
Feature-Oriented Programming with Family Polymorphism

Fuminobu Takeyama Shigeru Chiba
Tokyo Institute of Technology, Japan

http://www.csg.is.titech.ac.jp/∼{f takeyama,chiba}

Abstract
In feature-oriented programming (FOP), code clones are
also important issue. Although an approach called a software
product line (SPL) enables to implement products efficiently
by reusing most of their code, SPLs implemented by FOP
contain a lot of code clones. Code clones are often caused by
alternative features and we also found clones in derivatives
among alternative features. To resolve this problem, we pro-
pose a new FOP language named FeatureGluonJ, which sup-
ports family polymorphism with revisers. The code clones
among alternative features are separated into another feature
and can be shared among the alternative features by extend-
ing that feature. Furthermore, clones in derivatives can be
removed as well.

Categories and Subject Descriptors D.3.3 [PROGRAM-
MING LANGUAGES]: Language Constructs and Features

General Terms Languages

Keywords Feature-Oriented Programming, Software Prod-
uct Lines, Family Polymorphism, Java

1. Introduction
A software product line (SPL) is a widely used approach
to develop a variety of products from a single set of arti-
facts, especially, a source code. Feature-oriented program-
ming (FOP) [2, 11] has been developed in research com-
munity. FOP provides separation of concerns to implement
SPLs; a SPL is decomposed into modules with respect to
each feature. Programmers can develop products by select-
ing a subset of features.

In spite of the aim of SPL, it seems that FOP does not pro-
vide reusability to implement features. It is known that a lot
of code clones exists in SPLs developed by FOP [13]. The
code clones often occur in alternative features because they

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
VariComp’12, March 26, 2012, Potsdam, Germany.
Copyright c⃝ 2012 ACM 978-1-4503-1101-4/12/03. . . $10.00

provide similar behavior and structures consisting classes. It
is difficult to remove them because the clones are not iden-
tical and scatter over revisers, which are construct to modify
an existing class. Clones are also found in derivatives, which
is a module connecting multiple features, among alternative
features. This problem must be resolved because these code
clones might make a SPL unmaintainable and, as a result,
reduce variability of SPLs.

This paper propose a new feature-oriented programming
language, FeatureGluonJ. In our language, inheritance of
feature module enables to remove such code clones to su-
per feature like class inheritance of object-oriented program-
ming. Derivatives can be considered as alternative features in
our language. Thus it also can be implemented by extending
a generic derivative for them.

2. Feature-oriented code clones
A significant aim of modular programming is to eliminate
code clones. A design-level approach for this aim is a soft-
ware product line (SPL) and feature-oriented programming
(FOP) is known as programming paradigm useful for im-
plementing SPLs. Although FOP enables code reuse among
products, a large number of code clones still scatter over
feature modules, which are selectable components of a SPL
[13]. These code clones are often found in alternative fea-
tures.

We below illustrate code clones found in MobileMedia
[15], which is an SPL of multimedia viewers for mobile de-
vices. Although the original version of MobileMedia is writ-
ten in AspectJ,1 this paper uses a version that we rewrote in

Figure 1. A feature model of MobileMedia SPL

1 It is available from
http://mobilemedia.sourceforge.net/

class PhotoController {
boolean handleCommand(Command command) {

if (command == OPEN) {
String selected = getSelected();
Display.setCurrent(new PhotoViewScreen(selected));

} else if (...) { ... }
}}

reviser PhotoTypeInitializer extends Application {
private PhotoListScreen screen;
private PhotoController controller;
void startApp() {

screen = new PhotoListScreen();
controller = new PhotoController();
super.startApp();

}}

Listing 1. Classes for the Photo feature

class MusicController {
boolean handleCommand(Command command) {

if (command == OPEN) {
String selected = getSelected();
Display.setCurrent(new MusicViewScreen(selected));

} else if (...) { ... }
}}

reviser MusicTypeInitializer extends Application {
private MusicListScreen screen;
private MusicController controller;
void startApp() {

screen = new MusicListScreen();
controller = new MusicController();
super.startApp();

}}

Listing 2. Classes for the Music feature

GluonJ [3] and added extra features. MobileMedia has fea-
tures shown in Figure 2. A feature indicated by an edge end-
ing with a circle is an optional feature. Programmers can se-
lect only necessary features among optional features to cus-
tomize a product. If a feature is not selected, it is not imple-
mented in a resulting product. If programmers must select
one of several features, the set of those features are called
alternative features. They are indicated by edges with an arc.
In this paper, furthermore, we extend the meaning of alter-
native features to cover a case in that programmers can se-
lect more than one feature among them. For distinction, we
say that such alternative features are combinatorial. In Mo-
bileMedia, Photo, Music, and Video are alternative features.
They implement a different type of medium.

