A DISSERTATION SUBMITTED TO DEPARTMENT OF MATHEMATICAL AND
COMPUTING SCIENCES, GRADUATE SCHOOL OF INFORMATION SCIENCE AND
ENGINEERING, TOKYO INSTITUTE OF TECHNOLOGY
IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF
DOCTOR OF SCIENCE IN MATHEMATICAL AND COMPUTING SCIENCES

COORDINATED AND SECURE SERVER
CONSOLIDATION USING VIRTUAL MACHINES

(R~ v 2 7B AT RE TR 2 Y — A HiE)

Hidekazu Tadokoro Dissertation Chair:
Osamu Watanabe

Jury 2012

A]ostract

Server consolidation using virtual machines (VMs) can improve resource uti-
lization by sharing physical resources. Each VM is isolated from the others
for security and VMs can be easily migrated for load balancing. Since there
are several VMs in a physical machine, the virtual machine monitor (VMM)
multiplexes the physical resources among VMs according to system settings.
The administrators determine the system settings and manage the VMs for
suspension, resumption, or migration using a privileged VM called the man-
agement VM. In this situation, each VM is influenced from VMs coexisting
in the same machine. For performance, processes in one VM can compete
with processes in other VMs for CPUs because VMs share physical CPUs.
For security, due to the privileges of the management VM, sensitive informa-
tion in the VMs may leak via the management VM. If the attackers intrude
in the management VM, they can easily steal sensitive information from the
VM’s memory.

To address these problems, this thesis proposes coordinated and secure
server consolidation. Our VMM provides a system-wide process scheduler
called the Monarch scheduler and a secure memory manager called VM-
Crypt. The design principle of these systems is reducing the functionalities
implemented in the VMM. The Monarch scheduler uses the existing process
schedulers in guest operating systems (OSes) as a part of it and changes the
behaviors of the minimum number of processes. It mediates CPUs among
processes in different VMs to achieve system-wide scheduling policies. To
control the execution of processes, it suspends and resumes processes by us-
ing a technique called direct kernel object manipulation (DKOM). To hide
the details of DKOM for various guest OSes, the Monarch scheduler provides
a high-level API for writing scheduling policies. On the other hand, VMCrypt

11

encrypts the VM’s memory only for the management VM and uses the exist-
ing management software as is. By the memory encryption, the management
VM cannot steal sensitive information in the VM’s memory. Although the
existing management software can basically run for encrypted memory, it
requires unencrypted contents only for several memory regions. Therefore,
VMCrypt does not encrypt such memory regions, which are automatically
identified and maintained during the life cycle of a VM.

We have implemented the Monarch scheduler and VMCrypt in the Xen
VMM. The Monarch scheduler supports not only open-source Linux but
also closed-source Windows as guest OSes, and VMCrypt supports para-
virtualized Linux, which is tightly coupled with the management VM. From
our experimental results, the Monarch scheduler could achieve useful schedul-
ing policies such as idle-time scheduling even in multi-OS environments. The
overheads incurred by the Monarch scheduler were small enough. Using VM-
Crypt, the administrators could perform VM management including live mi-
gration securely and correctly. VMCrypt prevented the administrators in
the management VM from finding cryptographic keys and passwords in the
VM'’s memory. The downtime due to live migration was still less than one
second and its overhead was 13%.

Acknowleclgements

ek, A oM ECEMEECAD L, kAR EZIEET 2D
3. RELEID Do EB0ET, B L TwET, A, HIKRHRUIC
BRI > THEAE, TER2BED THW IS L 3, #X
ZELICHIY, BFHARETH D, aded, 054, A, EREk
AL FEERA, JekeAii:, HEEZaX VP RTHE L,

HRHF & FIEHFD A N—I1JEH L 9, WL ICAD ST TR L
¥ L7, TERME. EHRARHISREESRSRIUB AR ICK T T
Fo L L7DERATHWET,

HREME 2RO 7 EIZIFHERHHIC, = a=a@loY —EADMHE > 72
LERELTWET, —a@iTh o b2 ADEEEZ T T 2EE LS, o
T3 ¥ AT A (12 Monarch Scheduler & MEENS X H I %) 2T /3Ny 7
TE2DIXHEL -7 TT, HEOHICITVW - Y= a=—aFl»dh L7,

ZazZ auXz RIZC O, Mgz RO L ETL, £
THIDSOG S I DEEREETE 25T L, = adzAiE0H0IcT 52
ET. ALRLHEED»SEITE L7,

EHIAZ, FEOHETL X, il To EBARIZ, mEA K »
TEL»PS7TT,

D =T, MEIZE oE L BoTwE T, MmrEZzEIcE L -
O, Yo TER LU ET, 79— X VEHFEVTFEICE BN TT
D, ANERBVLLWTT,

FrEH T REDIZH Db o THIAICEATS 2 LT, WALARTE
FHUBFRE L 2 L HwE T, REPHELRDFEHED IR E, BERITH £
DEFELZWEL) HADHFEZMSERLE L7z, L THEHLTuET,

BOFATHENZ D3, I BV F L, ZAKESITT CICEHEKE
AT 2DIF, ETHEIFNTHWREERL L, %L CTHWEMEE
HEDHES | [E R R PR B I L Tk T,

111

v

ENOSPLATLY 7 027, 70y o3y 7Bk EZEO X
2% % BT, P IADHEEIZETHREDPSKLTY, fioT0w3Y 7y
TTHLHEVI ERHNUL, T Ia— R2ARo 5 LBDHIRNTL 72,
- FERUCEBEIZP2O0FE L,

RHZIZ, @D 72 nTd, BE T RZ/H00°E T, BIFIFEA
EERZFRATLE, THALI WV, TH TRELSSWVIFHAZWER) v
IBEIFWBMIEZTVET, AL, RELSSVLIEHEONL L) TT,

BRI, SR L £9, K SADLRZL T EBWET, EALSE
THRD AL, B#LTnxT,

1

Contents

Introduction

1.1 Motivating Problem L.
1.2 Solution by This Thesis
1.3 Position of This Thesis.
1.4 The Structure of This Thesis

Background

2.1 Process Scheduling in a VM Environment
211 Related Work

2.2 Security Issue in the Virtualized Environment
2.2.1 The Management VM-related Information Leakage
222 Related Work

2.3 Hypervisor-based Approach and OS-based Approach
2.3.1 Cooperative Scheduling
2.3.2 A Central Process Scheduler in the Management VM . . .
2.3.3 Encryption by the guest OSes
2.3.4 Managing VMs by themselves

Monarch Scheduler

3.1 Overview
3.1.1 Scheduling APl
3.1.2 Example Scheduling L.
3.1.3 Hybrid Scheduling L.
3.1.4 Security

3.2 Implementationo
3.2.1 Scheduler Overview

CONTENTS v

21

CONTENTS

3.2.2 Accessing Kernel Data
3.2.3 Suspending/Resuming Processes
3.2.4 Monitoring Accurate Process Time
3.2.5 Support for the Windows Guest OS

3.2.5.1 Obtaining Type Information

3.2.5.2 Finding Prochead of Windows
3.2.6 Finding Run Queues of Windows

4 VMCrypt

4.1 Dual Memory View
4.2 Threat Model and Assumptions
4.3 Implementation
431 Memory Model in Xen
4.3.2 Constructing an Encrypted View.
4.3.3 Dealing with Unencrypted Pages
4.3.4 Identifying Unencrypted Pages
4341 StartInfo

4342 Console/XenStore Rings

4343 SharedInfo

4344 P2MTable.

4345 PageTables

4346 |Introspected Data

4.3.4.7 Shared Memory with the Grant Table

4.3.5 Live Migration with VMCrypt
4351 SourceHost
4.3.5.2 Destination Host

4.3.6 Other VM Management with VMCrypt
43.6.1 Booting with VMCrypt
4.3.6.2 Suspension with VMCrypt
4.3.6.3 Resumption with VMCrypt

4.3.7 Introspection with VMCrypt

4.3.8 Security Consideration

5 Experiments for the Monarch Scheduler

5.1 Scheduling Overheads
5.2 Monitoring Overheads
5.3 Performance Degradation
5.4 System-wide ldle-time Scheduling
5.5 System-wide Priority Scheduling

vi

CONTENTS vii

5.6 Proportional-share Scheduling in One VM 74
5.7 System-wide Proportional-share Scheduling 75
5.8 System-wide Multi-OS Process Scheduling 75
5.9 Dependence on Guest OSes 78

5.9.1 The Cost of Supporting CFS by the Monarch scheduler . 79
5.10 The Comparison between the Monarch scheduler and the Central

scheduler 80
5.10.1 Architecture 80
5.10.2 Disadvantages of the Central scheduler 83
5.10.3 Costs of Accessing Memory of DomainU 84
5.10.4 The Accuracy of Scheduling Interval 84
5.10.5 The Accuracy of Measuring Process Times 85
5.10.6 The Proficiency of Process State Rewriting 85
5.10.7 Performance Degradation by the Central scheduler 86

6 Experiments for VMCrypt 89
6.1 Overhead of Constructing an Encrypted View 90
6.2 Memory Overhead for an Encrypted View 91
6.3 Overhead for VM Boot 92
6.4 Overheads for VM Suspend and Resume 92
6.5 Overhead for VM Migration 94
6.6 Overhead for Live Migration 95
6.7 Performance Degradation of Domain U 97
6.8 Overhead of Remote Attestation 100
6.9 Leakage Tests with VMCrypt 100
6.9.1 Finding Keys from Processes’ Memory 101
6.9.2 Obtaining Passwords on the Page Cache 102

7 Conclusion 103

Bibliography 105

1.1
1.2

3.1
3.2

3.3

34
3.5
3.6
3.7
3.8
3.9
3.10
3.11

4.1
4.2
4.3
4.4
4.5

5.1
5.2
53
54

List of Figures

The Position of the Monarch scheduler. 7
The Position of VMCrypt. 9
The Monarch scheduler running in the VMM. 25
Proportional-share scheduling for allocating the CPU resource in

aratioof 1: 4. 30
Idletime scheduling for running the indexing service when the

whole systemisidle. 31
Accessing VMs' memory.o 34
The Monarch scheduler finds the run queue dynamically. 35
The Monarch scheduler checks the spin lock of the run queue. . . 35
Suspending processes in various states. 36
Compiling Linux with the debug option. 39
Obtaining the type information of the Windows kernel with WinDbg. 40
The data structures inside the Windows kernel. 41
Finding processes from Windows Guest OS’'s memory. 42
A dual memory view provided by VMCrypt. 44
The three layers of Xen memory. A7
Synchronization between an encrypted view and a normal view. . 48
Unencrypted pages and the encryption bitmap. 50
Encryption based on the decryption record. 58
The time for traversing process lists. 64
The performance degradation of a web server. 66
System-wide idle-time scheduling for Hyper Estraier. 67
The effects of hybrid scheduling with idle-time scheduling. 69

LIST OF FIGURES wiii

LIST OF FIGURES ix

55
5.6
57
5.8
5.9

5.10

5.11
5.12
5.13
5.14

5.15
5.16

5.18

5.17

6.1
6.2

6.3
6.4
6.5
6.6
6.7
6.8
6.9
6.10
6.11
6.12
6.13
6.14

The performance degradation by hybrid scheduling. 70
System-wide priority scheduling for DBT-3 and ClamAV. 71
System-wide priority scheduling for MEncoder and ClamAV. . . . 73
The effects of hybrid scheduling with priority scheduling. 74
The CPU utilization in proportional-share scheduling for processes

inone VM. 75
The CPU utilization in proportional-share scheduling for processes

among two VMs.o 76
System-wide idle-time scheduling across multiple OSes. 7
The changes of the lines of code in the Linux process scheduler. . 79
A code fragment of red black tree library in the Linux kernel . . . 80
An example code of red black tree library accessing domain U's

memory by the VMM or the domain0 81
The architecture of the Central scheduler. 82
The difference between the process times obtained from a guest

OS and that tracked by the VMM. 86
The performance degradation of a web server with the Central

scheduler. 87
The distribution of times elapsed for stopping a process. 88
Time for the domain 0's mapping a page of a domain U. 90
The number of extra pages used for replication during VM sus-

pend and VM resume.o 91
The time for booting domain U. 92
The time for suspending domain U. 93
The time for resuming domain U. 93
The time for migrating domain U. 94
The performance of live migration. 96
The CPU utilization during live migration. 97

LmBench: Performance degradation of domain U by VMCrypt. . 98
UnixBench: Performance degradation of domain U by VMCrypt. . 99
The throughput of a web server in domain U during live migration.100
Finding AES shared keys from domain U's memory. 101
Finding RSA private keys from domain U's memory. 101
Finding a shadow password from domain U's memory. 102

2.1

51

5.2

List of Tables

The comparison of approaches. 20

Modifications of the Monarch scheduler when the Linux kernel is

updated. 79
The breakdown of the time needed for accessing memory of Do-
mainU from Domain0. 84

LIST OF TABLES x

Chapter

Introduction

Server consolidation is widely applied to improve the resource utilization of
each server machine. Particularly, the virtual machine (VM) technology is
promising for consolidating legacy systems. Multiple physical servers can be
easily migrated to multiple VMs using physical-to-virtual conversion (P2V)
tools. The administrators of the VMs can continue to use legacy systems
including legacy operating systems (OSes) as is in VMs. In addition, VMs
can be easily moved to other machines if necessary. Such VM migration is
used for hardware maintenance and load balancing. Furthermore, VMs are
strongly isolated from each other for security. Even if the system in a VM
crashes or a VM is compromised by the attackers, the other VMs are not
influenced by the VM.

Since there are multiple VMs in a physical machine, the virtual ma-
chine monitor (VMM) multiplexes the physical resources among VMs, such
as CPUs, disks, and networks. The VMM is a software layer underlying
VMs. To configure resource allocation to VMs, the administrators of physi-
cal machines often use a privileged VM called the management VM in type
I VMM such as Xen [70], which directly runs on hardware. For CPU re-
sources, they can determine how much CPU time can be consumed by each
VM. For example, the credit scheduler in Xen allows the administrators to
assign a proportional share of CPUs called a weight and an upper limit called

INTRODUCTION 1

Motivating Problem

a cap to each VM. In addition, the management VM is used for managing
VMs such as suspension, resumption, and migration. Management software
in the management VM accesses the memory, disks, and networks of VMs to
achieve VM management.

1.1 Motivating Problem

In server consolidation, each VM is influenced from VMs coexisting in the
same machine. From the performance viewpoint, processes in one VM can
compete with processes in other VMs for CPUs even in different VMs because
VMs share physical CPUs. For example, consider that a process such as
AntiVirus is configured to run only at idle time [16]. When multiple VMs
exist in one physical machine, the process would run even when the VM in
which it runs is idle but the other VMs are not. As a result, the process may
prevent the execution of more important processes in other VMs. Such a
situation can be avoided by exclusive allocation of physical CPUs. Allowing
each VM to occupy several physical CPUs could prevent CPU contention
among VMs. However, exclusively-allocated CPUs are not used at all while
the VM is idle. This is unacceptable for server consolidation because one
of the motivations of server consolidation is to improve CPU utilization of
physical machines.

