Supporting Methods and Events by An Integrated
Abstraction

YungYu Zhuang
University of Tokyo
http://www.csg.ci.i.u-tokyo.ac.jp/

ABSTRACT

Events have been introduced into a number of programming
languages since they are known as a useful programming ab-
straction. Although those languages provide a language con-
struct directly supporting events, they also provide a sim-
ilar construct in parallel, which is a method. This paper
proposes a new language construct named method slot and
a new language DominoJ, which is a Java-based extension
supporting method slots. A method slot is a single lan-
guage construct supporting both methods and events by an
integrated abstraction. This paper shows how method slots
work as methods and events.

1. INTRODUCTION

Event-driven programming has been recognized as a use-
ful mechanism in a number of domains such as user interface,
embedded systems, databases [11], and distributed program-
ming [5]. The basic idea of events is to register an action
that is automatically executed when something happens. A
number of techniques and libraries have been developed for
providing event support [3, 9]. For example, the Observer
pattern [3] is a well-known technique for event-driven pro-
gramming in a language without event support. A built-
in language support for events has been also proposed in
a number of languages. Implicit invocation languages and
aspect-oriented languages might be classified into this cate-
gory.

Although the usefulness of events are well recognized, pre-
vious languages have been dealing with events as an addi-
tional programming abstraction and they have been sepa-
rately providing other established abstractions such as func-
tions and methods. For example, EScala [4], which is one of
the latest programming languages with event support, pro-
vides events and methods in parallel. Programmers choose
which language construct they use, either events or meth-
ods, according to programming contexts. However, events
and methods are similar abstractions. Both of them are
used to execute a code block although they are differently

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

RAM-SE’12, June 13, 2012, Beijing, China

Copyright 2012 ACM 978-1-4503-1277-6/12/06 ...$10.00.

Shigeru Chiba
University of Tokyo
http://www.csg.ci.i.u-tokyo.ac.jp/

triggered; events are reactive but methods are proactive.

This observation led us to develop a new language con-
struct named method slot. It is an integrated construct of
events and methods. We have then developed the Domi-
noJ language, which is an extension of Java and supports
method slots.

The rest of the paper is organized as follows. Section 2
briefly introduces EScala and a typical language construct
for event-driven programming. Section 3 presents the design
of method slots and DominoJ. Section 4 mentions related
work and Section 5 concludes this paper.

2. MOTIVATION

Events directly supported by language constructs provide
two significant properties, which are not provided by pro-
gramming conventions such as the Observer pattern. The
two properties are event composition and implicit invoca-
tion.

Listing 1 shows a program in EScala', which is an exten-
sion of Scala. In this example, two events moved and changed
are declared by the evt keyword. afterExec makes a primitive
event, which means method invocation. The moved event oc-
curs just after the execution of the setPosition method. The
changed event is declared as the composition of the moved
event and the primitive event afterExec(setSize). The abil-
ity to compose a higher-level event from lower-level ones is
significant for modular programming [4].

An event handler, which is a method executed when an
event occurs, is bound to the event by the += operator. At
line 6 and 7, the redraw method is bound to the changed
events on the object itself and its parent. An event han-
dler bound to an event is implicitly invoked when the event
occurs. The event handler does not have to be explicitly
invoked at places where the execution contexts match the
condition triggering the event. If a direct language support
for events is not available and thus the Observer pattern
is used, then the event handler must be explicitly invoked
at multiple places and scattered over the program. Such a
program shows less locality with respect to event handling
and thus it is difficult to understand. Maintaining the scat-
tered fragments of the code for invoking an event handler at
appropriate places is also error-prone [4].

Although language constructs for events remarkably im-
prove the design of programs, existing languages with such
constructs have two similar constructs in parallel; one for
events and the other is for methods. In EScala, events are

!The syntax follows the example in EScala 0.3 distribution.

O 00O Uk WN =

Listing 1: The component example in EScala

class Component (name: String, parent: Component) {
var left = 0; var top = 0;
var width = 0; var height = 0;
evt moved[Unit] = afterExec(setPosition)
evt changed[Unit] = moved || afterExec(setSize)
changed += redraw
if (parent != null) { parent.changed += redraw }

def setPosition(x: Int, y: Int) {
left = x; top =y

¥

def setSize(w: Int, h: Int) {

width = w; height = h

¥

def redraw () {
System.out.println(name + ":
// redraw itself

¥

redraw.");

}

explicitly declared by the evt keyword while methods are by
the def keyword. Although methods are also used as event
handlers, the event itself must be declared separately from
methods. This separation is beneficial to a certain extent
since the design intentions become explicit; what are events
is clearly visible.

