con-
flicts. In the rest of this section, we will discuss each of the results in detail.

Authorization and logging

Interaction between an authorization aspect and a logging aspect is a well-
known case that precedence order among aspects must be specified carefully.
The authorization aspect prevents execution of methods if the methods are
called by actions from users who do not have permission for those actions.
List. 4.12 (a) shows an implementation of the authorization aspect. It con-
tains an around advice executed before such methods and checks if the user
has permission to execute them; only when she has permission, the aspect
executes the protected method by calling proceed(). Next, the logging aspect
records that specified method has been executed. An implementation of it
is shown in List. 4.12 (b). Its before advice just writes a user name given to
the parameter and the method name to be executed.

The composed behavior of those aspects is quite different depending on
precedence order between them since the authorization aspect has a control-
flow modification [3]. Suppose that the precedence of the authorization as-
pect is higher than that of logging aspect, the logging aspect only makes a
log message only when the authorization aspect allows executing the method.
If programmers intended that they would like to detect potential attacks on
the system from the log messages, this composed behavior is not expected;
they must give higher precedence to the logging aspect.

All the languages and systems are sufficient for the composition of those
aspects since the composition simply gives precedence order between the as-
pects. In Airia, programmers can implement the composition with a resolver
as shown in List. 4.12. It only gives higher precedence to the logging aspect
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Composition strategy
AO Advice-level ordering
CC Context-aware composition
CE Conditional execution
ME Mutual execution
IC Implicit cut
RM Results merging

Table 4.2: List of the composition strategies

Advice conflicts Used composition strategies
1 Authorization and logging [3, 66]
2 Answering machine and call-forwarding [25] CC
3 Compression and encryption [57, 58, 59] AO
4 Connection pooling and synchronization [5] IC
5 Integer and string features CC, ME, IC
6 Raise checker and persistence [63] CE
7 Trace and arguments logging IC
8 Two kinds of toString [71, 28] RM
9 Two kinds of filters for web applications CE

Table 4.3: List of the advice conflicts and the composition strategies used
for each conflict

Feature interactions
Languages or systems 1 2 3 4 5 6 7 8 9
Airia y y y y/n y n y y y-
AspectJ y n n y-/n n n y- n n
Declarative aspect composition y n n y-/n n y y- n y
Context-aware composition rules y y y y-/n n n y- n n
OARTA y n y y/y- y y- y- n y-
POPART y y y y-/n y- n y- n n
Reflex y n y y/n n n y n n
Stateful aspect y y- y y-/n n n y- n n

y: possible; y-: possible with limitations; n: impossible

Table 4.4: Comparison of the languages/systems w.r.t. the capabilities for
implementing the composition separately
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aspect Authorization {
void around auth(String user):

execution(void Server.doAction(..)) && args(user) {
if (isAllowed(user)) {

proceed(user);
} else {

System.out.println("not permitted");
}

}
}

(a) Authorization.aj
........................................................................................
public aspect Logging {

before log(String user):
execution(void Server.doAction(..)) && args(user) {

System.out.println(
user + " is trying to execute doAction()");

}
}

(b) Logging.aj
........................................................................................
aspect AuthLogging {

void resolver authLog() and(Authorization.auth, Logging.log) {
[Logging.log, Authorization.auth].proceed();

}
}

(c) AuthLogging.aj

List. 4.12: The aspects for authorization and logging and the resolver for
the composition of those aspects
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by using Airia’s proceed() call.

Answering machine and call-forwarding

The feature interaction between an answer machine feature and a call-forwarding
feature in a phone management system is a classic example in the telecom-
munication domain. Dinkelaker et al. implement those features by using
aspects for a case study of their meta-aspect protocol, POPART [25]. We
have rewritten their aspect into AspectJ (Airia) as shown in List. 4.13 (a) and
(b). The ToAnswerMachine aspect extends the Phone.receiveCall() method so
that it can pass the call to the answering machine if nobody receives that
call. The return value of the receiveCall() method indicates whether someone
received the call or not. Calling the recieveCall() method on an answering
machine object will start up the answering machine. On the other hand, the
ForwardCall aspect forwards a call to the another phone registered in advance
if nobody received the call. It also extends the receiveCall() method of the
Phone class and calls the receiveCall() method on the forward phone if the
original methods returns false.