Since physical CPUs have to be shared among VMs for high CPU uti-
lization, system-wide process scheduling is necessary to schedule processes
across VMs. When VMs share physical CPUs, busy VMs can use them even
if there are idle VMs. In compensation for this flexibility, the above problem
of CPU contention arises. A system-wide process scheduler can solve this
problem by monitoring and controlling all the processes in all VMs properly.
For example, the process that runs only at idle time is scheduled only when
any processes are not running in all the VMs. As a result, more important
processes can be executed without being affected by less important processes.

The VMM underlying VMs is a possible place of implementing such a
system-wide process scheduler. Since the VMM manages all the VMs and
mediates physical CPUs, the sole process scheduler in the whole system could
control the execution of all the processes in all VMs. However, it requires
large modification to guest OSes because the process schedulers in guest
OSes have to be moved into the VMM. To enable the VMM to schedule the
processes, guest OSes also have to be modified to give process information
to the VMM. The process is the concept in an OS and the VMM cannot

INTRODUCTION 2

Motivating Problem

directly recognize the process. The necessity of such modification makes it
difficult to apply system-wide process scheduling to legacy systems.

From the security viewpoint, on the other hand, the privileges of the
management VM can be security flaws, so that sensitive information in VMs
can leak via the management VM. Using the abilities of the management VM,
the attackers inside it can steal the whole contents of the memory, disks, and
networks of the VMs in the same physical machine. For example, they can
dump the whole memory of the VMs into their disks. They can mount the
disks of the VMs and read all the files. Network sniffers running in the
management VM can easily capture packets to/from the VMs. Fortunately,
disks and networks could be encrypted by the guest OSes themselves in the
VMs to protect their contents. The VMs can use encrypted file systems like
Windows EFS and virtual private networks (VPNs).

Unlike disks and networks, memory is crucial because it is difficult for
the guest OSes to encrypt their own memory. Without hardware support,
neither OSes nor applications can run with encrypted memory. There are
various types of sensitive information in memory [79]. Clear-text passwords
and cryptographic keys can be extracted from the VMs’ memory. Such infor-
mation resides in buffers in the kernel or processes temporarily. In addition,
the memory usually contains the buffer cache, which is used for maintaining
copies of the data of file systems in memory. Through the analysis of the
buffer cache, the attackers can read the data blocks of specific files if the
blocks are on the buffer cache. The encryption of the file systems in the VMs
is not sufficient because the buffer cache cannot be encrypted.

Therefore, the confidentiality of the VMs’ memory should be preserved
while the administrators perform VM management. A simple solution to
prevent information leakage is to disable the management functions of the
management VM, but this would not be acceptable under server consolida-
tion. At least, live migration, which migrates VMs with negligible down-
times, is indispensable for the reasons of load balancing and power saving.
Another solution is to put management software in the VMM like VMware
vSphere [102]. Ounly the trusted management software in the VMM can
securely access the VMs’ memory, whereas the management VM does not
have the privileges for accessing it. However, this results in a larger trusted
computing base and lower manageability. The management software embed-
ded in the VMM enlarges the VMM and this may make the whole system
vulnerable. In addition, the management software in the VMM cannot be
easily changed. It is difficult for the administrators to use other management
software.

INTRODUCTION 3

Solution by This Thesis

1.2 Solution by This Thesis

To address these two problems, we propose the Monarch scheduler [24][25][26]
and VMCrypt [27]. The design principle of these systems is reducing the func-
tionalities implemented in the VMM because the VMM should be smaller for
security, known as the principle of least privilege. We put only the minimum
mechanisms in the VMM. To achieve system-wide process scheduling, the
Monarch scheduler changes the behaviors of the minimum number of pro-
cesses. It does not implement the full-fledged process scheduler in the VMM,
but it uses the existing process schedulers inside guest OSes as a part of it. To
prevent information leakage from the management VM, VMCrypt encrypts
the memory of VMs only for the management VM. It does not implement
the whole management software in the VMM, but it runs the existing man-
agement software in the management VM securely.

Monarch Scheduler

The Monarch scheduler is a system-wide process scheduler running in the
VMM. It mediates CPUs among processes in different VMs according to
system-wide scheduling policies. To achieve such custom scheduling policies,
it monitors the execution of processes in VMs and changes the scheduling
behavior of guest OSes. The Monarch scheduler exploits the existing process
schedulers inside guest OSes as part of it. It also uses the existing VM
scheduler in the VMM. Each process is basically scheduled by a process
scheduler in the VM that it belongs to. The VM is scheduled by the VM
scheduler. The role of the Monarch scheduler is to watch the whole system
consisting of multiple VMs and slightly change process scheduling in guest
OSes so that a system-wide scheduling policy is achieved.

To control the execution of processes, the Monarch scheduler suspends
and resumes processes by using a technique called direct kernel object ma-
nipulation (DKOM). It manipulates run queues of process schedulers in guest
OSes or rewrites the state of processes because the VMM cannot control pro-
cesses of guest OSes with their standard interface. At that time, it guarantees
that kernel data are manipulated consistently. To obtain the execution time
of each process, the Monarch scheduler measures the CPU time used for the
execution in the context of the corresponding virtual address space. Unlike a
process, its virtual address space is uniquely identified by the page directory
in the VMM. Then, the Monarch scheduler binds virtual address spaces to
real processes by using process information in guest OSes. Since DKOM is

INTRODUCTION 4

Solution by This Thesis

OS-specific and needs deep knowledge of guest OSes, the Monarch scheduler
provides a high-level API to hide the details of DKOM. Using this API, the
developers of scheduling policies can suspend and resume processes in various
guest OSes transparently.

We have implemented the Monarch scheduler in the Xen VMM. The
Monarch scheduler currently supports not only open-source OSes such as
Linux but also closed-source OSes such as Windows. Supporting closed-
source OSes is achieved by the fact that the Monarch scheduler does not
require modifying the source code of guest OSes. This is suitable to consoli-
date the existing systems into VMs using P2V tools. From our experimental
results, it was shown that the Monarch scheduler could achieve useful schedul-
ing policies. Also, the overheads due to the Monarch scheduler were small
enough such as idle-time scheduling even in multi-OS environments.

VMCrypt

VMCrypt is a secure memory manager running in the VMM. It encrypts the
memory of VMs only when the management VM accesses the memory. It
preserves the data secrecy of the VMs’ memory by providing a dual memory
view: a normal view and an encrypted view. A normal view is provided for
each VM and is not encrypted as usual. An encrypted view is the memory
view that is generated by encrypting a normal view, and it is provided for
the management VM. Thanks to an encrypted view, the management VM
cannot steal information from the VM’s memory, whereas the VM can run
normally with a normal view. These two views coexist so that both VMs
can concurrently access the VMs’ memory to achieve live migration, which
requires that the management VM transfers the VM’s memory while the
VM accesses its memory. The existing management software can basically
run for the encrypted memory. For VM migration, it can simply transfer
the encrypted memory to destination hosts. For several memory regions,
however, it requires accessing their unencrypted contents.

To allow the management VM to inspect such memory regions, VM Crypt
exceptionally gives a normal view to the management VM only for specific
regions. Examples of such regions are memory shared between a VM and the
management VM and the page tables inside a VM. VMCrypt automatically
identifies such unencrypted memory regions by monitoring the interaction
between the management VM, the VMs, and the VMM. For example, a
shared memory region is passed from the management VM to the VM via the
VMM. The memory regions for the page tables are registered to the VMM.

INTRODUCTION 5

Position of This Thesis

As such, the VMM can recognize all the unencrypted memory regions. The
information on the identified memory regions is cached during the life cycle
of a VM, including VM migration, to preserve the compatibility with the
existing management software. With the cache, the VMM can restore the
VM’s memory correctly even at another host.

We have implemented VMCrypt in the Xen VMM. VMCrypt currently
supports para-virtualized Linux as guest OSes, which is customized for Xen
and aggressively interacts with the management VM. Our experimental re-
sults show that VMCrypt allows the administrators to manage the VMs
securely and correctly. With VMCrypt, the administrators in the manage-
ment VM could not find cryptographic keys or passwords from the VM’s
memory; otherwise, they could do. Nevertheless, they could boot, suspend,
resume, and migrate VMs as usual. They could perform even live migra-
tion for running VMs. The execution performance of VM management was
degraded mainly by the overheads of cryptographic operations. However,
the downtime due to live migration was still less than one second and its
overhead was 13%.

1.3 Position of This Thesis

Position of the Monarch Scheduler

The position of the Monarch scheduler is that the Monarch scheduler provides
high controllability of processes and high compatibility with legacy systems,
as illustrated in Figure 1.1. It can monitor all the processes in all VMs and
change their behaviors as necessary to achieve system-wide scheduling poli-
cies. Since it manipulates only data in guest OSes using DKOM, it does not
require adding code for a system-wide process scheduling to the legacy sys-
tems in VMs. If physical CPUs could be allocated to VMs exclusively, higher
controllability could be achieved by the VM scheduler with no modification
to the systems inside VMs. This is not an option under server consolidation
because CPU utilization lowers when there are idle VMs. However, when
physical CPUs are simply shared among VMs for high CPU utilization, the
controllability becomes very low.

To achieve high controllability under shared CPU allocation, the approach
of running the full-fledged process scheduler in the VMM is suitable. If all
process schedulers in guest OSes are moved into the VMM, the integrated
process scheduler can schedule all processes in the whole system strictly.

INTRODUCTION 6

Position of This Thesis

Compatibility
A - ‘ - N p - \
Shared Central \ Monarch |
Allocation ~ Scheduler’ ' Scheduler
Cooperative
Scheduling
" Integ rated |
- Scheduler.
—>

Controllability

Figure 1.1. The Position of the Monarch scheduler.

This exceeds the Monarch scheduler in terms of controllability because the
Monarch scheduler controls processes only periodically. However, this ap-
proach requires large modification to every guest OS.

There are two approaches that do not rely on the VMM. One approach
is to run a central scheduler in the management VM. The central scheduler
monitors processes in the other VMs and change their behaviors. If it uses
DKOM like the Monarch scheduler, high compatibility is achieved. However,
the controllability is lower than that of the Monarch scheduler because it
is difficult to control processes frequently due to high overhead of DKOM
from the management VM. The other approach is cooperative scheduling,
in which the systems in VMs exchange process information with each other
and adjust process execution according to a system-wide scheduling policy.
Cooperative scheduling requires adding dedicated scheduler threads in all
VMs and treating them specially in system-wide process scheduling. This
results in lower compatibility and controllability.

Position of VMCrypt

The position of VMCrypt is that VMCrypt achieves two goals, security and
manageability, at the same time as illustrated in Figure 1.2. VMCrypt pre-

INTRODUCTION 7

The Structure of This Thesis

vents information leakage via the management VM by encrypting the VM’s
memory even if the management VM is compromised by the attackers. In
spite of the memory encryption, VMCrypt allows the administrators to use
the existing management software in the management VM. To achieve high
manageability, Xen is suitable because the management VM can access any
regions of the VM’s memory. For example, management software in the man-
agement VM can scan the VM’s memory for virus checks. In VMCrypt, it
is difficult to perform such memory scan due to memory encryption. How-
ever, Xen does not provide any security mechanisms for accessing the VM'’s
memory by the management VM.

To achieve high security, self-management by guest OSes is suitable. Self-
management allows guest OSes to migrate themselves [35], for example. Tt
is not necessary to give the privileges of accessing the VM’s memory to the
management VM. This means that the attackers in the management VM
cannot steal any information including even encrypted one from VMs. How-
ever, self-management has to assume that the memory state of guest OSes
reaches a fixed point before migration. This lowers the manageability of
VMs. Another approach of using no management VM is to embed manage-
ment software in the VMM like VMware vSphere. Management software in
the trusted VMM manages VMs by accessing their memory. This can prevent
information leakage from the management VM, but the overall security may
lower due to a larger VMM. In addition, manageability also lowers because
management software in the VMM cannot be changed easily.

1.4 The Structure of This Thesis

From the next chapter, we present background, design details, and the im-
plementations of the Monarch scheduler and VMCrypt. The structure of the
rest of this thesis is as follows:

Chapter 2: Background

This chapter gives an overview of existing issues in server consolidation. W
We discuss related work and the several approaches to prevent these prob-
lems.

INTRODUCTION 8

The Structure of This Thesis

Manageability
A

Xen p;
- VMCrypt |

| Self-
Management

- vSphere |

>
Security

Figure 1.2. The Position of VMCrypt.

Chapter 3: Monarch Scheduler

To schedule processes in VMs, we propose the Monarch scheduler running
in the VMM. The Monarch scheduler enables the administrators to adjust
the execution of processes in the whole system when multiple servers are
consolidated using VMs.

Chapter 4: VMCrypt

Chapter 4 presents VMCrypt to prevent information leakage from the VM’s
memory. We describe its design and how to prevent information leakage, and
then describe the implementation details.

Chapter 5: Experiments for the Monarch Scheduler

In this chapter we describe the experiments for the Monarch scheduler.

INTRODUCTION 9

The Structure of This Thesis

Chapter 6: Experiments for VMCrypt

In this chapter we describe the experiments for VMCrypt.

Chapter 7: Conclusion
Finally, we conclude this thesis in Chapter 7.

INTRODUCTION 10

Chapter

Background

2.1 Process Scheduling in a VM Environment

Recently, multi core processors become popular, but the CPU resource would
be still shared among VMs. The number of cores is likely to be more than
that of VMs already. In such a situation, it is not necessary to share cores
among VMs and cores can be exclusively allocated to each VM. Nevertheless,
sharing cores among VMs may be more efficient. If several cores are allocated
to one VM exclusively, they are not used at all when the VM is idle. If they
are shared with other VMs, they can be used even when some of the VMs are
idle. In a VM environment, the allocation of the CPU resource is hierarchical.
The VMM allocates the resource to VMs by VM scheduling. In each VM, a
guest OS allocates it to processes by process scheduling.

To optimize the performance of the whole system consisting of VMs, each
process should be scheduled in the whole system according to a system-wide
scheduling policy. For example, let us consider that two VMs are used for
a web system. A front-end VM runs the Apache web server and a back-end
VM runs the Tomcat application server [96]. The front-end VM also runs
Tripwire [44, 99], which is an intrusion detection system, because it is subject
to attacks from the outside. Tripwire should run without largely affecting
the whole system, but it degrades the performance of not only Apache in the

BACKGROUND 11

Process Scheduling in a VM Environment

same VM but also Tomcat in the other VM. To prevent such performance
degradation, a required scheduling policy is that the Tripwire process runs
in the lowest priority among all the processes in the whole system.