For example, Listing 1 and 2 show a code clone between
Photo and Music features. The bodies of PhotoController
and MusicController classes are almost identical except the
class name in the new expressions. This is natural since both
features must support a similar set of commands such as
open and close.

In Listing 1 and 2, a class-like construct starting with the
reviser keyword is unique to GluonJ. It is called a reviser,
which corresponds to a class with refines in AHEAD and an
intertype declaration or an advice with an execution pointcut
in AspectJ. It adds a new field or method to an existing class
as open class [5] does. It can also replace an existing method
with a new implementation as AspectJ’s advice does.

reviser AddCopyToPhoto extends PhotoListScreen {
void initMenu() {

//add a menu item labeled "Copy" to a screen.
addCommand(new CopyCommand());

}}

reviser AddRenameToMusic extends MusicListScreen {
void initScreen() {

//add a menu item labeled "Rename" to a screen.
addCommand(new RenameCommand());

}}

Listing 3. The derivative features for Photo–Copy and
Music–Rename

Another code clone is found in revisers PhotoTypeInitial-
izer in Listing 1 and MusicTypeInitializer in Listing 2. Both
add screen and controller fields (with different types) to the
Application class. They also replace the startApp method
in Application. The two implementations of startApp are
identical except class names. Note that the two revisers are
applied to the Application class one by one. When two re-
viser replace the same method, super.startApp() in a re-
viser invokes another implementation as Super().startApp()
in AHEAD and proceed() in AspectJ. Due to space limita-
tion, we do not mention further details in this paper.

A code clone is also found in a special feature called
derivative [8, 9]. It is a feature that is needed to imple-
ment extra behavior only when two or more optional fea-
tures are selected. Listing 3 shows a derivative for Photo
and Copy and a derivative for Music and Rename. The revis-
ers in these derivatives are clones of each other. For exam-
ple, the AddCopyToPhoto reviser appends a command for
copying a photo. This command must be effective only when
the Photo and Copy features are selected. Note that Mobile-
Media contains several derivatives for every combination of
media type and editing operation, such as Video–Copy and
Photo–Rename.

A workaround to eliminate these clones shown above is
to declare a super class of Photo and Music and put it into
the Media feature. Then we can move code clone to that
super class. Differences in instantiated class names can be
addressed by using the factory method pattern. However,
this approach will cause a large number of factory meth-
ods and annoying downcasts, which degrade maintainability.
Furthermore, this approach does not work for code clones in
revisers. How to design inheritance of revisers is still an open
question. This is also true in AspectJ. In AspectJ, an aspect
can inherit another aspect but the super aspect must be ab-
stract. An abstract aspect itself does not change the behavior
of a base program at all; it is only used as a code template.
In the case of MobileMedia, we have to declare an abstract
aspect in the Media feature and also declare, for each media
type such as Photo and Music, a concrete aspect inheriting
from that abstract aspect. This would be annoying. Another
serious problem is that AspectJ provides only limited capa-
bility to customize an inherited code template. It allows a
sub-aspect only to give concrete pointcut definitions. This

abstract feature MediaType {}

// classes below belong to MediaType
abstract class MediaController {

boolean handleCommand(Command command) {
if (command == OPEN) {

String selected = getSelected();
Display.setCurrent(new MediaViewScreen(selected));
return true;

} else if (...) { ... }
}}

class MediaListScreen {
void initMenu() {}
: // common codes among media types

}

abstract class MediaViewScreen extends Screen { ... }

reviser MediaTypeInitializer extends Application {
MediaListScreen screen;
MediaController controller;
void startApp() {

screen = new MediaListScreen();
controller = new MediaController();

}}

Listing 4. The MediaType feature

feature PhotoMedia extends MediaType {}

class PhotoListScreen overrides MediaListScreen {
: //photo-specific codes

}

class PhotoController overrides MediaController {
: //photo-specific codes

}

class PhotoViewScreen overrides MediaViewScreen { ... }

Listing 5. The Photo feature implemented in our language

is not sufficient to absorb differences between PhotoType-
Initializer and MusicTypeInitializer shown in Listing 1 and
2.