To implement the composition between those aspects, languages or sys-
tems need to support a composition strategy called context-aware composi-
tion, which changes precedence order between conflicting advices or removes
some of the advices depending on the dynamic context. When both of these
features are enabled, their appropriate composed behavior is that the call-
forwarding feature does not forward a call if the answering machine of the
forward phone is active. This is because an original callee cannot hear any
recorded messages if they are recorded by the answering machine of the for-
ward phone.

The AnswerMachineAndCallForwarding aspect in List. 4.13 (c) implements
that composition in Airia. The resolver of AnswerMachineAndCallForwarding
aspect invokes the advice of ToAnserMachine by the first proceed() call if an
answer machine is active for a forward phone. While the other languages
and systems supporting context-aware composition including POPART can
implement this composition as well, AspectJ does not support it. AspectJ’s
declare precedence statically specifies precedence order between aspects.

Compression and encryption

As mentioned in Section 2.5.2.4, there are advices programmers must specify
their precedence order at not an aspect level but an advice level. List. 4.14
shows the Compression aspect and the Encryption aspect, which requires
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aspect ToAnswerMachine {
boolean around checkAndReceive(Phone t, String phoneNumber):
execution(boolean Phone.receiveCall(String)) && this(t) &&
args(phoneNumber)

{
boolean answered = proceed(t, phoneNumber);
AnswerMachine am = t.getAnswerMachine();
if (!answered && am.isActive()) {

answered = am.receiveCall(phoneNumber);
}
return answered;

}
}

(a) The ToAnswerMachine aspect
........................................................................................
aspect CallForwarding {

boolean around forward(Phone t, String phoneNumber):
execution(boolean Phone.receiveCall(String)) && this(t) &&
args(phoneNumber)

{
boolean answered = proceed(t, phoneNumber);
Phone to = t.getForwardPhone();
if (!answered && to != null) {

answered = to.receiveCall(phoneNumber);
}
return answered;

}
}

(b) The CallForwarding aspect
........................................................................................
aspect AnswerMachineAndCallForwarding {

boolean resolver receiveCall(Phone t, String s)
and(ToAnswerMachine.checkAndReceive,

CallForwarding.forward(t, s)) {
Phone to = t.getForwardPhone();
if (to != null && to.getAnswerMachine().isActive()) {

return [ToAnswerMachine.checkAndReceive,
CallForwarding.forward].proceed(t, s);

} else {
return [CallForwarding.forward,

CallForwarding.forward].proceed(t, s);
}

}
}

(c) The AnswerMachineAndCallForwarding aspect

List. 4.13: The aspects for authorization and logging and the resolver for
the composition of those aspects
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advice-level ordering. These aspects are applied to an application that reads
data from a file, process that data, and then writes the output to a file. The
Compression aspect enables to save disk space by compressing data before
they are save to file. It also decompresses the compressed data before they
are used in the application. The Encryption aspect writes encrypted data
to a file and allows that application to read the encrypted data. Although
the Compression.compressData() advice must be executed before the Encryp-
tion.encryptData() advice, Encryption.decryptData() must be executed before
Compression.decompressData().

Airia supports advice-level ordering and hence can implement such com-
position by the resolvers in List. 4.14 (c). Programmers can specify prece-
dence order between those advices by using their unique name in a proceed()
call.

Note that if decompressData() and decryptData() were after advices and
their pointcuts were:

execution(void Application.load()) && target(a)

then programmers would not need advice-level ordering for those aspects.
Since an after advice with lower precedence is executed before ones with
higher precedence, they can obtain the same behavior by:

declare precedence: Compression, Encryption;

Connection pooling and synchronization

The next example is from an SPL for peer-to-peer overlay networks [5], which
was originally implemented by aspect refinements in Aspectual Mixin Layers
(AML) [10]. AML is a language and composition system that integrates
aspects into refinements; namely, it allows programmers to extend definitions
of existing advices by refinements. List. 4.15 shows an aspect implementing
an object-pooling feature for network connection class. When communication
session is closed, the aspect prevents ClientConnection objects from being
deleted so that the object can be reused for the next session. Another feature
of the SPL is to add synchronization to the aspects for that pooling feature.
In AML, programmers can implement such synchronization by refining the
Pooling aspect with the code below:
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aspect Compression {
before compressData(Application a):

execution(void Application.save()) && target(a) {
zip(a.data);