However, it is difficult to schedule processes among VMs in the hier-
archical scheduling. A process scheduler in each guest OS does not allow
system-wide scheduling because it locally schedules only the processes inside
one VM. In other words, it cannot prioritize processes in the other VMs. For
example, a process scheduler in the front-end VM could give a lower priority
to the Tripwire process than the Apache processes. By this local prioritiza-
tion, Tripwire does not affect the performance of Apache, but the Tripwire
process uses the whole CPU time allocated to the VM when all the Apache
processes are idle. If the CPU time is allocated to these two VMs equally,
the Tripwire process in the front-end VM can run in the same priority with
the Tomcat processes in the back-end VM. As such, the required scheduling
policy is violated.

On the other hand, a VM scheduler in the VMM is ineffective for such
process scheduling. The VMM cannot recognize the process because it is
the concept in an OS. A VM scheduler can give priorities or reserve the
CPU resource only to VMs. For example, it can give a lower priority to
the front-end VM than the back-end VM. As a result, the priority of the
Tripwire process in the front-end VM becomes lower than the others. At
the same time, however, the priority of the Apache processes also becomes
lower than that of the Tomcat processes. It is desirable that Apache and
Tomcat run in almost the same priority to optimize the total performance
of the web system. If we could elaborately configure both the VM scheduler
and the process schedulers in all VMs, the required scheduling policy might
be achievable. Even if it is possible, the policy may be easily violated when
one process simply becomes idle.

2.1.1 Related Work

Researchers have proposed VM scheduling mechanisms that can give global
priorities to processes across VMs. In guest-aware VM scheduling [42], each
guest OS notifies the VMM of the highest priority among processes. In pro-
portion to the notified priority, the VM scheduler adjusts the priorities of
VMs. Since the VM scheduler considers only the highest priority in each
VM, the other processes in the same VM can take too much CPU time.
In task-grain scheduling [45], on the other hand, each guest OS notifies the
hypervisor, the L4-embedded microkernel, of the priorities of all processes.

BACKGROUND 12

Process Scheduling in a VM Environment

Whenever a context switch occurs, the hypervisor schedules the guest OS
running the process with the globally highest priority at that time. For
regular VMMs such as Xen, switching VMs so frequently causes large over-
heads. Unlike the Monarch scheduler, these scheduling mechanisms require
the modification of guest OSes.

In task-aware VM scheduling [43], on the other hand, the VM sched-
uler preferentially schedules VMs that execute 1/O-bound processes without
modifying guest OSes. The scheduler detects I/O-bound processes in VMs
by using the same technique as Antfarm [37] and other gray-box knowl-
edge [1]. When a network packet arrives to the VMM, the scheduler imme-
diately schedules the VM where a process to receive the packet exists. This
mechanism is for better VM scheduling, not for process scheduling.

Geiger [90] is a technique to get the state of the buffer cache in guest
OSes without modifications from the VMM. Like as Antfarm [37] or other
gray-box knowledge [1], the VMM can obtain some information of the guest
OSes. This is not a technique to schedule processes. FoxyTechnique [29]and
FoxyLargo [94] uses a gray-box knowledge to trick guest OSes with a VMM.

A system-wide process scheduler can be also implemented using a tech-
nique similar to coordinated scheduling, which is used in distributed sys-
tems [69]. A local scheduler running in each VM obtains information on
processes in the whole system by communicating with the other VMs. Then
each local scheduler controls the execution of processes in the same VM. Since
legacy OSes cannot be modified, local schedulers are often implemented as
processes, using techniques for user-level scheduling [65, 66]. However, if the
attackers compromise a local scheduler, they may easily perform DoS attacks
by telling a lie to the other VMs. In addition, the process time recorded inside
VMs may be inaccurate, as described in Section 3.1.

Virtual machine introspection (VMI) is a technique of inspecting guest
OSes from the VMM. For example, Livewire [21] enables executing intru-
sion detection systems in the outside of a VM. It examines the internal state
of the OS kernel in a VM using VMI. To recognize kernel data structures,
Livewire uses debug information of the OS kernel like our Monarch scheduler.
In addition to inspecting kernel data by using VMI, the Monarch scheduler
modifies them by using DKOM. IntroVirt [38] enables obtaining more infor-
mation such as file contents from the VMM by executing kernel functions
in a guest OS. To prevent kernel data from being modified by the execution
of kernel functions, IntroVirt uses checkpoint and rollback. By contrast, the
aim of the Monarch scheduler is to modify kernel data to change the behavior
of a guest OS. As such, typical applications of VMI are security while the

BACKGROUND 13

Process Scheduling in a VM Environment

Monarch scheduler uses VMI (and DKOM) for scheduling. The Monarch
scheduler is another kind of application of VMI.

Virtuoso [6] is a system that automatically generates introspection soft-
ware. The generation consists of three phases, training, analysis, and run
time. In training phase, a small in-guest training program is executed re-
peatedly in the guest OS to retrieve information of the guest OS as instruc-
tion traces. For example, A process that only gets the handle of a process is
executed. In analysis phase, the trace analyzer analyzes the log to generate a
code for introspection. There are some limitations in the system. One is that
the generated code is not always accurate, because traced logs are retrieved
only when the program is executed, a user land. To avoid this limitation,
introspection code can only executed when the guest OS is in a user mode.
Another is that this is not for process scheduling. It is impossible to run a
scheduler as a training program. So it is unsuitable to implement a system
wide process scheduler using introspection.

VMwatcher [36] detects malwares by comparing information obtained in a
VM with that obtained from the VMM using VMI. For example, if the num-
ber of processes is different between the result of the ps command and that of
traversing the process list in the kernel, some processes are hidden. As a guest
OS, VMwatcher supports not only Linux but also Windows. VMwatcher and
our Monarch scheduler use the same technique for inferring process objects
inside the Windows kernel [8]. The Monarch scheduler, furthermore, infers
a run queue from inferred process objects.

Lares [72] executes security applications in another VM by inserting hooks
into the code of a guest OS from the VMM. Since the hooks are protected by
the VMM, they can securely call the VMM at arbitrary points and transfer
the control to a security VM. Security application in the security VM inspects
the guest OS using the XenAccess library [71], which supports the Windows
guest OS. XenAccess provides an API similar to the low-level API provided
by the Monarch scheduler, but it does not provide any API for modifying
a guest OS. Lares achieves active monitoring by using hooks while most of
other VMI systems including the Monarch scheduler achieve only passive
monitoring by using polling. Lares may not be able to coexist with kernel
integrity checkers because it modifies the code of a guest OS.

There are other libraries to obtain the internal structure of Windows
guest OSes, EagleEye [62], VIX [7]. The Monarch scheduler cannot use them
in two reasons. First, it is a library available only in domain 0 of Xen. In
general, domain 0 is a reasonable place to inspect domain Us. However, it
is not suitable for a system-wide process scheduler because of its overheads.

BACKGROUND 14

Process Scheduling in a VM Environment

Domain 0 has to map memory pages into its address space to access the
memory of domain Us. Second, XenAccess does not support to modify guest
OSes. There are also many researches to use the internal structure of guest
OSes, such as SBCFI [61], PsycoTrace [2].

Direct kernel object manipulation (DKOM) [9] is a technique that ma-
nipulates data in guest OSes by directly modifying the kernel memory. This
technique has been often used for attacks. We use this technique for chang-
ing the scheduling behavior of guest OSes from the VMM. It was challenging
to change the behavior of guest OSes by using only the DKOM technique
because this technique can change it only indirectly through the modification
of kernel data.

In user-level scheduling [65] and ALPS [66], a scheduler process periodi-
cally controls the execution of processes in an OS to achieve custom schedul-
ing policies. It suspends and resumes a process by sending signals such as
SIGSTOP and SIGCONT to it, respectively. These approaches require no mod-
ification of the OS kernel and exploit process scheduling by the OS as much
as possible like the Monarch scheduler. Using these approaches, the Monarch
scheduler can make its scheduler process control the execution of processes
in domain 0.

Credit Scheduler [103] is a proportional fair share CPU scheduler in Xen.
It is now the default scheduler in Xen. It can use SMP effectively. In Credit
Scheduler, parameters WEIGHT and CAP is assigned to each domain. Weight
describes relative CPU allocation. For example, if the weight of domain A is
512 and one of domain B is 256, the domain A is assigned 2 times CPU of the
domain B. Cap describes the limitations of CPU assignment. The domain
cannot use any more CPU than the cap.

Borrowed-Virtual-Time (BVT) [41][14] is a scheduling policy used in the
Xen VMM. This scheduler is used as the default scheduling policy in the Xen
2.0 and 3.0. Each domain has a specific minimum time, and a domain running
during the time is guaranteed to be never preempted by other domains. The
BVT scheduling distributes weighted CPU time among domains according
to the system policy while it provides applications requiring the real time
and low latency. In addition, it can be implemented as low overheads among
multi-processor environments. Atropos is another scheduling policy that can
be used in Xen 2.0. This originates from Earliest Deadline First, a real time
scheduler developed in Cambridge University. This is used in multimedia
OS [30].

XenFIT [74] checks the file system consistency dynamically. Not like
previous works, it does not need to create or update any databases such as

BACKGROUND 15

Security Issue in the Virtualized Environment

file hashes. It is implemented in Xen, domain 0 checks system calls invoked
by targeted guest OSes. Due to checking system calls, it can detect file
updates, file modifications, and changing attributes of certain directory. In
order to check system calls, it sets break points at the code of system call
tables in the kernel memory, traps the invocation of system calls. It uses
debug information of the kernel. However, it is a security software, does not
schedule processes. In addition, it does not modify any memory of guest
OSes. XenKIMONO [75] is a intrusion detection system for OS kernels.
It can checks the consistency of kernel from outside. However, it is also a
security software, does not schedule processes.

2.2 Security Issue in the Virtualized Environment

2.2.1 The Management VM-related Information Leakage

Server consolidation using VMM has been widely accepted. Particularly,
the VM technology is promising for consolidating legacy systems. Multiple
physical servers can be easily migrated to multiple VMs using physical-to-
virtual conversion (P2V) tools. The administrators can continue to use legacy
systems including OSes as is in VMs. In addition to VMs to run consolidated
OSes, There is the privileged VM on a VMM, called the management VM,
for the administrators to manage the OSes.

However, each VM is influenced from VMs coexisting in the same ma-
chine. For performance, processes in one VM can compete with processes in
other VMs for CPUs. For security, sensitive information in the VM’s memory
can be stolen by the privileged VM for managing VMs if the management
VM is compromised

Due to the privileges of the management VM, sensitive information in
the user VMs may leak via the management VM. From users’ point of
view, the administrators in server consolidation are not always trustworthy
[83, 48, 105]. Lazy administrators may allow outside attackers to intrude in
the management VM. Worse, administrators themselves may be malicious
and perform insider attacks. Such attackers can easily steal sensitive infor-
mation from the user VMs. However, it is difficult to prohibit the access to
VMs’ memory for the management VM because the administrators have to
manage the user VMs, e.g., VM migration, by accessing their memory. This
inherently leads to information leakage from the user VMs.

In this situation, sensitive information in user VMs can leak via the man-

BACKGROUND 16

Security Issue in the Virtualized Environment

agement VM. Using the abilities of the management VM, the attackers inside
it can steal the whole contents of the memory, disks, and networks of the user
VMs on the same physical machine. For example, the attackers can dump
the whole memory of the user VMs into their disks. They can mount the
disks of the user VMs and read all the files. Network sniffers running in the
management VM can easily capture packets to/from the user VMs. Fortu-
nately, disks and networks could be encrypted by the guest OSes themselves
in the user VMs to protect their contents. The user VMs can use encrypted
file systems like Windows EFS and virtual private networks (VPNs).

Unlike disks and networks, memory is crucial because it is difficult for
the guest OSes to encrypt their own memory. Without hardware support,
neither OSes nor applications can run with encrypted memory. There are var-
ious types of sensitive information in memory [79]. Clear-text passwords and
cryptographic keys can be extracted from the user VMs’ memory. Such infor-
mation resides in buffers in the kernel or processes temporarily. In addition,
the memory usually contains the buffer cache, which is used for maintaining
copies of the data of file systems in memory. Through the analysis of the
buffer cache, the attackers can read the data blocks of specific files if the
blocks are on the buffer cache. The encryption of the file systems in the user
VMs is not sufficient because the buffer cache cannot be encrypted.

Therefore, the confidentiality of the user VMs’ memory should be pre-
served while the administrators perform VM management. A simple solution
to prevent information leakage is to disable the management functions of the
management VM, but this would not be acceptable in server consolidation.
At least, live migration is indispensable for the reasons of load balancing
and power saving with negligible downtime. In particular, it is challenging
to support para-virtualized guest OSes because the management VM has to
inspect and modify the user VMs’ memory. Although full virtualization is
being used, para-virtualization is still useful in terms of efficiency. In addi-
tion, any modification to the existing management software should not be
required because it is not realistic to modify various management software.

2.2.2 Related Work

There are several studies for preventing information leakage via the manage-
ment VM. CloudVisor [105] runs a security monitor underneath the VMM
using nested virtualization. It encrypts all the memory pages of the user
VMs whenever the management VM accesses them. Therefore, it is difficult
to support para-virtualization because CloudVisor does not allow the man-

BACKGROUND 17

Security Issue in the Virtualized Environment

agement VM to access pages necessary for VM management in user VMs,
e.g., the P2M table in Xen. The security monitor cannot recognize such pages
by hardware events such as VM exit. Although CloudVisor supports VM mi-
gration for full virtualization, there are no performance data. In addition,
CloudVisor introduces extra overheads to user VMs due to an additional
virtualization layer. It does not trust even the VMM, but we believe that
we can also trust the VMM if we can trust the security monitor via remote
attestation.

The secure runtime environment (SRE) [48, 49] preserves the confiden-
tiality of user VMs for para-virtualized OSes. Like VMCrypt, SRE encrypts
memory pages except several pages necessary for VM management when the
management VM accesses them. SRE supports boot, suspend, and resume
of user VMs. However, it cannot enable live migration because it provides an
encrypted view to the management VM only when a user VM is not running,.
Moreover, SRE needs to modify the existing management software so that
the VMM can identify all the unencrypted pages. For example, the resume
program has to notify the VMM of the pages used for the P2M table because
the VMM cannot identify them at the resume time.

Confidentiality Protection [89] preserves the confidentiality of users’ infor-
mation. Using multi cloud providers through an entity called service broker
enables the identity anonymization that no cloud provider can know who uses
the cloud. The service broker properly chooses the cloud. It also obfuscates
users’ to protect users’ data. It is divided into software cloud and infrastruc-
ture cloud. The software cloud provides software service as program but does
not execute it. The infrastructure cloud executes the program obfuscated by
the software service attestation authority in order to the infrastructure cloud
cannot know what the user does now.

