
A Dissertation Submitted to Department of Mathematical and
Computing Sciences, Graduate School of Information Science and

Engineering, Tokyo Institute of Technology
In Partial Fulfillment of the Requirements for the Degree of
Doctor of Science in Mathematical and Computing Sciences

Expressive and Safe Destructive

Extensions for Separation of Concerns

関心事の分離のための破壊的拡張の表現力と安全性
の向上

Shumpei Akai Dissertation Chair:
Osamu Watanabe

February 2013,
Copyright c⃝ 2013 Shumpei Akai.

All Rights Reserved.

Abstract
Replacing or switching programs according to situations is important to de-
velop software. It helps to get more performance, to enable platform-specific
features, or to customize existing libraries. In C or C++, macros including
#if or #ifdef are use to replace programs. However, they do not have enough
modularity. Destructive extensions, including aspect-oriented programming
and class extensions, are significant techniques in order to replace programs
in modular way. They help to write a crosscutting concern in a module or a
separated file. Pointcut/advice mechanism in aspect-oriented programming
allows programmers to change behavior of expressions or method bodies in
a program without modifying existing source code. Class extensions allow
programmers to add or replace methods in existing classes.

Destructive extensions are used in several programming languages. How-
ever, three problems with destructive extensions have been discussed: im-
proving expressiveness, fragile pointcut problem in AOP, and interference
or conflict among extensions. More expressiveness encourages separation of
more concerns including synchronization. Fragile pointcut problem causes
failure to apply extensions. Interference among extensions makes it difficult
to use multiple extensions together. These problems should be addressed in
order that more programming languages adopt destructive extensions.

This thesis proposes three techniques to address these three problems. Re-
gioncut is a language construct to treat arbitrary code regions as join points
in an aspect-oriented programming language. Programmers can change be-
havior of code regions by using aspects with regioncuts. It improves expres-
siveness of aspect-oriented programming and enables to separate synchro-
nization concerns into aspects. This thesis also proposes assertion for advice
in order to address fragile pointcut problem in aspect-oriented programming.

i

ii

It checks whether advice is applied to anticipated join points. This thesis
proposes method shelters to avoid interference among class extension. They
provide two types of scope of class extensions. Programmers can avoid in-
terference by composing these scopes.

Acknowledgments
I would like to express my sincere gratitude to my supervisor Professor
Shigeru Chiba. He gave me great advice on studying, giving presentations,
and writing papers. I also thank to the thesis committees: Professor Osamu
Watanabe, Professor Masataka Sassa, Professor Shigeru Chiba, Professor
Ken Wakita, and Professor Kazuyuki Shudo.

I deeply thank to the current and graduated members of Chiba Shigeru
Group. In particular, I am deeply grateful to Masayuki Ioki, Fuminobu
Takeyama, and Yung-Yu Zhuang.

Finally, I would like to thank mother, father, sister, and grandmother.
This work would not have been possible without their moral and financial
support.

Shumpei Akai
February 2013

iii

Contents

1 Introduction 1
1.1 Motivating Problem . 2
1.2 Approach by This Thesis . 4
1.3 Position of this thesis . 6
1.4 Structure of this thesis . 8

2 Program Replacement and Destructive Extensions 10
2.1 Examples of Program Replacement 11

2.1.1 Changing Look and Feel of GUI Libraries 11
2.1.2 Switching Granularity of Synchronization 11

2.2 Destructive Extensions . 13
2.2.1 Class Extensions . 15

2.2.1.1 Smalltalk . 15
2.2.1.2 Objective-C 15
2.2.1.3 Ruby . 16
2.2.1.4 Usage of class extensions 16

2.2.2 Aspect-oriented programming and pointcut/advice mech-
anism . 18
2.2.2.1 AspectJ . 18
2.2.2.2 GluonJ . 21

2.3 Problems with Destructive Extensions 22
2.3.1 Expressiveness . 22

2.3.1.1 Separation of synchronization concerns in AOP . 25
2.3.1.2 Separation of exception handling concerns . . . 27

2.3.2 Fragile Pointcut Problem 28

CONTENTS iv

CONTENTS v

2.3.2.1 Fragile Pointcut Problem with synchronization
concerns . 30

2.3.3 Conflict among Destructive Extensions 30
2.3.3.1 Scopes of class extensions 33

2.4 Techniques Similar to Destructive Extensions 34
2.4.1 Java class loader . 34
2.4.2 C# . 35
2.4.3 Virtual classes . 36
2.4.4 Context-oriented programming 36
2.4.5 Implicit conversion in Scala 37
2.4.6 Type classes . 38

2.5 Summary . 41

3 Regioncut 42
3.1 Overview . 42
3.2 Semantics . 44

3.2.1 Matching between regioncuts and a sequence of statements 45
3.3 Context Exposure . 49
3.4 Implementation Issues . 49

3.4.1 Analysis of blocks and statements 49
3.4.2 Around advice support 50

3.5 Evaluation . 57
3.5.1 Javassist . 57
3.5.2 Hadoop . 57

3.6 Current Limitation . 59
3.7 Fragility of regioncuts . 66
3.8 Summary . 67

4 An Assertion for Advice 69
4.1 Overview . 69
4.2 Implementation . 72
4.3 Evaluation . 72
4.4 Summary . 73

5 Method Shelters 74
5.1 Overview . 74
5.2 Lookup semantics . 77

5.2.1 Method shelter tree . 77
5.2.2 The lookup algorithm 78

CONTENTS vi

5.3 A proof-of-concept implementation 85
5.3.1 Implementation details 85
5.3.2 Optimization . 86
5.3.3 Compatibility . 87

5.4 Applications . 88
5.4.1 Convenient methods in Ruby on Rails 88
5.4.2 Operator redefinition . 90
5.4.3 RSpec . 90
5.4.4 Protecting optimized methods 91
5.4.5 Private instance variables 91

5.5 Performance . 96
5.5.1 Micro benchmark . 96
5.5.2 tDiary . 97
5.5.3 Ruby on Rails . 98

5.6 Summary . 99

6 Conclusion 101

Bibliography 104

List of Figures
1.1 Trade-off between expressiveness and fragility in programming

languages. 7
1.2 Trade-off between expressiveness and interference among class

extensions in programming languages. 8

2.1 Different look and feel of AWT and Swing 12
2.2 Swing’s JButton class is not a subclass of AWT’s Button class. . 13
2.3 Javassist’s ProxyFactory class have two candidates for synchro-

nization. 14
2.4 Example of Class Extensions in Smalltalk 15
2.5 Example of Class Extensions in Objective-C 16
2.6 Example of Class Extensions in Ruby 16
2.7 Methods that access a database 20
2.8 Example of Logging aspects in the Around Advice 21
2.9 Example of a Reviser in GluonJ 21
2.10 Example of Tracematch . 23
2.11 Example of LoopsAJ . 24
2.12 Example of loop with several successor nodes 24
2.13 Example of Synchronized Block Join Point 25
2.14 Example of EJFlow . 26
2.15 Pseudo code of pointcut to synchronize a code 27
2.16 A region that includes file operations may throw exceptions . . . 28
2.17 Example of open modules . 29
2.18 A problem in classboxes . 32
2.19 Example of Ruby’s Refinements 33
2.20 Example of a definition of an extension method 35

LIST OF FIGURES vii

LIST OF FIGURES viii

2.21 Example of an extension method call 36
2.22 Example of virtual classes in Newspeak 37
2.23 Example of context-oriented programming in ContextJ 38
2.24 Example of implicit conversion in Scala 39
2.25 Example of type classes in JavaGI 40

3.1 A regioncut designator . 43
3.2 A regioncut designator can have three or more pointcuts. 43
3.3 A method including two similar regions 44
3.4 eval-method function for evaluating a program with reginocut . . 46
3.5 eval-stmt function for evaluating a statement with reginocut . . . 47
3.6 Range and order of evaluation with reginocut 47
3.7 Matching function match for regioncut 48
3.8 Context exposure by a regioncut 50
3.9 Example of markers . 53
3.10 A local variable is updated within a code region 54
3.11 A transformed version of the method in Figure 3.10 54
3.12 A program including jumps to out of a selected code region . . . 55
3.13 A transformed version of the method in Figure 3.12 56
3.14 Fine-grained Synchronization by hand 60
3.15 Coarse-grained Synchronization by hand 61
3.16 The advices for fine-grained synchronization 61
3.17 The advice for coarse-grained synchronization 62
3.18 Example Code from Hadoop and Its Synchronization Aspect 1 . . 63
3.19 Example Code from Hadoop and Its Synchronization Aspect 2 . . 64
3.20 Example of conflict of regioncuts 65
3.21 A region before/after removing a method call 66
3.22 A region before/after reordering a method call 67
3.23 An advice that handles an exception thrown from Figure 2.16 . . 68

4.1 An annotation for a method . 70
4.2 An annotation for an advice . 70
4.3 Advice with @SolveProblem is invoked by method with @Asser-

tAdvised . 71
4.4 Method with @AssertAdvised is invoked by advice with

@SolveProblem . 72

5.1 Code sample (a solution of the problem in Figure 2.18) 80
5.2 Ambiguous methods in a method shelter 81
5.3 An example of an import graph of method shelters 81

LIST OF FIGURES ix

5.4 A method shelter tree reconstructed from Figure 5.3 81
5.5 Method lookup functions of method shelters 82
5.6 Definition of source-node and source-chamber 82
5.7 An example of source-node and source-chamber 83
5.8 Definition of lookup-exposed and lookup-hidden 84
5.9 The syntax of method shelters 86
5.10 The definition of Ruby’s stack frame struct. 87
5.11 The definition of Ruby’s inline cache struct. 88
5.12 The time-related methods we defined in a method shelter 89
5.13 A client code of Ruby on Rails 89
5.14 The code that redefines “/” methods in method shelters 93
5.15 “avg.rb” library that redefines / and adds average method to

Array class . 94
5.16 “avgspec.rb” spec file for average method written in RSpec . . . 94
5.17 “divspec.rb” for Fixnum’s / written in RSpec 94
5.18 The code for defining getter and setter methods to access a pri-

vate instance variable . 95
5.19 The client code using accessor methods to a private instance variable 95
5.20 The benchmark program that calls an empty method under five

method shelters . 97
5.21 The benchmark program for Ruby on Rail 99

List of Tables
2.1 Typical Pointcuts in AspectJ . 19
2.2 Summary of existing mechanisms. 41

3.1 The execution time of the Javassist benchmark 58
3.2 The number of synchronization concerns in the TaskTracker class 59

4.1 The number of synchronization advices with regioncuts after the
update to Hadoop 0.18.3 . 73

5.1 Execution time of empty method (1,000 tries) 96
5.2 Execution time of fib(33) (1,000 trials) 97
5.3 Response time of tDiary (300 trials) 98
5.4 Response time of Rails application (1,000 trials, development env.) 99
5.5 Response time of Rails application (1,000 trials, production env.) 99
5.6 Cache hit ratios of Rails application (1,000 trials, production env.) 100

LIST OF TABLES x

Chapter

1
Introduction

The concept of separation of concerns — or decomposing programs into nat-
ural units rather than units imposed by tools — is a significant idea for de-
veloping software [44, 45]. It helps divide complicated problems into simpler
subproblems. Responsibilities of subproblems will get clear and minimum by
separation of concern. The idea is important to develop large and complex
software systems.

Abstraction is one aspect of separation of concerns. Many abstraction
techniques appeared to realize separation of concerns. Procedures, subrou-
tines, functions, or methods are atomic units that represent subprograms in
high-level programming languages.

Several module systems are proposed to modularize subprograms. Object-
oriented programming introduced objects to couple and abstract procedures
and data structures. Common object-oriented programming languages also
introduced classes, which is a language construct for defining an object’s
structure and behavior. Some programming languages also provide modules
that contain procedures and classes, for example, namespace in C++ or
package in Java.

Modularization increases changeability of programs. Loosely-coupled
modules get interfaces between other modules. Modules communicate
through defined interfaces. Modules can be easily replaced and it enables

INTRODUCTION 1

Motivating Problem

to change behavior of programs without modifying other code. Loosely-
coupled modules can be developed independently. Modularization also in-
creases comprehensibility of programs. Appropriately designed modules are
less dependent on other modules. Ideally, you can understand a module by
knowing its input and output.

A number of programming paradigms or modularization techniques are
proposed for achieving better modularization. Aspect-oriented program-
ming [35] (AOP), subject-oriented programming [27], feature-oriented pro-
gramming [11], and context-oriented programming [30] are the programming
paradigms to improve or complement object-oriented programming. Class
extensions, virtual classes [38, 40], and types classes [56] introduce more
flexible module systems.

Aspect-oriented programming and class extensions can destructively
change behavior of existing programs without editing the base code. This
thesis defines this feature as destructive extensions. Destructive extensions
are useful for separation of crosscutting concerns. Crosscutting concerns are
concerns that crosscut inheritance hierarchies. Modularizing crosscutting
concerns are not suitable for object-oriented programming. Aspect-oriented
programming has a feature to add or replace behavior to specified execution
points — method call, field access, etc. Crosscutting concerns including log-
ging and error handling can be separated into an aspect by aspect-oriented
programming. Class extensions allow programmers to add or redefine meth-
ods in existing classes. You can reuse and customize complicated libraries
without modifying their source code by using class extensions. Class ex-
tensions enable to add several utility methods into existing classes, and the
addition can be placed in one module.

1.1 Motivating Problem

To replace or switch programs is important for developing software. For
example, operating systems, interpreters, or compilers contain platform-
dependent code. To switch such a platform-dependent code, #if or #ifdef
macros are used in C or C++.

Synchronization code may also be platform-dependent. Granularity of
synchronization may affect performance of multi-threaded programs. Since
fine-grained synchronization increases concurrency, it improves performance
on a computer that has many CPU cores. However, fine-grained synchroniza-
tion increases overhead of synchronization. Coarse-grained synchronization

INTRODUCTION 2

Motivating Problem

improves performance on a computer that has a few CPU core since it de-
crease overhead of synchronization. Switching granularity of synchronization
code according to the machine is important to get better performance.

Replacement of programs is also useful to reuse and customize existing
libraries or programs. Suppose that changing look and feel of GUI library
developed in an object-oriented programming language. You can create a
new GUI library by subclassing the classes in the existing library even if you
cannot directly edit that source code. For example, Swing, which is a GUI
library for Java, is developed with subclassing AWT’s classes. However, it
introduces many scattered codes, which change look and feel in the classes.
Moreover, the class hierarchies of AWT and Swing do not match since Java
does not allow multiple inheritance. Duplicated codes were needed to im-
plement Swing. If you can replace only look-and-feel-related code in the
existing GUI library, a new GUI library with different look and feel can be
easily created. This example shows us that customizing existing libraries is
also crosscutting concerns, and it should be separated into modules.

Language constructs to replace programs should be modular. Macros in C
or C++ are traditionally used to replace or switch programs according to sit-
uations. However, they do not help to make code modular. Object-oriented
programming allows us to reuse and customize existing classes by subclass-
ing. However, in order to customize existing libraries by creating subclasses,
you should modify all instantiation code in the library to make instances of
the subclasses. You have to modify the existing library directly to replace
programs even in object-oriented programming languages. Destructive ex-
tensions including aspect-oriented programming and class extensions help to
replace programs in modular way.

Several problems with destructive extensions are discussed in commu-
nities of aspect-oriented programming and languages which have class ex-
tensions: expressiveness, fragile pointcut problem, and interference among
extensions. To replace programs in a modular and practical way, these prob-
lems should be solved or relieved.

In order to separate more concerns into modules, destructive extensions
should be more expressive. For example, synchronization concerns are not
suitable for aspect-oriented programming. In AspectJ [34], which is an AOP
language, you can change behavior of join points: a method call, method
execution, or field access. However, regions that should be synchronized may
not take a form of these join points. AOP languages should have means to
select more flexible join points to deal with synchronization that has several
granularity.

INTRODUCTION 3

Approach by This Thesis

Expressiveness of destructive extensions may decrease safeness. Aspect-
oriented programming got fragile pointcut problem [51] in exchange for its
expressiveness. AOP systems do not emit warning when an advice is not
correctly applied even if the advice must be applied to work correctly. De-
structive extension should provide a way to guarantee that at least one ex-
tension is applied.

Class extensions improve expressiveness of object-oriented programming.
They introduce a risk of interferences or conflicts among extensions. Conflicts
among class extensions break programs. Programs may fail to be compiled or
work incorrectly. Destructive extensions should also provide a way to control
multiple extensions applied to one place.

Systems for modularization should be improved to solve these problems.
Aspect-oriented programming and class extensions improved expressiveness
of programming languages. However they have room for improvement in ex-
pressiveness. They should also have means to solve fragile poinctut problem
and interferences in order to write programs more safely. This thesis tackles
these three problems by introducing programming language constructs.

1.2 Approach by This Thesis

Section 1.1 described three problems with destructive extension: expressive-
ness, fragile pointcut problem, and interference. This thesis proposes three
language constructs of programming languages to address these problems
with destructive extensions: regioncut to handle synchronization concerns in
AOP languages, assertion for advice to check whether pointcuts or region-
cuts are correctly applied, and method shelters to avoid conflicts among class
extensions. Regioncuts improve expressiveness AOP, and assertion for advice
make AOP less fragile, and method shelters decrease a risk of interferences
among class extensions.

Regioncut

This thesis proposes regioncut [5, 3] to separate synchronization concerns
into aspects. Regioncut is an extension of AspectJ to treat code regions as
ordinary join points. An ordinary join point in AspectJ is a single expression
or a method body. A code region is a sequence of statements. Regioncut
provides means to select code regions that you need and to change behavior
of the selected region. You can select an arbitrary code region by specifying

INTRODUCTION 4

Approach by This Thesis

(sub)sequence of join points that the region contains. Regioncut does not
select a code region that partially overlaps with control structures. Hence, a
compiled code with regioncuts does not emit illegal byte code sequences.

Regioncut enables us to select code regions and to apply around advice to
the regions. You can synchronize a critical section by writing synchronization
code in an around advice. Synchronization concerns can be separated into
aspects. You can switch granularity of synchronization by switching aspects.

Regioncut allows us to write synchronization with several sizes of granu-
larity in aspects. It is difficult to do in existing aspect-oriented programming
languages. Regioncut improves expressiveness of AOP languages.

Assertion for Advice

Aspect-oriented programming introduced fragility of programs. Regioncut
improved expressiveness of AOP; therefore AOP may get more fragile. Syn-
chronization code must work correctly at run time. However, synchronization
written in an aspect may be fragile. If a base code, which needs synchro-
nization, is refactored, the synchronization aspect may fail to be applied to
the code. Because of obliviousness property [23] of AOP, a compiler tells us
nothing even if an aspect is applied incorrectly.

To address fragile pointcut problem in AOP, this thesis proposes an asser-
tion for advice [3]. To use assertion for advice, you should attach annotations
to methods and advice. Annotations of assertion for advice take a name of
a concern. If the advice annotated with the concern name A may call the
method annotated with A, the proposed system does not emit warning. On
the other hand, if the method may call the advice, it does not emit warning
either. Otherwise, warning is emitted. With assertion for advice, you can
easily find aspects that do not work.

Method Shelters

Class extensions improved expressiveness of object-oriented programming
languages. However, class extensions caused a risk of conflicts of method
definitions. In order to avoid such a conflict, means to restrict a scope of
class extensions is required. Several module systems were proposed to intro-
duce a scope of class extensions. However, they do not provide fine-grained
scope.

This thesis proposes method shelters [4] to control a scope of class ex-
tensions and address conflicts. A method shelter is a module that confines

INTRODUCTION 5

Position of this thesis

effect of class extensions. A method shelter can import other method shelters
to call or override methods in them. To control a scope flexibly, a method
shelter consists of two parts: exposed chamber and hidden chamber. Meth-
ods defined in an exposed chamber can be called and overridden by other
method shelters. Methods defined in a hidden chamber are not visible from
other method shelters which are importing that shelter.