}

before decompressData(Application a):
execution(void Application.processData()) && target(a) {

unzip(a.data);
}

}

(a) Compression.aj
........................................................................................
aspect Encryption {

String key = "...";

before encryptData(Application a):
execution(void Application.save()) && target(a) {

encrypt(a.data, key);
}

before decryptData(Application a):
execution(void Application.processData()) && target(a) {

decrypt(a.data, key);
}

}

(b) Encryption.aj
........................................................................................
aspect CompressionEncryption {

void resolver save()
and(Encryption.encryptData, Compression.compressData) {

[Compression.compressData, Encryption.encryptData].proceed();
}

void resolver load()
and(Encryption.decryptData, Compression.decompressData) {

[Compression.decompressData,
Encryption.decryptData].proceed();

}
}

(c) The resolver for Compression and Encryption
........................................................................................
Application app = new Application();

app.load();
app.processData();
app.save();

(d) The order of invocation of methods defined in Application

List. 4.14: The Compression aspect and the Encryption aspect

AIRIA 101



Case Studies

refines aspect Pooling {
ClientConnection getFromPool(ClientSocket sock) {

synchronized(pool) {
return super.getFromPool(sock);

}
}

}

This refinement replaces the getFromPool() advice of the Pooling aspect in
List. 4.15 with a new advice defined in the refinements. In the refinement,
super.getPool() will invoke the original advice in the synchronized block.

A refinement of an around advice can be achieved by a normal advice
executed at the same join points with the refined advice. To pick join points
when specified advice is to be executed, some languages and systems pro-
vide a mechanism called implicit cut [74]. In Airia, and/or clauses can be
regarded as mechanisms for implicit cuts. The syncGetFromPool() resolver
in List. 4.15 (b) implements the refinement above. The and clause executes
that resolver at the same join points with the original advice, and then the
resolver invokes the original by proceed(). Note that even though program-
mers can implement such an advice without an implicit cut by giving the
same pointcut to the original advice, the pointcut of the advice is fragile;
they must update that pointcut when the pointcuts of the original advice is
changed.

However, implicit cuts cannot emulate refinements of after advices. In
this example, the putToPool() advice must be synchronized as well. The
next method refinement:

ClientConnection putToPool(ClientSocket sock) {
synchronized(pool) {

return super.putToPool(sock);
}

}

synchronizes only execution of putToPool. The syncPutToPool() resolver in
List. 4.15 (b) is a workaround in Airia. The resolver executes not only the
putToPool() advice but also executes original computation at the join point
wrongly in the synchronized block. Reflex’s implicit cuts similarly cannot
emulate refinements of after advices. OARTA, in contrast, provides point-
cuts picking out execution of a specified advice, adviceexecution(). It allows
rewriting the refinement of putToPool() into an around advice with adviceex-
ecution(Pooling.putToPool).
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aspect Pooling {
HashMap pool = new HashMap();

ClientConnection around getFromPool(String s):
call(ClientConnection.new(..)) && args(s) {

if (!pool.containsKey(s)) {
return proceed(s);

} else {
return (ClientConnection)pool.get(s);

}
}

after putToPool(ClientConnection t):
execution(void ClientConnection.close()) && target(t) {

this.pool.put(t.getServer(), t);
}

}

(a) The Pooling aspect
........................................................................................
aspect Sync {

Object resolver syncGetFromPool() and(Pooling.getFromPool) {
synchronized(Pooling.aspectOf().pool) {

Object res = [Pooling.getFromPool].proceed();
return res;

}
}

// workaround for a refinement of after advice
Object resolver syncPutToPool() and(Pooling.putToPool) {
synchronized(Pooling.aspectOf().pool) {

Object res = [Pooling.putToPool].proceed();
return res;

}
}

}

(b) The Synchronization aspect

List. 4.15: Aspects for class pooling and its synchronization.
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Integer and string features

In Section 4.2, we have already explained how programmers can combine the
IntegerAspect and StringAspect by a resolver. Here, we review what kinds of
composition strategies are necessary for that combination of aspects. First,
the composition requires mutual exclusion [51]. Mutual exclusion is a strat-
egy that executes exactly one advice from a combination of advices. In our
example, when the Plus.eval() method is executed, the resolver selects In-
tegerAspect or StringAspect to invoke according to the actual types of the
operands. Next, it also uses context-aware composition to select an aspect
from the two aspects according to the actual type of operands.