However, events and methods have notable similarity. Both
of them lead the execution of a code block although events
are reactive but methods are proactive. Integrating simi-
lar mechanisms into one can be always an option of pro-
gramming language design. It will simplify a language and
help us understand essential abstraction as Self [10] provided

prototype-based objects and revealed essence of object-oriented

programming. Suppose that an event is a method call (strictly
speaking, an event does not correspond to a method but a
method call. We usually say an event is a method in this
paper for simplicity). When that event happens, the body
of the method with the name specified by that method call
is executed. At the same time, if that event is bound to an
event handler, then the body of that event handler, which
is also a method, is also executed.

The only difference is whether or not a code block must
be explicitly associated with the event. A method does not
need explicit association but it is implicitly associated by
default. Thus we could recognize that calling a method is
regarded as causing an event that the method is implicitly
associated with. It is typical understanding but not essen-
tially right that we strongly discriminate between method
calls and events (or methods and event handlers) by the
idea that methods are proactively called but event handlers
are reactively invoked.

3. DOMINOJ

We propose a new language construct named method slot,
which integrates both methods and events while preserving
the two useful properties of event mechanisms such as event
composition and implicit invocation. We also show our pro-
totype language named DominoJ supporting method slots.
It is an extension of Java.

3.1 Method Slot

In DominoJ and languages supporting method slots, it
is not possible to directly call a method. Suppose that an
expression component.move(), which would call a method

move on an object component if the language were plain
Java. This expression is interpreted in DomoinoJ as one
causing an event on a method slot with the name move on
the object component.

A method slot is an array of function closures and is an
object’s property like a field. In DominoJ, a method declara-
tion declares not only a method but also a method slot with
the same signature (name and parameter types). Whenever
a new object is created, new method slots are created and
attached to that object since method slots are per-instance
attributes. A method slot initially contains only a function
closure that invokes the method with the same signature as
that method slot. The target object for that method invo-
cation is the same object that the method slot belongs to.
The elements in a method slot can be manipulated during
runtime by the operators mentioned below.

When an event occurs on a method slot of an object, all
the function closures in the method slot are executed in or-
der. For example, when an event occurs on a method slot
move of an object component, the function closures in the
move method slot are executed. If it contains only the initial
element, the move method is invoked on the object compo-
nent (Fig. 1).

object component
_-F>move(){ ... } 44— method

; move [T [| [|«}—method slot

Figure 1: An object component which has a method
slot move

3.2 Operators for method slots

DominolJ provides four operators for manipulating an ar-
ray element in a method slot: =, “=, +=, and -=, as shown in
Table 1. These operators are the only syntax extensions in
DominoJ. It is possible to add and remove a function closure
to/from a method slot at runtime.

Their operands at both sides are method slots. A method
cannot be their operand. Those operators except -= create
a new function closure and add it to the method slot at left-
hand side. When the function closure is executed, it causes
an event on the method slot at the right-hand side. For
example, the following expression appends a new function
closure:

component.move += observer.updated

where move and updated are method slots and component
and observer are objects. The function closure is appended
to the method slot move of the object component. When
the function closure is executed, it causes an event on the
method slot updated of the object observer. The objects com-
ponent and/or observer are optional; if they are not explicitly
specified, the this object is used instead.

The -= operator removes function closures from the method
slot at left-hand side. It removes function closures that will
cause an event on the method slot of the object specified by

Table 1: The four operators for method slots
operators description
= add a new function closure and remove the
other elements from the method slot.

= insert a new function closure at the begin-

ning of the array.

append a new function closure to the end

of the array.

-= remove function closures that will cause an
event on the method slot at the right-hand
side.

the operand at the right-hand side. A function closure is also
automatically removed when the target object is garbage-
collected. For example, if a function closure will cause an
event on the method slot move of the object component, then
it is removed when component is garbage-collected. When
an event occurs on a method slot, nothing is executed if
the method slot does not contain any function closures. No
exception is thrown.