1.3 Position of this thesis

The position of this thesis in the research history of programming languages
is that it provides mechanisms to elevate expressiveness of programming lan-
guages without spoiling safeness including fragility and interference. As illus-
trated in Figure 1.1, expressiveness and fragility in programming languages
are trade-off. Object-oriented programming languages are more expressive
than procedural languages. However, in object-oriented languages, mod-
ifying superclass may affect subclasses. Aspect-oriented programming in-
troduced more expressiveness than object-oriented programming; it caused
fragile pointcut problem. However, aspect-oriented programming languages
are not enough expressive. For example, it is difficult separate synchroniza-
tion concerns into modules using aspect-oriented programming. This thesis
presents regioncut to make aspect-oriented programming more expressive.
Regioncut improved expressiveness of aspect-oriented programming by in-
troducing means to treat code regions as join points. Granularity of tradi-
tional join points is not flexible since they are expressions or method bodies.
These join points are not suitable for synchronization, exception handling,
and resource handling. Join points with more flexible granularity, code re-
gions, introduced ability to separate more concerns into module. However,
introduction of expressiveness by regioncut also make aspect-oriented pro-
gramming more fragile. This thesis also proposes assertion for advice to ad-
dress trade-off between expressiveness and fragility introduced by regioncut.
Assertion for advice provides means to guarantee that an advice is applied to
an anticipated point by annotating a method and an advice. Existing aspect-
oriented programming languages do not provide a way to show whether an
advice is applied or not. The compiler proposed by this thesis checks whether
an advice affects the specified methods at compile time. Combination of re-
gioncut and assertion for advice addresses trade-off between expressiveness
and fragility in aspect-oriented programming languages.

As illustrated in Figure 1.2, expressiveness and a risk of interference

INTRODUCTION 6

Position of this thesis

Figure 1.1. Trade-off between expressiveness and fragility in programming lan-
guages.

among extensions are also trade-off. Class extensions introduced more ex-
pressiveness into object-oriented programming. On the other hand, they
introduced a risk of interference. Exiting approaches including Ruby’s re-
finements and classboxes tried to decrease the risk. Refinements restrict the
scope of class extensions in lexical scope. It solves a risk of interference.
However, it spoils expressiveness of class extensions. Classboxes are safer
than normal class extensions and more expressive than refinements. How-
ever, there are several cases that programmers cannot avoid interference using
classboxes. This thesis presents method shelters to avoid a risk of interfer-
ence introduced by class extensions. Method shelters are more expressive
than refinements since they can replace method in existing libraries. Method
shelters provide means to avoid interference that classboxes cannot solve.
To make class extensions expressive without interference, method shelters
provide two scopes of class extensions. Programmers can avoid interference

INTRODUCTION 7

Structure of this thesis

Figure 1.2. Trade-off between expressiveness and interference among class
extensions in programming languages.

among class extensions by composing these scopes and modules.

1.4 Structure of this thesis

From the next chapter, this thesis explains background of this thesis and
details of the proposed language constructs. The structure of the rest of this
thesis is as follows:

Chapter 2: Program Replacement and Destructive Extensions

This chapter discusses needs of destructive extensions and shows that de-
structive extensions help us to replace programs according to situations.
This chapter also explains problems with existing destructive extensions tech-

INTRODUCTION 8

Structure of this thesis

niques: expressiveness, fragile pointcut problem, and interference among ex-
tensions.

Chapter 3: Regioncut

To improve expressiveness of AOP and support synchronization concerns in
AOP, this chapter introduces a new language contruct named regioncut. This
chapter explains design, semantics, implementation issues, and application
to existing programs.

Chapter 4: An Assertion for Advices

To guarantee that a mandatory advice is correctly applied and address fragile
pointcut problem in AOP, this chapter presents assertion for advice. This
chapter explains design, implementation, and evaluation of assertion for ad-
vice.

Chapter 5: Method Shelters

This chapter introducesmethod shelters. It provides means to control scope of
class extensions and address interferences or conflicts among class extensions.
This chapter describes design, semantics, and implementation of method
shelters. Then, this chapter also explains application to several programs
and performance measurement of method shelters.

INTRODUCTION 9

Chapter

2
Program Replacement and

Destructive Extensions

It is important to replace programs according to situations for developing
large software. For example, operating systems have codes that are depen-
dent on hardware. Compilers or interpreters contain codes that are depen-
dent on operating systems and hardware. In order to support threads in
programming languages on multiple platforms, a layer, which wraps differ-
ent thread libraries provided on operating systems, is required, and its codes
should be replaced according to operating systems. Using asynchronous I/O
is also platform-dependent. To implement server software which handles
many TCP connections, asynchronous I/O should be used. However, operat-
ing systems do not have standard API for asynchronous I/O: Linux provides
epoll and BSDs provide kqueue. As this example shows, replacing programs
is also required for applications to get better performance.

To replace or switch such a code, macros — #if and #ifdef — are used
in C or C++. You can enable or disable platform-dependent programs by
defining constants using #define. Macros in C or C++ do not have enough
modularity. #if and #ifdef are placed directly in the source code. Replace-
ment code may be scattered in several places. To replace existing program, a
modifying code should placed in a module, and it should modifies the exist-
ing code without editing the base code. This chapter describes importance

PROGRAM REPLACEMENT AND DESTRUCTIVE EXTENSIONS 10

Examples of Program Replacement

of program replacement, techniques for modifying existing programs named
destructive extensions, and problems with destructive extensions.

2.1 Examples of Program Replacement

2.1.1 Changing Look and Feel of GUI Libraries

GUI libraries are another example. A GUI library may be customized to
make modern look and feel or make suitable for a platform. To change look
and feel, macros can be used in C. However, the code for customizing is
tangled with the base code, and it is not modular. Swing library realized
changing look and feel by inheritance.

Swing is a GUI library for Java, which is based on AWT. Swing changes
look and feel from AWT (Figure 2.1). Since Java does not have means to
modify existing classes, Swing is developed by creating subclasses of classes
in AWT.

In AWT, Component class is the root class of GUI widget classes. Other
widget classes including Button class are subclasses of Component. In Swing
world, JComponent is the root class and it is a subclass of Component class.
Swing’s widget classes must inherit from JComponent. Since multiple in-
heritance is not allowed in Java, Swing’s widget classes cannot inherit from
AWT’s classes. JButton class is a subclass of JComponent instead of Button
class (shown in Figure 2.2). Although both Button and JButton implement
button widget, JButton cannot reuse Button class’s code. In Java, duplicated
code is needed to make customized library.

It is difficult to customize existing library without code duplication. Cus-
tomizing codes are appeared in various places and they are crosscutting con-
cerns. You can change look and feel of a GUI library by redefining methods
of existing classes if a programming language supports redefinition of existing
classes without modifying their source code.

2.1.2 Switching Granularity of Synchronization

In 2006, the developers of Javassist [17] received a bug report [1]. Javas-
sist is a Java class library for modifying Java bytecode and it is widely used
in a number of Java products, mainly web application frameworks such as
Redhat JBoss application server and Hibernate. The bug was that a method

PROGRAM REPLACEMENT AND DESTRUCTIVE EXTENSIONS 11

Examples of Program Replacement

Figure 2.1. Different look and feel of AWT and Swing

generating a proxy object was not thread-safe: there is no synchronized state-
ment. To fix this bug, they had to modify the method to contain synchronized
statements.

An interesting issue of this bug fix was lock granularity; which code block
should be put into a synchronized statement. Since lock granularity affects
concurrency, minimizing the granularity generally improves execution perfor-
mance when multiple processor cores are available. In this case the developer
have two candidates of synchronization granularity (shown in Figure 2.3).
The blue box means coarse-grained lock, and the two red boxes mean fine-
grained lock.

However, as discussed in [37], excessive concurrency often have nega-
tive impact on performance. In year 2006, low-end servers were still single-
processor machines and 4-way multi-processors machines were expensive (In-
tel Core-MA Xeon “Woodcrest” was shipped in 2006). On a single- or 2-way
machine, small granularity may not improve execution performance under a
heavy workload. In programs with small granularity synchronization invoke
lock and unlock operations many times, and these operations spend more
time than other operations. Small granularity synchronization may reduce
performance. Thus, for the users who run their software on such a relatively
slow machine, we should have modified Javassist to make the lock granularity
larger (the blue lock in Figure 2.3).

This experience shows that a synchronization concern is a good candidate
to replace programs according to situations. If multiple implementations of
the synchronization are supplied as a set of modules, users can choose the
best implementation and apply the module for that implementation when
they install the software. They do not have to modify the rest of the pro-
gram when they change the implementation. On the other hand, when the
developers of Javassist fixed the synchronization bug, they had to choose one
implementation and hard-wire it since the software was written in pure Java.
The resulting software ran fast on some kind of hardware but not on other

PROGRAM REPLACEMENT AND DESTRUCTIVE EXTENSIONS 12

Destructive Extensions

Figure 2.2. Swing’s JButton class is not a subclass of AWT’s Button class.

kinds.

2.2 Destructive Extensions

Modification of existing programs’ behavior is used in several programming
languages. We call the features that can change existing programs without
modification of the base code as destructive extensions. Destructive exten-
sions include two features: pointcut/advice mechanism in aspect-oriented
programming and class extensions. Smalltalk, Objective-C, and Ruby have
class extensions. Poincut/advice mechanism in aspect-oriented programming
languages is means to modify behavior of expressions or method bodies in a
program.

Destructive extensions improve modularity of programs in object-oriented
programming. In most OO-languages, programs are packed in classes. A
class includes definition of data structure and operations related to the data
structure. Programs related to a data structure can be put in one place.

PROGRAM REPLACEMENT AND DESTRUCTIVE EXTENSIONS 13

Destructive Extensions

public'class!ProxyFactory!{!
!!!!public!Class!createClass()!{!
!!!!!!!!if!(thisClass!==!null)!{!
!!!!!!!!!!!!ClassLoader!cl!=!getClassLoader();!
!!!!!!!!!!!!synchronized!(proxyCache)!{!
!!!!!!!!!!!!!!!!if!(useCache){createClass2(cl);}!
!!!!!!!!!!!!!!!!else!{createClass3(cl);}!
!!!!!!!!!!!!}}!
!!!!!!!!return!thisClass;}!
!!!!private'void!createClass2(ClassLoader!cl)!{!
!!!!!!!!CacheKey!key!=!new!CacheKey(…);!
!!!!!!!!!synchronized!(proxyCache)!{!
!!!!!!!!!!!!HashMap!cacheForTheLoader!=…;!
!!!!!!!!!!!!if!(cacheForTheLoader!==!null)!{!
!!!!!!!!!!!!!!!!cacheForTheLoader!=!new!HashMap();!
!!!!!!!!!!!!!!!!proxyCache.put(cl,!cacheForTheLoader);!
!!!!!!!!!!!!!!!!cacheForTheLoader.put(key,!key);!
!!!!!!!!!!!!}else!{...}}!
!!!!!!!!!synchronized!(key)!{!
!!!!!!!!!!!!Class!c!=!isValidEntry(key);!
!!!!!!!!!!!!if!(c!==!null)!{!
!!!!!!!!!!!!!!!!createClass3(cl);!
!!!!!!!!!!!!!!!!key.proxyClass!=!new!WeakReference(…);!
!!!!!!!!!!!!}else{thisClass!=!c;}!
!!!!!!!!!}}}!

Figure 2.3. Javassist’s ProxyFactory class have two candidates for synchroniza-
tion.

Programmer can reuse code by inheritance.
If you only use OO features, you cannot write some code in modular way.

It is difficult to modularize features or concerns that are spreading across
many classes without inheritance. Logging is an example. Logging code may
appear several places and crosscut class hierarchies. Whether logging code to
be required or not depends on what the method is doing. You should write
logging code directly in the method to implement logging feature.

In order to modularize such a features or concerns — crosscutting con-
cerns —, existing classes should be destructively extensible from outside of
the class definitions. The extension should be placed in one file or a mod-
ule. Destructive extensions allow us to separate crosscutting concerns into
a module. This section describes class extensions and aspect-oriented pro-

PROGRAM REPLACEMENT AND DESTRUCTIVE EXTENSIONS 14

Destructive Extensions

1 Array extend [
2 average [
3 ˆ(self inject: 0 into: [:r :i | r + i]) / (self size)
4]
5]

Figure 2.4. Example of Class Extensions in Smalltalk

gramming.

2.2.1 Class Extensions

Destructive extensions in OOP languages are called class extensions. Several
languages provide class extensions as languages’ feature.

2.2.1.1 Smalltalk

Smalltalk [24] has class extensions feature. You can extend existing classes.
Figure 2.4 shows an example of class extensions in Smalltalk. This example
adds new average method into Array class. This syntax is same as normal
class definitions.

2.2.1.2 Objective-C

Objective-C is a OOP programming language based on C. It introduces
Smalltalk-style OOP into C. Objective-C can also extend existing classes.
Class extensions feature is called category in Objective-C.

In Cocoa and Cocoa touch framework, which are core framework in Mac
OS X and iOS, use category to extend classes in separated files. For exam-
ple, Cocoa touch framework contains Foundation Kit library and it defines
NSString class, which represents a string, and UIKit library adds several
methods to NSString class. UIKit defines sizeWithFont: methods in NSString,
which calculate size of the receiver string if it is rendered with the specified
font. UIKit library adds methods to the existing class instead of defining
new classes for user’s convenience.

Figure 2.5 is an example of category or class extension in Objective-
C. It adds average method to NSArray class, the array class in Cocoa.
The difference of syntax between category and normal class definition are

PROGRAM REPLACEMENT AND DESTRUCTIVE EXTENSIONS 15

Destructive Extensions

1 @implementation NSArray(AverageAddtion)
2 − (double)average{
3 double sum=0;
4 for(NSNumber∗ num in self){
5 result+=[num doubleValue];
6 }
7 return sum/[self count];
8 }
9 @end

Figure 2.5. Example of Class Extensions in Objective-C

1 class Array
2 def average
3 self.inject(0){|r,i| r+i }.to f / self.size
4 end
5 end

Figure 2.6. Example of Class Extensions in Ruby

“(AverageAddtion)” placed next to NSArray. If you destructively extend a
class, you must specify explanation of the extension after the class name.

2.2.1.3 Ruby

Class extensions are called open class in Ruby [48]. You can always extend
existing classes like Smalltalk. Figure 2.6 shows an example. Array class is
the built-in array class and average method is added to the class. The syntax
of class extensions in Ruby is the same to normal class definition.

2.2.1.4 Usage of class extensions

Class extensions are frequently used in Ruby. For example, a number of use
cases are found in Ruby on Rails [46]. We below show typical usage of class
extensions in Ruby.

Convenient methods Class extensions are used to add convenient methods to
core classes: Integer, String, Array and so on. For example, in Ruby on Rails,
a suite of bytes methods is added to Numeric class, which is a super class

PROGRAM REPLACEMENT AND DESTRUCTIVE EXTENSIONS 16

Destructive Extensions

of Integer and Float classes. The method call “n.kilobytes” (where n is
a number) returns n × 1024 and “n.megabytes” returns n × 10242. These
bytes methods are useful when writing a program that handles file sizes.
Programmers’ intentions will be clear.

Another example is sum method. Ruby on Rails also adds sum method
to Enumerable module, which is a mixin [15] module for list-like classes. This
method computes the sum of elements in an Enumerable object. This method
is simple and useful although the Ruby’s standard library does not provide
it. By using class extensions, third party libraries such as Ruby on Rails can
easily add convenient methods.

Operator redefinition In Ruby, several operators, such as +, -, * and /, are
normal methods. Thus anyone can redefine them.

Division of integers in Ruby returns an integer by default, for example,
1/2 returns 0. On the other hand, the Ruby’s standard library mathn rede-
fines it. Once you load this library, division of integers returns a rational.
1/2 returns a Rational object that represents 1

2
. This library makes it possible

to describe mathematical expressions with normal notations.

Tree traversal Class extensions simplify tree traversal. If you naively write
traversal code separately from tree-node classes, the code includes runtime
type checking and it must be modified when a new node class is added.
Although the code following the Visitor pattern is more extensible, all node
classes must have methods for the Visitor pattern in advance. The Visitor
pattern is not applicable to a tree if the node classes do not conform the
Visitor pattern or they are not modifiable since a third-party library provides
them.

If class extensions are available, you can add methods for traversal to
node classes on demand. For example, suppose that a tree consists of Integer
and Array and you want to sum up every integer elements in a tree. You only
have to write the following code

1 class Integer
2 def sum tree
3 self
4 end
5 end
6
7 class Array
8 def sum tree
9 result=0

PROGRAM REPLACEMENT AND DESTRUCTIVE EXTENSIONS 17

Destructive Extensions

10 for child in self
11 result += child.sum tree
12 end
13 result
14 end
15 end

The Visitor pattern is not required to traverse trees if you have class
extensions. The code including runtime type checking is not needed.

Serialization libraries for Ruby often use this technique. For example, a
JSON [19] library for Ruby adds to json method to core classes, such as Inte-
ger, String, Array and Hash. A JSON serializer uses this method to traverse
a tree made by core classes and to dump a JSON file.

Monkey patching When a third-party library has a bug, class extensions allow
programmers to patch and fix it. A method that includes a bug can be
replaced with a correct implementation of that method. Programmers do
not have to directly modify the source code of the library. This technique is
known as monkey patching.

2.2.2 Aspect-oriented programming and pointcut/advice

mechanism

Aspect-oriented programming (AOP) [35] is proposed as a technique to com-
plement procedural and object-oriented programming. It allows program-
mers to modify programs from outside of their modules to improve modular-
ity. AOP aims to modularize concerns including logging, error handling or
synchronization, which are scattering in Object-Oriented Programming. In
AOP, these concerns are called crosscutting concerns. AOP helps to separate
crosscutting concerns into a new kind of module named an aspect.

AOP has two mechanisms: pointcut/advice and class extensions. Class
extensions are mentioned in Section 2.2.1. This section describes AOP lan-
guages and pointcut/advice mechanism.

2.2.2.1 AspectJ

AspectJ [34] is a Java-based programming language that supports aspect-
oriented programming. AspectJ introduce several concept and constructs

PROGRAM REPLACEMENT AND DESTRUCTIVE EXTENSIONS 18

Destructive Extensions

pointcuts join points the pointcut matches
call(method) when the method is called
execution(method) when the method is executed
get(field) when the field is read
set(field) when the field is set
within(class) join points which appear in the class
within(method) join points which appear in the method
this(var) when the this at join point is instance of var’s type
target(var) when the receiver of join point is instance of var’s type
args(arg0, arg1, . . .) when argn is instance of var ’s type
cflow(pointcut) when the join point in the control flow of the pointcut

Table 2.1. Typical Pointcuts in AspectJ

including join points, pointcut-advice and inter-type declarations for separa-
tion of crosscutting concerns. These allow programmers to modify behavior
of programs from outside of a module.

Join points The concept of join points is introduced by AspectJ. A join point
is an execution point of programs. For example method calls, executions of
a method body, constructor calls and filed accesses are considered as join
points in AspectJ.

Pointcuts A pointcut is a language construct for specifying join points. Pro-
grammers selects intended join points from all join points in the program.
Pointcuts provided by AspectJ are showed in Table 2.1. Pointcuts can be
composed by logical operator: conjunction and disjunction. For example, a
pointcut

call(void Lock.lock()) && withincode(String WebController.action())

picks out calls of Lock.lock method in the body of WebController.action()
method.

Advice Advice is a procedure to define additional behavior at join points
specified by pointcuts. AspectJ provides three types of advice: before, after
and around. Before advice adds an additional behavior before the join point,
and after advice adds it after the join point. Around advice replace the
behavior of the join point, and proceed special function allows you to call the
original behavior of the join point.

PROGRAM REPLACEMENT AND DESTRUCTIVE EXTENSIONS 19

Destructive Extensions

1 class FooController{
2 Database db = ...;
3 void fooAction(){
4 //...
5
6 Result r = db.get(searchQuery);
7
8 //...
9 }
10
11 void barAction(){
12 //...
13
14 Result r = db.get(updateQuery);
15
16 //...
17 }
18 }

Figure 2.7. Methods that access a database

Aspects and pointcut/advice mechanism An aspect is a module that can in-
clude one or more advice. Programmer can change behavior of other modules
from an aspect, which is outside of the modules.