3. Modular FOP with family polymorphism
Since the code clones mentioned above cannot be eliminated
by object-oriented programming technique in a satisfactory
way, we need a new mechanism for FOP-specific code reuse.
In this section, we show a new FOP language that supports
inheritance of features. As code clones in classes can be
removed to a super class in Java, clones in features can be
eliminated in our language. We first show how clones in the
alternative features in MobileMedia are removed. Then, we
refactor the derivatives among the alternative features.

3.1 Family polymorphism with revisers
We propose a new FOP language named FeatureGluonJ,
which support family polymorphism to implement SPLs
more modularly. Family polymorphism is a traditional ap-
proach to reuse structure consisting of classes by extending
multiple classes at once. In our language, a feature module,
which is a unit for implementing a feature, is considered as a
family. Besides feature module contains classes and revisers
like existing FOP languages, programmers can define a new
feature by extending another. The classes owned by a feature

module are virtual classes [10]. A virtual class can override
another virtual class defined in its super feature like a virtual
function (method) overriding. A real class bound to a vir-
tual class depends on what feature its host class belong to.
See Listing 4. The feature declaration on top of the source
represents MediaType feature owns classes described in that
source. Photo is defined as shown in Listing 5 and have vir-
tual classes that override the classes in MediaType. Instead
of defining classes with same name, our language uses over-
rides to specify an overridden class. PhotoController de-
rive methods, fields and constructors from MediaController
while overriding. Since the MediaViewScreen is overridden
by PhotoListScreen, the following code creates instance of
PhotoListScreen and show it on the display:

PhotoController c = new PhotoController();
c.handleCommand(OPEN);

We adopt copy semantics for the notion of select, which
is important in FOP. When a feature is selected for a prod-
uct, its virtual classes and revisers can be used in the prod-
uct; the revisers modify their target class. In our semantics,
the classes in a super feature are copied to its sub feature.
If programmers want to create a product that supports only
photo viewer, they select thereby only Photo and does not
select MediaType. Features marked abstract cannot be se-
lected but the classes and revisers can be used to implement
sub features. Programmers can try to create instance of an
abstract virtual class in an abstract feature and such classes
must be overridden in its sub features. Even if both of Photo
and Music are selected, copied classes from MediaType are
encapsulated within each feature and do not conflict.

Our polymorphism is unique in that a family contains
revisers. A virtual reviser in a super feature is also copied
to sub features. Although it appears that Photo in Listing 5
does not have any revisers, the feature module actually owns
the MediaTypeInitializer reviser in Listing 4 derived from
MediaType. A virtual reviser is polymorphic; its behavior
depends on virtual classes in itself. The reviser derived by
Photo creates fields and instances of components for it.
Virtual revisers are applied when its feature is selected. If
Photo and Music are selected, two MediaTypeInitializer in
Photo and Music are applied. The remaining Music and
Video can be implemented in the same way to Photo. Thus
code clones among the alternative features are removed to
MediaType.

Note that our family polymorphism is simplified in the
similar way to lightweight family polymorphism [12]. Vir-
tual classes and revisers appear only in direct children of
a feature and there are no subtype relation between virtual
classes from different features. Some readers might think the
semantics of a reviser are similar to those of a virtual class.
A reviser modifies target class globally and destructively. If
a class is modified by two revisers, both of revisers might
be executed everywhere code of the class is executed. On
the other hand, virtual class overriding affects only inside of

feature PhotoCopy {
import feature p: Photo;
import feature c: Copy;

}

reviser AddCmdToPhotoList extends p::PhotoListScreen {
void initMenu() {

addCommand(new c::CopyCommand());
}}

Listing 6. Naive implementation of the PhotoCopy feature

abstract feature FileOperation {}

abstract class FileOperationCommand extends Command {
FileOperationCommand(String lbl) {

super(lbl, ITEM, 1);
}}

feature Copy extends FileOperation {}

class CopyCommand overrides FileOperationCommand {
CopyCommand() {

super("Copy"));
}}

class CopyController {
... // code to copy

}

Listing 7. The Copy feature without clone

its feature module. Even if Photo and Music are selected,
multi-version of MediaController, which are named Photo-
Controller and MusicController, exist in the product.