In VMware vSphere Hypervisor (ESXi) [101], the VMM itself includes
the management functions and the system administrators perform VM man-
agement by sending commands directly to the VMM. Unlike VMware ESX,
the management VM called the service console is not used by default. Lack-
ing the service console makes it difficult to steal information from the user
VMs’ memory. However, this architecture lowers the flexibility of the VM
management. It is not easy for the administrators to use their own custom
management software.

Domain disaggregation [60] moves management functions in the man-
agement VM to another VM called DomB. This architecture reduces the
privileges of the management VM and prevents the attackers in the man-
agement VM from stealing sensitive information in the user VMs’ memory.

BACKGROUND 18

Security Issue in the Virtualized Environment

For example, most of the code for building VMs is run in DomB. However,
the administrators have to be still trusted because they also manage DomB
as well as the management VM. In addition, domain disaggregation needs
a large modification to the existing management software so as to use the
functions provided by DomB.

Like VMCrypt, Overshadow [11] provides a dual memory view using the
VMM. The difference is that Overshadow provides a normal view for appli-
cations and an encrypted view for the guest OS. The aim of Overshadow is
to prevent information leakage from applications to the OS. In contrast, VM-
Crypt prevents information leakage from the user VMs to the management
VM. To enable processes to issue system calls, Overshadow needs to inject
small code into process address spaces. VMCrypt does not need to run any
programs inside the user VMs.

SP3 [104] is similar to Overshadow and provides different memory views
for an OS and processes. Unlike Overshadow, SP3 can also give different
views for the memory shared between processes. However, SP? requires the
modification to an OS because it extends page table entries to implement
different memory views. VMCrypt needs no modification to the OSes in
both the user VMs and the management VM. Like VMCrypt, SP? replicates
memory pages for different views and synchronizes them as lazily as possible.
In addition, it can set access permissions on a per-page basis. VMCrypt also
allows the management VM to introspect user VMs’ memory on a permission
basis.

The trusted cloud computing platform (TCCP) [83] guarantees the con-
fidentiality and integrity of the user VMs in laaS clouds. It allows the user
VMs to be launched on and migrated to only trusted nodes, using the trusted
coordinator (TC). Before a user VM is run on a node, the TC attests the
node to verify that the node is running the trusted VMM. After the user VM
starts running, the VMM prevents information leakage from the VM to the
management VM at runtime. The TCCP assumes the system proposed in
the above domain disaggregation as an example of the trusted VMM. VM-
Crypt also uses the TCCP for node and key management, as an example of
the trusted VMM.

For other resources, several systems have been proposed for preventing
information leakage. BitVisor [84, 4] transparently encrypts disks and net-
works at the VMM level. The outside attackers cannot steal sensitive in-
formation from disks physically or from network packets. Since BitVisor
does not provide the management VM, it is difficult for the administrators
to steal information from the user VM under the trusted VMM. However,

BACKGROUND 19

Hypervisor-based Approach and OS-based Approach

‘ by the VMM ‘ by the management VM ‘ by user VMs

Secure Yes No No
Accurate Yes No No
Easy to Manage Yes Yes/No No
Easy to Implement No Yes No

Table 2.1. The comparison of approaches.

this architecture has two drawbacks. First, the VMM has to contain device
drivers, which often have vulnerabilities. Second, the VMM has to provide
mechanisms for VM management such as suspend and migration.

VPFS [10] enables trusted applications to use a secure file system con-
structed on untrusted storage. It runs untrusted legacy OS, which manages
untrusted storage, in a VM. Trusted applications directly on the microker-
nel can access the storage via the untrusted VM. The confidentiality and
integrity of the file system are preserved by encryption and hash functions.
If VPFS is applied to a general VMM, the management VM is an untrusted
VM and a user VM runs trusted applications. The user VM can securely ac-
cess the file system on untrusted storage managed by the management VM,
for example, domain 0 in Xen.

2.3 Hypervisor-based Approach and OS-based Ap-
proach

We discuss the hypervisor-based approach and the OS-based approach to
implement the system-wide scheduler and the secure management for VMs.
The Table 2.1 shows the summary of each approach. We can summarize that
our approach trades the easiness to implement by the management VM to
the security by the VMM. It is the acceptable trade-off because the security
is more important than the difficulty to implement the system.

2.3.1 Cooperative Scheduling

One possible solution is cooperative scheduling among process schedulers in
all VMs. In cooperative scheduling, each process scheduler shares process
information with the others and controls the execution of its own processes

BACKGROUND 20

Hypervisor-based Approach and OS-based Approach

based on a system-wide scheduling policy. Technically, it is easier that a ded-
icated scheduling VM gathers information from all the other VMs and sends
scheduling commands to them for prioritizing processes among VMs. For
example, the front-end and back-end VMs send the CPU times used by the
Apache, Tripwire, and Tomcat processes to the scheduling VM periodically.
If the Tripwire process uses longer time than the others, the scheduling VM
sends a scheduling command for suppressing the execution of Tripwire to the
front-end VM. Then the process scheduler in the front-end VM suspends the
Tripwire process for a while or lowers its priority.

A disadvantage of such cooperative scheduling is to need dedicated sched-
uler threads (or processes) in all VMs. A scheduler thread obtains process
information, communicates with the scheduling VM, and controls the exe-
cution of processes. Such a thread requires special treatment in scheduling
policies. If the priority of a scheduler thread itself is lowered or, worse, the
thread is suspended due to a scheduling policy, cooperative scheduling does
not work well. Similarly, some other processes may be also treated specially.
For example, a VM may not seem to be idle due to syslogd [92, 80, 67, 91],
which runs whenever a scheduling thread prints debug messages. Therefore,
To prevent such a situation, it is necessary to develop scheduling policies that
are aware of the scheduling threads. In addition, each guest OS has to be
modified to run a scheduler thread. If a scheduler thread is implemented as a
kernel thread, the kernel is modified. Even if it is implemented as a userland
process, it may require several new interfaces for obtaining information from
the kernel and controlling the execution of processes.

2.3.2 A Central Process Scheduler in the Management VM

Another form of cooperative scheduling is a scheduler running in the man-
agement VM as a process. The Central scheduler communicates with all
VMs to monitor and manipulate their processes as described in Section 5.10.
The Central scheduler can be also implemented in the management VM as a
process, we call the process as the scheduling process. For idle-time schedul-
ing, for example, the Central scheduler periodically obtains the CPU times
used by all processes from all VMs. If all processes are idle, the Central
scheduler sends a scheduling command for executing a background process
to the corresponding VM. Then the process is resumed in the VM.

This scheduler has the same problem of the cooperative scheduling. It is
also need dedicated scheduler threads or process in all VMs. This requires
the special treatments of the scheduling processes in any scheduling policy. If

BACKGROUND 21

Hypervisor-based Approach and OS-based Approach

the scheduler process suspend the processes, the whole scheduling is stopped.
Moreover, the management VM should be treated as a special VM. For the
scheduling process to run correctly, the management VM is always allocated
enough CPU times. The lack of CPU times for the management VM may
cause the delay of scheduling due to the scheduling process may not run.

2.3.3 Encryption by the guest OSes

To prevent information leakage from guest OSes’ memory, there are several
candidates for who to encrypt guest OSes” memory. One is that letting the
guest OS to encrypt themselves and the management VM can access it for
migration. If the guest OS encrypts a memory page of itself accessed by the
management VM, that can prevent the information leakage from memory.
In this situation, guest OSes can easily decide unencrypted memory page,
which pages should be encrypted or not since the guest OSes know uses of
every memory. However, for the management VM to manage VMs, it should
access whole memory of the VMs. In migration or suspension, it reads all
memory of the VMs continuously and sends to other host or writes into
disk. To protect secrecy information in memory, OSes themselves encrypt the
memory accessed by the management VM. If the management VM accesses
all memory of user VM at once, guest OSes must encrypt whole memory of
theirs at once, however, it is impossible in the normal hardware such as PC
because encrypted memory cannot be executed directly by the commodity
CPU. Another problem is that if the management VM pauses the user VMs,
guest OSes in the VMs cannot encrypt any memory of the guest OSes. This
becomes an obstacle to maintain hardwares.

2.3.4 Managing VMs by themselves

Another is disable the hypervisor and the management VM to manage VMs.
For example, Self-migration [35] migrates guest OSes entirely without hy-
pervisor involvements or the management VM, letting guest OSes migrate
themselves. Since the guest OS knows its state, such as the the state of
the page table and process scheduler, it can track the memory to copy its
memory to the destination host. The kernel thread of the guest OS copies
its memory and transfers the memory with its network stack. It allows the
guest OS to migrate while privileged access by the management VM is no
longer needed. They can also use their own TCP/IP stack with ssl, so it

BACKGROUND 22

Hypervisor-based Approach and OS-based Approach

prevents information leakage from memory by the management VM. How-
ever, it is hard to implement because the last state of the memory can not
be easily captured by itself because if it captures the last state, then the
state may change due to the capturing itself. To solve this, self-migration
waits for the working set to be identical. Once the state reaches the identical
working set, the fixed point, it will deduce the every state of the guest OS.
One drawback of self-migration is to modify guest OSes. To access memory
state of guest OSes, it requires the special kernel thread or the same func-
tional special devices. This architecture hardens other managements such
as suspension, resumption, and booting. In the hypervisor-base approach,
VMM or the management VM creates VMs, suspends them, and resumes
them as well. However, the OS-based approach cannot conceded these man-
agements, since there is a big difference between the VM migration and other
VM managements. The VM migration guarantee that the one VM instance
exist anywhere at least, so that instance continues self managements such as
migration. Other managements do not guarantee that the one VM instance
exist at least. If the VM is suspended, there is no VM instance anymore.

There is no entity to decide when to resume or to execute resume the sus-
pended VM.

BACKGROUND 23

Chapter

Monarch Scheduler

To solve the above problem of process scheduling in a VM environment, we
propose the Monarch scheduler running in the VMM. The Monarch scheduler
enables the administrators to adjust the execution of processes in the whole
system when multiple servers are consolidated using VMs.

3.1 Overview

The Monarch scheduler is a system-wide process scheduler that can equally
deal with processes in all the VMs. As illustrated in Figure 3.1, it monitors
the execution of processes and changes the scheduling behavior of guest OSes
to achieve its custom scheduling policies. The Monarch scheduler exploits the
existing process schedulers inside guest OSes and the existing VM scheduler
in the VMM as much as possible. Each process is basically scheduled by a
process scheduler in the VM that it belongs to. The VM is scheduled by
the VM scheduler. The role of the Monarch scheduler is to watch the whole
system consisting of multiple VMs and slightly change scheduling policies in
guest OSes so that a system-wide scheduling policy is achieved.

The Monarch scheduler provides a high-level API. To avoid the processes’
competition for CPUs, the administrators can develop custom scheduling
policies using the high-level API. For example, a policy for system-wide idle-

MONARCH SCHEDULER 24

Overview

process

process
scheduler

scheduler

(Monarch Scheduler)
VMM

Figure 3.1. The Monarch scheduler running in the VMM.

time scheduling can be achieved by the Monarch scheduler. To allow the low
priority task to run only when the whole system is idle, the administrators
can write such policy for the Monarch scheduler. This policy improves the
performance of the other high priority task even in the other VM. The high-
level API is an interface for monitoring and controlling the execution of
processes without deep knowledge of guest OSes. As long as the developers
use the high-level API, they are almost unaware of the differences between
guest OSes such as Linux and Windows and even the existence of multiple
VMs.

To change scheduling policies in guest OSes, the Monarch scheduler uses
a technique called direct kernel object manipulation (DKOM). DKOM is
a technique that manipulates data in the OS kernel by directly modifying
the kernel memory. This technique has been often used for attacks. For
example, the attackers remove their malicious processes from a linked list
for processes to hide their processes. We use this technique for changing
scheduling behavior of guest OSes from the VMM. The Monarch scheduler
recognizes kernel objects using type information obtained from the debug
information of the OS kernel. It is challenging to change the behavior of
guest OSes by using only the DKOM technique because this technique can
change it only indirectly through the modification of kernel data.

MONARCH SCHEDULER 25

Overview

To suspend and resume a process, the Monarch scheduler manipulates a
run queue of a process scheduler in a guest OS or rewrites its state, using the
DKOM technique. If a process is ready in a run queue, the Monarch scheduler
removes it from the run queue to suspend it. Since a process scheduler in a
guest OS allocates the CPU resource to one of the processes in its run queue
in turn, this manipulation prevents a target process from being scheduled.
The Monarch scheduler makes sure that a guest OS is not manipulating its
run queue and keeps the consistency in the OS. For a process waiting for an
event or the currently running process, the Monarch scheduler changes its
state to suspend it. By rewriting the state, a waiting process is not scheduled
when it is woken up. Also, the current process is removed from a run queue
when it uses up its time slice. To resume a process, the Monarch scheduler
inserts it into a run queue.

One advantage of using DKOM is to modify no source code of guest
OSes. This enables the scheduler to control not only open-source OSes such
as Linux but also closed-source OSes such as Windows. In fact, the Monarch
scheduler supports Linux and Windows currently. Another advantage is to
change no control flow inside guest OSes at runtime. This is important to
coexist with integrity checkers of kernel code. Without using DKOM, code
instrumentation is another useful technique for changing the behavior of guest
OSes [93]. For example, there is another possible implementation to replace
some instructions in the OS kernel by ones for jumping to instrumented
scheduling code. Using code instrumentation enables executing arbitrary
code at arbitrary points. However, some integrity checkers fail to check
kernel code because code instrumentation modifies kernel code. The Monarch
scheduler can coexist with integrity checkers because it uses only DKOM.

Running a system-wide scheduler using only DKOM in the VMM does
not require modifying source code of guest OSes in advance. This enables the
scheduler to control not only open-source OSes such as Linux but also closed-
source OSes such as Windows. In fact, the Monarch scheduler supports
Linux and Windows currently. In addition, a system-wide scheduler makes it
easier to change scheduling policies than in cooperative scheduling described
in Section 2.1. Cooperative scheduling requires to modify all guest OSes
to cooperate with each other. Since the Monarch scheduler runs only in
the VMM, it requires no special processes or threads inside guest OSes for
cooperation. The Monarch scheduler itself collects information from all guest
OSes directly and achieves cooperation among guest OSes.

The Monarch scheduler records the execution time of processes in the
VMM. The VMM cannot understand processes in guest OSes directly, but

MONARCH SCHEDULER 26

Overview

it can recognize them via their virtual address spaces [37]. The Monarch
scheduler monitors the switches of virtual address spaces and measures the
CPU time used by processes. Although the process time is also recorded by
guest OSes, it may be inaccurate when processes are running in VMs. As far
as an OS kernel is not modified to be aware of the VM, it cannot recognize
the context switches between VMs. As a result, it may incorrectly account
the CPU time to a process even while the VM for it is not scheduled. The
measurement by the VMM does not depend on the accounting mechanisms
in guest OSes.