Figure 2.7 shows methods that access a database. If you need to log
accesses occurred in the methods, pointcut/advice can be used. Figure 2.8
shows an example of a logging aspect. The call pointcut in the advice se-
lects calls of Database.get methods in the methods. When execution of the
program reached the call of Database.get, the advice will be executed. The
proceed call in the advice will execute the selected join point.

Aspects can be applied before executing programs. In AspectJ, advice
code of aspects is inserted into base code at compile-time or load-time. This
insertion is called weaving. Weaving introduces better performance of aspects
execution.

Inter-type declarations Class extensions are called as inter-type declarations
in AspectJ. Aspects in AspectJ have ability to define fields, methods and
constructors of other classes. Aspects can modularize concerns or features
that do not adapt to class hierarchies by using inter-type declarations.

PROGRAM REPLACEMENT AND DESTRUCTIVE EXTENSIONS 20

Destructive Extensions

1 aspect Log{
2 void around() :
3 call(Result Database.get(String))
4 {
5 Logger.log("access started");
6 proceed();
7 Logger.log("access finished");
8 }
9 }

Figure 2.8. Example of Logging aspects in the Around Advice

1 class AddLog revises Database{
2 Result Databaes.get(String query) {
3 Logger.log("access started");
4 super.get();
5 Logger.log("access finished");
6 }
7 }

Figure 2.9. Example of a Reviser in GluonJ

2.2.2.2 GluonJ

GluonJ [18] is another aspect-oriented programming language but it does not
have AspectJ-like constructs. GluonJ provides AOP features by enhancing
OOP mechanisms. The enhancement includes revisers and within predicates.

Revisers A reviser is familiar to a class definition, but it destructively adds
or replaces target class’s member. GluonJ provides revisers to simulate and
around advice execution pointcut. Figure 2.9 shows an example of a reviser.
This example contains only one GluonJ-specific construct: “revises”. The
super call in the reviser method works as proceed() in AspectJ. The users of
GluonJ should know less special constructs than existing AOP languages.

Within predicate Scope of simple destructive method revising is global. Glu-
onJ introduces predicate dispatch with within predicate to limit the scope of
reviser. A within predicate takes a class or method name as an argument.
A method defined with within argument is executed if the method is called

PROGRAM REPLACEMENT AND DESTRUCTIVE EXTENSIONS 21

Problems with Destructive Extensions

from the specified location. With within predicates, GluonJ has capability of
the call pointcut with within/withincode pointcut in AspectJ.

2.3 Problems with Destructive Extensions

The three significant problems have been discussed since aspect-oriented pro-
gramming was introduced. First one is the expressiveness of aspect-oriented
programming. To separate more concerns into modules, many studies intro-
duced more expressiveness into pointcuts. Second one is the fragile pointcut
problem [51]. Aspect-oriented programming helps programmers to change
behavior of existing programs from outside the base code. Programmers
should specify the structure of the base code to change its behavior. If the
base code is edited and its structure is changed, aspect may fail to select the
base code. Third one is interference or conflict among extensions. If multi-
ple extensions are applied one place, they may be in conflict. This section
describes these three problems and existing proposals.

2.3.1 Expressiveness

To separate more kinds of concerns into modules, expressiveness of destruc-
tive extensions should be improved. Several features are proposed to improve
expressiveness of aspect-oriented programming languages. For example, new
join points and pointcuts for AspectJ are proposed.

Declarative Event Patterns and Tracematch Declarative event patterns [57] and
Tracematches [8] provide history-based pointcuts. With these pointcuts, an
advice can be invoked when the given pattern matches on a dynamic exe-
cution history. In tracematch, its dynamic execution history is called trace.
Trace consists of entrance and exit of method calls. Figure 2.10 is an ex-
ample of tracematch. To use tracematch, you define symbols that represent
pointcuts, and order them. This tracematch matches the exit of b() if the
a() is entered before the exit of b().

History-based pointcuts cannot be used to invoke an advice before a code
sequence matching the given pattern starts running, since these pointcuts
use execution history. It can be used only to invoke after the code sequence
finishes running. They cannot weave around advice into code sequences.
Thus, those pointcuts are not appropriate for separating a synchronization

PROGRAM REPLACEMENT AND DESTRUCTIVE EXTENSIONS 22

Problems with Destructive Extensions

1
2 tracematch () {
3 sym a before: call(∗.a(..));
4 sym b after: call(∗.b(..));
5
6 a b
7
8 {
9 System.out.println("a;b;");
10 }
11 }

Figure 2.10. Example of Tracematch

concern. Pointcuts should know future (like GAMMA [36]) to weave around
advice into regions.

Loop join points LoopsAJ [26] provides a pointcut for selecting a loop join
point, which corresponds to a loop body. It allows parallelizing the execution
of the specified loop body. Figure 2.11 is a example of LoopsAJ. The former
pointcut matches any loop bodies in the whole program. The latter matches
for(int i=MIN; i¡MAX; i+=STRIDE) style loop bodies; MIN, MAX and
STRIDE are passed to arguments of the advice. Since proceed() can be
called in another thread, you can parallelize each loop body.

Loop join point is not so powerful to choose loop join points. If a method
body contains multiple loops, LoopsAJ cannot distinguish these loops. The
loop() pointcuts can distinguish loop join points by args.

A loop join point has another problem. A loop join point may not be
applied around advice. If a loop has several successor nodes, it has labeled
break, for example (Figure 2.12), you cannot weave around advice.

Synchronized Block Join Points Synchronized block join points [61, 62] are
proposed to enable selecting synchronized statements as join points in As-
pectJ. With their work, programmers can select existing synchronized state-
ments. Figure 2.13 shows an example of synchronized block join points.
synchronize() pointcut can select synchronized statement. A new construct
rm proceed() calls the block of synchronized statement without synchroniza-
tion operations. So, you can cancel the synchronized() statement and re-
implement another strategy of synchronization. For example, you can use a

PROGRAM REPLACEMENT AND DESTRUCTIVE EXTENSIONS 23

Problems with Destructive Extensions

1
2 void around(): loop(){
3 synchronize(lockObj){
4 proceed();
5 }
6 }
7
8 void around(int min , int max , int stride):
9 loop() && args(min, max, stride)
10 {
11 Runnable r = new Runnable () {
12 public void run () {
13 proceed(min, max, stride);
14 }
15 } ;
16 new Thread(r).start();
17 }

Figure 2.11. Example of LoopsAJ

java.util.concurrent.locks.ReentrantLock object instead of synchronized() state-
ment for locking. However they cannot change the granularity of synchro-
nization nor insert new synchronization code within a method body without
a synchronized statement.

EJFlow EJFlow [16] is proposed to improve support of exception handling in
AOP. It provides a construct to pick out the flow of an exception. EJFlow
introduces a concept named explicit exception channel or EEC, which ab-

1 outer:
2 while(...){
3 while(...){
4 if(cond()){
5 break outer;//exit 1
6 }
7 }//exit 2
8 }

Figure 2.12. Example of loop with several successor nodes

PROGRAM REPLACEMENT AND DESTRUCTIVE EXTENSIONS 24

Problems with Destructive Extensions

1
2 void around(Map m): synchronize()
3 &&withincode(∗.foo()) && args(m)
4 {
5 try{
6 lock.lock();
7 rm proceed();
8 }finally{
9 lock.unlock();
10 }
11
12 }

Figure 2.13. Example of Synchronized Block Join Point

stracts exception handling. Explicit exception channel is represented as a
5-tuple: exception types, raising sites, handling sites, intermediate sites and
exception interface. Exception type is a runtime type of exception to be
treated. Raising sites are the locations where the exception specified by an
exception type is raised. Handling sites are the locations where the raised
exception is handled. Intermediate sites are the methods that call the meth-
ods of raising sites but do not handle the exception. Exception interface is
the list of exceptions that the EEC signals, it is similar to the throws clause
in Java.

EJFlow selects exceptions using explicit exception channel and apply ad-
vice. Figure 2.14 shows an example of EJFlow. The exception handling
advice is invoked when an exception of Exception1 is raised in method A(),
A() is not called from S() and the exception reached call site F().

2.3.1.1 Separation of synchronization concerns in AOP

Aspect-oriented programming can modularize various concerns such as log-
ging and Observer pattern [34] by aspects. As mentioned in Section 2.1.2,
synchronization concern is also a good candidate for modularizing as an as-
pect.

However, AOP languages are not suitable for modularizing synchroniza-
tion concerns. Granularities of the join points in AspectJ are not suitable
for synchronization. In AspectJ, call pointcut selects method invocations or
new expressions. When call matches method invocations, it corresponds to

PROGRAM REPLACEMENT AND DESTRUCTIVE EXTENSIONS 25

Problems with Destructive Extensions

1
2 pointcut raisingSite: withincode(public void A());
3 pointcut intermedeateSite : !withincode(public void S());
4 pointcut EEC() : echannel(Exception1, raisingSite, intermedeateSite);
5
6 void ehandler() boundto(EEC1()) catching(Exception1 e):
7 withincode(public void F()){
8 {
9 //exception handling
10 }

Figure 2.14. Example of EJFlow

invokevirtual, invokespecial, invokestatic or invokeinterface in JVM’s byte-
code. If call matches new, it corresponds to a sequence of new and invokespe-
cial. get and set pointcuts select field accesses. They correspond to getfield,
putfield, getstatic, and/or putstatic. A join point selected by call, get, or set
pointcut corresponds to a single bytecode instruction (method invocations
or field accesses). It is too fine-grained for synchronization. A join point
selected by execution pointcut is a whole method body and hence it is too
coarse-grained. Single get or set operation does not need to be synchronized
because they are not critical section. If we synchronize a method call or a
method body, it is too coarse to improve concurrency. To implement a syn-
chronization concern, it should be possible to select an arbitrary code region
as a join point. For example, programmers should be able to select a code
region from some statement to another statement in a method body as they
insert a synchronized statement there (like Figure 2.15).

Some programmers might think AspectJ has sufficient expressiveness for
implementing a synchronization concern. Programmers can modify a method
body and extract a new method for such a code region. Then they can
write an around advice with execution pointcut, which runs when that new
method is attempted to be invoked. This around advice can execute the new
method by proceed within a synchronized statement. However, our goal is
to provide several aspects each of which implements a different synchroniza-
tion policy: fine-grained granularity, coarse-grained, synchronized statement,
ReentrantLock object in java.util.concurrent.locks package and so on. Each
aspect needs to put a different code region of the method body into a syn-
chronization statement. It is not practical to modify an original method body
to extract several new methods for those code regions. Strongly associated

PROGRAM REPLACEMENT AND DESTRUCTIVE EXTENSIONS 26

Problems with Destructive Extensions

1 public void foo(){
2 //do something
3
4 beginCriticalWork();
5 //do critical something.
6 endCriticalWork();
7
8 //do something
9 }
10
11 aspect Synchronize{
12 void around() :
13 <from beginCriticalWork() to endCriticalWork() in method foo>
14 {
15 synchronize(someLockObject){
16 proceed();
17 }
18 }
19 }

Figure 2.15. Pseudo code of pointcut to synchronize a code

codes/methods may scatter. The readability of the resulting method body
might be decreased. If two code regions intersect with each other, extracting
a sub method for each code region is not possible.

2.3.1.2 Separation of exception handling concerns

Exception handling and resource handling are also concerns that are difficult
to separate into aspects. try-catch blocks are placed in arbitrary locations
within a method. Behavior of regions should be changed in order to exception
handling codes. Figure 2.16 show an example of a region which may throw
exceptions. The region from new FileReader() to br.close may throws an IOEx-
ception. If you want to insert exception handling in Java, you should directly
insert try-catch clause. AspectJ does not provide means to add exception
handling code to such a region either. These concerns are also examples for
improving expressiveness of AOP.

PROGRAM REPLACEMENT AND DESTRUCTIVE EXTENSIONS 27

Problems with Destructive Extensions

1 public void readLines(String fileName) throws IOException{
2 //do something...
3 doSomething0();
4
5 List<String> lines=new ArrayList<String>();
6
7 BufferedReader br = new BufferedReader(new FileReader(

fileName));
8 String line;
9 while((line=br.readLine()) != null){
10 lines.add(line);
11 }
12 br.close();
13
14 //do something...
15 doSomething1();
16 }

Figure 2.16. A region that includes file operations may throw exceptions

2.3.2 Fragile Pointcut Problem

Pointcut/advice mechanism in AOP languages causes fragile pointcut prob-
lem [51]. Pointcuts select join points by specifying names of elements in
the base languages. This makes aspects and base programs tightly-coupled.
Aspects may work incorrectly if someone refactored base programs. Fragile
pointcut problem contains two types of problems:

• Pointcuts fail to select intended join points. This kind of problem is
caused by non-local modifications. Necessary concerns implemented in
aspects are not applied.

• Pointcuts select unintended join points. Unnecessary behavior modifi-
cations are introduced to base programs.

There are typical non-local modifications of programs that break point-
cuts: renaming, moving method/class, addition/removal members and
changing signatures. If a name of a method or class is renamed, point-
cuts including execution, call, get and set may fail to pick out intended join
points. You can avoid the effect by using wildcards in pointcuts, but it does
not essentially solve the issues. Moving methods or classes affect pointcuts
using within or withincode. Existing pointcuts may match added methods,

PROGRAM REPLACEMENT AND DESTRUCTIVE EXTENSIONS 28

Problems with Destructive Extensions

1 module EditorApp {
2 class app.editor ..∗;
3 expose to app.editor..∗ : call(∗ ∗(..));
4 }

Figure 2.17. Example of open modules

but it may not be anticipated. Pointcuts lose the join points by removal
of elements, even if the advice with the pointcuts must be executed in the
program.

Local modifications may also introduce fragile pointcut problem. If a
programmer adds code into existing program, aspects may be applied into
the additional code. It may introduce unintended behavior. The writer of
aspects can avoid this kind of problem by using within or withincode pointcuts.

Several mechanisms are proposed to make pointcuts robuster. Open mod-
ules [7, 43] and XPI [25] are approaches to specify join points via explicit
interfaces of join points. Open modules restrict visibility of join points. To
select join points in a class, developer of the class should explicitly expose
intended join points to an aspect. Other join points are hidden in the mod-
ules.

Figure 2.17 shows an example of open modules for AspectJ. It defines
EditorApp module that implements a text editor application. The class clause
declares that classes defined under the app.editor package are the members
of the module. expose to clause exposes declares that call join points in the
member classes can be selected the aspects defined the app.editor package.
The module EditorApp restricts the scope of join points of the member classes.

Test-based pointcut [50] is a pointcut to select join points using unit tests.
A test-based pointcut is written like:

test(get(* changedDirName))

While unit tests are running, execution histories of test cases, which executes
join points matching the specified join points (the field access to changed-
DirName in this case), are recorded. While executing programs, an execution
history is compared to the recorded ones when the program reaches a join
point. If the execution history matches, the advice will be executed. This
approach dose not automatically solve fragile pointcut problem. Change of a
base code may break pointcuts if unit tests and the base code are not consis-
tent. However, unit tests are maintained in practice software development.

PROGRAM REPLACEMENT AND DESTRUCTIVE EXTENSIONS 29

Problems with Destructive Extensions

Test-based pointcuts can work correctly if unit tests are maintained.

2.3.2.1 Fragile Pointcut Problem with synchronization concerns

Section 2.3.1.1 mentioned modularization of synchronization concerns. How-
ever, it introduces a problem, which is how to guarantee that at least one
synchronization policy is applied. If no synchronization policy is applied,
the program is thread-unsafe; this is a bug. However, if a synchronization
policy is implemented as an aspect in AspectJ, we cannot confirm that the
synchronization aspect is actually woven and synchronization is performed
at runtime. In particular, when the base program is modified later, the ex-
isting synchronization aspect might be accidentally made not to work any
more due to the fragile-pointcut problem [51]. This is a general problem with
using an AspectJ’s aspect for implementing an alternative feature in feature
modeling [31, 32]. In our scenario, a synchronization concern is a feature in
the contexts of feature-oriented programming [11]. The synchronization poli-
cies are alternative sub-features of that feature, that is, a set of sub-features
one of which must be included. Implementing a feature by an aspect is good
practice and it is not a new idea. Since an aspect can be attached and de-
tached at a flexible join point to a base program without modifying the base
program, i.e. due to the obliviousness property of AOP [23], it is a useful tool
for implementing a feature [9]. This is definitely true for optional features
but not for alternative (or mandatory) features.

2.3.3 Conflict among Destructive Extensions

Interference or conflict among destructive extensions has discussed in the
field of aspect-oriented programming. Interference among advices in AOP is
discussed in [47, 52, 6]. If multiple advices are applied into the same join
point, the advices may affect each other and break programs.

Conflict among introduction of new members is also a problem in AOP
[33, 28]. Class extensions in object-oriented programming languages may also
cause conflicts among extensions. Methods which have the same name are
defined in the same class cause an error or unanticipated results. In some lan-
guages, for example Ruby or Objective-C, the method defined/loaded later
gets available. Earlier one is removed in such a case. A library including class
extensions implies a risk that it crashes other libraries calling the methods
that those class extensions redefines.

PROGRAM REPLACEMENT AND DESTRUCTIVE EXTENSIONS 30

Problems with Destructive Extensions

This is a real problem in Ruby. If you load mathn library, all integer
division results in a rational number. However, almost all programs in Ruby
expect it results in an integer. Except writing small scripts, programmers
have to treat this library with special care.

Library developers can avoid method conflicts to a certain degree by
introducing a naming convention. If all method names include a unique
prefix or suffix, a risk of conflicts is decreased against other libraries. This
approach avoids conflicts of added methods but it is not suitable for method
redefinition. Moreover, this approach may degrade the usability of a library.

In order to avoid the conflicts, the scope of destructive class extensions
should be limited. Some module systems are proposed to provide scope of
destructive class extensions. However they does not solve all problems with
class extensions.

Selector Namespaces The concept of selector namespaces was introduced by
Modular Smalltalk [60]. Selector namespaces allow scoped class extensions
hence method conflicts can be resolved to a certain degree. However, they do
not preserve the local rebinding property. In selector namespaces, you can
add new methods to existing classes but cannot redefine existing methods.

Clasboxes Classboxes [13] and Classbox/J [12] provide a module named a
classbox. Classboxes allow programmers to write class extensions to modify
a library while not affecting other application programs using that library.
A classbox can import a class from another classbox and it can redefine
a method of the imported class. The redefinition is visible from not only
that importing classbox but also the methods of the classes imported by
that classbox. Hence a classbox can override the behavior of its imported
classbox; this property is called local rebinding in the literature. Classboxes
are useful to create a customized version of an existing library, for example,
to create the Swing library from the AWT library of Java.

Although a classbox hides method definitions from the outside, it ex-
poses them to classboxes importing it. Thus, if a classbox imports classes
from other classboxes and those classes contain conflicting method defini-
tions, the problem occurs. Figure 2.18 shows an example of the problem.
CB0 is a classbox that provides Integer class and its div method returning
an integer. Classbox CB1 provides List class with avg method. To calculate
an average, CB1 imports Integer class from CB0 and redefines div method
to return a rational number. Since avg method calls div method internally,
it returns an average of elements by a rational number. CB2 imports List

PROGRAM REPLACEMENT AND DESTRUCTIVE EXTENSIONS 31

Problems with Destructive Extensions

Figure 2.18. A problem in classboxes

from CB1 to calculate an average, and imports Integer from CB0 to per-
form integer division. Although the programmer of CB2 does not know CB1
internally modifies Integer class, she will expect that avg method returns a
rational number. However, Integer from CB0 overwrites the whole Integer
class including the definition of div method due to the local rebinding prop-
erty. Thus, in CB2, avg returns not a rational but an integer number since
the two definitions of div conflict in CB2 and the conflict resolution does not
fit the programmer’s anticipation.