A method slot is typed; its parameter types and return
type are statically specified when it is declared. The function
closures in a method slot must have the same parameter
types and return type as the method slot. Thus, the two
method slots given as the left and right operands of the
operators such as += must share the same type.

3.3 A method slot as an event mechanism

A method slot also can be used as an event in EScala. By
default, it is an event implicitly triggered when a program
calls a method with the same name as the method slot’s.
An event handler is also a method slot and it can be bound
by the += operator to an event, which is another method
slot. The event handler is executed when the event is trig-
gered. Note that a program cannot directly call a method
in the semantics of DominoJ. It can only invoke a method
via an event on the method slot with the same name. How-
ever, since the syntax for triggering an event on a method
slot is the same syntax as one for calling a method in Java,
programmers can be unaware of method slots and see that
a method is directly called as in Java and then an event is
implicitly triggered.

It is also possible to remove the default function closure
(i.e. an empty method body) added when a method slot is
declared. For example,

component.move -= component.move

this expression removes the default function closure in a
method slot move. Note that the right operand above is in-
terpreted as a method move. This is an exception since the
right operand is otherwise a method slot. A program can
trigger an event on a method slot that contains no function
closures. Triggering such an event does not cause anything.

Event composition is also possible in DominoJ. Listing 2
shows a DominoJ version of the component example men-
tioned in Section 2. In this program, changed is a higher-
level event composed from other events (line 14). Since it is
bound to setPosition and setSize (line 9 and 10), it is trig-
gered after setPosition or setSize are executed. If changed
were bound by not the += operator but the ~= operator, it
would be triggered before setPosition or setSize.

OO Uk WN -

Listing 2: The component example in DominoJ

public class Component {

private String name = "";

private Component parent = null;

private int left = 0; private int top = 0;
private int width = O; private int height = 0;

public Component (String n,
name = nj; parent = P
setPosition += changed;
setSize += changed;
changed += redraw;
if (parent != null) { parent.changed += redraw; 1}

Component p) {

}

public void changed(Object[] args) {}

public void setPosition(int x, int y) {
left = x; top = y;

}

public void setSize(int w, int h) {
width = w; height = h;

¥

public void redraw (Object[] args) {
System.out.println(name + ": redraw.");
// redraw itself
}
¥

Note that method slots setPosition and setSize are events
and changed is an event composed from the two events. Un-
like in EScala, events are composed by the operators such
as += in DominoJ since there is no clear distinction between
events and event handlers. Rewriting the program not to use
the higher-level event changed is also possible. The following
statements:

setPosition += redraw;
setSize += redraw;

directly bind an event handler redraw to setPosition and set-
Size. In this case, the higher-level event changed is not used.

4. RELATED WORK

We have already presented EScala and the differences
from DominoJ. EScala has a typical event mechanism sup-
porting both event composition and implicit invocation well,
but events are supported by a separate construct from method
calls. DominoJ integrates methods and events by a single
construct while event composition and implicit invocation
are supported.

An aspect-oriented language such as AspectJ can define
implicit events by pointcut and advice. Pointcuts are event
definition and advice is an event handler. Event composition
can also be declared in pointcuts. Although AspectJ pro-
vides a powerful event mechanism supporting implicit events
and event composition, it has some shortcomings as dis-
cussed in [4]. Events in AspectJ are global and class-based—
while DominoJ allows events to be set per object. Further-
more, it breaks modular reasoning since aspect-oriented lan-
guages require global knowledge for compiling and loading
classes [1, 6]. On the other hand, DominoJ introduces events
by being an extension to object-oriented languages, so it
does not have such an issue.

With C# [7] we can declare an event, define its delegate
type, and bind the corresponding action to the event. Event
composition can be done by adding a delegate to two or more
events. Although the delegate interface hides the executor

from the caller, implicit invocation is not supported. The
event must be triggered manually when the change happens.
In other words, we cannot let an event happen after specified
method calls implicitly and must use an explicit statement
to trigger it. This forces us to put the same invocation code
in all places where we need it, as what we have to do in
Java. Another disadvantage is that we always have to check
if the event equals null before triggering it. The purpose
of the check is ensuring that there is at least one delegate
for the event. Otherwise it will raise an exception. This
is not reasonable from the viewpoint of event mechanism
since it just means no one handles the event. In DominoJ
no handlers for an event does not raise an exception, and
the one triggers the event on a method slot is unaware of
handlers.