3.1.1 Scheduling API

The Monarch scheduler provides a high-level API. The administrators can
develop custom scheduling policies using the high-level API. Its high-level
APT allows the administrators to be almost unaware of the existence of mul-
tiple VMs and the differences between guest OSes. The high-level API is an
interface for monitoring and controlling the execution of processes without
deep knowledge of guest OSes. As long as the developers use the high-level
API, they are almost unaware of the differences between guest OSes such as
Linux and Windows and even the existence of multiple VMs.

Domain Object The domain object represents a group of VMs. The
get_domain by name function takes a VM name as its argument and returns
a domain object. For a VM name, the developers can specify a regular ex-
pression. If it matches multiple VMs, the domain object represents all of
them. This is useful when scheduling policies deal with multiple VMs trans-
parently. If the developers specify an exact name including no wild cards,
the created domain object represents only one VM. The other function for
creating a domain object is get_domain by domid. Using this function, the
developers can specify one VM by its ID.

Task Object The task object represents a group of processes. The
get_task by name function takes a domain object and a process name as
its arguments and returns a task object. If there are multiple processes with
the same name, the created task object represents all of them. The devel-
opers can also specify a regular expression for a process name. In addition,
if the specified domain object represents multiple VMs, the created task ob-
ject may represents multiple processes among several VMs. The add_tasks
function takes two task objects and returns a new task object representing

MONARCH SCHEDULER 27

Overview

all the processes included in the two task objects. Similarly, the sub_tasks
function returns a task object representing processes that are included in the
first task object but are not included in the second one.

If the developers want to distinguish each process, they can use the
get_task by _pid function. This function takes a process 1D instead of a
process name. It creates a task object representing a process with the spec-
ified ID. Note that the specified domain object has to represent only one
VM.

Scheduling Function The sched loop function is used to register a custom
scheduling function to the Monarch scheduler. This function takes a function
as its argument and invokes the registered function at regular intervals. The
Monarch scheduler regards the interval as a quantum, which is a schedul-
ing unit. The developers can configure the duration of a quantum by the
set_quantum function.

Controlling Tasks The suspend function executes the suspend operation for a
specified task. If the task object represents a group of processes, the function
suspends all the processes together. If some of the processes are already
suspended, this function does not change their states. Likewise, the resume
function executes the resume operation for a specified task.

Monitoring Tasks The set_period function notifies the Monarch scheduler to
record the CPU time used by each process for a specified period. The period
is specified by the amount of quanta. The get_time function returns the
CPU time used by a specified task for a specified period. If the specified task
represents a group of processes, this function returns the sum of the CPU
time used by these processes. If the specified period is less than or equal
to the value configured by set_period, the function returns the CPU time
used only for that period. For example, when the configured period is 10, the
developers can obtain the CPU times used for one quantum and 10 quanta.
This is useful for considering the CPU utilization for both short and long
periods.

3.1.2 Example Scheduling

We show two example scheduling using the high-level API of the Monarch
scheduler.

MONARCH SCHEDULER 28

Overview

Proportional-share ~ Scheduling the Monarch scheduler can achieve
proportional-share scheduling like Figure 3.2 to solve the problem that we
described in Section 2.1. The init function creates two domain objects for
the front-end VM and the back-end VM. The front-end VM runs the Apache
web server and the back-end VM runs the Tomcat application server. The
front-end VM also runs Tripwire , which is an intrusion detection system
for examining file systems, because it is subject to attacks from the outside.
Tripwire should run without largely affecting the whole system, but it can
degrade the performance of not only Apache in the same VM but also
Tomcat in the other VM.

Then it creates three task objects for the Apache and Tripwire processes
in the front-end VM and the Tomcat processes in the back-end VM. The
task objects for Apache and Tomcat are concatenated to one for dealing with
these processes together. The schedule function is periodically invoked by
the Monarch scheduler. It obtains the CPU time used by these processes
since the scheduler function was invoked last. To assign a lower priority to
Tripwire, the function attempts to allocate the CPU time so that the ratio of
Tripwire to a set of Apache and Tomcat is 1 : 4. If Tripwire used more CPU
time than that ratio, it is suspended. Although the function needs much
more control to achieve practical proportional-share scheduling.

Idletime Scheduling The indexing service is often executed at a idle time [22,
54, 56]. To allow the indexing service in Windows to run only when the
whole system is idle, the Monarch scheduler can achieve simple idle time
scheduling [16]. The indexing service maintains an index of most of the files to
improve the performance of the file search. A problem in a VM environment
is that the service starts running whenever one of the VMs becomes idle. In
Figure 3.3, the init function creates one domain object for all VMs. Then
it creates two task objects for all the processes in all VMs and for processes
named SearchIndexer.exe in all VMs. The schedule function periodically
obtains the sum of the CPU time used by all processes and that used by the
indexing service. If any processes except the index service use CPU time,
the indexing service is suspended. The parameter P specifies a preemption
interval [16], which is the period until the indexing service starts running
after the whole system becomes idle.

Possible Scheduling The Monarch scheduler enables controlling the execution
of processes on average in a longer period than process schedulers in guest
OSes. It may violate a scheduling policy in a short period, but it can achieve

MONARCH SCHEDULER 29

Overview

#define P 10
task_t p_tw, p_ap, p_tc, p_web;

void init() {
dom_t dl = get_domain_by_name("front");
dom_t d2 get_domain_by_name ("back") ;

p_tw = get_task_by_name(dl, "tripwire");
p_ap = get_task_by_name(dl, "httpd");
p_tc = get_task_by_name(d2, "tomcat");
p_web = add_task(p_ap, p_tc);

set_period(P);
}

void schedule() {
time_t t_tw = get_time(p_tw, 5);
time_t t_web = get_time(p_web, 5);

if (t_tw * 4 > t_web)
suspend (p_tw) ;

else
resume (p_tw) ;

Figure 3.2. Proportional-share scheduling for allocating the CPU resource in a
ratio of 1 : 4.

scheduling policies in total. This is because the aim of the Monarch scheduler
is to slightly change the execution of several processes and most of process
scheduling is left for guest OSes. Therefore, it is unsuitable for scheduling
policies that need exact control of the execution, such as real-time scheduling.

3.1.3 Hybrid Scheduling

In addition, system-wide process scheduling has a security issue to be consid-
ered. It is inherently vulnerable to a new type of DoS attacks. Let us consider
that the attackers compromise one VM and intrude it. The attackers may
be able to perform DoS attacks against processes in other VMs only by run-
ning specific processes. For example, they can prevent the execution of file

MONARCH SCHEDULER 30

Overview

#define P 10
task_t p_all, p_si;

void init() {
dom_t d_all = get_domain_by_name(".*");

p_all = get_task_by_name(d_all, ".x");
p_si = get_task_by_name(d_all, "SearchIndexer.exe");

set_period(P);
}

void schedule() {
time_t t_all = get_time(p_all, P);
time_t t_si = get_time(p_si, P);

if (t_all - t_si > 0)
suspend (p_si);

else
resume (p_si);

Figure 3.3. Idletime scheduling for running the indexing service when the whole
system is idle.

indexing imposed on idletime scheduling by running one process with a busy
loop. A system-wide scheduler stops file indexing due to the process run-
ning in the compromised VM. Although the administrators should elaborate
scheduling policies that can tolerate this type of DoS attacks, such policies
become complicated and error-prone. Traditionally, performance isolation
provided by VMs could prevent such attacks. If there are processes to be
ready to run in a VM, the VM can receive a certain CPU time. System-wide
process scheduling breaks such performance isolation.

To mitigate inherent DoS attacks introduced by system-wide process
scheduling, the Monarch scheduler provides not only system-wide process
scheduling but also hybrid scheduling. The hybrid scheduling periodically
switches two modes: controlled and autonomous. In the controlled mode,
the Monarch scheduler performs system-wide process scheduling. In the au-
tonomous mode, it stops its own scheduling and allows the VMM and guest
OSes to perform their own original scheduling. Even if the attackers in

MONARCH SCHEDULER 31

Overview

compromised VMs run malicious processes so that victim processes in other
VMs are suspended by the Monarch scheduler, such DoS attacks are miti-
gated thanks to the autonomous mode. The victim processes can run for a
certain period at least.

The hybrid scheduling can achieve both system-wide scheduling and per-
formance isolation among VMs. The controlled mode allows process execu-
tion that is not aware of the isolation enforced by VMs. The autonomous
mode mitigates DoS attacks across VMs by the enforcement of performance
isolation. To take trade-off between two modes, the Monarch scheduler allows
the administrators to adjust the ratio of scheduling between these two modes.
As scheduling time in the controlled mode becomes longer, the Monarch
scheduler can control process execution more accurately. As that in the au-
tonomous mode becomes longer, performance isolation among VMs is left
more largely.

Our threat model is as follows. We assume that the attackers intrude
some of the VMs and perform DoS attacks specific to system-wide scheduling.
We do not assume that the kernels of guest OSes and the VMM have been
compromised because the VMM and security hardware can guarantee their
integrity. [21, 61, 73, 100]

3.1.4 Security

The attackers that intrude into VMs may be able to affect the Monarch sched-
uler. If they elaborately alter pointers or page table entries that the Monarch
scheduler refers to, the scheduler can crash. Fortunately, the crash affects
only the Monarch scheduler itself because the scheduler is implemented as a
userland process. When the Monarch scheduler crashes, it is just restarted.
At that time, it resumes the processes that it has suspended in guest OSes
and schedules processes from scratch. The processes to be resumed can be
determined by an additional flag of the data structure in guest OSes. To
prevent crashing again, the Monarch scheduler can stop the VM that makes
it crash and notify the administrators of such an event.

The attackers in VMs might be able to exploit vulnerabilities of the
Monarch scheduler. If they could overflow a buffer in the Monarch scheduler,
they might take over the control of the scheduler. The intruders are prevented
from controlling the whole domain 0 by confining the Monarch scheduler to a
dedicated VM or container like Jail [39]. However, they can still steal infor-
mation from the other VMs or modify them because the Monarch scheduler
has to have such privileges. Restricting the interface for accessing VMs could

MONARCH SCHEDULER 32

Implementation

mitigate the damages, but it is future work.

The attackers in VMs can deceive the Monarch scheduler by modifying
the kernel. For example, if they create another process scheduler in a VM,
the Monarch scheduler could not control the processes in the VM. Since
this needs kernel modification such as the timer-interrupt handler, kernel
integrity checkers can easily detect the attack. Besides, the attackers could
alter the value of used CPU time in process information. If monitored process
information is not correct, the Monarch scheduler could not achieve expected
scheduling policies. Such alteration can be detected by comparing the CPU
time recorded in the guest OS with that in the VMM using the technique of
Antfarm [37].

3.2 Implementation

We have implemented the Monarch scheduler in Xen 3.4.2 [3]. In Xen, a
regular VM is called domain U. In the current implementation, the Monarch
scheduler supports the Linux 2.6 guest OS and Windows Vista for the x86-64
architecture.

3.2.1 Scheduler Overview

The Monarch scheduler is invoked by timer interrupts in the VMM. The de-
fault interval is 10 ms in the current implementation. First, the Monarch
scheduler pauses all virtual CPUs to stop the execution of all domain Us.
This prevents the conflicts of process scheduling between the Monarch sched-
uler and guest OSes. During the controlled mode in hybrid scheduling, the
Monarch scheduler traverses the process lists in guest OSes and finds target
processes. Based on the execution time of the processes, it changes process
scheduling in guest OSes by suspending or resuming some of the processes.
Finally, it continues all domain Us again. During the autonomous mode, the
Monarch scheduler does nothing.

When the Monarch scheduler switches between the controlled and au-
tonomous modes, it largely changes process scheduling in guest OSes. When
it enters the autonomous mode, it resumes all the processes that have been
suspended by it. All processes are scheduled by process schedulers in guest
OSes as if the Monarch scheduler is not used. When the Monarch sched-
uler comes back to the controlled mode, it re-schedules all processes again

MONARCH SCHEDULER 33

Implementation

M Machine Memory

Kernel Page table
Image —F{ Virtual Address |—> .

P2M table

Xen VMM

Figure 3.4. Accessing VMs' memory.

based on its scheduling policy and suspends processes if necessary. The pe-
riods allocated to these two modes can be configured by the administrators.
The default periods are 500 ms for the controlled and autonomous modes,
respectively.

3.2.2 Accessing Kernel Data

The Monarch scheduler obtains information on data types from the debug
information of OS kernels. An example of such type information is the
task_struct structure for representing the process in Linux. The debug in-
formation is generated by compiling the kernel with the debug option and
stored in the DWARF [15] format. Such type information can also be ob-
tained from the source code of the kernel, but obtaining type information
from the source code is more complicated than doing from the debug infor-
mation because the Linux kernel contains various macros for configuration
and enables specific fields in data structures by defining macros.

To access data in a guest OS from the VMM, the Monarch scheduler
have to translate their virtual addresses in domain U into machine addresses
as illustrated in Figure 3.4. In Xen, the VMM uses the machine address
to access the entire memory. Domain U is given pseudo-physical memory
for the illusion of its own physical memory. First, the Monarch scheduler
looks up the page table in domain U and translates a virtual address into a
pseudo-physical address in the domain U. Next, it looks up the P2M table
in the VMM and translates the pseudo-physical address to a machine ad-
dress. The Monarch scheduler maintains the result of this translation as a
cache. When it accesses virtual addresses in the same page, it can obtain
machine addresses from the cache directly. The cache is invalidated before
the Monarch scheduler continues the domain U because the page table and
the P2M table can be changed while the domain U is running.

MONARCH SCHEDULER 34

Implementation

Linux Memory struct x8664_pda {
> task_t* current;
x8664_pda ulong data_offset;
wt;
Run queue data_offset
+

PER_CPU_RUNQUEUES

Figure 3.5. The Monarch scheduler finds the run queue dynamically.

Scheduler of Linux OS
schedule() {
spin_lock(runqueue); —
RUNQUEUE Operation
spin_unlock(runqueue); -
} unlock

runqueue e
check

Monarch
Scheduler

Figure 3.6. The Monarch scheduler checks the spin lock of the run queue.

When the Monarch scheduler examines processes in a guest OS, it tra-
verses a circular list including all the processes. The staring point of the
process list is the init_task symbol, which is invariant in each kernel image.
The virtual address of this symbol is also obtained from the symbol table
in the debug information of the kernel. On the other hand, it is not so
straightforward to find all the run queues in a guest OS. In Linux, a run
queue is created for each virtual CPU. Since the number of virtual CPUs is
not determined until a VM is created, the address of each run queue changes
according to the number. Therefore, the Monarch scheduler obtains the ad-
dress of a run queue by starting from the GS base register of a virtual CPU
in Figure 3.5. The register points to per-CPU specific data structure named
x8664 _pda. This data structure contains a pointer to a run queue.