3.2 Implementing derivative modules by
polymorphism

FeatureGluonJ enables to implement derivatives without
clones as well. We first show how a naive derivative is im-
plemented in our language. Since a derivative represents
connection between features, programmers have to access
classes from different features. Our language requires two
steps to access external classes. First, programmers have to
declare features used in the derivative by import feature. It is
described in a body of a feature declaration and given the im-
ported feature and an alias of the feature. Then virtual classes
in the imported feature are accessible with feature quali-
fied access, the :: operator. For example, we have deriva-
tive modules between Photo and Music in Listing 6. Pho-
toListScreen of Photo is described like p::PhotoListScreen.

Code clones among derivatives can be removed to a
generic derivative and they can share the clone by using
inheritance. Now we have the Copy feature implemented
by extending the FileOperation feature in Listing 7. Re-
name is not shown but implemented as well. Now we can
implement a derivative between two groups, sub features
of MediaType and sub features of FileOperation, as shown
in Listing 8. This derivative imports the super features of
each group and its reviser is implemented by using virtual
classes defined in those feature. Then, a concrete derivative,
PhotoCopy, is defined by extending this generic derivative.
abstract import feature is overridden by import feature

abstract feature MediaTypeAndFileOperation {
abstract import feature m: MediaType;
abstract import feature f: FileOperation;

}

reviser AddCmdToMediaList extends m::MediaListScreen {
void initMenu() {

addCommand(new f::FileOperationCommand());
}}

feature PhotoCopy extends MediaAndFileOperation {
import feature m: Photo; //override
import feature f: Copy; //override

}

// the reviser is derived

Listing 8. Implementation of PhotoCopy by extending a
generic derivative

abstract feature MediaAndFileOp defines forevery(m, f) {
abstract import feature m: MediaType;
abstract import feature f: FileOperation;

}

reviser AddCmdToMediaList extends m::MediaListScreen {
void initMenu() {

addCommand(new f::FileOperationCommand());
}}

Listing 9. Definition of all derivatives by defines

with the same alias defined in sub features. With regard to
PhotoCopy, since m and f are overridden with Photo and
Copy, m::MediaListScreen and f::FileOperationCommand
are bound to PhotoListScreen and CopyCommand, respec-
tively. abstract import feature must be described in abstract
features and overridden by concrete import feature.

Finally, programmers can define derivatives mentioned
above at once if concrete derivatives contain only import
feature like Listing 8. Listing 9 is the same as the generic
derivative in Listing 8 except for the defines clause of the
feature declaration. This defines automatically creates and
select sub features extending this generic reviser for every
pair of selected features that extends MediaType/FileOperation.

4. Discussion
Where code clones occurs in FOP? In MobileMedia,
code clones seems to be found among alternative features.
However some alternative features are defined not in domain
level but in implementation level. Programmers might notice
that two or more features have similar structures at imple-
mentation or design stage. These features can be considered
as alternative features and implemented efficiently by fam-
ily polymorphism. Derivatives among alternative features
are also implementation level alternative features.

Family polymorphism versus obliviousness Although fam-
ily polymorphism does reduce obliviousness a little, it is not
so critical as code clones reduce maintainability and vari-
ability. For example, since pure obliviousness is preserved in
Listing 1 and 2, while programmers implement Photo, they
need not take care of Music. Thus, in Listing 3, menus of

each screen are initialized in methods with different names:
initMenu() in Photo and initScreen() in Music. This might
cause, however, troublesome clones, which are semantically
similar but not syntactically. This type of clone is difficult to
be found by tools and implement generic derivatives. On the
other hand, by introducing their super feature, programmers
have to know about the existence of other types of medium
through it; They must use initMenu() to initialize menus.

Why code clones in derivative modules have not been re-
vealed? Although there are surveys on derivative mod-
ules and code clones of software product lines, code clones
among derivative modules are not mentioned. This is be-
cause the size of alternative feature is too small although
there are huge alternative features such as file systems or
device drivers in Linux kernel, in SPLs which are not imple-
mented in FOP. Since the number of derivatives between two
sets of alternative features might be n × m where n and m
are the sizes of alternative features, the impact of these code
clones becomes more serious in larger systems.

5. Conclusions and future work
We proposed a new feature-oriented programming language,
named FeatureGluonJ. It supports family polymorphism; a
feature can be defined based on an existing feature. Our re-
viser is polymorphic and its behavior changes depending on
its host feature as well as virtual classes. The alternative fea-
tures in MobileMedia can be implemented more modularly
by using inheritance.