Refinements Refinement is a module mechanism proposed for Ruby and it
will be introduced to ruby 2.0. Refinements confine the scope of class exten-
sions in a module and a user can enable class extensions in a lexical scope.
Figure 2.19 shows a sample code using Refinements. A block starting with

PROGRAM REPLACEMENT AND DESTRUCTIVE EXTENSIONS 32

Problems with Destructive Extensions

1 module MathN
2 refine Fixnum do
3 def /(other)
4 Rational(self,other)
5 end
6 end
7 end
8
9 class Foo
10 using MathN
11 def foo()
12 1 / 2
13 end
14 end
15
16 f = Foo.new
17 p f.foo # prints ”(1/2)”
18 p(1 / 2) # prints ”0”

Figure 2.19. Example of Ruby’s Refinements

refine (line 2) defines class extensions. In the example, the / operator for
Fixnum is redefined to return a rational number. Then, the using declaration
makes class extensions effective within the current lexical scope. For exam-
ple, using at line 10 makes the class extensions in MathN effective and hence
a call to the / operator at line 12 executes the definition in MathN instead of
one in the standard library. However, the class extension in MathN is effec-
tive only within the lexical scope from line 9 to 14. If foo method at line 11
calls another method out of this scope and it calls the / operator, then the
definition in MathN is not executed. Refinements do not preserve the local
rebinding property.

2.3.3.1 Scopes of class extensions

Several scopes can be supposed to restrict scopes of class extensions. This
section discusses what a scope is appropriate for class extensions.

Global Global scope is most naive scope for class extensions. Class extensions
used in practice have this type of scopes. A benefit of global scope is that it is
easy to use class extensions. You do not have to create some special modules

PROGRAM REPLACEMENT AND DESTRUCTIVE EXTENSIONS 33

Techniques Similar to Destructive Extensions

to modify existing programs. A disadvantage is that extensions tend to cause
conflicts and there are no means to avoid conflicts. In dynamic languages, it
is difficult to find conflicts. With compilers or static checker, you may find
conflicts. However, you cannot use multiple libraries, which are in conflict,
in the one system.

Lexical Lexical scope for class extensions is used in Ruby’s Refinements. With
lexical scope, you can use extensions by manually enabling. It is useful to
use extensions provided by a library. However, it is not suitable to customize
existing libraries. Even if want to change the behavior of an existing library
and you redefine a method of the library, the extension is not available in the
library’s scope. The code of the library cannot call the redefined method.
Thus, you cannot change the behavior of the library.

Lexical scope makes class extensions safer and decreases a risk of con-
flicts among class extensions. However, it restricts expressiveness of class
extensions.

Scope with local rebinding property Scope with local rebinding property is pro-
posed by classboxes. This scope can protect methods from other extensions
to a certain degree. It also has means to customize existing libraries by
class extensions. However, this scope still have a risk of conflict among class
extensions by importing multiple modules as mentioned above.

This risk is introduced because the module has only one type of scope. If a
module has multiple types of scope and you can use types of scope according
to situation. You can protect methods from extensions and you can also
customize existing libraries.

2.4 Techniques Similar to Destructive Extensions

2.4.1 Java class loader

Java class loader [39] is a mechanism to load classes dynamically in Java
language. Programmers can create custom class loaders and it can be used
as name spece of classes. Since every Java class loader makes a separate
name space, a different class loader can load a differently declared class with
the same name. Although the loaded classes have the same class name,
they are treated as the different types at runtime. Created instances are
not compatible in the different class loaders. Since a class loaded in a class

PROGRAM REPLACEMENT AND DESTRUCTIVE EXTENSIONS 34

Techniques Similar to Destructive Extensions

1 namespace Extensions
2 {
3 public static class StringExtensions
4 {
5 public static int WordCount(this String str)
6 {
7 //...
8 }
9 }
10 }

Figure 2.20. Example of a definition of an extension method

loader does not affect classes in other class loaders, Java class loaders do not
support class extensions.

2.4.2 C#

C# [21] is a modern object-oriented programming language introduced by
Microsoft. C# provides techniques to extend classes: partial classes and
extension methods. Partial classes allow programmers to separate a definition
of a class into multiple files. If you add partial keyword to class definition,
the class’s definition can appear in different files. You can separate a concern
by partial classes, but you cannot change or add behavior of existing classes.

An extension method is a technique to extend existing classes. An exten-
sion method is a static method, which can be called like an instance method.
WordCountmethod in Figure 2.20 is a definition of an extension method. The
first argument str is annotated with this keyword. It is treated as a receiver.
An example of an extension method call is shown in Figure 2.21. To use ex-
tension methods, you should import a namespace by using directive and you
can call an extension method as an instance method. The call of WordCount
takes no arguments, but its receiver is passed as the str argument.

Extension methods can extend any existing classes including system-
provided classes. However they are not destructive extensions. You can
only add new methods and existing methods cannot be replaced. Since ex-
tension methods can be enabled only in lexical scope, you cannot change
behavior of method calls in classes or files that you can not edit.

PROGRAM REPLACEMENT AND DESTRUCTIVE EXTENSIONS 35

Techniques Similar to Destructive Extensions

1 namespace TestApp
2 {
3 using Extensions;
4 class App
5 {
6 static void Main(string[] args)
7 {
8 string s="Lorem ipsum dolor sit amet";
9 System.Console.WriteLine(s.WordCount());
10 }
11 }
12 }

Figure 2.21. Example of an extension method call

2.4.3 Virtual classes

BETA [38, 40] and Newspeak [14] programming languages provide a mecha-
nism of virtual classes. Reference to a class is not statically defined in these
languages. You can extend the superclass’s nested classes. Figure 2.22 is an
example of virtual classes written in Newspeak. A GUI library GUILibrary is
defined, and it has Button class as its nested class. ExtendGUI has GUILibrary’s
subclass ModernGUILibrary as a nested class. ModernGUILibrary extends But-
ton class, which is the superclass’s nested class and, provide mordern look
and feel.

Virtual classes enable to customize existing libraries. However, they can-
not change behavior of objects created in other libraries. Virtual classes do
not support other usage of class extensions

2.4.4 Context-oriented programming

Context-oriented programming [30] (COP) is a new technique to behavior
of programs that depends on contexts. Context-oriented programming lan-
guages allow multiple definitions of a method for the same class.

COP languages introduce a module named layer. Additional methods
depending on a context is packaged in a layer. You can manually activate
a layer. While a layer is activated, method definition in the current layer is
called instead of the original definition.

Figure 2.23 shows an example of ContextJ, which is a COP language
based on Java. layer block defines a layer. You can define the method in the

PROGRAM REPLACEMENT AND DESTRUCTIVE EXTENSIONS 36

Techniques Similar to Destructive Extensions

1 class GUILibrary usingplatform: platform = (...)
2 (
3 public class Button = (...)(...)
4 ...
5)
6
7 class ExtendGUI withGUILibrary: gui(
8 |GUILibrary = gui.|
9)(
10 public ModernGUILibrary usingPlatform: platform =
11 GUILibrary usingPlatform: platform (
12)(
13 public class Button = (...)(...) (∗ a button with modern look and

feel ∗)
14 ...
15)
16)

Figure 2.22. Example of virtual classes in Newspeak

layer block and it can have the same signature of the existing methods. You
can use with clause to activate the layer like following code:

1 with(MemoryWarning){
2 Image.createImage(name);
3 }

The call of createImage method in the block executes the method defined in
the MemoryWarning layer. The extent of activation of layers is dynamic. The
layer is also activated in the indirectly called methods from the with block.

2.4.5 Implicit conversion in Scala

Scala [42] is a object-oriented and functional programming language. An
object in Scala can be implicitly converted into other data type by implicit
conversion.

Figure 2.24 is an example of implicit conversion in Scala. In main method,
variable a refers an Array of Int object and average method is called. Since Ar-
ray class does not have average method in Scala, it seems to call an undefined
method. In such a case, Scala tries to convert other type. intArrayToMyArray
function is a function for implicit conversion. It has implicit modifier and its

PROGRAM REPLACEMENT AND DESTRUCTIVE EXTENSIONS 37

Techniques Similar to Destructive Extensions

1 class Image
2 public static Image createImage(String filename){
3 ...
4 //load and return an image
5 }
6
7 layer MemoryWarning {
8 public static Image createImage(String filename){
9 ...
10 return cachedEmptyImage();
11 }
12 }
13 }

Figure 2.23. Example of context-oriented programming in ContextJ

type of the argument is Array[Int] and the return type is MyArray. MyArray
class has average method. Scala converts Array[Int] object to MyArray object
using intArrayToMyArray function.

You can call average method as if Array class is extended by implicit
conversion. However you cannot replace existing methods in Scala.

2.4.6 Type classes

Type classes [56] in functional programming languages also provide a way to
add methods or generic functions to existing types. JavaGI [58, 59] intro-
duced them into Java.

Example of type classes written in JavaGI is shown in Figure 2.25. Sim-
pleList, EmptyList and Node classes implement a list of strings. Suppose
these classes are distributed as a compiled library. You can add methods to
these existing classes by using type classes. Count interface declared count
method and implementation clauses supply the implementations of the inter-
face. count method can be called in testCount method as if count method is
defined directly in SimpleList.

Since new methods can be added into existing class with type classes,
they help extension of software. They do not support change of existing
methods. In other words, they are not destructive extensions.

PROGRAM REPLACEMENT AND DESTRUCTIVE EXTENSIONS 38

Techniques Similar to Destructive Extensions

1 class MyArray(ary:Array[Int]){
2 def average()={
3 (ary.reduceLeft((r,i)=>r+i):Double) / ary.length
4 }
5 }
6
7 object avg{
8 implicit def intArrayToMyArray(ary:Array[Int]):MyArray =new

MyArray(ary)
9 def main(args:Array[String]):Unit={
10 val a=Array(1,2,3)
11 println(a.average)
12 }
13 }

Figure 2.24. Example of implicit conversion in Scala

PROGRAM REPLACEMENT AND DESTRUCTIVE EXTENSIONS 39

Techniques Similar to Destructive Extensions

1 abstract class SimpleList {}
2 class EmptyList extends SimpleList {}
3 class Node extends SimpleList {
4 String str;
5 SimpleList next;
6 }
7
8 interface Count {
9 int count();
10 }
11 implementation Count [SimpleList] {
12 int count() {
13 return 0;
14 }
15 }
16 implementation Count [Node] {
17 int count() {
18 return this.next.count()+1;
19 }
20 }
21
22 class Test{
23 void testCount(SimpleList l){
24 System.out.println(l.count());
25 }
26 }

Figure 2.25. Example of type classes in JavaGI

PROGRAM REPLACEMENT AND DESTRUCTIVE EXTENSIONS 40

Summary

Expressive Less fragile Less interference
OOP 3 3

Pointcut/advice in AOP 3

Class extensions 3− 3

Table 2.2. Summary of existing mechanisms.

2.5 Summary

This chapter discussed problems with destructive extensions and motivating
examples. These problems — expressiveness, fragile pointcut problem, and
interference — should be addressed to replace programs. To support more
types of concerns, expressiveness of aspect-oriented programming should be
improved. AOP languages should guarantee application of mandatory con-
cerns or get less fragile. Class extensions should have means to control scope
of extensions and avoid interferences. However, as shown in Table 2.2, exist-
ing mechanisms do not address these problems. OOP is less expressive than
AOP and class extensions, however, it is safer than them. AOP is expressive,
however, it got fragile and interferences. Class extensions got also expressive,
and it introduces a risk of interferences. Of course, AOP and class extensions
are more expressive than OOP, however, they should be more expressive to
deal with more types of concerns.

In the following chapter, this thesis proposes language constructs to ad-
dress these problems. Regioncut makes AOP more expressive. An assertion
for advice makes AOP less fragile. Method shelters provide means to avoid
interferences among class extensions.

PROGRAM REPLACEMENT AND DESTRUCTIVE EXTENSIONS 41

Chapter

3
Regioncut

To improve expressiveness of aspect-oriented programming, this chapter pro-
poses a new construct named regioncut [5, 3] for AspectJ. A regioncut be-
haves like pointcuts but it selects code regions, not execution points. It
statically determines the selected regions at compile-time. A regioncut helps
to separate various concerns such as synchronization, exception handling,
and transaction.

3.1 Overview

The syntax of a regioncut is simple. A regioncut takes an ordered list of
pointcut designators separated by a comma and then it selects the code
region including the join points selected by every pointcut designator in that
order. Only the call, get and set pointcut designators are available for a
regioncut, which statically select a single expression. A regioncut selects a
code region within a method body; it does not select a code region stretching
over multiple method bodies.

The code shown in Figure 3.1 is an example of regioncut. The parameter
to this regioncut is a list of two pointcut designators. It selects a code region
that starts with a method call to List.get(int) and ends with a field access to
Foo.bar.

REGIONCUT 42

Overview

1 pointcut rc1():
2 region[
3 call(Object List.get(int)),
4 get(int Foo.bar)
5];

Figure 3.1. A regioncut designator

1 pointcut rc2():
2 region[
3 call(Object List.get(int)),
4 set(∗ Foo.foo),
5 get(int Foo.bar)
6];

Figure 3.2. A regioncut designator can have three or more pointcuts.

A parameter to a regioncut can be a list of more than two pointcut
designators (in Figure 3.2). Now the regioncut selects a code region in which
the List.get(int) method is first called, then the Foo.foo field is set, and finally
the Foo.bar field is read. The code region may contain other statements
and expressions between the call to the List.get method and the access to
the Foo.bar field. The access to the Foo.foo field is not the only expression
between them.

Specifying an intermediate join point like set(* Foo.foo) is useful to dis-
tinguish similar code regions in the same method. For example, the pointcut
rc1 shown above matches two regions in the method in Figure 3.3. If we
want to select only the region from line 4 to 6, we must use the pointcut rc2
instead. The region from line 10 to 12 is excluded.

A code region selected by a regioncut is a collection of consecutive state-
ments. The boundary of the code region is never in the middle of a statement.
Suppose that a join point selected by an argument to the regioncut, for ex-
ample, a method call is a term of some long expression. In this case, the
selected code region would be expanded to include the whole statement for
that long expression. If the selected join point is in the else block of an if
statement, as we below describe, the whole if statement may be included in
the selected code region.

You can apply before, after and around advice to the selected code region.

REGIONCUT 43

Semantics

1 void methodWithSimilarRegions(List l,int i,Foo f){
2 int n;
3
4 Object o=l.get(i);
5 f.foo=o;
6 n= f.bar;
7
8 //do something
9
10 Object o=l.get(i+1);
11 System.out.println(o);
12 n= f.bar;
13 }

Figure 3.3. A method including two similar regions

Since code regions do not have return values, the return type of the applied
around must be void.

3.2 Semantics

The semantics of regioncuts is shown in Figure3.4 and Figure 3.5 in Scheme-
like code. In our implementations, regioncuts support all control structures
including do-while and try-catch-finally statements. However, for the sake of
ease, we consider only if-else and while statements.

The evaluation of methods is done by the eval-method function. method-
body and eval-stmts, which is the arguments of the function, are sequences of
the statements. eval-stmts function is the main evaluation function. It takes
following-stmts argument, which contains statements to be evaluated next.
This is the key characteristic of this semantics.

First, eval-stmsts function in Figure 3.5 looks up a regioncut that matches
stmts, the given sequence of statments. If it is found, evaluate the advice
corresponding to the found regioncut. If not, the last statement in the stmts
will be removed and the function looks up a regioncut again. The removed
last statement will be inserted into the head of following-stmts. If length of
the stmts become one, evaluate the statement. Then following-stmts become
stmts and call eval-stmts again. For example, the sequence of statements are
tested from 1 to 7 in Fgure 3.6.

REGIONCUT 44

Semantics

3.2.1 Matching between regioncuts and a sequence of state-

ments

If join points which match a pointcut in the sequence of pointcuts are ap-
peared in the sequence of statements with the same order, the statements
match the regioncut. The first pointcut in the regioncut must match the first
statement and the last pointcut must match the last statement.

The matching is done from larger region. If the first and last
matched statements are in the blocks of different nesting level, the
block that includes both blocks is selected as the matched region.
Thus a imcomplete region, for example whose head or tail is in the
if block, is not selected by regioncuts. For example, the regioncut
region[call(* *.a()), call(* *.b()), call(* *.d())] matches the
following block:

1 {
2 a();
3 if(cond){
4 b();
5 }else{
6 c();
7 }
8 d();
9 }

match function in Figure 3.7 is the matching function of this semantics.
It tests whether regioncut rc matches stmts, the list of statements, or not. An
element of stmts is an expression statement, a while statement, a if statement
or a block, which is the nested list of statements.

match* function tests whether one statement stmt matches regioncut rc,
which is the list of pointcuts. If stmt is while statement, its conditional ex-
pression and body are treated as consecutive statements. Matching is done
in the order of the conditional expression to the body. If stmt is if statement,
its conditional expression and its then block are treated as consecutive state-
ments and its conditional expression and its else block. The both then and
else block with conditional expression is tested. The block which matches
more pointcuts is adopted.

REGIONCUT 45

Semantics

(define (eval−method method−body env)
(eval−stmts method−body ’() ’() env))

(define (eval−stmts stmts following−stmts proceed env)
(let ((advice (lookup−advice stmts)))

(cond (advice
(eval−advice advice stmts) ; evaluate <advice> if there

are matched advice
(eval−stmts following−stmts ’() proceed env)) ;

evaluate following statements
((= (length stmts) 1)

(eval−statement (car stmts)) ; evaluate the statement
if it is one statement

(eval−stmts follwoing−stmts ’() proceed env)) ;
evaluate following statements

((> (length stmts) 1) ; if there are multiple statements
; add last statement to the head of following

statements
; and then re−evaluate
(eval−stmts (take stmts (− (length stmts) 1))

(cons (last stmts) follwoing−stmts)
proceed env)))))

(define (lookup−advice stmts) ; return advice which matches sequence
of statements
(find all−advice−regioncut−pairs

(lambda (advice regioncut) (match stmts regioncut))))

(define (eval−advice advice proceed env) ; evaluate <advice>
(eval−stmts (advice−body advice) ’() proceed env))

Figure 3.4. eval-method function for evaluating a program with reginocut

REGIONCUT 46

Semantics

(define (eval−statement stmt proceed env)
(cond ((expr? stmt) (eval−expr stmt env))

((if? stmt)
(if (eval−expr (cond−part stmt) env) ; evaluate ”if”

statement
(eval−stmts (then−part stmt) ’() proceed env)
(eval−stmts (else−part stmt) ’() proceed env)))

((while? stmt)
(cond ((eval−expr (cond−part stmt) env) ; evaluate ”while”

statement
(eval−stmts (while−body stmt) ’() proceed env)
(eval−statement stmt proceed env))))

((block? stmt)
(eval−stmts (block−body stmt) ’() proceed env)) ; evaluate

block
((proceed? stmt)
(eval−stmts proceed ’() ’() env))))

; evaluate ”proceed()” in advice

Figure 3.5. eval-stmt function for evaluating a statement with reginocut

Figure 3.6. Range and order of evaluation with reginocut

REGIONCUT 47

Semantics

;whether stmts matched rc or not
(define (match stmts rc)
(let ((rc−rest (match∗ (car stmts) rc)))
(if (eq? rc−rest rc) ; whether the head stmts does not the head of

rc
#f ; false if not
(null? (match−seq (cdr stmts) rc−rest))))) ;true if rc matches

until the tail of stmts

;tests whether stmts matches rc (seq of pointcut)
;returns seq of remaining pointcuts that does not match
(define (match−seq stmts rc)
(if (null? stmts)
rc ; do matching from the head
(match−seq (cdr stmts) (match∗ (car stmts) rc))))

;do matching between stmt and returns remaining pointcuts that does
not match

(define (match∗ stmt rc)
(cond ((expr? stmt) (if (include−jp? stmt) (cdr rc) rc))

((while? stmt) ; case of while, do matching from conditional to
body

(let ((rc−after−cond (match∗ (cond−part stmt) rc)))
(match∗ (body−part stmt) rc−after−cond))

((if? stmt) ; case of if, do matching conditional and both do
then and else block

(let ((pc−rest (match∗ (cond−part stmt) rc)))
(shorter (match∗ (then−part stmt) rc−rest)
; shorter remaining pointcuts are returned

(match∗ (else−part stmt) rc−rest))))
((block? stmt) (match−seq (block−body stmt) rc))))

Figure 3.7. Matching function match for regioncut

REGIONCUT 48

Context Exposure

3.3 Context Exposure

In Java, a synchronized statement takes an object that will be locked. To im-
plement a synchronization concern by an aspect, the object must be available
within an advice body.