In the aspect-oriented languages or systems listed above, only Reflex pro-
vides mechanism directly supporting mutual exclusion. However, it does not
support dynamic composition, and hence it cannot implement composition of
those aspects. On the other hand, OARTA can emulate mutual exclusion by
appending if pointcuts to the conflicting advices. In order to achieve mutual
exclusion of IntegerAspect and StringAspect, programmers append:

&& if (t.getLeft().eval() instanceOf Integer &&
t.getRight().eval() instanceOf Integer)

to the advice of IntegerAspect by using OARTA’s andpointcut. They also
append a pointcut that replaces Integer with String in the pointcut above
to the advice of StringAspect. Since context-aware composition rules and
POPART can remove unnecessary conflicting advices, they can implement
conditional execution.

Finally, the composition needs implicit cuts to implement addition of an
integer value and a character string. OARTA does not have a mechanism for
selecting shared join points. Context-aware composition rules and POPART
also do not support implicit cuts and hence cannot implement that extra
code at the conflicting join points without copying pointcut definitions.

Raise checker and persistence

The paper [63] proposed its unique composition strategy named conditional
execution as a part of declarative aspect composition. The strategy defines
composed behavior of two conflicting aspects; each advice returns a Boolean
value, and only when the first advice returns true, the other advice can be
executed. List. 4.16 shows two after advices, which should be executed in
conditional execution. They are part of a personal management system used
in companies. The first advice is executed when the salary of an employee is
increased, and checks if the updated salary is not higher than her manager. If
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public aspect CheckRaise {
after(Employee t, int level):

execution(void Employee.increaseSalary(..)) &&
args(level) && target(t) {

Employee m = t.getManager();
if (m != null && t.getSalary() + level >= m.getSalary()) {

return true; // used for declarative aspect composition
} else {

t.salary += level; // revert salary
return false; // used for declarative aspect composition

}
}

}

(a) The CheckRaise aspect
........................................................................................
aspect EmployeePersistence {

after(Employee e):
execution(void Employee.increaseSalary(..)) && target(e) {

// save to DB
}

}

(b) The EmployeePrsistence aspect

List. 4.16: Aspects for a personal management system (pseudo code in
AspectJ-like syntax)

the raise is acceptable, it returns true. The other advice is for persistence. It
saves states of employee objects into a database. By specifying those advices
are executed in conditional execution, the persistence aspect is executed only
when the salary of an employee has been successfully raised.

Resolvers in Airia cannot achieve such composition since it has no way to
control after advice depending on the results of other advices that have been
executed before. OARTA can emulate conditional execution by keeping the
result of previous raise-checking into a field. Programmers can prevent the
persistence advice from being executed by appending if pointcut that ensures
the raise was accepted.

Trace and arguments logging

We have introduced the trace-logging aspect and argument-logging aspect in
Section 4.2.5. The languages or systems other with implicit cuts are sufficient
for the composition of those logging advices. If programmers tolerate fragility
of pointcuts, all the languages or systems can achieve that composition; pro-
grammers add new advices for synchronization and specify precedence order
between the advices and the original logging advices.
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Two kinds of toString

Let us consider a figure editor application on which users draw shapes such
as rectangles and circles. List. 4.17 (a) and (b) introduce two aspects, the
Color aspect and the Border aspect, for the figure editor. The Color aspect let
shape objects have their colors by an inter-type declaration. It also extends
the toString() method of the Shape class so that the result of that method can
include information about colors of objects. The other aspect, Border adds
border properties to shape objects and extends the Shape.toString() method
for the same purpose with Color.

