Feature-Oriented Programming with
Family Polymorphism

Fuminobu Takeyama
Shigeru Chiba

Tokyo Institute of Technology

Chiba Shigeru Group
@ Tokyo Tech

2012/03/25 Feature-Oriented Programming with Family Polymorphism

Feature-oriented programming (FOP)

modularizes code snippets related to the same feature
useful for software product lines (SPL)

A feature = aspects + classes

To improve composability
i.e., easy to add/remove code snippets related to a feature

In AHEAD, a typical FOP language, refinement + classes

Selecting a feature

Aspects and classes related the feature is compiled

Chiba Shigeru Group
U.\ Tokyo Tech

2012/03/25 Feature-Oriented Programming with Family Polymorphism

MObI |eMed|a SPL [T. Young, et al., AOSD 2005 demo]

Multimedia viewer for mobile devices

Alternative feature

original: select 1 feature from alternative features
select a subset of features from alternative features

MobileMedia —(Favorite
] Medialype ! FileOperation
alternative alternative
O M
Photo Music Video Copy Rename | Shigeru Group
N V¥ Tokyo Tech

2012/03/25

Feature-Oriented Programming with Family Polymorphism

Code clones among features

Code clones are found especially in

alternative features
derivatives

These clones cannot be removed easily

Not only classes but also aspects
Class names in those clones are different

[S. Schulze, GPCE 2010]

N

Chiba Shigeru Group
Tokyo Tech

2012/03/25 Feature-Oriented Programming with Family Polymorphism

Clones among alternative features 1/2

Because alternative feature have similar behavior and
structures of classes

Both Photo and Music have a list of media
show/play a selected medium

M Song of
softwa

M Code clone
ma

B FOP radio

6--------‘

MusicPlayerScreen MusicListScreen
------------- = DRy T T

PhotoViewScreen PhotoListScreen

2012/03/25 Feature-Oriented Programming with Family Polymorphism

Clones among alternative features 2/2

reviser PhotoTypelnitializer
extends Application {
private PhotoListScreen screen;
private PhotoController cont;
void startApp() {
screen = new PhotoListScreen();
cont = new PhotoController();
super.startApp();

class PhotoController ext.. Cont.. {
boolean handleCommand(Command c) {
if (c == OPEN) {
String sel = getSelected();
Display.setCurrent(
new PhotoViewScreen(sel));

class PhotoViewScreen ext.. Screen {..}

2012/03/25

reviser MusicTypeInitializer
extends Application {
private MusiclListScreen screen;
private MusicController cont;
void startApp() {
screen = new MusicListScreen();
cont = new MusicController();

. 0 . A ;
3} Clones in aspects (ke pp()

class MusicController ext.. Cont.. {
boolean handleCommand(Command c) {
if (c == OPEN) {
String sel = getSelected();
Display.setCurrent(
new MusicPlayerScreen(sel));

} else if (...) { ... } f (...) { ...}
}} Class names are different

class PhotoViewScreen ext.. Screen {..}

— 7

Feature-Oriented Programming with Family Polymorphism

up

Code clones among derivatives 1/2

A derivative

a special feature needed only when a certain set of features are
selected

PhotoCopy derivative

needed only when Photo and Copy are selected
Adding “Copy” to PhotolListScreen

PhotoCopy T

Close
only for Photo only for Copy

2012/03/25 Feature-Oriented Programming with Family Polymorphism

Code clones among derivatives 2/2

Different derivative for every combination
The number of derivative might explode

PhotoCopy

reviser AddCopyToPhoto extends PhotolListScreen {
void initMenu() {
addCommand(new CopyCommand());

MusicCopy

3

MusicRename

reviser AddRenameToMusic extends MusiclListScreen {

void initMenu() {

addCommand(new RenameCommand());

VideoCopy

3 .
C ®= 1OKYO ITecn

A topic for discussion

The cause of these clones

Our observation is there are two types of edges

It is said that an edge represents a has-a relation
Some edges normally represent is-a

has-a

MobileMedia pb—(Favorite

has—a/

_ MediaType has-a | | .
. yp FileOperation o =
o;/&o O/L)\O
Photo Music Video Copy Rename | shigeru Group
= ¥ TOKRyO Tech