A regioncut can be used with other pointcut designators including this,
args, and target. If a locked object is stored in a field of this object, the this
pointcut can be used to obtain this object. If a locked object is in an argument
or a target object, the args or target pointcut can be used to obtain it. If
the value bound to the parameter to args or target is from a local variable or
a field and the variable (or a field) is available at the beginning of the code
region, the value of the variable (or a field) at the beginning of that region is
passed to an advice body as an argument. Otherwise, if the variable is not
available at that point, or if the argument to args or target is a compound
expression, then a compile error is reported.

Figure 3.8 is an example of context exposure. The regioncut for the around
advice selects a code region from line 5 to 7. The argument to b at line 6 is
taken from a local variable i, which is initialized before the call to a at line
5, and the target object of the field access at line 7 is directly taken from the
obj field. Hence the advice parameters o and n are bound to the values of i
and obj at line 5.

3.4 Implementation Issues

We implemented regioncut for AspectJ as an extension to the AspectBench
Compiler (abc) [10]. The intermediate language of abc is Jimple [55]. We
use Jimple for pattern matching for regioncut.

3.4.1 Analysis of blocks and statements

Selected regions are extpanded to fit control structures as mentioned in Sec-
tion 3.2. Since Jimple has no information about where blocks, statements,
and control structures start and end, exact regions of control structures can
not be recognized. We extended Jimple to make this information available.

This thesis introduced a new Jimple instruction marker. A marker has
two properties. One is a kind of the structure, which is either statement,
block, if, while, or others. The other is whether the marker represents be-
ginning or ending. We modified the Java-to-Jimple compiler so that a pair

REGIONCUT 49

Implementation Issues

1 class Foo{
2 SomeObject obj;
3 void bar(){
4 int i=10;
5 a();
6 b(i);
7 obj.c;
8 }
9 }
10
11 void around(SomeObject o, int n):
12 region[
13 call(∗ ∗.a()),
14 call(∗ ∗.b(int)) && args(n),
15 get(∗ SomeObject.c) && target(o)
16]
17 {
18 proceed(o,n);
19 }

Figure 3.8. Context exposure by a regioncut

of marker will surround all the instructions of each statement. Other struc-
tures such as a block are also surrounded by a pair of markers. Java code is
internally compiled to Jimple like Figure 3.9.

After the region expansion, all the inserted markers are removed and then
Jimple instructions are converted into Java bytecode.

3.4.2 Around advice support

To implement proceed in an around advice, the abc compiler extracts a new
static method from the code corresponding to a join point shadow [41], for
example, one selected by execution and initialization pointcuts. The values
of method parameters and so on at the join point shadow are passed as
arguments to the static method. We extend this implementation technique
for supporting an around advice with a regioncut.

Assignments to local variables Suppose that a static method is extracted for
a code region selected by a regioncut. If a new value is assigned to a local
variable within that code region and that variable is declared out of the

REGIONCUT 50

Implementation Issues

region, then the new value must be first stored in another local variable in
the extracted static method and then reflected on the original local variable.

To implement this behavior, we make an object whose fields are copies
of the local variables accessed in the code region. It is passed to the ex-
tracted static method and, if some fields of the object are updated in the
static method, then the updated values are copied back to the original local
variables.

For example, in Figure 3.10, the code region between the two method
calls to a and b is selected and hence a static method is extracted from that
region. The assignment to a local variable s at line 4 must be transformed so
that the value assigned at line 4 is reflected on the value of s at line 6. Before
the aspect is woven by the original weaver of abc, therefore, the toBeAdvised
method is transformed into the code shown in Figure 3.11. The class Local-
Storage$toBeAdvised is a helper class generated during this transformation.
The static method extracted for the region from line 6 to 12 receives the
value of $localStorage as an argument.

A helper class such as LocalStorage$toBeAdvised is generated per code
region. Each field has the same type as the corresponding local variable. We
do not use a java.util.HashMap object or an Object array for $localStorage.
These are more generic but type conversion or boxing/unboxing is needed
when a value is stored and obtained from them.

Jumps to the outside of the region Jumps — break, continue, and return state-
ments — must be also transformed when a static method is extracted from
a code region selected by a regioncut. The destination of these jumps may
be out of that region. Figure 3.12 shows a program including jumps to out
of the selected region. Note that, in Jimple and Java bytecode, break and
continue statements are represented by goto instructions.

For the transformation, each jump instruction from the inside to the
outside of the region is given a unique identification (id.) number. Next,
each jump instruction is replaced with the following instructions:

1. Save the id. number into a local variable (jump id. variable).

2. Jump to the end of the region.

Furthermore, at the end of the region, a switch statement is inserted. It
branches to the destination specified by the jump id. variable. Figure 3.13
shows the resulting program after the transformation above. Then our ex-
tended abc compiler extracts a static method from the code region from line

REGIONCUT 51

Implementation Issues

5 to 16 in Figure 3.13. The abc compiler is responsible to maintain the
consistency of the value of the jump id. variable i between the extracted
static method and the original method includeJump. A return statement is
transformed in a similar way.

REGIONCUT 52

Implementation Issues

Java code

1 public static int fact(int n){
2 if(n<=0){
3 return 1;
4 }else{
5 return n ∗ fact(n−1);
6 }
7 }

Pseudo Jimple code

1 public static int fact(int n){
2 BLOCK:begin:0;
3 IF:begin:1;
4 STMT:begin:2;
5 if n > 0 goto BLOCK:begin:5;
6 STMT:end:2;
7 BLOCK:begin:3;
8 STMT:begin:4;
9 return 1;
10 STMT:end:4;
11 BLOCK:end:3;
12 BLOCK:begin:5;
13 STMT:begin:6;
14 $i0 = n − 1;
15 $i1 = fact($i0);
16 $i2 = n ∗ $i1;
17 return $i2;
18 STMT:end:6;
19 BLOCK:end:5;
20 IF:end:1;
21 BLOCK:end:0;
22 }

Figure 3.9. Example of markers

REGIONCUT 53

Implementation Issues

1 public void toBeAdvised(int x){
2 String s="initial string";
3 a();
4 s="string was replaced";
5 b();
6 System.out.println(s); // what is the value of s?
7 }
8
9 void around():
10 region[
11 call(∗ ∗.a()),
12 call(∗ ∗.b())
13]
14 {
15 proceed();
16 }

Figure 3.10. A local variable is updated within a code region

1 public void toBeAdvised(int x){
2 String s="initial string";
3 $localStorage = new LocalStorage$toBeAdvised();
4
5 $localStorage.s=s;
6 nop; //label for the beginning of the region
7 s=$localStorage.s;
8 a();
9 s="string was replaced";
10 b();
11 $localStorage.s=s;
12 nop; // label for the end of the region
13 s=$localStorage.s;
14
15 System.out.println(s);
16 }

Figure 3.11. A transformed version of the method in Figure 3.10

REGIONCUT 54

Implementation Issues

1 public void includeJump(){
2 labelOfFor:
3 for(;;){
4 while(true){
5 a();
6 if(innerBreak()){
7 break; //goto label0;
8 }else{
9 break labelOfFor; //goto label1;
10 }
11 b();
12 }
13 //label0:
14 }
15 //label1;
16 }
17
18 void around(): region[call(∗ ∗.a()),call(∗ ∗.b())] {
19 proceed();
20 }

Figure 3.12. A program including jumps to out of a selected code region

REGIONCUT 55

Implementation Issues

1 public void includeJump(){
2 labelOfFor:
3 for(;;){
4 while(true){
5 nop; //label for beginning of the shadow
6 a();
7 if(innerBreak()){
8 i=0;
9 goto endLabel;
10 }else{
11 i=1;
12 goto endLabel;
13 }
14 b();
15 endLabel:
16 nop; //label for end of the shadow
17 switch(i){
18 case 0: goto label0;
19 case 1: goto label1;
20 }
21 }
22 label0:;
23 }
24 label1:;
25 }

Figure 3.13. A transformed version of the method in Figure 3.12

REGIONCUT 56

Evaluation

3.5 Evaluation

Regioncut is implemented by extending the AspectBench 1.3.0 compiler with
the JastAdd frontend [29, 22] running on Sun JVM 1.6. Then we evaluated
the design of the regioncut and the assertion for advice by applying them to
two open-source software products.

3.5.1 Javassist

We wrote synchronization aspects for Javassist by using the proposed con-
structs along the scenario in Section 1.1. One aspect implements fine-grained
synchronization. Figure 3.14 shows an equivalent program in which fine-
grained synchronization code is embedded by hand. Two synchronized state-
ments are embedded in the reateClass2 method. Figure 3.15 shows an equiv-
alent program written by hand for coarse-grained synchronization. One
ynchronized statement is embedded in the createClass method, which calls
createClass2. We could successfully separate the synchronization code into
aspects by using regioncut. Figure 3.16 and Figure 3.17 show (the advices
in) the aspects.

The Javassist users can easily switch synchronization policies by selecting
either of the two aspects. Switching the policies caused performance differ-
ences according to our experiment. We ran the benchmark test posted with
the bug report [1]. It is a client-server program, in which Javassist is used
for the client-side code running 20 threads. For our experiment, we used ma-
chines with Intel Xeon (2.83 GHz), Linux 2.6.28 (x64), and Sun JVM 1.6.0.
The client machine had 8GB memory and the server one had 4GB mem-
ory. They are connected through 1Gbps Ethernet. We disabled assertion for
advice while running this benchmark.

Table 3.1 lists the results. We used two kinds of client machine: one
with 4 cores and the other with 2 cores. The numbers are the average of the
execution time measured 500 times. The results revealed that using a fine-
grained synchronization aspect is better on the 4 core machine while using
a coarse-grained one is better on the 2 core machine. The overheads due to
using an aspect were negligible.

3.5.2 Hadoop

Hadoop [54] is an open-source framework for distributed computing; it pro-
vides a distributed file system and programming supports for the MapReduce

REGIONCUT 57

Evaluation

Time (sec.) Std. Deviation

—quad core
fine-grain (by aspect) 5.70 0.13
fine-grain (by hand) 5.63 0.13
coarse-grain (by aspect) 7.77 0.26
coarse-grain (by hand) 7.87 0.33

—dual core
fine-grain (by aspect) 9.94 0.21
fine-grain (by hand) 9.94 0.21
coarse-grain (by aspect) 8.70 0.20
coarse-grain (by hand) 8.76 0.24

Table 3.1. The execution time of the Javassist benchmark

computing model [20]. We rewrote the program of Hadoop 0.16.4 in AspectJ
with our proposed constructs.

We separated synchronization concerns into aspects from the TaskTracker
class (2357 LOC) in org.apache.hadoop.mapred package of Hadoop. Table 3.2
lists the result of our experiment. The TaskTracker class contains 21 syn-
chronized statements. We separated all the statements into aspects. Among
them, 9 statements could be separated into aspects by using ordinary point-
cut designators such as call, get, set, or execution. We needed the regioncut
to separate the rest of the synchronized statements into aspects. Figure 3.18
and Figure 3.19 show the example methods and advice which need regioncut.
Note that we did not modify the original source program of the TaskTracker
class. If we performed refactoring to extract a new method from the synchro-
nized block, then we would need less regioncuts for separating synchronized
statements into aspects.

We also evaluated the necessity of more than two arguments to a region-
cut. Recall that a regioncut can take more than two pointcuts as arguments
to distinguish similar code regions in the same method body. Among 12 syn-
chronization concerns in the TaskTracker class, 5 concerns needed regioncuts
that take more than two pointcuts as arguments. Furthermore, 4 concerns
needed our proposed context exposure mechanism.

REGIONCUT 58

Current Limitation

synchronized statements 21
ones separated by ordinary pointcuts 9
ones separated by regioncuts 12

Table 3.2. The number of synchronization concerns in the TaskTracker class

3.6 Current Limitation

Two regioncuts may select two code regions intersecting each other. Our
compiler cannot implement around advices for those two regions. In Fig-
ure 3.20 the region from beginA() to endA() and the region from beginB() to
endB() are intersection. We cannot apply around advice these regions. The
compiler can implement if one of the selected regions is nestedly contained in
the other region. We should define the priority rule of intersected regions to
implement around advices for such regions. For example, if we define a rule
— a precedent region should be enlarged to contain following regions —, we
can solve this problem.

REGIONCUT 59

Current Limitation

1 private static WeakHashMap proxyCache;
2 private void createClass2(ClassLoader cl) {
3 CacheKey key = new CacheKey(superClass, interfaces, methodFilter,

handler);
4 synchronized (proxyCache) {
5 HashMap cacheForTheLoader = (HashMap)proxyCache.get(cl);
6 if (cacheForTheLoader == null) {
7 cacheForTheLoader = new HashMap();
8 proxyCache.put(cl, cacheForTheLoader);
9 cacheForTheLoader.put(key, key);
10 } else {
11 CacheKey found = (CacheKey)cacheForTheLoader.get(key);
12 if (found == null)
13 cacheForTheLoader.put(key, key);
14 else {
15 key = found;
16 Class c = isValidEntry(key); // no need to synchronize
17 if (c != null) {
18 thisClass = c;
19 return;
20 }
21 }
22 }
23 }
24
25 synchronized (key) {
26 Class c = isValidEntry(key);
27 if (c == null) {
28 createClass3(cl);
29 key.proxyClass = new WeakReference(thisClass);
30 }
31 else
32 thisClass = c;
33 }
34 }

Figure 3.14. Fine-grained Synchronization by hand

REGIONCUT 60

Current Limitation

1 public Class createClass() {
2 if (thisClass == null) {
3 ClassLoader cl = getClassLoader();
4 synchronized (proxyCache) {
5 if (useCache)
6 createClass2(cl);
7 else
8 createClass3(cl);
9 }
10 }
11
12 return thisClass;
13 }

Figure 3.15. Coarse-grained Synchronization by hand

1 void around():
2 region[
3 call(∗ WeakHashMap.get(..)),
4 call(∗ WeakHashMap.put(..))
5]
6 {
7 synchronized(ProxyFactory.class){
8 proceed();
9 }
10 }
11
12 void around(Object key):
13 region[
14 call(∗ ∗.isValidEntry(∗)) && args(key),
15 set(∗ ∗.proxyClass)
16]
17 {
18 synchronized(key){
19 proceed(key);
20 }
21 }

Figure 3.16. The advices for fine-grained synchronization

REGIONCUT 61

Current Limitation

1 void around():
2 region[
3 get(static boolean ∗.useCache),
4 call(∗ ∗.createClass2(..))
5]
6 {
7 synchronized(ProxyFactory.class){
8 proceed();
9 }
10 }

Figure 3.17. The advice for coarse-grained synchronization

REGIONCUT 62

Current Limitation

1 private synchronized void purgeJob(KillJobAction action) throws
IOException {

2 String jobId = action.getJobId();
3 LOG.info("Received ’KillJobAction’ for job: " + jobId);
4 RunningJob rjob = null;
5 synchronized (runningJobs) {
6 rjob = runningJobs.get(jobId);
7 }
8
9 if (rjob == null) {
10 LOG.warn("Unknown job " + jobId + " being deleted.");
11 } else {
12 synchronized (rjob) {
13 for (TaskInProgress tip : rjob.tasks) {
14 tip.jobHasFinished(false);
15 }
16 if (!rjob.keepJobFiles){
17 fConf.deleteLocalFiles(SUBDIR + Path.SEPARATOR +

JOBCACHE +
18 Path.SEPARATOR + rjob.getJobId

());
19 }
20 rjob.tasks.clear();
21 }
22 }
23
24 synchronized(runningJobs) {
25 runningJobs.remove(jobId);
26 }
27 }
28
29 //synchronization advice for the formaer synchronized statement
30 //in purgeJob()
31 void around(Object syncObj):region[
32 get(Set ∗.tasks) && target(syncObj),
33 call(∗ JobConf.deleteLocalFiles(String)),
34 call(∗ java.util.Set.clear())
35
36] && withincode(∗ TaskTracker.purgeJob(KillJobAction))
37 {
38 synchronized(syncObj){
39 proceed(syncObj);
40 }
41 }

Figure 3.18. Example Code from Hadoop and Its Synchronization Aspect 1

REGIONCUT 63

Current Limitation

1 private void killOverflowingTasks() throws IOException {
2 long localMinSpaceKill;
3 synchronized(this){
4 localMinSpaceKill = minSpaceKill;
5 }
6 if (!enoughFreeSpace(localMinSpaceKill)) {
7 acceptNewTasks=false;
8 synchronized (this) {
9 TaskInProgress killMe = findTaskToKill();
10
11 if (killMe!=null) {
12 String msg = "Tasktracker running out of space." +
13 " Killing task.";
14 LOG.info(killMe.getTask().getTaskId() + ": " + msg);
15 killMe.reportDiagnosticInfo(msg);
16 purgeTask(killMe, false);
17 }
18 }
19 }
20 }
21
22 void around(TaskTracker t):region[
23 call(TaskInProgress TaskTracker.findTaskToKill()),
24 call(void TaskTracker.purgeTask(..))
25] && withincode(∗ TaskTracker.killOverflowingTasks()) && this(t)
26 {
27 synchronized(t){
28 proceed(t);
29 }
30 }

Figure 3.19. Example Code from Hadoop and Its Synchronization Aspect 2

REGIONCUT 64

Current Limitation

1 void withConflict(){
2 beginA();
3 beginB();
4 endA();
5 endB();
6 }
7
8 void around():
9 region[call(∗ ∗.beginA()),call(∗ ∗.endA())]
10 {
11 proceed();
12 }
13
14 void around():
15 region[call(∗ ∗.beginB()),call(∗ ∗.endB())]
16 {
17 proceed();
18 }

Figure 3.20. Example of conflict of regioncuts

REGIONCUT 65

Fragility of regioncuts

Before removing:

1 {
2 int x = r.getX();
3 int y = r.getY();
4 update(x,y);
5 }

After removing:

1 {
2 int x = r.getX();
3 update(x,x);
4 }

Figure 3.21. A region before/after removing a method call

3.7 Fragility of regioncuts

Regioncuts are fragile when the code is refactored. According to [51],
four types of non-local changes may make pointcuts fragile: rename, move
method/class, add/delete method/field/class, and signature changes. These
changes also make regioncuts fragile. If a join point specified in a regioncut
is affected changes, the regioncut fails to select its intended region. However,
local changes also make regioncuts fragile.

• Remove or change a join point: If a join point specified in a
regioncut is remove or changed, regioncut cannot select an intended
region. For example, the former region in Figure 3.21 is before removing
a join point. The following regioncut can select the former region:

1 region[call(int ∗.getX()), call(int ∗.getY()), call(void update
(..)]

The latter region is the region after removing the method call of getY().
In this case, the regioncut does not match the region. Even if the call of
getY() is changed to other method, the regioncut also does not match
the region. This change is local since the removal or change method
calls does not change method’s interface. However, this change makes
regioncuts fragile.

• Reorder join points: Reordering of join points also makes regioncuts

REGIONCUT 66

Summary

Before reordering:

1
2 int x = r.getX();
3 int y = r.getY();
4 update(x,y);

After reordering:

1
2 int y = r.getY();
3 int x = r.getX();
4 update(x,x);

Figure 3.22. A region before/after reordering a method call

fragile. Figure 3.22 shows an example of regioncut. The following
regioncut can select the former region in the Figure:

1 region[call(int ∗.getX()), call(int ∗.getY()), call(void update
(..)]

The methods getX() and getY() are getter methods; they do not cause
side-effect. The meaning of the program does not change if order of the
method calls is changed. Although this change is local, the regioncut
fails to select the latter region since regioncuts depend on order of join
points.