The Monarch scheduler guarantees to consistently access kernel data in
guest OSes. If it inspects a run queue while a guest OS is modifying it at
the same time, it and/or the guest OS may crash. To prevent this situation,
the Monarch scheduler checks locks for kernel data as depicted in Figure 3.6.
Linux uses spin locks for mutual exclusion of accessing run queues and the
process list, respectively. Before the Monarch scheduler access such kernel
data, it checks whether the corresponding spin lock is acquired by a guest

MONARCH SCHEDULER 35

Implementation

run current ready domain U
qQuUeU€ process process

blocked
- process

remove " block stop A

[y

1y

CMonarch Scheduler)
VMM

Figure 3.7. Suspending processes in various states.

OS or not. If the spin lock is not acquired, the Monarch scheduler can safely
manipulate kernel data. It does not need acquire the spin lock because it
pauses the domain U in which the guest OS runs. If the spin lock is already
acquired by a guest OS, the Monarch scheduler skips scheduling at that time.
Since a guest OS should release such spin locks in a short period, the Monarch
scheduler can perform scheduling shortly.

3.2.3 Suspending/Resuming Processes

The Monarch scheduler uses several techniques for suspending processes ac-
cording to their state. In Linux, a process has three main states: ready,
running, and blocked. For a process in the ready state, the Monarch scheduler
manipulates a run queue to suspend it. A process in this state is waiting for
being scheduled in a run queue. In Linux, a run queue is an array of lists,
each of which accommodates runnable processes with the same priority, as
shown in Figure 3.7. To suspend a process in this state, the Monarch sched-
uler removes the process from one of the lists in a run queue. Together with
this manipulation, it also updates the counter that maintains the number of
processes in a run queue. Since the processes in run queues do not hold any
locks in the kernels, suspending them does not cause deadlocks.

For a process in the running or blocked state, the Monarch scheduler

MONARCH SCHEDULER 36

Implementation

rewrites the process state to suspend it. A process in the running state is
the currently running process and a process in the blocked state is waiting
for /O completion or lock acquisition. To suspend a process in the running
state, the Monarch scheduler changes the process state to blocked. When a
process scheduler in a guest OS is invoked for a context switch, the current
process is removed from a run queue. If the state is not running, the process
is not inserted into the run queue again. At this time, the process does not
hold any locks in the kernel. Although the current process is also in a run
queue in Linux, the Monarch scheduler cannot suspend it by directly remov-
ing it from the run queue. Even if the Monarch scheduler does so, the process
scheduler in a guest OS inserts the current process into the end of the run
queue and schedules it again.

On the other hand, the Monarch scheduler changes the process state to
stopped for a process in the blocked state. The state of stopped is identical
to that of a process suspended by the SIGSTOP signal. Even when a pro-
cess is woken up by an event such as I/O completion, the wake-up function
does not insert the process into a run queue if the process state is stopped.
When such a process is stopped by a guest OS, it is guaranteed that it does
not hold any locks in the kernel. Although the process can be resumed by
sending the SIGCONT signal, the Monarch scheduler suspends the process
again immediately. Since a process in this state is not in a run queue, the
Monarch scheduler cannot remove the process from a run queue. Conversely,
this process rewriting is ineffective for a process in the ready state. Even if
the Monarch scheduler rewrites the process state, a process scheduler in a
guest OS schedules the process without checking its state.

To resume a process that has been removed from a run queue, the
Monarch scheduler inserts it into the run queue from which it has been re-
moved. The inserted list in the run queue is selected according to its priority.
For a process whose state has been rewritten, the Monarch scheduler rewrites
its state to the ready state before inserting it into a run queue.

3.2.4 Monitoring Accurate Process Time

To record the execution time of each process, the Monarch scheduler mea-
sures the CPU time used for the execution in the context of the corresponding
virtual address space. A virtual address space is uniquely identified by the
machine address of the page directory in a page table. When a guest OS
sets the address to the CR3 register in a virtual CPU for the context switch
between processes, the Monarch scheduler can check the address. The in-

MONARCH SCHEDULER 37

Implementation

struction for changing CR3 is privileged and trapped by the VMM. Similarly,
the Monarch scheduler can check the address when a context switch occurs
between VMs and the current virtual address space is changed. The CPU
time from when the specific value is set to CR3 until the value of CR3 is
changed is accumulated as the corresponding process time.

The Monarch scheduler binds virtual address spaces to real processes
by using process information in guest OSes. In Linux, the address of the
page directory is stored in the mm_struct structure, which is followed from
task_struct. By traversing the process lists in guest OSes, the Monarch sched-
uler can bind the accurate execution time to each process.

3.2.5 Support for the Windows Guest OS
3.2.5.1 Obtaining Type Information

The Monarch scheduler obtains information on data types from the debug in-
formation of the kernel of a guest OS. Examples of such type information are
the task_struct structure in Linux and the EPROCESS structure in Windows
for representing a process. In the current implementation, the developers
manually obtain necessary type information in advance and then compile
the Monarch scheduler using that specific type information. For example, a
specific version of the task_struct structure has to be used.

For Linux, the Monarch scheduler obtains type information from its kernel
image compiled with the debug option as illustrated in Figure 3.8linuxdbg.
Such a kernel image contains debug information in the DWARF [15] format.
In some Linux distributions, a debuginfo package for the kernel including
debug information is provided. For Windows, on the other hand, type infor-
mation has to be obtained via the WinDbg kernel debugger [53], as shown in
Figure 3.9. WinDbg requires the Windows kernel to be booted in the debug
mode, but it is not desirable to run the Windows kernel in the debug mode
at production run. In addition, we could not run the Windows kernel in the
debug mode on a VM in Xen 3.3.0. We guess that Xen does not support to
run the Windows kernel in the debug mode because that mode is not used
usually. Therefore, the developers need to run the Windows kernel in the
debug mode without a VM and obtain necessary type information.

Such type information can be also obtained from the source code of guest
OSes, but the Monarch scheduler uses debug information for two reasons.
One is the availability of source code. The source code of some guest OSes is
not open. The other reason is that the source code of kernels contains com-

MONARCH SCHEDULER 38

Implementation

Linu: Kernel v2.6.16.33-xenl Configuration

frrow keus rovigate the nenu, | <Enters celects sumenue —--). Wighlighted letters are natieye. Freseing < includes, db sxcludes, db odlarizes
featires: Prass <Bscs (Ese> 1o exlt, <7 for Help, </» for Ssarth. Logends (3] bulitcin [1 Sicused o> nocile < 3 noduls capad

[0 Shou _tining information
[] M gic Suskg key
[¥] ernel debuggin
(15) ernel log buffer size (16 => B4KB, 17 =5 128KB) (NEW)
[] etect Soft Lockups (NEW)
ollect scheduler statistics (NEW)
ebug menory allocations (NEW)
H tex dehugging, deadlock detection (NEW)
pinlock debugging (
Leep-inside-spinlack thal:kmg (REW)
object debugging (NEW)
onple the Kerel uith asbug Lnfo (NEK)
ebug Filesysten (NEW)
ebug UM (NEW)
anpile the kernel with frane pointers (NEH)

ence gec to inline functions erked "inline' (NEH)
orture tests for RO (NE)
S et | Oreah ey G SEAnES ()

CBtit > < help >

Figure 3.8. Compiling Linux with the debug option.

plex macros for configuration. The Linux kernel enables various functions by
defining macros. According to defined macros, some fields in data structures
are also enabled. For example, the definition of the rq structure for a run
queue changes when the CONFIG_SMP macro is defined.

3.2.5.2 Finding Prochead of Windows

For Windows, however, finding such a starting point is not easy. As well
as in Linux, all the processes are traversed from the PsActiveProcessHead
global variable [82], as illustrated in Figure 3.10. Although the address of
the variable can be obtained by using WinDbg, it changes whenever the OS
is booted, at least, in case of Windows Vista. We guess that this is caused
by the address space layout randomization (ASLR), introduced in Windows
Vista [55]. ASLR changes the addresses where DLLs are loaded every time.
Therefore, even if we can obtain the address for the Windows kernel running
in the debug mode, the address is not valid after the kernel is rebooted in
the non-debug mode.

To overcome this problem, the Monarch scheduler finds the
PsActiveProcessHead global variable from a set of processes. First, the
Monarch scheduler finds the candidates of all processes in a guest OS. Since
it is difficult to directly find processes, the Monarch scheduler scans the whole
memory and searches a bit sequence that represents a process. In Windows,
a process is expressed as an object inside the kernel as shown in Figure 3.10.
Each object contains a header that points to a type object corresponding
to its type [82]. The address of each type object is unique. The Monarch
scheduler searches that value from the whole memory, as described in the

MONARCH SCHEDULER 39

Implementation

]) Local kernel - WinDhg:6,8.0004.0 =0 ey <=
File Edit View Debug ‘indow Help
|| lsigfsned |9 HHFUMEOREEODE|E] 4 H
Cormmand - Local kernel - WinDbg:6.8.0004.0 EE
lkd> dt nt! EPROCESS i
+0x000 Pch : _KPROCESS
+0x0c0 ProcessLock o _EX_PUSH _LOCK
+0x0cB CreateTime . _LARGE _INTEGER
+0x0d0 ExitTime o LARGE INTEGER
+0x0d8 RundownProtect . _EX_RUNDOWN_REF

+0x0el UniqgueProcessld @ PtrB4 Void
+0x0e8 ActiveProcessLinks : LIST _ENTRY

m

+0x0f8 Quotallsage : [3] Uint8B
+0x110 QuotaPeak : [3] UintSB
+0x128 CommitCharge » Uint8B

+0x130 Peak¥VirtualSize : Uint3B

+0%x138 VirtualSize » Uint8B

+0x140 SessionProcesslinks @ LIST ENTRY
+0x 180 DebugPort o PtrB4 Void

+0x 168 ExceptionPortData : Ptrf4 Yoid

+0x 188 ExceptionPortValue : Uint8B

+0x188 ExceptionPortState : Pos 0, 3 Bits

+0x1680 ObjectTable : PtrB4 HANDLE TABLE

+0x168 Token o _EX_FAST REF

+0x170 WorkingSetPage : Uint8B

+0x178 AddressCreationLock : EX PUSH_LOCK n

4 T 3

[> k

Lnd, Col@ Sys O:<Mone> Proc 000:0 Thed 000:0 ASK4 OWR O CARS R

Figure 3.9. Obtaining the type information of the Windows kernel with
WinDbg.

literature [8], such as Table 3.11. Since this memory scan takes time, the
Monarch scheduler dumps the memory of a target domain into a file and
analyzes the file. The target domain stops only during the memory dump
and can continue to run after that.

From the found candidates of process objects, the Monarch scheduler
selects likely process objects. The unique value for a process object does not
always appear only in the header of process objects, but it can appear in the
other area randomly. The Monarch scheduler examines all the candidates
using the following knowledge: (1) a process name is an ASCII string in
many cases, (2) a process ID is a multiple of four [68], and (3) all process
objects are connected to one circular list.

Then the Monarch scheduler finds the PsActiveProcessHead global
variable from the found process objects. PsActiveProcessHead is distin-
guishable from the other process objects by the difference of the memory
location. In the x86-64 architecture, the high 32 bit of the address of
PsActiveProcessHead is Oxfffff800 while that of the other process ob-

MONARCH SCHEDULER 40

Implementation

Process

S Type
L object

i PsActiveProcessHead _| Process| | Process |, Process
" | object1 Object2 Object3
Fixed length
. Thread
PRCB . Object2
ReadySummary :
DispatcherReady | Thread _| Thread
ListHead[32] Object1 % |Object3
,,,,,,,,,,, Thread

Type
object

Figure 3.10. The data structures inside the Windows kernel.

jects is Oxfff££a80.

3.2.6 Finding Run Queues of Windows

The Monarch scheduler finds all the run queues in guest OSes at runtime. In
popular OSes supporting SMP, there exists a run queue for each virtual CPU.
Since the number of virtual CPUs is not determined until a VM is created
and a system is booted, the address of each run queue changes according to
the number.

For Windows, the Monarch scheduler finds a run queue from the PRCB
structure, which is per-CPU data structure [82]. The address of PRCB is
unknown, but we found that it is located at a fixed distance from the address
that PsActiveProcessHead points to.

Together with manipulating a run queue, the Monarch scheduler also
updates related data structures. In Windows, a bitmap called ReadySummary
has to be updated. The bitmap maintains whether there are threads in a
specific priority or not. When the Monarch scheduler removes a thread from

MONARCH SCHEDULER 41

Implementation

2212
2424
2200
2248
2316

1112
680

Idle

System
WmiPrvSE. exe
explorer.exe
taskeng.exe
rdpclip.exe
dwm.exe

svchost.exe
logon.scr

priority:
priority:
priority:
priority:
priority:
priority:
priority:
priority:

priority:
priority:

O 00 0 00 0 00 0 O

AN’

next:
next:
next:
next:
next:
next:
next:
next:

next:
next:

OxfffffffffFFf££18,
Oxf££££a8002c97c10,
Oxf££££fa8001659c10,
Oxfffffa8002f1abb0,
Oxfffffa8003696a40,
Oxff£££fa80036c5040,
Oxf££££a80036d66c0,
0xa800000009££18,

Oxfff£fa800307dc10,
Oxf££££800017ad338,

a run queue, it clears the bit corresponding to that priority if there is no
other thread in the same priority. When the Monarch scheduler inserts a
thread into a run queue, it sets the bit corresponding to that priority. We
found the information on which bit corresponds to which priority from the

source code of the React OS [77].

Figure 3.11. Finding processes from Windows Guest OS's memory.

MONARCH SCHEDULER 42

Chapter

VMCrypt

VMCrypt prevents the sensitive information of the user VMs’ memory from
leaking via the management VM, using the trusted VMM. Nevertheless, the
the management VM administrators can manage the user VMs with the
management VM, including live migration, as before VMCrypt is introduced.
VMCrypt supports para-virtualized guest OSes and allows the the manage-
ment VM administrators to use the existing management software.

4.1 Dual Memory View

VMCrypt provides a dual memory view for each user VM: a normal view and
an encrypted view, as illustrated in Figure 4.1. A normal view is a view of
unencrypted memory and is used by a user VM. This view enables software
running inside a user VM to access its memory as usual. In contrast, an
encrypted view is a view of encrypted memory and provided to the manage-
ment VM. Management software running in the management VM can access
only encrypted data via this view, so that the attackers in the management
VM cannot steal any useful information inside the user VMs. Nevertheless,
the server administrators in the management VM can manage the user VMs
through the encrypted views. For example, migrating a user VM is achieved
by transferring the encrypted view of the VM’s memory to the destination.

VMCRYPT 43

Dual Memory View

Encrypted Normal
Memory Memory
View View
N—0p P (
Management] User VM
VM
_J — |

VMCrypt VMM

Figure 4.1. A dual memory view provided by VMCrypt.

To enable the server administrators to manage the user VMs with para-
virtualization, VMCrypt exceptionally provides a normal view to the man-
agement VM only for several memory regions. For such regions, the man-
agement VM can directly access unencrypted data in a user VM. Examples
of such regions are memory shared between VMs and the page tables inside
a user VM. For para-virtualized guest OSes, the management VM needs to
read and write data in the shared memory to exchange information with
a user VM. The page tables have to be modified by the management VM
during VM migration. The details of such unencrypted memory regions are
listed in Section 4.3.4.