2012/03/25 Feature-Oriented Programming with Family Polymorphism

Avoiding code clones with inheritance

A feature can be implemented by extending another
Common codes can be removed into super feature

A generic derivative

A super feature is used as interface for its sub features

MediaType
class, interface for
aspect . . Copy and Rename
oup
J‘ Tokyo Tech

2012/03/25 Feature-Oriented Programming with Family Polymorphism

Family polymorphism with aspects

A family is regarded as a feature
consist of aspects and virtual classes

A virtual class

can be overridden by classes of sub feature
The real class referred by a virtual class is depends on feature

reduce difference of class names
in classes and aspects

Chiba Shigeru Group
U.\ Tokyo Tech

2012/03/25 Feature-Oriented Programming with Family Polymorphism

Feature modules in FeatureGluonl

Feature

classes belong to one feature
declare at the top of source code

feature Photo {} feature Photo;

feature Photo; reviser PhotoTypelnitializer .. {

/* (snip) */
class PhotoController .. { void startApp() {

boolean handleCommand(Command c) { /* (snip) */

/* (snip) */ }}
1}

feature Photo;

class PhotoViewScreen ... {..}

up
e " |OKYO lech

2012/03/25 Feature-Oriented Programming with Family Polymorphism

PhotoFeature implemented with inheritance

Use overrides, not extends

X overrides Y: X is replaced with Y that extends original X

MediaType

abstract feature MediaType {} /* (snip) */

abstract class MediaTypeController .. {
boolean handleCommand(Command c) {
..new MediaViewScreen(); .. abstract class MediaViewScreen
[rL-_.{m}

* A
feature Photo extends MediaType {} V "”///’/’l______________d

class PhotoController class PhotoViewScreen
overrides MediaTypeController {..} overrides MediaViewScreen {..}

)

1P
N’ " |OkyO lech

2012/03/25 Feature-Oriented Programming with Family Polymorphism

Family polymorphism with revisers 1/2

Reviser in GluonJ [s. chiba, et al, OOPSLA 2010]

around advices with an execution pointcut
intertype declarations
can belong to a feature

reviser MediaTypelInitializer extends Application {

private MediaController cont; Intertype declaration

void startApp() { N
cont = new MediaController(); Advice

super.startApp();

+} class Application {

void startApp() {
// executed when this application starts

T}

2012/03/25 Feature-Oriented Programming with Family Polymorphism

Family polymorphism with revisers 2/2

No need to define the revisers for each feature
Virtual classes in a reviser are overridden as well

MediaType

reviser MediaTypelInitializer .. { abst. class MediaViewScreen

private MediaController cont;

new MediaTypeController();
1

.Labst. class MediaTypeController

}
- V=T TIEEET N
\ 4
class PhotoViewScreen class PhotoController
overrides MediaViewScreen {..} overrides MediaTypeController {..}

N\’ ¥ Tokyo Tech

ap

2012/03/25 Feature-Oriented Programming with Family Polymorphism

Copy semantics 1/2

Classes and revisers of super feature are copied to sub-
features

visible only in the features

Selecting multiple feature
from sub features
multiple copies of a reviser

will be executed.

=

‘up
U\ Tokyo Tech

2012/03/25 Feature-Oriented Programming with Family Polymorphism

Copy semantics 2/2

reviser MediaTypelInitializer
MediaController cont;
. new MediaController(sel) ..

PhotoController
class PhotoViewScreen

reviser MediaTypelnitializer
MediaController cont;
. new MediaController(sel) ..