In order to make regioncuts more robust, there is an approach that more
flexible mechanisms to specify regions will be introduced. However, it makes
regioncuts more complex. We will introduce an assertion for advice in the
next chapter, to find regioncuts that fails to select intended regions.

3.8 Summary

This chapter presents a new language construct for aspect-oriented program-
ming named Regioncut. Regioncut is means to select a code region instead
of a join point. It improves expressiveness of AOP or destructive exten-
sions. You can separate synchronization concerns into an aspect and switch
granularity synchronization. Regioncut can also separate exception handling
concerns (showed in Section 2.3.1.2). Figure 3.23 shows an aspect that

REGIONCUT 67

Summary

1 aspect ExceptionHandling{
2 void around():
3 region[
4 call(BufferedReader.new(..)),
5 call(void BufferedReader.close())
6]
7 {
8 try{
9 proceed();
10 }catch(IOException{ e){
11 //handle an exception
12 }
13 }
14 }

Figure 3.23. An advice that handles an exception thrown from Figure 2.16

handles exception by using regioncut. This aspect handles an IOException
thrown from a region in Figure3.23.

Transactional pointcuts [49] 1 are pointcuts similar to regioncuts. Trans-
actional pointcuts can also select code regions by specifying a sequence of
pointcuts. Motivating examples of transactional pointcuts are exception and
resource handling.

This chapter showed semantics of regioncut. Regioncut is applied to
Hadoop and Javassist in this chapter. synchronized statements in a class of
Hadoop can be separated into an aspect by regioncuts. Regioncut enables to
switch synchronization in Javassist and to improve performance.

1Transactional pointcuts are proposed at the same conference which regioncut is pre-
sented.

REGIONCUT 68

Chapter

4
An Assertion for Advice

To address fragile pointcut problem in aspect-oriented programming lan-
guages, this chapter proposes a new assertion mechanism for AspectJ named
an assertion for advice [3]. This enables programmers to test an assumption
that a certain advice is woven and it modifies the program behavior at some
execution point. This mechanism is useful in particular for an advice with a
regioncut, which tends to be fragile. Even small changes of a base program
may make the regioncut not to match the code region where the advice must
be woven. The proposed mechanism would make programmers less reluctant
to use an aspect to implement an alternative feature such as a synchroniza-
tion concern. This mechanism addresses a certain degree of fragile pointcut
problem that pointcuts fail to select intended join points. A problem, which
pointcuts may select unintended join points, can be avoided if a programmer
uses within or withincode pointcuts. Hence this mechanism does not deal with
this type of problem.

4.1 Overview

This chapter proposes two kinds of annotations: @AssertAdvised and
@SolveProblem. The former annotates a method and the latter annotates an
advice. Figure 4.1 and Figure 4.2 show examples. @AssertAdvised declares

AN ASSERTION FOR ADVICE 69

Overview

1 class A{
2 @AssertAdvised("name_of_problem")
3 void foo(){
4 bar();
5 }
6 }

Figure 4.1. An annotation for a method

1 @SolveProblem("A.name_of_problem")
2 void around(): call(∗ ∗.bar()) {
3 //do something
4 }

Figure 4.2. An annotation for an advice

that the behavior of the annotated method, for example, the foo method in
Figure 4.1, must be modified for implementing some concern by an advice
annotated by @SolveProblem, for example, the advice in Figure 4.2. The
argument to @SolveProblem represents which problem in which class the ad-
vice is expected to solve. For example, @SolveProblem(”A.name of problem”)
solves the problem in the method with @AssertAdvised(”name of problem”)
in class A.

@AssertAdvised tests if the annotated method satisfies the following as-
sumption just before the method returns:

• the method is directly or indirectly invoked (through proceed) from
the @SolveProblem advice (i.e. the method is under the control of the
advice, shown in Figure 4.3), or

• the method directly or indirectly invokes the @SolveProblem advice
while the method is being executed (i.e. the part of the method body
is under the control of the advice, shown in Figure 4.4).

Here the @SolveProblem advice is an advice with the @SolveProblem anno-
tation corresponding to the @AssertAdvised of the method. If the test fails,
then java.lang.AssertionError will be thrown.

We did not choose simpler design, in which @AssertAdvised tests if a spe-
cific advice is woven at a specific join point. The reason is to allow refactoring

AN ASSERTION FOR ADVICE 70

Overview

Figure 4.3. Advice with @SolveProblem is invoked by method with @AssertAd-
vised

on the advice. For example, a synchronization concern can be implemented
with different policies. Thus, programmers might replace an original synchro-
nization aspect with a new one they write. The new aspect might be woven
at a different join point. @AssertAdvised must consider such a new aspect is
woven at a different join point. The design of @AssertAdvised presented in
this chapter uses a higher level abstraction and accept such refactoring on
aspects.

Note that an @AssertAdvised annotation is not inherited by a subclass.
Suppose that a class has a method annotated with @AssertAdvised and its
subclass overrides that method. The @AssertAdvised annotation is not added
to the overriding method in the subclass unless another @AssertAdvised an-
notation is explicitly written for the overriding method. This is because the
implementation of the overriding method might be different and thus the
advice is not needed any more or another kind of advice is needed.

AN ASSERTION FOR ADVICE 71

Implementation

Figure 4.4. Method with @AssertAdvised is invoked by advice with @SolveProb-
lem

4.2 Implementation

We implemented assertion for advice by modifying the compiler implemented
for regioncut. The tests are done during compilation. The compiler analyzes
Jimple and creates a call graph.

Fisrt the tester loads class files and creates the call graph. Then the tester
checks a methods annotated with @SolveProblem has a possibility of calling
a method which has @AssertAdvised annotation with the same concern name,
or a method with @AssertAdvised has possibility of calling a method with
@SolveProblem. Then, the tests pass, otherwise, the compiler shows warning
message.

4.3 Evaluation

To evaluate the assertion for advice, we added @AssertAdvised and
@SolveProblem annotations for the synchronization aspects separated by re-
gioncuts from the TaskTracker class shown in Section 3.5.2. We then updated
the program from Hadoop version 0.16.4 to 0.18.3. Finally, we compiled the

AN ASSERTION FOR ADVICE 72

Summary

the advices with regioncuts in the old version 12
ones correctly woven 11
ones detected by the assertion 1

Table 4.1. The number of synchronization advices with regioncuts after the
update to Hadoop 0.18.3

TaskTracker class with the same aspects and tests to find the aspects that
were not correctly woven any more.

Table 4.1 lists the advices after the update. Among 12 advices using a re-
gioncut, 11 advices were correctly woven for the new version of the program.
One advice is not correctly woven. The one advice which is not correctly
woven is found by assertion for advice. One advice of 11 advices which are
correctly woven is applied another method. The synchronization region is
moved to another method by extract method refactoring. Since the refactor-
ing does not change behavior of program, assertion for advice does not emit
a warning.

4.4 Summary

This chapter introduced an assertion for advice. It provides annotations for
methods and advice. You can test whether an advice is correctly applied by
adding annotations. Assertion for advice partly addresses a risk of fragile
pointcut problem in aspect-oriented programming.

In order to address fragile pointcut problem sufficiently, assertion for ad-
vice should be improved. This mechanism only detects whether pointcuts or
regioncuts select anticipated join points or regions. It cannot detect pointcut
or regioncuts that select unanticipated join point or regions. Assertion for
advice should be improved to detect join points or regions that are uninten-
tionally selected. Moreover, the @AssertAdvised annotation can be applied to
only methods. Therefore, assertion for advice cannot detect a regioncut that
selects an unintended region in the same method. Assertion for advice is
required to have means to specify regions that are advised with more flexible
granularity. Other approaches that do not use syntactic information can be
considered. For example, data-flow of resources may be used for detection.

AN ASSERTION FOR ADVICE 73

Chapter

5
Method Shelters

This chapter proposes a new module system called method shelters [4] to
address conflicts among class extensions. This idea is to make some class
extensions effective only within the module defining them and ones imported
by that module. This system also protects some class extensions from ac-
cidental overriding by outer modules, which directly/indirectly import that
module. Thus, if programmers carefully control the scope of class extensions,
unexpected conflicts among class extensions are avoidable.

Method shelters are designed to provide the local rebinding property but
make conflicts avoidable to a certain degree. On the other hand, the refine-
ments of Ruby does not provide the local rebinding property. Classboxes
provide it but may cause conflicts among class extensions if multiple versions
of class extensions are used in an importing chain.

5.1 Overview

A method shelter, which is a unit of the module system, consists of two
chambers : an exposed chamber and a hidden chamber. A chamber contains
import declarations and method definitions. An import declaration imports
another method shelter. A method definition may define a new method added

METHOD SHELTERS 74

Overview

to an existing class and it may redefine an existing method in an existing
class.

Figure 5.1 shows a code sample in Ruby. It is a solution of the problem
mentioned in Figure 2.18. In the code in Figure 5.1, three method shelters
CoreShelter, AverageShelter, and ClientShelter are defined. CoreShelter has
an Integer#div method in its exposed chamber. CoreShelter is imported by
ClientShelter in its exposed chamber. Importing another method shelter in
an exposed chamber is called exposedly importing.

If only exposed chambers are used, method shelters are similar to class-
boxes. The local rebinding property is preserved. The methods in exposed
chambers are executed as if they all were in the exposed chamber of the
outermost or root method shelter, which exposedly imports their method
shelters directly or indirectly. If there are multiple definitions of the same
method m, the method definition of the outermost method shelter S is se-
lected, and other method definitions of m in method shelters imported from S
are overridden. Thus, if a method calls another method in the same method
shelter, the call selects and executes a different definition of that method in
an outer method shelter. Programmers must consider that a method in an
exposed chamber may be redefined by another method shelter importing it.

On the other hand, method definitions in a hidden chamber are not visible
from the outside. Furthermore, they are never redefined by another method
shelter importing them. which contains another Integer#div method. It is
visible within AverageShelter but not from ClientShelter, which imports Av-
erageShelter. Thus a call to div at line 31 in ClientShelter never selects the
definition in AverageShelter whereas a call to div at line 13 in the exposed
chamber of AverageShelter selects the definition at line 20 in the hidden cham-
ber of AverageShelter. The problem in Figure 2.18 does not happen. How-
ever, hidden chambers have trade-off. A method defined in a hidden chamber
cannot be redefined even if it has a bug and the user wants to fix it by mon-
key patching. The concept of exposed and hidden chambers are similar to
public/private methods in OOP languages. However method shelters are or-
thogonal to the public/private access control. We decided to use exposed
and hidden as keywords to avoid misunderstanding.

Importing another method shelter in a hidden chamber is called hiddenly
importing. The methods imported in a hidden chamber are visible only
within the method shelter importing them, both its exposed and imported
chambers. Note that those methods are imported only from an exposed
chamber since methods in a hidden chamber are not visible from the outside.
The methods imported in the hidden chamber of a method shelter S are not

METHOD SHELTERS 75

Overview

visible from other method shelters importing S.
The local rebinding property is preserved in a method shelter hiddenly

imported. A method imported in a hidden chamber may be redefined in that
hidden chamber. A hidden chamber is used to import and redefine several
classes freely for local use only.

Our method-shelter system does not allow ambiguity with respect to
method lookup. For example, in Figure 5.2, a method shelter S0 imports
S1 and S2. Since both S1 and S2 have a method named m in C class, a call
to C#m in the method shelter S0 is ambiguous and hence raises an error. It
was possible to design the system so that such ambiguity can be implicitly re-
solved by introducing some precedence rules, for example, the last imported
method shelter has the highest precedence. However, we did not adopt such
implicit ambiguity resolution since we believe it will confuse programmers.

Global methods. We call methods (re)defined not within a method shelter
global methods. A method in a method shelter can call a global method.
Our module system considers that all global methods are contained in some
anonymous method shelter. This method shelter is implicitly exposedly-
imported by the method shelter that contains a caller method to a global
method. Thus, the global methods can call methods in the exposed cham-
ber where the caller method is defined. A redefinition of a method in that
chamber is also effective when a global method calls it. On the other hand,
the methods in the hidden chambers of the caller’s method shelter are not
visible from the global methods. If a global method calls another global
method, these two methods can access the same shelters. For example, if
a global method m0 is called from a method in a shelter S and m0 calls a
global method m1, then m1 can call the same set of methods in the exposed
chamber of S that m0 can call.

Entry point. Since a method in a method shelter is not visible from the out-
side, a special mechanism is needed to call it at the beginning. In other
words, we have to jump into a method shelter from normal execution con-
texts. We call that method shelter an entry point, which is the outermost
method shelter in the import chain. An appropriate strategy depends on the
base language:

• Use main function: A main function or method can be defined
in a method shelter if the base language has it. The method shelter

METHOD SHELTERS 76

Lookup semantics

containing a main function is an entry point. A main function is a
function that is first executed when a program starts.

• Use special blcok: A special code block can be provided for spec-
ifying a method shelter. The code block is executed as if it existed
within that method shelter. The entry point is that method shelter.
Our ruby prototype adopts this strategy since Ruby does not have a
main function like other scripting languages.

Note that in our programming model, every library, framework and appli-
cation program is in a separate method shelter. The method shelter of an
application program imports other method shelters of libraries and frame-
works. Hence, having an entry point is natural.

5.2 Lookup semantics

This section presents the semantics of method shelters by showing its method
lookup algorithm.

5.2.1 Method shelter tree

Method shelters can be imported from other method shelters. Hence the
import relation among shelters constructs a directed graph. For the sake of
presentation, we first transform this graph into a tree. We will use this tree
to describe where we start looking up a method. This transformation is also
used in our implementation in Section 5.3 for performance reason.

Figure 5.3 shows an example, where method shelter A imports B and
C, and B imports C. We do not have to distinguish a type of importing,
exposedly or hiddenly, in this transformation. If a method shelter (C in the
example) is imported by multiple different method shelters, the node of that
imported method shelter C is duplicated and the importing method shelters
B and A import a different node of C (Figure 5.4). The resulting graph
after this transformation is a tree, where every (node of a) method shelter
is imported by at most one method shelter, that is, every node has at most
one parent. We use this property of the tree for describing the algorithm
of method lookup. Although this transformation does not work if import
relations make a cycle, method shelters prohibit cyclic importing. If cyclic
importing is detected, this graph-to-tree transformation raises an error.

METHOD SHELTERS 77

Lookup semantics

Our semantics currently supposes that method shelters are immutable.
If importing relations of method shelters are changed at run time, a method
shelter tree should be reconstructed.

5.2.2 The lookup algorithm

This section shows the algorithm for looking up a method in a method shel-
ter. Figure 5.5 lists the algorithm written in Scheme. lookup is the main
function. It takes three arguments: context, methodname and class. method-
name and class are the name of a called method and the class of the receiver
object. context is a node in the tree of method shelters mentioned above. It
indicates the method shelter that contains the caller method, which is cur-
rently running and attempts to call the method on the receiver object. The
result of the method lookup depends on where the caller method is located.

lookup first tries to find a method in a given class by calling lookup-
method-of-class. If a method is not found there, then lookup tries to find a
method in the super class. Note that Ruby adopts single inheritance. lookup
and lookup-method-of-class return a pair of the found method and the tree
node of the method shelter containing that method, which will be implicitly
passed to the found method for further method lookup.

lookup-method-of-class looks up a method in method shelters. First, it
looks up the hidden chamber of the given method shelter node. If the method
is found in that chamber, the found method is returned. If not found, it tries
to look up a method again in the subtree rooted at the source chamber.

Methods in the given shelter’s exposed-side are looked up from the source
chamber. The root chamber or hidden chambers which imports the given
node can be the source chamber. The one nearest to the given shelter is
selected as the source chamber. Figure 5.6 shows the find-source-chamber
function that computes the the source chamber.

Figure 5.7 shows an example. Suppose that S0 exposedly imports S1, S1
exposedly imports S2, and S1 also hiddenly imports S3. Then the source
chamber of S0, S1 and S2 is the exposed chamber of S0. Note that S0 is the
method shelter at the entry point. The source chamber of S3 is the hidden
chamber of S1 since S3 is hiddenly imported.

Figure 5.8 shows the definitions of lookup-exposed, lookup-hidden, and
lookup-global functions used in lookup-method-of-class. lookup-exposed first
searches the exposed chamber of the given node. If a method is found,
the function returns a pair of the given node and the found method body.
Otherwise, the function recursively calls itself on all the nodes of the subtree

METHOD SHELTERS 78

Lookup semantics

rooted at the given node although the nodes hiddenly imported are excluded
from the search space. Then the function makes a list of the values returned
by the recursive calls. The list is processed by filter-methods, which returns
an element if the list contains only one element. filter-methods raises an
error if the list contains multiple elements since the method to look up is
ambiguous. lookup-hidden is similar. It first searches the hidden chamber of
the given node and then the subtree rooted at the given node. It searches
only the nodes exposedly imported by the given node directly or indirectly.
Finally, lookup-global searches the global method table. If it finds a method,
it returns a pair of a method-shelter node and the body of the method found.
This method-shelter node represents a method shelter that corresponds to
the global method table and it is directly imported by the node given to
lookup-global.

METHOD SHELTERS 79

Lookup semantics

1 shelter :CoreShelter do
2 class Integer
3 def div(x)
4 # <returns integer result>
5 end
6 end
7 end
8
9 shelter :AverageShelter do
10 class Array
11 def avg
12 s = self.sum
13 return s.div(self.size) # rational version is called
14 end
15 end
16
17 hide
18 import :CoreShelter
19 class Integer
20 def div(x)
21 # <returns rational result>
22 end
23 end
24 end
25
26 shelter :ClientShelter do
27 import :Core
28 import :AverageShelter
29 def calc
30 [1,2,3,4].avg # returns ”(5/2)”
31 5.div(2) # returns ”2”
32 end
33 end

Figure 5.1. Code sample (a solution of the problem in Figure 2.18)

METHOD SHELTERS 80

Lookup semantics

Figure 5.2. Ambiguous methods in a method shelter

Figure 5.3. An example of an import graph of method shelters

Figure 5.4. A method shelter tree reconstructed from Figure 5.3

METHOD SHELTERS 81

Lookup semantics

1 (define (lookup context class methodname)
2 (let ((method (lookup−method−of−class context class methodname

)))
3 (cond
4 (method method)
5 ((superclass class) (lookup context (superclass class)

methodname))
6 (else (error "no method error" class name)))))
7
8 (define (lookup−method−of−class context class methodname)
9 (let ((hidden−method (lookup−hidden context class methodname)))
10 (if hidden−method
11 hidden−method
12 (let∗ ((source−chamber (find−source−chamber context))
13 (source−node (node−of−chamber source−))
14 (exposed−method
15 (if (is−exposed? chamber)
16 (lookup−exposed source−node class

methodname)
17 (lookup−hidden source−node class

methodname))))
18 (if exposed−method
19 exposed−method
20 (lookup−global node class name))))))

Figure 5.5. Method lookup functions of method shelters

1 (define (hidden−imported? node)
2 <Is the given node is hidden−imported from parent?>)
3 (define (exposed−imported? node)
4 <Is the given node is exposed−imported from parent>)
5
6 (define (find−source−chamber node)
7 (cond
8 ((not (parent−node node)) (list node ’exposed))
9 ((hidden−imported? node) (list (parent−node node) ’hidden))
10 ((exposed−imported? node) (find−source−chamber (parent−node

node)))
11))

Figure 5.6. Definition of source-node and source-chamber

METHOD SHELTERS 82

Lookup semantics

Figure 5.7. An example of source-node and source-chamber

METHOD SHELTERS 83

Lookup semantics

1 (define (lookup−exposed node class name)
2 (if (exposed−method−table−exists? node class name)
3 (list node
4 (exposed−method−table−get node class name))
5 (filter−methods class name
6 (map (lambda (e) (lookup−exposed e class name))
7 (exposedly−importings node)))))
8
9 (define (lookup−hidden node class name)
10 (if (hidden−method−table−exists? node class name)
11 (list node
12 (hidden−method−table−get node class name))
13 (filter−methods class name
14 (map (lambda (e) (lookup−exposed e class name))
15 (hiddenly−importings node)))))
16
17 (define (lookup−global node class name)
18 (if (global−method−table−exists? class name)
19 (list <a node which is exposedly imported by the given node>
20 (global−method−table−get table name))
21 #f))

Figure 5.8. Definition of lookup-exposed and lookup-hidden

METHOD SHELTERS 84

A proof-of-concept implementation

5.3 A proof-of-concept implementation

This section describes a proof-of-concept implementation 1 of method shelters
in Ruby since Ruby already has a class extensions feature and its source code
is publicly available. We modified the virtual machine of Ruby 1.9.2.