Some readers might feel the two around advices extending the toString()
method are strange since they do not have proceed() call to invoke the original
toString() method. This example was originally used to show how traits
allow method composition without dispersal of glue code as described in
Section 2.5.2.2. We have rewritten normal toString() methods of traits to
around advices.

Airia can merge the results of conflicting around advices in a resolver. The
ColorAndBorder.toStreing() resolver (List. 4.17 (c)) implements composition
of the around advices defined in Color and Border. The resolver executes the
original method by removing those advices with proceed() call. It next exe-
cutes the Color.toString() advice and the Boder.toString() advice separately.
Finally, the resolver concatenates the return values of the original methods
and those advices for the result of the toString()method. The other languages
and systems on Table 4.4 cannot handle the return values of conflicting ad-
vices.

Two kinds of filters for web applications

The last example is two kinds of authorization aspects, which are used for
a web application developed by Java Servlet. The AopHttpServlet class in
List. 4.18 (a) is a base class of the application. A dynamic web page is im-
plemented by a subclass of this class as shown in List. 4.18 (b). The subclass
is called a servlet, and it has a method invoked when the corresponding page
is requested by a web browser. This method generates a page described in
HTML and writes it to ServletOutputStream, which is sent through a network
and displayed on the web browser.

Here, we use aspects to implement a filter-like mechanism, which per-
form an extra action before contents are generated while J2EE provides an
application-programming interface (API) for such mechanism. The first as-
pect is the ErrorHandling aspect shown in List. 4.18 (c). This aspect returns
error messages to a user when a servlet encounters an error while generating
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aspect Color {
int Shape.color = 0x000000;

String around toString(Shape t):
execution(String Shape+.toString()) && target(t) {

Formatter f = new Formatter();
f.format("color: #%06X", t.color);
return f.toString();

}
}

(a) The Color aspect
........................................................................................
aspect Border {

int Shape.borderWidth = 1;

String around toString(Shape t):
execution(String Shape+.toString()) && target(t) {

return "border: " + t.borderWidth;
}

}

(b) The ColorAndBorder aspect
........................................................................................
aspect ColorAndBorder {

String resolver toString()
and(Color.toString, Border.toString) {

String org = [].proceed();
String color = [Color.toString].proceed();
String border = [Border.toString].proceed();
return org + " [" + color + "; " + border + "]";

}
}

(c) The ColorAndBorder aspect implementing composition of Color and Border

List. 4.17: Composition of two toString() in a figure editor
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abstract class AopHttpServlet extends HttpServlet {}

(a) A base class for servlets
........................................................................................
class Index extends AopHttpServlet {

protected void service(HttpServletRequest req,
HttpServletResponse res)

throws ServletException, IOException {
ServletOutputStream out = res.getOutputStream();
out.print(/* generated content */);

}}

(b) A class implementing a dynamic web page
........................................................................................
aspect ErrorHandler {

void around doFilter(HttpServletRequest req,
HttpServletResponse res):

execution(AopHttpServlet+.service(..)) && args(req, res) {
try {

proceed(req, res);
} catch(Exception e) {

// generate error messages
}}}

(c) The ErrorHandling aspect

List. 4.18: The classes of a Java Servlet application

a page.
List. 4.19 shows aspects for two kinds of authorization. First, the Sessio-

nAuth aspect prevents a user from accessing a page unless the user is already
logged in with her password. The advice is executed before a page is gen-
erated. If a user does not logged in, it throws AccessDeniedException; the
ErrorHandling aspect will catch the exception and display a message. Other-
wise, it calls proceed() and runs the original service() method implemented
by each servlet. On the other hand, the HostAuth aspect permits accesses
only from a trusted network in the same way with SessionAuth; it also throws
an AccessDeniedException if the access is not permitted.