Related work includes CaesarJ [1], which is a program-
ming language supporting both AOP and family polymor-
phism. Although it enables programmers to implement a
generic and family polymorphic aspect for alternative fea-
tures like our language, it does not support intertype dec-
larations and implementing a generic derivative because of
access limitation to virtual classes from aspects. On the
other hand, programmers can also implement SPLs by mixin
composition of classes that implement selected features [6].
However, since a super class (feature) is mixed only once,
combinatorial alternative features cannot be implemented
without clones mentioned in this paper.

Another approach to implement SPLs and remove code
clones is performed by IDEs. CIDE [7] is IDE developed on
Eclipse and support feature decomposition by assigning col-
ors to code snippets. Backgrounds of snippets belonging to
a certain feature are filled in the same color. Programmers
can remove and revert snippets assigned in the same color
from source code like #ifdef directives of the C preproces-
sor. However, code clones among combinatorial alternative
feature occurs also in SPLs developed by CIDE. On the other
hand, we adopt an approach using syntactical constructs. It
is important to search solutions from both side. For exam-
ple, clones with minor differences can be managed by syn-
chronized editing [4]. It can be extended to support grouping
clones, which corresponds to our family inheritance.

Our future work includes another type of code clones
caused by language constructs such as using of GluonJ and
resolvers of Airia [14]. These constructs are used for control-
ling scope and precedence order of revisers and described in
derivatives. We need formal definition of type system of our
language. This can be defined based on type systems of Glu-
onJ and lightweight family polymorphism.

References
[1] I. Aracic, V. Gasiunas, M. Mezini, and K. Ostermann. An

overview of CaesarJ. In Transactions on Aspect-Oriented
Software Development I, pages 135–173. Springer Berlin /
Heidelberg, 2006.

[2] D. Batory, J. Sarvela, and A. Rauschmayer. Scaling step-wise
refinement. Software Engineering, IEEE Transactions on, 30
(6):355–371, 2004.

[3] S. Chiba, A. Igarashi, and S. Zakirov. Mostly modular com-
pilation of crosscutting concerns by contextual predicate dis-
patch. In OOPSLA, pages 539–554. ACM, 2010.

[4] S. Chiba, M. Horie, K. Kanazawa, F. Takeyama, and Y. Ter-
amoto. Do we really need extending syntax for advanced
modularity? In AOSD Modurality Visions, 2012. to appear.

[5] C. Clifton, G. T. Leavens, C. Chambers, and T. Millstein. Mul-
tijava: modular open classes and symmetric multiple dispatch
for java. In OOPSLA, pages 130–145. ACM, 2000.

[6] V. Gasiunas and I. Aracic. Dungeon: A case study of feature-
oriented programming with virtual classes. In Proceedings of
the 2nd Workshop on Aspect-Oriented Product Line Engineer-
ing, 2007.

[7] C. Kästner, S. Apel, and M. Kuhlemann. Granularity in
software product lines. In ICSE, pages 311–320. ACM, 2008.

[8] C. Kästner, S. Apel, S. S. ur Rahman, M. Rosenmüller, D. Ba-
tory, and G. Saake. On the impact of the optional feature
problem: analysis and case studies. In SPLC, pages 181–190.
Carnegie Mellon University, 2009.

[9] J. Liu, D. Batory, and C. Lengauer. Feature oriented refactor-
ing of legacy applications. In ICSE, pages 112–121. ACM,
2006.

[10] O. L. Madsen and B. Moller-Pedersen. Virtual classes: a pow-
erful mechanism in object-oriented programming. In OOP-
SLA, pages 397–406. ACM, 1989.

[11] C. Prehofer. Feature-oriented programming: A fresh look at
objects. In M. Aksit and S. Matsuoka, editors, ECOOP, pages
419–443. Springer Berlin / Heidelberg, 1997.

[12] C. Saito, A. Igarashi, and M. Viroli. Lightweight family
polymorphism. Journal of Functional Programming, 18:285–
331, 2008.

[13] S. Schulze, S. Apel, and C. Kästner. Code clones in feature-
oriented software product lines. In GPCE, pages 103–112.
ACM, 2010.

[14] F. Takeyama and S. Chiba. An advice for advice composi-
tion in AspectJ. In Software Composition, pages 122–137.
Springer Berlin / Heidelberg, 2010.

[15] T. Young and G. Murphy. Using AspectJ to build a product
line for mobile devices. AOSD 2005 Demonstrations, 2005.