Since Ruby has already powerful expressiveness, we decided not to extend
Ruby’s syntax. The syntax of method shelters is based on Ruby’s syntax.
Figure 5.9 shows a sample code for illustrating method shelters’ syntax. Al-
though shelter looks like a keyword, it is a method name. “shelter” method
takes shelter’s name and a block. “:S2” represents a symbol S2. “do . . . end”
represents a block. The methods defined in the block are contained in the
method shelter. By default, those methods belong to an exposed chamber.
On the other hand, the methods defined after a call to hide method (at line
15) belong to a hidden chamber. To import another method shelter, call
import method. Its argument is a method shelter’s name. If import method
is called after hide method, the imported shelter is hiddenly imported and
hence belongs to a hidden chamber.

The method shelter at the entry point is specified by shelter eval method.
For example, the line 24 and 25 in Figure 5.9 is executed within the contexts
of the method shelter S0.

5.3.1 Implementation details

When a shelter method is called, we create a shelter object. A shelter object
consists of five members: its name, a list of exposedly imported shelters, a
list of hiddenly-imported shelters, an exposed method table and a hidden
method table. When a method is defined in a method shelter, its method
name is converted to a unique synthesized name. The mapping between
the original method name and the converted one is recorded in the shelter
object’s method table. At method lookup, the table of converted method
names is searched first.

As mentioned in Section 5.2, the method lookup algorithm needs a current
node in a method-shelter tree representing import relations. To maintain a
current node, we added a new member to the stack frame of the Ruby VM
(Figure 5.10 shows the definition of the stack frame). When shelter eval
method is called, a method shelter tree is constructed from the specified

1The source code is available at
http://github.com/flexfrank/ruby_with_method_shelters

METHOD SHELTERS 85

A proof-of-concept implementation

1 shelter :S2 do
2 class Integer
3 def inc(n)
4 self + n
5 end
6 end
7 end
8
9 shelter :S1 do
10 class Integer
11 def inc10
12 self.inc(10)
13 end
14 end
15 hide
16 import :S2
17 end
18
19 shelter :S0 do
20 import :S1
21 end
22
23 shelter eval :S0 do
24 p(1.inc10) # prints 11
25 p(1.inc(1)) # error: method is not found
26 end

Figure 5.9. The syntax of method shelters

method shelter and the root node of the tree is set to the stack frame of the
block. When a method defined in a shelter is called, a new stack frame is
created. The shelter node which the called method is defined is set in the
member of the new stack frame.

5.3.2 Optimization

We implemented a few optimization techniques for method shelters to im-
prove execution performance. First, we added a method cache to every node
of a method-shelter tree. It records a mapping from a pair of a class name
and a method name to a pair of a method entry and the tree node where the
method is found. A method entry is a primitive data structure for calling a
method in the Ruby VM. A cache entry is updated at method lookup. This

METHOD SHELTERS 86

A proof-of-concept implementation

1 typedef struct {
2 VALUE ∗pc;
3 VALUE ∗sp;
4 VALUE ∗bp;
5 rb iseq t ∗iseq;
6 VALUE flag;
7 VALUE self;
8 VALUE ∗lfp;
9 VALUE ∗dfp;
10 rb iseq t ∗block iseq;
11 VALUE proc;
12 shelter node t∗ shelter node; /∗ current shelter node we added
13 const rb method entry t ∗me;
14 } rb control frame t;

Figure 5.10. The definition of Ruby’s stack frame struct.

cache reduces the overhead of method lookup in particular when an import
chain is long.

Since method shelters change the algorithm of method lookup, we
also modified the implementation of the inline cache of the Ruby VM.
The modified implementation records a current node of a method-shelter
tree. Figure 5.11 shows the modified definition of struct for inline cache.
iseq inline cache entry struct stores inline cache. A pointer to shelter node and
shelter cache entry are added as members. shelter node chache entry stores in-
formation about a method in a shelter. It contains cached method’s name,
method entry, and the shelter node which the method is defined in.

5.3.3 Compatibility

The implementation of method shelters keeps the compatibility with the
original Ruby. A normal Ruby program written without method shelters
can run on our modified Ruby interpreter. Although we added an additional
member to a stack frame of the Ruby VM, this member for maintaining a
current node of a method shelter tree is set to NULL at initialization. If
the current node is NULL, the method lookup uses the original algorithm for
Ruby.

METHOD SHELTERS 87

Applications

1 typedef struct shelter node chache entry{
2 VALUE vm state;
3 ID shelter method id;
4 rb method entry t∗ me;
5 shelter node t∗ next node;
6 } shelter cache entry;
7
8 struct iseq inline cache entry {
9 VALUE ic vmstat;
10 VALUE ic class;
11 union {
12 VALUE value;
13 struct{
14 void∗ shelter node;
15 union{
16 void∗ shelter cache entry;
17 rb method entry t ∗method;
18 }method e;
19 } method s;
20 long index;
21 } ic value;
22 };

Figure 5.11. The definition of Ruby’s inline cache struct.

5.4 Applications

This section illustrates several examples of the use of method shelters.

5.4.1 Convenient methods in Ruby on Rails

The first example is Ruby on Rails. The ActiveSupport library, which is
part of Ruby on Rails, provides a number of convenient methods for Ruby’s
core classes. Among those methods, we moved time-related methods in the
Numeric class into a method shelter. ActiveSupport adds minutes, hour and
days methods to Numeric class. These methods return Duration objects repre-
senting time. They simplify writing code for calculating time. For example,

10.minutes.ago

returns Time object representing the time 10 minutes before the current time.

METHOD SHELTERS 88

Applications

1 shelter :ActiveSupportNumericTime do
2 class Numeric
3 # ∗∗ snip ∗∗
4
5 def days
6 ActiveSupport::Duration.new(self ∗ 24.hours, [[:days, self]])
7 end
8 alias :day :days
9
10 # ∗∗ snip ∗∗
11 end
12 end

Figure 5.12. The time-related methods we defined in a method shelter

1 shelter :DateControllerShelter do
2 class DateController < ApplicationController
3 def days ago
4 @text=params[:id].to i.days.ago
5 end
6 end
7
8 hide
9 import :ActiveSupportNumericTime
10 end

Figure 5.13. A client code of Ruby on Rails

The definitions of these methods can be moved into a method shelter.
Figure 5.12 is a code snippet of the method shelter containing these methods.
Figure 5.13 shows a controller class for Ruby on Rails. Like a servlet in
Java, it is executed when a corresponding web page is accessed by a web
browser. This controller class is in a method shelter, which hiddenly imports
ActiveSupportNumericTime. Thus, days method in Figure 5.12 is available
only in this controller class whereas it is not in the rest of the program.
Note that days method is not visible even in method shelters importing the
method shelter in Figure 5.13. To call days, method shelters must import
ActiveSupportNumericTime again within the method shelters.

METHOD SHELTERS 89

Applications

5.4.2 Operator redefinition

Section 2.3.3 mentioned a problem with conflicting redefinition of the “/”
operator. The sketch of the solution with method shelters was already pre-
sented in Figure 5.1.

Figure 5.14 shows a realistic version of the code in Figure 5.1. In Ruby,
numbers are represented by Fixnum objects and “/” method is defined in this
class. Since the original division method “/” of Fixnum is built in, this code
does not include CoreShelter shown in Figure 5.1. The “/” method is redefined
in MathNShelter instead of AverageShelter. This simulates Ruby’s “mathn”
library, which is a separate library providing the redefined “/” method.

SinceMathNShelter is hiddenly imported by a method shelter AverageShel-
ter, avg method in Array returns a rational value. The “/” operator at line
13 executes the definition in MathNShelter method shelter. A method shelter
ClientShelter can safely import AverageShelter and call avg method without
being aware of MathNShelter. Note that since Fixnum is a class in the stan-
dard library, calc method can execute the “/” operator at line 25 without
explicitly importing Fixnum class. The “/” operator here returns an integer.

Since Ruby is a scripting language, the lines from 28 to 30 compose the
code running first when this program is invoked. This “main function” is
executed in ClientShelter method shelter.

5.4.3 RSpec

RSpec [2] is a testing tool for Ruby to support Behaviour-Driven Develop-
ment. We applied method shelters to RSpec.

RSpec can load and test multiple test case files. These files can load other
libraries. If a library extends existing classes, one test case may affect other
test cases. We modified RSpec to load each test case file in its own method
shelter.

Figures 5.15, 5.16, and 5.17 show a simple exmple. “avg.rb” in Figure 5.15
library redefines “/” operator of Fixnum class. The implementation of “/”
operator is changed to return the resulst as a Rational obejct. It also adds
average method to Array. It returns an average of elements as Rational obejct
since it uses “/” operator. Figure 5.16 is a spec file which loads “avg.rb”
file and tests average method. “divspec.rb” shown in Figure 5.17 tests “/”
operator in Fixnum. The spec file does not consider the operator being re-
defined. Although the spec files succeed when you run them independently,
“divspec.rb” fails if you test them at the same time on the original Rspec.

METHOD SHELTERS 90

Applications

The modified RSpec evaluates a spec file in a dependent method
shelter. The modified Ruby interpreter with method shelters introduces
load in shelter method. The method loads a source file in current method
shelter definition. The scope of the method definition in the loaded files are
restricted in the method shelter. In the example, redefinition of “/” is only
available in “avgspec.rb” if you use load in shelter instead of require.

5.4.4 Protecting optimized methods

The Ruby VM optimizes several special methods including arithmetic oper-
ators. When one of the special methods is called and it is not redefined by
the users, the VM directly performs its operation instead of executing that
method. The VM manages for every operator a flag indicating whether or
not the special methods are redefined. The receiver class is not considered
for a reason of performance trade-off. Thus, if “+” operator for Integer is
redefined by the users, the VM recognizes all “+” operators including one for
Float are also redefined and makes them unoptimized. Redefining a single
special method may cause serious performance overhead.

If such a special method is redefined in a method shelter, the VM can
directly perform the optimized operation when it is out of that method shel-
ter. The implementation of method shelters manages the flags per method
shelter. Hence, if a method shelter S redefines a special method in a hidden
chamber, that redefinition is not visible from other method shelters import-
ing S and the VM performs optimized operations for special methods in
these method shelters. Otherwise, if a method shelter S1 redefines a special
method in an exposed chamber and another method shelter S2 hiddenly im-
ports S1 for reusing the redefinition, then the redefinition is not visible from
method shelters importing S2, which are ones indirectly importing S1. The
VM performs optimized operations in these method shelters.

5.4.5 Private instance variables

In Ruby, private instance variables are not available. A method shelter can
be used to define private instance variables visible only within the method
shelter.

Figure 5.18 shows the code for defining getter and setter methods for
accessing an instance variable with a newly generated unique name. When
shelter accessor method is called, accessor methods with the given name are
defined. Note that in Ruby an instance variable is automatically created

METHOD SHELTERS 91

Applications

when it is first used. The code in Figure 5.18 does not use method shelters
but the reflection capability of Ruby. get var name for current shelter returns
a unique name for the given name and the caller’s method shelter. If the
name and the shelter are same it returns the same variable name.

Figure 5.19 shows the client code. Two method shelters S0 and S1 add
accessor methods to Object class. Although both the names of the added
instance variables are counter, they access different instance variables. The
methods defined by a call to shelter accessor in different method shelters are
distinct.

METHOD SHELTERS 92

Applications

1 shelter :MathNShelter do
2 class Fixnum # fixed size integer in Ruby
3 def /(x)
4 Rational(self,x)
5 end
6 end
7 end
8
9 shelter :AverageShelter do
10 class Array
11 def avg
12 sum = self.inject(0){|r,i|r+i}
13 sum / self.size
14 end
15 end
16 hide
17 import :MathNShelter
18 end
19
20 shelter :ClientShelter do
21 import :AverageShelter
22
23 def calc
24 p([1,2,3,4,5,6,7,8,9,10].avg) # prints ”(11/2)”
25 p(55/10) # prints 5
26 end
27 end
28
29 shelter eval :ClientShelter do
30 calc
31 end

Figure 5.14. The code that redefines “/” methods in method shelters

METHOD SHELTERS 93

Applications

1 class Fixnum
2 def /(o)
3 Rational(self,o)
4 end
5 end
6 class Array
7 def average
8 self.inject(&:+)/self.size
9 end
10 end

Figure 5.15. “avg.rb” library that redefines / and adds average method to
Array class

1 require "./avg.rb"
2 #load in shelter ”./avg.rb”
3
4 describe Array, "when empty" do
5 it "should be 5" do
6 [1,2,3,4,5,6,7,8,9,10].average.should == Rational(11,2)
7 end
8 end

Figure 5.16. “avgspec.rb” spec file for average method written in RSpec

1 describe Integer do
2 it "should be 0" do
3 (1/2).should == 0
4 end
5 end

Figure 5.17. “divspec.rb” for Fixnum’s / written in RSpec

METHOD SHELTERS 94

Applications

1 class Module
2 def shelter accessor(name)
3 define method name do
4 ivname= get var name for current shelter(name)
5 self.instance variable get(ivname)
6 end
7
8 define method (name.to s+"=").to sym do|val|
9 ivname= get var name for current shelter(name)
10 self.instance variable set(ivname,val)
11 end
12 end
13 end

Figure 5.18. The code for defining getter and setter methods to access a private
instance variable

1 shelter :S0 do
2 class Object
3 shelter accessor :counter
4 end
5 end
6 shelter :S1 do
7 class Object
8 shelter accessor :counter
9 end
10 end
11
12 o=Object.new
13 shelter eval :S0 do
14 o.counter=0
15 p o.counter #prints 0
16 end
17 shelter eval :S1 do
18 p o.counter #prints nil
19 o.counter=1
20 p o.counter #prints 1
21 end
22 shelter eval :S0 do
23 p o.counter #prints 0
24 end

Figure 5.19. The client code using accessor methods to a private instance
variable

METHOD SHELTERS 95

Performance

Avg. time (s) SD3

On the original VM 1.430 0.010
On our VM without method shelters 1.575 0.018
With 1 method shelter 1.476 0.013
With 5 method shelters 1.493 0.018

Table 5.1. Execution time of empty method (1,000 tries)

5.5 Performance

In this section, we discuss the performance of our prototype implementation
of method shelters. The implementation is based on Ruby 1.9.2 2. We
compare it with the original implementation of Ruby 1.9.2. We ran our
benchmark programs on Mac OS X 10.6 with 2.54GHz Intel Core 2 Duo
processor and 4GB memory.

5.5.1 Micro benchmark

First, to measure an overhead of method lookup, we ran a program that
calls a method with an empty body. The benchmark program calls an empty
method 10,000,000 times. We prepared five environments: the original Ruby
VM, our modified VM without method shelters, our VM with one method
shelter and our VM with five method shelters imported. The benchmark code
with five method shelters is shown in Figure 5.20. We ran the benchmark
programs 1,000 times on each environment.

Table 5.1 shows the results. When method shelters are not used, our
VM runs 10% slower than the original VM. This is because our VM must
check whether a method shelter is passed or not on method lookup. When
one method shelter is used, the overhead is about 3%. Method shelters make
method lookup faster, this is due to method caches that we added. When five
method shelters are used, it works with comparative speed to one method
shelter. This result is also due to the caches.

We also measured execution time of the Fibonacci function under the
same environments as above. Table 5.2 lists the results. In this case the
overhead of our VM is about 14% and with method shelters is 18% to 19%.

2The revision number of Ruby’s subversion repository is 30579
3standard deviation

METHOD SHELTERS 96

Performance

1 shelter :S0 do
2 def a
3 end
4 end
5 shelter :S1 do import :S0 end
6 shelter :S2 do import :S1 end
7 shelter :S3 do import :S2 end
8 shelter :S4 do import :S3 end
9
10 shelter eval :S4 do
11 10000000.times do
12 a
13 end
14 end

Figure 5.20. The benchmark program that calls an empty method under five
method shelters

Avg. time (s) SD

On the original VM 1.000 0.005
On our VM without method shelters 1.141 0.004
With 1 method shelter 1.180 0.036
With 5 method shelters 1.192 0.049

Table 5.2. Execution time of fib(33) (1,000 trials)

5.5.2 tDiary

To measure the performance of method shelters on a real application, we
applied method shelters to tDiary [53], a web-based diary system written in
Ruby. We used tDiary 3.0.1 for this benchmark. tDiary 3.0.1 redefines three
methods in String class: to a, each and method missing. We redefined these
three methods in a method shelter and ran the main code of tDiary in a
method shelter importing it. We ran tDiary on Apache 2.2.17 with CGI and
measured response time by ApacheBench. For comparison, we used three
versions of tDiaries: tDiary without method shelters on the original Ruby
VM, without method shelters on our Ruby VM and with method shelters on
our Ruby VM. We accessed the top page of each diary 300 times.

Table 5.3 lists the results. This results show that our modified VM does
not impact performance of existing applications when method shelters are

METHOD SHELTERS 97

Performance

Avg. time (ms) SD

On the original VM 704 7.1
On our VM without method shelters 704 6.6
With method shelters 627 6.5

Table 5.3. Response time of tDiary (300 trials)

not used. It also indicates method shelters improve the execution speed.
This is due to Ruby VM’s optimizations that we mentioned in Section 5.4.4.
method missing, which we confined into a method shelter, is the one of special
methods. method missing is a hook method that is called when an undefined
method is called. If method missing is not redefined, the VM can skip a call
to it since the default definition is empty. In this benchmark, we redefined
method missing for String in a method shelter. Hence this redefinition does
not affect the performance of the code out of that method shelter. On the
other hand, tDiary running on the original Ruby VM gets performance penal-
ties due to the redefinition of method missing. This is why method shelters
improved the execution performance of this benchmark test.

5.5.3 Ruby on Rails

We applied method shelters to Ruby on Rails in Section 5.4.1. We measured
the performance of a Ruby on Rails application with method shelters. Fig-
ure 5.21 is a benchmark program we used. index method is an action method,
which calculates time and accesses a database once. We used SQLite 3.6.12
for a database engine. The version of Ruby on Rails is 3.0.7. We ran this
application on WEBrick, a web server written in Ruby. We requested the
action 1,000 times through ApacheBench and measured response time.

Table 5.4 lists the results in development environment. In this envi-
ronment, user-defined application classes are reloaded per request. In this
case, method shelters made the execution performance about 50% slower.
Table 5.5 lists the results in production environment, in which application
classes are not reloaded per request. In this environment, the overhead is
less than 4%. This difference between two environments result from the hit
ratio of method caches. In the development environment, whenever classes
are reloaded, the VM invalidates method caches for method shelters. This
implies serious performance penalties.

Table 5.6 lists the hit ratio of method caches in method shelters after

METHOD SHELTERS 98

Summary

1 class TestController < ApplicationController
2 def index
3 @text="#{(1.day.ago + 1.day)}"
4 @accesses=Access.order("id desc").limit(10).find all.to a.inspect
5 end
6 end

Figure 5.21. The benchmark program for Ruby on Rail

Avg. time (ms) SD

On the original VM 53.131 14.7
On our VM without method shelters 53.341 14.7
With method shelters 78.871 16.2

Table 5.4. Response time of Rails application (1,000 trials, development env.)

warming-up. In the production environment, over 90% and 100% of lookups
hit inline method cache. In the development environment, less than 75% hit
inline caches. This result indicates that method shelter is not so slow when
method caches are appropriately filled.