Programmers can easily implements the conjunction of the two policies;
the application is accessible to users who are in a trusted network and have
logged in. The following resolver defines precedence order between those
aspects so that after the SessionAuth allows a user to access, HostAuth checks
where access is from:

void resolver auth()
and(SessionAuth.doFilter, HostAuth.doFilter) {

[SessionAuth.doFilter, HostAuth.doFilter].proceed();
}

However, it is not straightforward to implement the disjunction of the
two authentication policies. Suppose that we allow accesses from trusted
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aspect SessionAuth {
void around doFilter(HttpServletRequest req):

execution(void AopHttpServlet+.service(..)) &&
args(req, HttpServletResponse) {

if (req.getRemoteUser() == null) {
throw new AccessDeniedException("...");

}
proceed(req);

}
}
........................................................................................
aspect HostAuth {

void around doFilter(HttpServletRequest req):
execution(void servlet.AopHttpServlet+.service(..)) &&
args(req, HttpServletResponse) {

if (!isPermitted(req.getRemoteAddr())) {
throw new AccessDeniedException("...");

}
proceed(req);

}

boolean isPermitted(String remoteAddr) {
return remoteAddr.startsWith("192.168.0.");

}
}
........................................................................................
aspect SessionOrHostAuth {

void resolver doFilter()
and(SessionAuth.doFilter, HostAuth.doFilter) {

try {
[HostAuth.doFilter].proceed();

} catch (AccessDeniedException e) {
[SessionAuth.doFilter].proceed();

}
}

}

List. 4.19: Two authorization aspects
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aspect SessionOrHostAuth {
void resolver doFilter()

and(SessionAuth.doFilter, HostAuth.doFilter) {
try {

return [SessionAuth.doFilter].proceed();
} catch(AccessDeniedException e) {

return [HostAuth.doFilter].proceed();
}}}

(a) The SessionOrHostAuth aspect
........................................................................................
aspect AuthErrorHandler {

void resolver doFilter()
or(SessionOrHostAuth.doFilter, ErrorHandler.doFilter) {

[ErrorHandler.doFilter,
SessionOrHostAuth.doFilter].proceed();

}}

(b) The AuthErrorHandler aspect

List. 4.20: Composition of the two authorization aspect

network or a user who has already logged in. Implementing such composed
behavior needs more complex resolvers as shown in List. 4.20 (a) than the
conjunction. After one filter rejects an access, the resolver retries the other
filter by using exception handler. It executes the advice of HostAuth first.
If the advice denies an access, it throws an exception without executing
the original method. The exception will be caught by the resolver, which
invoke the advice of SessionAuth from its catch block. The AuthErrorHandler
aspect in List. 4.19 (b) is used to give higher precedence to the ErrorHandler
aspect than the authorization aspects. Note that the composition between
the authorization aspects can be considered as conditional execution since
SessionAuth can be executed only after HostAuth failed. Airia can emulate
conditional execution of around advice although it cannot emulate that of
before advice.

4.4 Implementation

We have implemented an Airia compiler by extending an AspectJ compiler
named the AspectBench compiler [13]1. Several languages based on As-
pectJ have used the AspectBench compiler to implement their compilers.
Its front-end is implemented on the JastAddJ Java compiler by using Jas-
tAdd compiler-compiler framework as GluonJ and FeatureGluonJ are. On

1The source code of Airia is available from:
http://www.csg.ci.i.u-tokyo.ac.jp/projects/airia/
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Fig. 4.1: An overview of Airia implementation

the other hand, its back-end uses Soot framework [77] to weave aspects into
classes. Airia’s weaver modifies and translates the code into Jimple inter-
mediate representation, which is simplified bytecode used in Soot, to insert
code for invoking advices.

Figure 4.1 illustrates an overview of the Airia compiler. Since the front-
end is sufficient extensible, we just added additional syntax rules and aspects
unique to Airia. The front-end of the AspectBench compiler translates as-
pects into classes and meta information called aspect info, which retains
advice types and pointcuts. We have introduced a new kind of aspect info
for representing resolvers. After the classes are converted to SootClass (i.e.,
meta class provided by Soot) objects, the front-end forwards the objects and
aspect info to its back-end.