VMCrypt automatically identifies such unencrypted memory regions by
monitoring the interaction between the management VM, the user VMs,
and the VMM. For example, a shared memory region is passed from the
management VM to the user VM via the VMM. The memory regions for the
page tables are registered to the VMM. As such, the VMM can recognize all
the unencrypted memory regions. The information on the identified memory
regions is cached during the life cycle of a user VM, including VM migration,
to preserve the compatibility with the existing management software. With
the cache, the VMM can restore the user VM’s memory correctly even at
another host.

The two views in a dual memory view are provided concurrently to enable
live migration. In other words, an encrypted view coexists with a normal one
for each user VM. Therefore, the management VM can access the memory
of a running user VM. Live migration requires that the management VM
transfers the memory of a user VM while the user VM accesses its memory.

VMCRYPT 44

Threat Model and Assumptions

If VMCrypt directly encrypted the memory of the user VM by overwriting
it, the running software in the user VM would fail when reading encrypted
data.

VMM is trusted in VMCrypt, the attackers in the management VM can-
not trick VMCrypt so that memory regions including sensitive information
are provided to the management VM as a normal view. Even if the attackers
attempt to register the whole memory as unencrypted regions, the VMM
checks the validity of such special memory regions. We describes how such
memory validation is performed in Section 4.3.4.

Let us briefly demonstrate how VM migration works well with VMCrypt
for para-virtualized guest OSes. The management VM reads the encrypted
memory contents through the encrypted view of a user VM and transfers
them to a destination host. During this, the management VM modifies the
page tables in the user VM so that the page tables can be migratable. The
page tables are accessed through the normal view and transferred without
encryption. At the destination host, the management VM writes received
data to the encrypted view of a newly-created user VM as is. At the same
time, the corresponding normal view is constructed from the encrypted view.
The received page tables are written directly into the normal view and mod-
ified to be adapted to the destination host. The detailed behavior of VM
migration with VMCrypt are described in Section 4.3.5.

4.2 Threat Model and Assumptions

We assume that the management VM can be compromised by outside attack-
ers or abused by administrators. Such attackers could take the root privilege
of the OS in the management VM and even alter the OS kernel. This means
that the management VM is removed from the trusted computing base in
terms of confidentiality.

In this paper, we focus on the attempts to steal sensitive information
from the user VMs” memory. Information leakage from other resources such
as CPU registers, storage, networks, and covert channels is out of scope.
In real server consolidation, these resources should be protected against the
management VM as well. Since there are several studies for protecting them,
we can incorporate those with VMCrypt. For example, the protection of
CPU registers has been proposed in SRE [48, 49]. Storage and networks
can be encrypted by the guest OSes themselves, as described in Section 2,
or by the VMM [84]. Mitigating the risk of covert channels is discussed

VMCRYPT 45

Implementation

in the literature [78]. Also, we do not consider the other types of attacks
against the user VMs from the management VM, such as integrity attacks
and denial-of-service attacks.

We assume that server providers themselves are trusted, as widely ac-
cepted [83, 105]. In server consolidation, trusted senior administrators should
be responsible for the maintenance of VMMs and the hardware. They would
not be lazy or malicious, unlike average the management VM administrators
that manage the user VMs in the management VM. Average administrators
may manage VMMs and the hardware as well, but senior administrators
should finally examine the correctness. Therefore, we assume that VMMs
are well maintained and have no vulnerabilities that are compromised by the
attackers. Also, we do not consider physical attacks such as the cold boot
attack [23] because server rooms should be strictly protected in data centers.

We assume that the systems inside the user VMs are maintained suffi-
ciently by the users and that they are not compromised directly from the
attackers. If there were several software vulnerabilities or if weak passwords
were used, the attackers could intrude into the users’ systems. Once they
were inside the user VMs, they could easily steal sensitive information. This
paper excludes this possibility to focus on information leakage via the man-
agement VM.

We assume that the VMM is trusted while the management VM is not
trustworthy. The VMM should not be compromised by the management
VM, and the memory of the VMM is protected from the management VM.
This assumption depends on the architecture of the VMM while there are
several sort of implementations of the VMMs. VMMs that are suitable for
VMCrypt are Xen [3], VMware ESX [101] On the other hand, VMMs that
are not suitable for VMCrypt are Virtual PC [52], KVM [46], and VMware
workstation [101].

4.3 Implementation

We have implemented VMCrypt in Xen 4.0.1 [70]. In Xen, a user VM is
domain U and the management VM is domain 0. In the current implemen-
tation, VMCrypt supports para-virtualized Linux for the x86-64 architecture
as guest OSes. VMCrypt mainly depends on Xen in how the VMM identifies
unencrypted memory regions. If we implement this method in the VMM,
VMCrypt can be applied to full-virtualization in Xen and the other virtual-
ized systems such as VMware ESX.

VMCRYPT 46

Implementation

Application | | Virtual
Kernel Pseudo-physical
Hypervisor | | Machine

Figure 4.2. The three layers of Xen memory.

4.3.1 Memory Model in Xen

As illustrated in Figure 4.2, Xen distinguishes machine memory and pseudo-
physical memory to virtualized memory. Machine memory is the entire mem-
ory installed in the machine and consists of a set of machine page frames.
It is reserved for the VMM, allocated to domains, or unallocated. Each ma-
chine page frame has a number called the machine frame number (MFN),
which is consecutively numbered from 0. Pseudo-physical memory is a per-
domain abstraction and allows a guest OS to consider the allocated physical
pages as contiguous. For each machine page frame, a pseudo-physical frame
number (PFN) is consecutively numbered from 0. The VMM maintains a
machine-to-physical (M2P) table for the mapping from MFNs to PFNs. For
the inverse mapping, a physical-to-machine (P2M) table is maintained by
each domain.

4.3.2 Constructing an Encrypted View

To construct an encrypted view from a normal view of domain U’s memory,
the VMM encrypts the contents of memory pages of domain U when domain
0 maps those pages. Domain 0 has to map memory pages on its address space
to access domain U’s memory. To make two memory views coexist, the VMM
replicates pages of domain U and maps them on domain 0, as illustrated in
Figure 4.3 (a). For this encrypted replication, the VMM allocates pages in
domain 0 and copies encrypted contents to them. When domain 0 unmaps

VMCRYPT 47

Implementation

Address Space Address Space
In Domain 0 In Domain U

(a) Encrypt on Map

Decrypt on Unmap

(b) P Encrypt on Read-Only Map|
Discard ~
on Unmap
() Decrypt on Unmap _ |ypinitialized

Allocate }* Page

on Map /

Figure 4.3. Synchronization between an encrypted view and a normal view.

domain U’s pages, the VMM decrypts the contents, writes them back to the
original pages in domain U, and releases the pages allocated in domain 0.

The VMM detects memory mapping and unmapping of domain U by
monitoring the modification to the page tables of domain 0. The page ta-
bles are maintained by the VMM and protected to prevent illegal memory
accesses. To modify a page table entry (PTE), domain 0 has to issue a hy-
percall to the VMM. If domain 0 attempts to modify its PTE directly, a
page fault occurs and the VMM emulates the modification. In either case,
the VMM can check the modification to PTEs. When a new PTE includes
an MFN allocated to domain U, the VMM can notice that the modification
is for memory mapping. When an old PTE includes an MFN belonging to
domain U, the modification is for memory unmapping.

As an optimization for memory decryption, the VMM does not decrypt
replicated pages when domain U’s pages are mapped on domain 0 in a read-
only manner (Figure 4.3 (b)). Since domain 0 cannot modify read-only pages,
the contents do not need to be written back to the original pages in domain
U. When domain 0 unmaps such pages, the VMM simply releases them.
This optimization is enabled by a dual memory view that concurrently exists
because unencrypted contents are still preserved in the original pages. This
reduces the overhead of memory decryption. For example, all of the domain
U’s pages are just read on suspending domain U.

As an optimization for memory encryption, the VMM does not encrypt

VMCRYPT 48

Implementation

domain U’s uninitialized pages when those pages are mapped on domain 0
(Figure 4.3 (c)). We define as uninitialized a page in which any data has
not been written since domain U is created. Such uninitialized pages do not
need to be encrypted because they contain no valid data. This reduces the
overhead of memory encryption. For example, most of the domain U’s pages
are initialized by domain 0 when domain U is booted and resumed.

In this implementation, normal and encrypted views are synchronized
only on memory mapping and unmapping by domain 0 for efficiency. We
call this lazy synchronization. If domain U is stopped, the encrypted view is
the latest because domain U does not modify the normal view. However, the
encrypted view may become obsolete if domain U is running. For example,
live migration is performed without stopping domain U. This inconsistency
between memory views is usually acceptable because domain 0 cannot access
domain U’s memory consistently even when the memory pages are shared
between domain 0 and domain U, as traditionally performed. Management
software in domain 0 should already consider this.

4.3.3 Dealing with Unencrypted Pages

The VMM does not encrypt the contents of unencrypted pages, which domain
0 can access for the VM management. When domain 0 maps such pages,
the VMM makes domain 0 share the pages with domain U. Domain 0 can
read information from the shared pages at any time, but it can update the
pages only before domain U starts running. This prevents domain 0 from
interfering with running domain U, e.g., by altering the page tables. This
limitation does not disable most of VM management because domain 0 only
sets up the shared pages at the creation time of domain U. When domain 0
unmaps the pages, the VMM simply ceases to share them. This mechanism
is the same as the traditional one for memory mapping between domain 0
and domain U.

To cache unencrypted pages that have been identified once, the VMM
maintains the encryption bitmap, as shown in Figure 4.4. Each bit corre-
sponds to each machine page frame consecutively and all the bits are set at
first. The bit is cleared if the corresponding page is identified as unencrypted.
For the attempt to map domain U’s pages, the VMM determines which view
it provides to domain 0 by referring to this bitmap. The encryption bitmap
is necessary because the VMM cannot always determine whether a specified
page should be encrypted or not when the page is mapped on domain 0. The
VMM identifies unencrypted pages at the appropriate times as described in

VMCRYPT 49

Implementation

Domain 0 Domain U
4 N)
Start Page
Info Tables
Shared P2M
——
Info Table
Shared
Memory
\ VAN / ',
V4
|
M2P
Table
VMM
Grant
Table Encryption Bitmap

Figure 4.4. Unencrypted pages and the encryption bitmap.

Section 4.3.4 and constructs the encryption bitmap.

The encryption bitmap in the VMM is also embedded into domain U’s
memory. When domain U is migrated, the embedded bitmap is automatically
transferred to the destination as well as the domain U’s memory itself. This
allows domain 0 to use the existing management software as is. Through
the embedded bitmap, the VMM at the destination can extract information
on unencrypted pages for the migrated domain U. Without the encryption
bitmap, the VMM could not identify unencrypted pages when domain U is
restored.

To allocate the bitmap inside domain U’s memory, the VMM reserves a
memory region using the e820 facility of BIOS. Since €820 is used to report
the memory map to guest OSes, the VMM inserts a reserved area into that

VMCRYPT 50

Implementation

memory map when it creates domain U. The encryption bitmap is copied to
the reserved area in domain U’s memory when those pages are mapped to
domain 0. To preserve the integrity, the embedded bitmap is copied back on
unmapping only while domain U is constructing, e.g., for VM migration. Its
details are described in Section 4.3.5.

To prevent the attackers from tampering with the embedded bitmap, the
VMM checks the integrity of the bitmap. Since the bitmap is also encrypted,
the attackers cannot modify the bitmap as they intend. However, they can
corrupt the bitmap by overwriting it. Even if the bitmap is changed ran-
domly, several pages may be considered unencrypted illegally. As a result,
the attackers may steal sensitive information from such pages. To detect such
attacks, the VMM embeds versions and hashes into all the pages used for the
embedded bitmap. Whenever one of these pages is mapped, the version is
increased and the hash of the entire page is re-calculated. When the VMM
decrypts the bitmap on memory unmapping, it checks that the version is
the latest and the hash is correct. Also, the attackers cannot perform replay
attacks, which attempt to use an old bitmap, because the version is obsolete.

4.3.4 ldentifying Unencrypted Pages

The VMM automatically identifies the unencrypted pages to exceptionally
deal with them. Figure 4.4 shows the data that domain 0 needs to access.
This identification is specific to the para-virtualization in Xen.

4.3.4.1 Start Info

The start info page is used for passing information from domain 0 to domain
U when domain U starts running. This page contains information necessary
for booting a guest OS such as the allocated memory size. Domain 0 needs
to set up this page when domain U is booted or restored.

The VMM identifies the start info page by monitoring virtual CPU reg-
isters of domain U. This identification is done when domain 0 issues the first
unpause hypercall for the domain U. This hypercall is used to start running
domain U. To pass the start info page to domain U, domain 0 sets the virtual
address of the start info page in domain U to the RSI register at boot time.
The VMM translates the virtual address to the corresponding MFN. Since
the virtual address is straightly mapped to the pseudo-physical address at
boot time, the VMM can obtain its PFN at first. Usually, the PFN can be
translated to the MFN by the P2M table in domain U, but the P2M table has

VMCRYPT 51

Implementation

not been constructed yet before domain U is booted. Therefore, the VMM
examines all the entries in its M2P table one by one and finds the MFN. At
resume time, domain 0 directly sets the MFN for the start info page to the
EDX register. The VMM can obtain the start info page from it. Even if the
attackers alter that register, they cannot steal useful information. They could
make the VMM recognize an arbitrary page as the start info page. At this
time, however, domain U will not be able to boot because an arbitrary page
does not contain the correct information for booting. In addition, domain U
has no sensitive information yet at the boot time.

4.3.4.2 Console/XenStore Rings

One pair of ring buffers is used to achieve the console of domain U. Domain 0
sets up four ring buffers to communicate with domain U at boot and resume
times of domain U. Two ring buffers are used for achieving the console of
domain U. One is for text outputs and the other is for key inputs. Domain 0
needs to read text written to the console of domain U and display it to the
virtual console in domain 0. It also sends key inputs to the virtual console
to the console of domain U. The other two ring buffers are used for domain
U to access a storage system called XenStore in domain 0. Domain 0 and
domain U exchange information on VM configurations through XenStore.
Since the information on these ring buffers is stored in the start info page,
the VMM can identify it easily. Even if the attackers specify arbitrary pages
as the ring buffers, domain U uses them only for console and XenStore, not
for the other purposes. Domain U may write sensitive information to the
console, and so the contents should be encrypted between domain U and its
user. Such a mechanism for secure console is beyond the scope of this paper.

4.3.4.3 Shared Info

The shared info page is used for sharing information between the VMM
and domain U. Through this page, the VMM notifies domain U of virtual
CPU interrupts, wall-clock time, and so on. Domain U sets information
on the P2M table to this page. Domain 0 needs to obtain the P2M table
when it suspends and migrates domain U. As such, this page contains only
information for enabling VMs, which is not sensitive.