Ptolemy [8] is a language with quantified, typed events.
Ptolemy allows a class to register handlers for events, and
also allows a handler to be registered for a set of events
declaratively. It has the ability to treat the execution of
any expression as an event. The event model in Ptolemy
solves the problems in implicit invocation languages and
aspect-oriented languages. There are two differences be-
tween Ptolemy and DominoJ. First, Ptolemy does not sup-
port implicit invocation, which is one of the most significant
properties as an event mechanism, whereas DominoJ sup-
ports it. Second, all events in Ptolemy’s model are global
and cannot be set for a specified object though the events
can be filtered in the handlers by some mechanisms. The
binding in DominoJ is object-based, so it can describe the
interaction between objects more properly.

EventJava [2] extends Java to support event-based dis-
tributed programming. It combines events and methods by
introducing event methods, which are a special kind of asyn-
chronous method. Event methods can specify constraints
and define the reaction in themselves. They can be invoked
by a unicast or broadcast way. Events satisfying the pred-
icate in event method headers are consumed by a reaction.
Context-aware applications can be accommodated easily by
the mechanism. The main difference between EventJava
and DominoJ is that events in EventJava are also global
and application-level. Although EventJava can define com-
plex events clearly, it cannot select the events from an indi-
vidual object. Moreover, events must be invoked explicitly.
Another important difference is that EventJava only sup-
ports static one-to-one relations between events and event
handlers while DominoJ can maintain one-to-many relations
and change the relation at runtime.

5. CONCLUSIONS

We discussed similarity between events and methods and
proposed an integrated construct of events and methods. We
then presented a new language DominoJ, which supports
that construct, named method slot. A method slot is a
closure array and is an object’s property like a field.

Our future work is to define the semantics to clarify the
behaviors of method slots. We also have to evaluate the
benefit of method slots. By comparing method slots with
typical event mechanisms, the advantages and disadvantages
can be analyzed in detail.

6. REFERENCES
[1] S. Chiba, A. Igarashi, and S. Zakirov. Mostly modular
compilation of crosscutting concerns by contextual

2]

3]

[4]

[5]

[6]

[9]
(10]

(11]

predicate dispatch. In Proceedings of the ACM
international conference on Object oriented
programming systems languages and applications,
OOPSLA 10, pages 539-554, New York, NY, USA,
2010. ACM.

P. T. Eugster and K. R. Jayaram. EventJava: An
extension of Java for event correlation. In ECOOP’09,
pages 570-594, 2009.

E. Gamma, R. Helm, R. Johnson, and J. Vlissides.
Design Patterns. Addison-Wesley, 1994.

V. Gasiunas, L. Satabin, M. Mezini, A. Nuifez, and
J. Noyé. EScala: modular event-driven object
interactions in Scala. In Proceedings of the tenth
international conference on Aspect-oriented software
development, AOSD ’11, pages 227-240, New York,
NY, USA, 2011. ACM.

A. Holzer, L. Ziarek, K. Jayaram, and P. Eugster.
Putting events in context: aspects for event-based
distributed programming. In Proceedings of the tenth
international conference on Aspect-oriented software
development, AOSD ’11, pages 241-252, New York,
NY, USA, 2011. ACM.

G. Kiczales and M. Mezini. Aspect-oriented
programming and modular reasoning. In Proceedings
of the 27th international conference on Software
engineering, ICSE 05, pages 49-58, New York, NY,
USA, 2005. ACM.

Microsoft Corporation. C# language specification.
H. Rajan and G. T. Leavens. Ptolemy: A language
with quantified, typed events. In ECOOP’08, pages
155-179, 2008.

The Qt Project. Signals & Slots.
http://qt-project.org/doc/signalsandslots.
The Self project.

http://selflanguage.org/.

J. Widom and S. J. Finkelstein. Set-oriented
production rules in relational database systems. In
Proc. of the Int’l Conf. on Management of Data
(SIGMOD ’90), pages 259-270. ACM Press, 1990.