MusicController
class MusicPlayerScreen

PhotoViewScreen

class MediaController .. {
.. hew MediaViewScreen(sel) ..
}

class MediaViewScreen

class PhotoController

MusicPlayerScreen

class MediaController .. { il
.. hew MediaViewScreen(sel) ..
}

class MediaViewScreen

class MusiController

Chiba Shigeru Group
U\ Tokyo Tech

2012/03/25

Feature-Oriented Programming with Family Polymorphism

Implementation of naive derivatives

Derivatives represents connection between features

2 steps to access classes belonging other features
import feature

Feature qualified class access, : :
PhotoCopy PhotoRename

feature PhotoCopy { alias of imported feature
import feature p: Photo; MusicCopy

import feature c: Copy;

}

reviser AddCopyToPhoto extends p::PhotoListScreen { .
void initMenu() {

addCommand(new c::CopyCommand());
}} Copy’S Copycommand = TURYU I1TCTUIlI

2012/03/25 Feature-Oriented Programming with Family Polymorphism

A generic derivative

used to implement other derivatives

A super feature is used as interface
* What virtual classes the feature provides?

A X

import feature will be overridden by sub-derivative

MediaTypeFileOp

feature MediaTypeFileOp {
abstract import feature mt: MediaType;
abstract import feature fo: FileOperation;

}

void initMenu() {
addCommand(new fo::FileOpCommand());

3}

reviser AddCmdToMedialist extends mt::MedialListScreen {

mt have a class overriding

MedialListScreen

niba Shigeru Group

— ~okyo Tech

2012/03/25 Feature-Oriented Programming with Family Polymorphism

Derivatives extending the generic derivative

Code clones are removed
Redundant feature definitions are still remaining

MediaTypeFileOp

feature MediaTypeFileOp {
abstract import feature mt: MediaType;
abstract import feature fo: FileOperation;

} reviser AddCmdToMedialist extends mt::MedialListScreen {
void initMenu() {
addCommand(new fo::FileOpCommand());

1}
PhotoCopy ‘

feature PhotoCopy extends MediaTypeFileOp {
import feature mt: Photo;

import feature fo: Copy; [RAliENEINE

} feature PhotoRename extends MediaTypeFileOp {
Overrides alias with import feature mt: Photo;
import feature fo: Rename;

the same name P dl A reviser is derived

}

2012/03/25 Feature-Oriented Programming with Family Polymorphism

Auto generation of the derivatives

derivatives extending the generic one

no need to create new derivatives when a new feature is added

MediaTypeFileOp

feature MediaTypeFileOp defines forevery(mt, fo) {
abstract import feature mt: MediaType;

abstract import feature fo: FileOperation;

}

reviser AddCmdToMedialist extends mt::MedialistScreen {
void initMenu() {

addCommand(new fo::FileOpCommand());

3

Chiba Shigeru Group
U.\ Tokyo Tech

2012/03/25 Feature-Oriented Programming with Family Polymorphism

Related work 1/2

[C. Saito, et al., J. of functional prog. (18) 2008]

Lightweight family polymorphism

Similar semantics from the view point of virtual class
Virtual classes (and revisers) can be described only in top level
No subtyping between classes from different family

Caesar) [I. Aracic, et al., TAOSD | 2006]

language supporting virtual classes and aspects

Aspects in Caesar) are limited
No intertype declarations

(?) cannot handle join points in other feature (cclass)
— Does anyone know the detail of Caesar)’s semantics?

Chiba Shigeru Group
U.\ Tokyo Tech

2012/03/25 Feature-Oriented Programming with Family Polymorphism

Related wrok 2/2

FOP onIy with virtual classes [V. Gasiunas, et al., AO Product Line Eng.]
needs private inheritance to prevent the code clones

MediaType MediaType

MobileMedia /
N

Chiba Shigeru Group
Tokyo Tech

2012/03/25 Feature-Oriented Programming with Family Polymorphism

Conclusions

FeatureGluon)

family polymorphism / virtual classes for FOP
supports aspects

removes code clones
among alternative features
among derivatives

Future work

Formal definition of type system

Other types of clones
code for resolving conflict of revisers

Chiba Shigeru Group
U.\ Tokyo Tech

2012/03/25 Feature-Oriented Programming with Family Polymorphism