To support resolvers by extending the back-end of the AspectBench com-
piler, it was necessary to duplicate and modify the existing code for weaving
aspects. Although the procedure for weaving a single resolver is almost the
same as a normal around advice, we have reimplemented the process for
weaving multiple aspects at the same join points. The compiler makes a
tree starting from a resolver with the highest precedence ending with a node
representing original computation at the join point shadow; nodes and edges
on the tree represent advices and proceed() calls. It weaves advices for every
path from the root to a leaf recursively. While it handles a resolver with
multiple proceed() calls, it weaves other advices to be executed by one of the
proceed() call. Then it moves the woven code including the advices and the
original computation into a closure method. After that, it weaves advices for
other proceed() call. Finally, the proceed() calls are replaced with invocations
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of the closure methods. In our implementation of the compiler, the size of
generated code could be slightly large. It is possible to reduce the size if
multiple paths contain the same sequences of advices.

4.5 Summary

We presented a language extension of AspectJ. This language named Airia
can resolve interference among conflicting advices, which could not be sat-
isfactorily resolved in original AspectJ. Airia provides a resolver, which is a
language construct to enable programmers to implement composed behavior
separately from conflicting advices by resolvers. In a resolver, an existing ad-
vice can be invoked by proceed() call with precedence. Unnecessary advices
can be also removed by that call. Airia thereby provides better composability
to advices than AspectJ. Since a resolver is a new kind of advice, it is also
composable by other resolvers. We have implemented an Airia compiler by
extending the AspectBench compiler using JastAdd. This compiler checks
that all conflicts are resolved by resolvers and consistency of precedence order
declared by resolvers and proceed() calls.
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5
Concluding Remarks

Feature interaction is a major cause that degrades composability in soft-
ware product line development. This dissertation addressed feature interac-
tion at two different levels. FeatureGluonJ enables to reduce the number of
derivatives between two generalization groups of features. We found higher-
order redundancy in the derivatives of MobileMedia. In FeatureGluonJ, such
derivatives can be implemented as a generic feature module, which is written
by using the super feature modules of those groups as an interface.

On the other hand, the latter half of this dissertation addressed feature
interaction at the lower level. When multiple features are used together,
method extension mechanisms contained in their feature modules may con-
flict and cause interference. The method extension mechanisms include ad-
vices in AspectJ and methods of revisers in GluonJ. To address this problem
in AspectJ, we have developed its language extension named Airia. It pro-
vides a new kind of advice called a resolver, which implements composed
behavior of conflicting advices. To implement it, resolvers can execute only
specified conflicting advices by proceed() call with precedence and merge the
result of the advices.

CONCLUDING REMARKS 113



Contributions

The contribution of this dissertation is as the following:

• We have developed a new language FeatureGluonJ supporting hierar-
chical implementation of features. Although it is not novel as shown in
Section 2.4.7, our contribution is designing language semantics that are
necessary and sufficient expressibility for implementing product lines by
reducing complexity of virtual classes and virtual revisers.

• This dissertation has shown that inheritance of feature modules is use-
ful to reduce the number of redundant derivatives. A super feature
module defines an interface that specifies virtual classes and revisers
provided by its sub-features. The abstraction by the interface allows
programmers to write a generic feature module applicable to derivatives
between groups of sub-features.

• This dissertation also proposes a new language, Airia. Its unique lan-
guage construct, resolver, allows programmers composition of conflict-
ing advices whose interference are not avoidable by naive linearization.
A resolver can implement composed behavior of conflicting advices;
it invokes only specified advices by removing unnecessary ones with
Airia’s proceed() call with precedence and merges the results of the in-
vocations. Airia also supports advice-level ordering; the proceed() call
controls the execution of conflicting advices at the advice level.

• We have shown that composability of composition code is also impor-
tant and designed a construct composable by itself. Since a resolver is
a new kind of advice, it is also composable by other resolvers.

Future Directions

Integration of resolvers with FeatureGluonJ

Since multiple revisers may extends the same method, conflict of method ex-
tensions is common to FeatureGluonJ. Integrating resolver with FeatureGlu-
onJ should be useful to resolve that conflict. However, one issue with this
integration is that giving precedence among all conflicting advices explicitly
is annoying even though the order of conflicting advices is commutative.
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Formalization of language semantics

Both FeatureGluonJ and Airia does not have formal definitions of semantics.
FeatureGluonJ is based on GluonJ and light-weight family polymorphism
which have formal definitions to prove they are mostly modular and type
safe, respectively. The formal definition of FeatureGluonJ will be valuable
to show that it derives those properties.
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