5.6 Summary

This chapter presents method shelters to control scope of class extensions.
A method shelter is a module that restricts scope of class extensions. A
method shelter has an exposed chamber for public API and a hidden chamber
for internally used methods. Programmers can avoid conflicts among class
extensions by composing modules with these scopes.

Avg. time (ms) SD

On the original VM 10.865 7.7
On our VM without method shelters 11.049 7.8
With method shelters 11.296 7.7

Table 5.5. Response time of Rails application (1,000 trials, production env.)

METHOD SHELTERS 99

Summary

development production

Inline cache hit (%) 58.35 92.55
Total cache hit (%) 74.0 100.0

Table 5.6. Cache hit ratios of Rails application (1,000 trials, production env.)

METHOD SHELTERS 100

Chapter

6
Conclusion

This thesis has discussed replacement of program according to situations
with destructive extensions. The language constructs presented in this thesis
address problems with destructive extensions: expressiveness, fragile point-
cut problem, and interference among extensions. These constructs help to
replace programs without modifying existing source code in modular way.
Regioncut introduces means to select code regions as join points. It enables
us to separate synchronization concerns into an aspect. Assertion for advice
provides means to guarantee that an advice is correctly applied by annotat-
ing methods and advice. Method shelters enable us to control scope of class
extensions with two types of scope: exposed chambers and hidden chambers.
Programmer can avoid interference of class extensions by composing modules
with these two scopes.

Contributions

The contributions by this thesis are summarized as follows:

• This thesis introduced a new languages construct to deal with code
regions in aspect-oriented programming. In existing AOP languages,
you can change behavior of join points: an expression or a method

CONCLUSION 101

body. The granularity of join points is not suitable to separate sev-
eral concerns including synchronization into aspects. This thesis shows
that code regions, which have granularity between an expression and a
method body, can be treated as join points and that regioncuts improve
expressiveness of AOP.

• Then, this thesis proposes a new language construct to guarantee that
the mandatory concerns written in an aspect are correctly applied.
Existing AOP languages do not notify developers whether an advice is
applied or not. This construct helps to address fragile pointcut problem
in aspect-oriented programming languages.

• This thesis also presents a module system to control scope of class
extensions. In existing programming languages with class extensions,
multiple class extensions may be in conflict, and it is difficult to control
and avoid conflicts. This module system introduces two scopes of class
extension. By combining these scopes, programmers can use multiple
class extensions in one program and avoid interferences or conflicts
among class extensions.

Future Directions

Possible future directions of this thesis are as follows:

Exploring large-scale case studies for regioncut and assertion for advice Region-
cut is applied to Javassist, and regioncut and assertion for advice is applied
to one class in Hadoop. Although these programs are practical, case studies
shown in this thesis is small. For example, they should be applied to all
classes of Hadoop or other large-scale software.

Applying method shelters to pointcut/advice This thesis introduced method
shelters into class extensions. Method shelters can control scope of exten-
sions; they can be applied to pointcut/advice mechanism in aspect-oriented
programming. Method shelters for pointcut/advice can avoid interference
among pointcuts/advice. Destructive extensions, which include pointcut/ad-
vice and class extensions, can get less interference among extensions.

CONCLUSION 102

Applying method shelters to static programming languages Methods shelters are
implemented in Ruby programming language, which is dynamically-typed
and permits us to extend programs destructively at runtime. This mecha-
nism should be applied to statically-typed programming languages including
Java. To implement method shelters in statically-typed languages, relation-
ships of shelters should be determined at compile time. Furthermore, which
method definition is called should be determined at compile-time for better
performance. To apply method shelters to statically-typed languages, the se-
mantics of method shelters should be formalized. Moreover, whether method
shelters preserve soundness of a type system or not should be proved.

Simplifying method shelters Method shelters should be brushed up in order
to be adopted by real programming languages. Method shelters have room
for simplification. For example, hidden chambers can be eliminated. Fea-
tures of method shelters can be fulfilled by using exposed chambers and
hiddenly-imports. Simplification helps to describe semantics of method shel-
ters formally. Method shelters will be more comprehensible by simplification.
It may increases a possibility that method shelters will be adopted by real
programming languages.

CONCLUSION 103

Bibliography
[1] . [#jassist-28] javassist enhancement failed on deserializing hiber-

nate proxies - jboss.org jira. http://jira.jboss.org/jira/browse/

JASSIST-28.

[2] . Rspec.info: home. http://rspec.info/, 2012.

[3] Shumpei Akai and Shigeru Chiba. Extending aspectj for separating
regions. In Proceedings of the eighth international conference on Gener-
ative programming and component engineering, GPCE ’09, pages 45–54,
New York, NY, USA, 2009. ACM.

[4] Shumpei Akai and Shigeru Chiba. Method shelters: avoiding conflicts
among class extensions caused by local rebinding. In Proceedings of
the 11th annual international conference on Aspect-oriented Software
Development, AOSD ’12, pages 131–142, New York, NY, USA, 2012.
ACM.

[5] Shumpei Akai, Shigeru Chiba, and Muga Nishizawa. Region pointcut
for aspectj. In Proceedings of the 8th workshop on Aspects, components,
and patterns for infrastructure software, ACP4IS ’09, pages 43–48, New
York, NY, USA, 2009. ACM.

[6] Mehmet Aksit, Arend Rensink, and Tom Staijen. A graph-
transformation-based simulation approach for analysing aspect interfer-
ence on shared join points. In Proceedings of the 8th ACM international
conference on Aspect-oriented software development, AOSD ’09, pages
39–50, New York, NY, USA, 2009. ACM.

BIBLIOGRAPHY 104

[7] Jonathan Aldrich. Open modules: modular reasoning about advice.
In Proceedings of the 19th European conference on Object-Oriented
Programming, ECOOP’05, pages 144–168, Berlin, Heidelberg, 2005.
Springer-Verlag.

[8] Chris Allan, Pavel Avgustinov, Aske Simon Christensen, Laurie Hen-
dren, Sascha Kuzins, Ondřej Lhoták, Oege de Moor, Damien Sereni,
Ganesh Sittampalam, and Julian Tibble. Adding trace matching with
free variables to aspectj. In OOPSLA ’05: Proceedings of the 20th annual
ACM SIGPLAN conference on Object-oriented programming, systems,
languages, and applications, pages 345–364, New York, NY, USA, 2005.
ACM.

[9] Sven Apel and Don Batory. When to use features and aspects?: a case
study. In GPCE ’06: Proceedings of the 5th international conference on
Generative programming and component engineering, pages 59–68, New
York, NY, USA, 2006. ACM.

[10] Pavel Avgustinov, Aske Simon Christensen, Laurie Hendren, Sascha
Kuzins, Jennifer Lhoták, Ondřej Lhoták, Oege de Moor, Damien Sereni,
Ganesh Sittampalam, and Julian Tibble. abc: an extensible aspectj
compiler. In AOSD ’05: Proceedings of the 4th international conference
on Aspect-oriented software development, pages 87–98, New York, NY,
USA, 2005. ACM.

[11] Don Batory, Jacob Neal Sarvela, and Axel Rauschmayer. Scaling step-
wise refinement. In ICSE ’03: Proceedings of the 25th International
Conference on Software Engineering, pages 187–197, Washington, DC,
USA, 2003. IEEE Computer Society.

[12] Alexandre Bergel, Stéphane Ducasse, and Oscar Nierstrasz. Classbox/j:
controlling the scope of change in java. In Proceedings of the 20th annual
ACM SIGPLAN conference on Object-oriented programming, systems,
languages, and applications, OOPSLA ’05, pages 177–189, New York,
NY, USA, 2005. ACM.

[13] Alexandre Bergel, Stéphane Ducasse, Oscar Nierstrasz, and Roel Wuyts.
Classboxes: controlling visibility of class extensions. Computer Lan-
guages, Systems and Structures, 31(3-4):107–126, October 2005.

[14] Gilad Bracha, Peter Ah, Vassili Bykov, Yaron Kashai, William Maddox,
and Eliot Miranda. Modules as objects in newspeak. In Theo D’Hondt,

BIBLIOGRAPHY 105

editor, ECOOP 2010 ― Object-Oriented Programming, volume 6183
of Lecture Notes in Computer Science, pages 405–428. Springer Berlin
Heidelberg, 2010.

[15] Gilad Bracha and William Cook. Mixin-based inheritance. In OOP-
SLA/ECOOP ’90, pages 303–311. ACM, 1990.

[16] Nelio Cacho, Fernando Castor Filho, Alessandro Garcia, and Eduardo
Figueiredo. Ejflow: taming exceptional control flows in aspect-oriented
programming. In AOSD ’08: Proceedings of the 7th international confer-
ence on Aspect-oriented software development, pages 72–83, New York,
NY, USA, 2008. ACM.

[17] Shigeru Chiba. Load-time structural reflection in java. In ECOOP
’00: Proceedings of the 14th European Conference on Object-Oriented
Programming, pages 313–336, London, UK, 2000. Springer-Verlag.

[18] Shigeru Chiba, Atsushi Igarashi, and Salikh Zakirov. Mostly modular
compilation of crosscutting concerns by contextual predicate dispatch.
In Proceedings of the ACM international conference on Object oriented
programming systems languages and applications, OOPSLA ’10, pages
539–554, New York, NY, USA, 2010. ACM.

[19] D. Crockford. The application/json Media Type for JavaScript Object
Notation (JSON). RFC 4627 (Informational), July 2006.

[20] Jeffrey Dean and Sanjay Ghemawat. Mapreduce: simplified data pro-
cessing on large clusters. In OSDI’04: Proceedings of the 6th conference
on Symposium on Opearting Systems Design & Implementation, pages
10–10, Berkeley, CA, USA, 2004. USENIX Association.

[21] ECMA. ECMA-334: C# Language Specification. ECMA (European As-
sociation for Standardizing Information and Communication Systems),
Geneva, Switzerland, third edition, June 2005.

[22] Torbjörn Ekman and Görel Hedin. The jastadd extensible java compiler.
In Proceedings of the 22nd annual ACM SIGPLAN conference on Object-
oriented programming systems and applications, OOPSLA ’07, pages 1–
18, New York, NY, USA, 2007. ACM.

[23] Robert E. Filman and Daniel P. Friedman. Aspect-oriented program-
ming is quantification and obliviousness. In Aspect-Oriented Software
Development, pages 21–35. Addison-Wesley, 2005.

BIBLIOGRAPHY 106

[24] Adele Goldberg and David Robson. Smalltalk-80: the language and its
implementation. Addison-Wesley Longman Publishing Co., Inc., Boston,
MA, USA, 1983.

[25] William G. Griswold, Macneil Shonle, Kevin Sullivan, Yuanyuan Song,
Nishit Tewari, Yuanfang Cai, and Hridesh Rajan. Modular software
design with crosscutting interfaces. Software, IEEE, 23(1):51 –60, jan.-
feb. 2006.

[26] Bruno Harbulot and John R. Gurd. A join point for loops in aspectj. In
AOSD ’06: Proceedings of the 5th international conference on Aspect-
oriented software development, pages 63–74, New York, NY, USA, 2006.
ACM.

[27] William Harrison and Harold Ossher. Subject-oriented programming: a
critique of pure objects. In Proceedings of the eighth annual conference
on Object-oriented programming systems, languages, and applications,
OOPSLA ’93, pages 411–428, New York, NY, USA, 1993. ACM.

[28] Wilke Havinga, Istvan Nagy, Lodewijk Bergmans, and Mehmet Aksit. A
graph-based approach to modeling and detecting composition conflicts
related to introductions. In Proceedings of the 6th international confer-
ence on Aspect-oriented software development, AOSD ’07, pages 85–95,
New York, NY, USA, 2007. ACM.

[29] Grel Hedin and Eva Magnusson. Jastadd―an aspect-oriented compiler
construction system. Science of Computer Programming, 47(1):37 – 58,
2003.

[30] Robert Hirschfeld, Pascal Costanza, and Oscar Nierstrasz. Context-
oriented programming. Journal of Object Technology, 7(3):125–151,
March-April 2008.

[31] Kyo C. Kang, Sholom G. Cohen, James A. Hess, William E. Novak,
and A. Spencer Peterson. Feature-oriented domain analysis (foda) fea-
sibility study. Technical report, Carnegie-Mellon University Software
Engineering Institute, November 1990.

[32] Kyo C. Kang, Sajoong Kim, Jaejoon Lee, Kijoo Kim, Gerard Jounghyun
Kim, and Euiseob Shin. Form: A feature-oriented reuse method with
domain-specific reference architectures. Annals of Software Engineering,
5:143–168, 1998.

BIBLIOGRAPHY 107

[33] Benoit Kessler and Éric Tanter. Analyzing interactions of structural
aspects. In Workshop on Aspects, Dependencies and Interactions
@ECOOP 2006. Springer Berlin Heidelberg, 2006.

[34] Gregor Kiczales, Erik Hilsdale, Jim Hugunin, Mik Kersten, Jeffrey Palm,
and William G. Griswold. An overview of aspectj. In ECOOP ’01, pages
327–353. Springer-Verlag, 2001.

[35] Gregor Kiczales, John Lamping, Anurag Mendhekar, Chris Maeda,
Cristina Lopes, Jean-Marc Loingtier, and John Irwin. Aspect-oriented
programming. In Mehmet Akit and Satoshi Matsuoka, editors,
ECOOP’97 ―Object-Oriented Programming, volume 1241 of Lecture
Notes in Computer Science, pages 220–242. Springer Berlin Heidelberg,
1997.

[36] Karl Klose and Klaus Ostermann. Back to the future: Pointcuts as
predicates over traces. In FOAL 2005: Foundations of Aspect-Oriented
Languages 2005. ACM, 2005.

[37] Kenichi Kourai, Hideaki Hibino, and Shigeru Chiba. Aspect-oriented
application-level scheduling for j2ee servers. In AOSD ’07: Proceedings
of the 6th international conference on Aspect-oriented software develop-
ment, pages 1–13, New York, NY, USA, 2007. ACM.

[38] Bent Bruun Kristensen, Ole Lehrmann Madsen, Birger Møller-Pedersen,
and Kristen Nygaard. Abstraction mechanisms in the beta program-
ming language. In Proceedings of the 10th ACM SIGACT-SIGPLAN
symposium on Principles of programming languages, POPL ’83, pages
285–298, New York, NY, USA, 1983. ACM.

[39] Sheng Liang and Gilad Bracha. Dynamic class loading in the java vir-
tual machine. In Proceedings of the 13th ACM SIGPLAN conference
on Object-oriented programming, systems, languages, and applications,
OOPSLA ’98, pages 36–44, New York, NY, USA, 1998. ACM.

[40] O. L. Madsen and B. Moller-Pedersen. Virtual classes: a powerful mech-
anism in object-oriented programming. In Conference proceedings on
Object-oriented programming systems, languages and applications, OOP-
SLA ’89, pages 397–406, New York, NY, USA, 1989. ACM.

[41] Hidehiko Masuhara, Gregor Kiczales, and Chris Dutchyn. Compilation
semantics of aspect-oriented programs. In FOAL 2002: Foundations Of
Aspect-Oriented Languages - Workshop at AOSD 2002 -. ACM, 2002.

BIBLIOGRAPHY 108

[42] Martin Odersky and al. An Overview of the Scala Programming Lan-
guage. Technical Report IC/2004/64, EPFL, Lausanne, Switzerland,
2004.

[43] Neil Ongkingco, Pavel Avgustinov, Julian Tibble, Laurie Hendren, Oege
de Moor, and Ganesh Sittampalam. Adding open modules to aspectj.
In Proceedings of the 5th international conference on Aspect-oriented
software development, AOSD ’06, pages 39–50, New York, NY, USA,
2006. ACM.

[44] D. L. Parnas. On the criteria to be used in decomposing systems into
modules. Communications of the ACM, 15(12):1053–1058, December
1972.

[45] D.L. Parnas. Software engineering or methods for the multi-person con-
struction of multi-version programs. In ClemensE. Hackl, editor, Pro-
gramming Methodology, volume 23 of Lecture Notes in Computer Sci-
ence, pages 225–235. Springer Berlin Heidelberg, 1975.

[46] Rails core team. Ruby on rails. http://rubyonrails.org/, 2011.

[47] André Restivo and Ademar Aguiar. Towards detecting and solving as-
pect conflicts and interferences using unit tests. In Proceedings of the
5th workshop on Software engineering properties of languages and aspect
technologies, SPLAT ’07, New York, NY, USA, 2007. ACM.

[48] Ruby community. Ruby programming language. http://www.ruby-
lang.org/, 2011.

[49] Hossein Sadat-Mohtasham and H. James Hoover. Transactional point-
cuts: designation reification and advice of interrelated join points. In
Proceedings of the eighth international conference on Generative pro-
gramming and component engineering, GPCE ’09, pages 35–44, New
York, NY, USA, 2009. ACM.

[50] Kouhei Sakurai and Hidehiko Masuhara. Test-based pointcuts for robust
and fine-grained join point specification. In Proceedings of the 7th in-
ternational conference on Aspect-oriented software development, AOSD
’08, pages 96–107, New York, NY, USA, 2008. ACM.

[51] Maximilian Stoerzer and Juergen Graf. Using pointcut delta analysis to
support evolution of aspect-oriented software. In ICSM ’05: Proceedings

BIBLIOGRAPHY 109

of the 21st IEEE International Conference on Software Maintenance,
pages 653–656, Washington, DC, USA, 2005. IEEE Computer Society.

[52] Fuminobu Takeyama and Shigeru Chiba. An advice for advice compo-
sition in aspectj. In Proceedings of the 9th international conference on
Software composition, SC’10, pages 122–137, Berlin, Heidelberg, 2010.
Springer-Verlag.

[53] tDiary.org. tDiary. http://sourceforge.net/projects/tdiary/, 2011.

[54] The Apache Software Foundation. Welcome to apache hadoop! http:

//hadoop.apache.org/.

[55] Raja Vallée-Rai, Phong Co, Etienne Gagnon, Laurie Hendren, Patrick
Lam, and Vijay Sundaresan. Soot - a java bytecode optimization frame-
work. In CASCON ’99: Proceedings of the 1999 conference of the Cen-
tre for Advanced Studies on Collaborative research, page 13. IBM Press,
1999.

[56] P. Wadler and S. Blott. How to make ad-hoc polymorphism less ad
hoc. In Proceedings of the 16th ACM SIGPLAN-SIGACT symposium
on Principles of programming languages, POPL ’89, pages 60–76, New
York, NY, USA, 1989. ACM.

[57] Robert J. Walker and Kevin Viggers. Implementing protocols via declar-
ative event patterns. In SIGSOFT ’04/FSE-12: Proceedings of the
12th ACM SIGSOFT twelfth international symposium on Foundations of
software engineering, pages 159–169, New York, NY, USA, 2004. ACM.

[58] Stefan Wehr, Ralf Lämmel, and Peter Thiemann. Javagi: generalized
interfaces for java. In Proceedings of the 21st European conference on
Object-Oriented Programming, ECOOP’07, pages 347–372, Berlin, Hei-
delberg, 2007. Springer-Verlag.

[59] Stefan Wehr and Peter Thiemann. Javagi: The interaction of type
classes with interfaces and inheritance. ACM Trans. Program. Lang.
Syst., 33(4):12:1–12:83, July 2011.

[60] Allen Wirfs-Brock and Brian Wilkerson. A overview of modular
smalltalk. In Conference proceedings on Object-oriented programming
systems, languages and applications, OOPSLA ’88, pages 123–134, New
York, NY, USA, 1988. ACM.

BIBLIOGRAPHY 110

BIBLIOGRAPHY

[61] Chenchen Xi, Bruno Harbulot, and John R. Gurd. A synchronized block
join point for aspectj. In FOAL ’08: Proceedings of the 7th workshop on
Foundations of aspect-oriented languages, pages 39–39, New York, NY,
USA, 2008. ACM.

[62] Chenchen Xi, Bruno Harbulot, and John R. Gurd. Aspect-oriented
support for synchronization in parallel computing. In PLATE ’09: Pro-
ceedings of the 1st workshop on Linking aspect technology and evolution,
pages 1–5, New York, NY, USA, 2009. ACM.

BIBLIOGRAPHY 111