The VMM can identify the page easily because the VMM allocates the
shared info page when it creates domain U. The attackers in domain 0 cannot
make the VMM and domain U use an arbitrary page as the shared info page.

VMCRYPT 52

Implementation

4.3.4.4 P2M Table

The P2M table is a mapping table from PFNs to MFNs. Domain 0 needs
to access this table to obtain all the MFNs allocated to domain U when
it suspends and migrates domain U. The P2M table reveals which machine
page frames are allocated to domain U, but it does not contain any sensitive
information.

Since the MFN of the top page of the P2M table is stored in the shared
info page, the VMM can easily identify this table. The P2M table has three-
level hierarchical, tree structure to allow machine page frames to be sparsely
allocated to domain U. The top node of the tree consists of one page, which
contains an array of MFNs for mid-level nodes. A mid-level node contains an
array of MFNs for leaf nodes. A leaf node contains the actual mapping from
PFNs to MFNs. The VMM traverses the P2M table from the top node and
obtains all the pages used for the table. The VMM performs this traversal
whenever domain 0 maps the shared info page of domain U. The P2M table
is partially constructed by domain 0 when domain U is created. Then it
is reconstructed by the guest OS of domain U during its boot and resume
processes. If the mapping between PFNs and MFNs is changed at runtime,
the guest OS reconstructs the table again. The VMM needs to know the
up-to-date P2M table so that domain 0 can access it.

The attackers in domain 0 cannot make arbitrary pages a part of the P2M
table by modifying the P2M table. Since each entry in the P2M table is an
MFN, the VMM validates pages used for the P2M table while it traverses
them. It checks that the MFNs included in the pages are allocated to domain
U. Since the possible range of an MFN is not broad, most of arbitrary pages
cannot be the P2M table. Even if the attackers could make several pages be
included in the P2M table, the VMM would consider them as invalid after
domain U writes sensitive information to them.

4.3.45 Page Tables

In para-virtualized OSes, a page table is a table for translating virtual ad-
dresses into MFNs. When domain 0 suspends domain U, it needs to rewrite
all the PTEs and PDEs so that the table maintains the translation from vir-
tual addresses into PFNs. The rewritten tables are independent of machine
page frames. When domain 0 resumes domain U, it rewrites all the PTEs
and PDEs using newly-allocated MFNs inversely. Although the page tables
contain information on the memory structure in domain U, such information
1s not sensitive.

VMCRYPT 53

Implementation

The VMM can easily identify the pages used for the page tables in do-
main U because such pages are registered to the VMM using the mmuext_op
hypercall. The pages are typed as PGT_I[1-4]_page_table in the VMM. If a
page is no longer used for a page table, it is unregistered from the VMM. The
VMM does not allow domain U to use unregistered pages as page tables.

The attackers in domain 0 cannot register arbitrary pages as page tables
in domain U. If they could do that, they could map such pages with a normal
view and steal information. When they register a page as a page table by
issuing the hypercall, the VMM validates PTEs or PDEs included in the
page by checking that MFNs included in PTEs and PDEs are allocated to
domain U. Most of arbitrary pages in domain U cannot pass this validation.
Even if the attackers could succeed in validating several pages such as empty
pages, the VMM could detect the writes of sensitive information by domain
U as invalid modification to page tables.

4.3.4.6 Introspected Data

VM introspection is a trade-off between detectability and confidentiality. For
example, the user VMs want domain 0 to detect hidden processes while
they may not want domain 0 to know the list of running processes. To
enable VM introspection, domain 0 has to access the unencrypted memory
of domain U. However, exposing the whole memory causes the leakage of
sensitive information obviously. Therefore, VMCrypt allows the users to
grant permissions for accessing specified data in domain U to domain 0. If
the users wish, they can register a permission list to the VMM. The list
consists of type (structure) names and symbol names that domain U allows
domain 0 to introspect. Domain 0 can access memory pages for all the kernel
objects of specified types and for data pointed by specified kernel symbols.
The permission list is embedded into domain U’s memory during migration
as well as the encryption bitmap.

For dynamically-allocated kernel objects, the VMM identifies memory
pages to be unencrypted, introspecting a slab allocator [5] in domain U. A
slab allocator allocates one page only for kernel objects of the same type.
When domain 0 attempts to map a page of domain U, the VMM checks
whether the page is allocated for one of registered types by the slab allocator.
If so, the page is not encrypted.

For kernel symbols, the VMM identifies pages including the data pointed
by registered symbols as unencrypted. When domain 0 attempts to map a
page of domain U, the VMM looks up the address of each registered symbol

VMCRYPT 54

Implementation

and its data size from the symbol table in a guest OS. If the data is included
in the page, the VMM does not encrypt the page. To minimize the data
exposure, the VMM can encrypt the region other than the permitted data.
Note that an unencrypted region is aligned by the block size of an encryp-
tion algorithm, for example, 16 bytes for AES. Therefore, the data around
unencrypted regions may be still exposed to domain 0, but the size of such
data is small.

4.3.4.7 Shared Memory with the Grant Table

The grant table is a mechanism for sharing memory pages between domain
U and domain 0. For example, I/O ring buffers are shared between the front
end drivers in domain U and the back end drivers in domain 0. With the
grant table, domain 0 has to read and write the memory pages permitted by
domain U. The VMM can identify all the shared pages by checking the grant
table. Domain 0 can map only the pages that domain U explicitly permits to
access. Such pages may include sensitive information, but domain U should
encrypt it with encrypted file systems and VPN.

4.3.5 Live Migration with VMCrypt

In live migration, domain 0 transfers the memory image of running domain
U from a source host to a destination host. VMCrypt encrypts the memory
contents while it allows domain 0 to access necessary information in domain
U’s memory.

4.35.1 Source Host

Domain 0 first maps the shared info page of domain U to obtain information
on the VM and the P2M table. Then it transfers the P2M table to the
destination host. At this time, it canonicalizes the entries so that the table
does not depend on host-specific memory allocation. Specifically, it replaces
MFNs in the entries with the corresponding PFNs. Next, domain 0 maps
all the pages of domain U and transfers their contents to the destination in
turn. When domain 0 transfers pages used for page tables, it canonicalizes
the PTEs in the tables. In live migration, domain 0 repeatedly transfers
dirty pages, which are modified by domain U during migration. Finally, it
stops domain U and transfers the remaining dirty pages and other states.

VMCRYPT 55

Implementation

VMCrypt allows domain 0 to inspect domain U’s memory pages neces-
sary for migration, such as the shared info page, the P2M table, and the
page tables. Such shared pages are not encrypted while the other pages are
encrypted by the VMM when domain 0 maps them. Thanks to a dual mem-
ory view provided by VMCrypt, domain 0 can concurrently access encrypted
pages while domain U accesses the original pages. When domain 0 unmaps
pages, the VMM does not decrypt them for performance because any pages
are not modified by domain 0.

When domain 0 maps the pages used for the embedded bitmap, the VMM
copies the encryption bitmap in the VMM to the pages and encrypts them. If
the encryption bitmap changes during live migration, the embedded bitmap
has to be re-transferred. The VMM makes the pages for the embedded
bitmap dirty so that the migration software in domain 0 re-transfers them
automatically. To detect the corruption of the bitmap during migration, the
VMM embeds the hash value of the bitmap into the domain U’s memory. The
bitmap is critical because domain 0 can map random pages as unencrypted
by corrupting the bitmap.

Also, the VMM embeds the hash value of the page tables into domain U’s
memory to detect the alteration during migration. For example, if restored
domain U uses altered page tables, the domain U might store sensitive in-
formation to unencrypted pages. When domain U is finally stopped at the
source host, the VMM canonicalizes all the entries and calculates its hash
value.

4.35.2 Destination Host

At the destination host, domain 0 creates a new domain U and reconstructs
its memory using the received memory image. When it receives a memory
page, it allocates a new page for domain U, maps it, and writes the contents to
it. When domain 0 receives pages used for page tables, it uncanonicalizes the
PTEs of the tables, according to the memory allocation at the destination
host. Specifically, it replaces PFNs in the PTEs with the corresponding
MFNs. Domain 0 repeats this as long as memory pages are transferred from
the source host. When domain 0 has received all data from the source, it sets
up the start info and shared info pages. Then it uncanonicalizes the P2M
table and finally starts domain U.

The VMM does not decrypt the received memory pages on memory un-
mapping, but just before domain U starts running. Until the encryption
bitmap is restored, the VMM cannot determine whether each page should

VMCRYPT 56

Implementation

be decrypted or not. This delay of decryption does not cause any problems.
During live migration, domain U at the destination host neither runs nor
accesses any pages. Domain 0 can access shared pages such as the page ta-
bles because those pages are transferred without encryption from the source
host. When domain 0 issues the first unpause hypercall to start domain U,
the VMM extracts the embedded bitmap from domain U’s memory. Then
it copies back the bitmap to the encryption bitmap in the VMM. After the
bitmap extraction, the VMM decrypts memory pages of domain U on the
basis of the encryption bitmap.

As an optimization, the VMM decrypts memory pages as early as possible
to reduce the downtime of live migration. If all pages are decrypted at the
final stage, the downtime becomes long because domain U at the source host
is stopped at this stage. The VMM extracts the embedded bitmap just after
domain 0 receives all the pages used for the bitmap. After that, the VMM
can decrypt memory pages on the basis of the restored encrypted bitmap.
However, the encryption bitmap may not be consistent because it can be
updated during live migration. For example, pages to be encrypted may
be mapped without encryption before the encryption bitmap is correctly
updated. This may lead to information leakage from domain U.

To prevent this inconsistency, the VMM maintains the decryption record,
which is used to record whether each page of domain U has been decrypted
or not, as shown in Figure 4.5. Its bit is set when the corresponding page is
decrypted. When domain 0 unmaps a page of domain U, the VMM sets the
corresponding bit of the decryption record if the VMM decrypts it on the
basis of the encryption bitmap. When domain 0 maps the page later, the
VMM determines whether the page should be encrypted or not, using the
decryption record instead of the encryption bitmap. With the decryption
record, the VMM can give a consistent memory view to domain 0. It is guar-
anteed that decrypted pages are necessarily encrypted when domain 0 maps
them. At the final stage, the VMM adjusts the encryption of all the pages on
the basis of the consistent encryption bitmap. Note that unencrypted pages
may be incorrectly decrypted but they can be restored by encryption in case
of AES-XTS [31] at least.

The attacks against the embedded bitmap cannot succeed in information
leakage. Corruption of the bitmap is detected by the hash value embedded
into domain U’s memory. Replay attacks are useless because domain 0 is
always given the same memory view as that at the source host. Even if a
page is decrypted using an old encryption bitmap, it is necessarily encrypted
again on the basis of the same bitmap when domain 0 maps it.

VMCRYPT 57

Implementation

Encryption
Bitmap

Domain 0 Domain U

\/
1. decrypt or not

_

3. encrypt or not

A

Decryption
Record

d--- 2. record

Figure 4.5. Encryption based on the decryption record.

Alteration of the page tables is also detected by the embedded hash value.
Just before domain U starts running, the VMM canonicalizes the PTEs,
calculates the hash value, and compares it with the embedded one. Replay
attacks are not impossible, but it is difficult to steal useful information with
only old page tables. In addition, the pages used for replayed page tables
have to be marked as unencrypted in the encryption bitmap, which cannot
be compromised.

4.3.6 Other VM Management with VMCrypt
4.3.6.1 Booting with VMCrypt

To boot domain U, domain 0 sets up the memory and devices of domain
U. When it creates domain U, the VMM generates a session key used for
encryption and decryption of the memory of the domain U. It also reserves a
memory region in domain U using e820 for embedding the encryption bitmap.
Then it registers the shared info page to the encryption bitmap. Note that
the VMM does not refer to the encryption bitmap and provides a normal

VMCRYPT 58

Implementation

view to domain O until the unpause hypercall is issued after domain U is
created. This is because domain 0 itself has to construct the memory image
of domain U from scratch. If the encrypted view of domain U were provided,
domain 0 could not initialize the memory of domain U. Usually, the initial
memory image of domain U does not contain sensitive information.

Domain 0 maps pages of domain U and writes its kernel image into them.
It also constructs only leaf nodes in the P2M table of domain U. This P2M
table is not yet registered to the encryption bitmap. It is done when the
shared info page is mapped on domain 0 at the next time. Then it sets up
the initial page tables of domain U. At this time, the VMM registers pages
used for the page tables to the encryption bitmap. It sets up the start info
page and the shared info page. Finally, domain 0 unmaps all the mapped
pages but the VMM does not decrypt these pages. After domain 0 issues the
unpause hypercall, the guest OS boots.

4.3.6.2 Suspension with VMCrypt

To suspend domain U, domain 0 saves its memory into a file. First, domain
0 maps the shared info page of domain U to obtain information on the VM
and the P2M table. At this time, the VMM traverses the P2M table and
registers the pages used for the table to the encryption bitmap. Domain 0
maps the P2M table, translates MFNs in its entries into the corresponding
PFNs, and saves them into the file. Next, domain 0 maps all the pages of
domain U and saves their contents into the file in turn. If a mapped page is to
be encrypted, the VMM encrypts its contents. Otherwise, it maps the page
as is. When domain 0 maps pages used for page tables, it translates MFNs
in the page tables into the corresponding PFNs. When domain 0 maps the
pages for embedding the encryption bitmap in the VMM, the VMM copies
the bitmap to the pages and encrypts them. After domain 0 maps and saves
a set of pages, it unmaps them but the VMM does not decrypt these pages
because of read-only mapping.

To keep the session key of suspended domain U, domain 0 obtains the key
from the VMM using the vmcrypt_key_op hypercall before it suspends domain
U. The session key is encrypted with the public key in the VMM. Domain 0
saves the encrypted session key into a file.

VMCRYPT 59

Implementation

4.3.6.3 Resumption with VMCrypt

To resume domain U, domain 0 puts a saved memory image back to the
memory of domain U. This operation is similar to booting domain U from
the VMM’s point of view. First, when domain 0 creates domain U, the VMM
generates a new session key. Unlike boot, domain 0 passes the saved session
key for resuming domain U to the VMM using the vmcrypt_key_op hypercall.
The VMM decrypts the encrypted key using its private key and uses it for
decrypting the memory image. After domain U starts running, the VMM
discards the old session key and uses the new one. During resume, domain 0
maps pages of domain U and writes the saved memory image into the pages
in turn. Like boot, the VMM does not refer to the encryption bitmap at
first, but it starts to refer to the bitmap after the VMM extracts the bitmap
embedded into domain U’s memory. It is earlier than the time of the first
issue of the unpause hypercall. Therefore, the VMM does not encrypt or
decrypt the pages of domain U until the bitmap extraction.

The VMM extracts the embedded bitmap from the restored memory of
domain U as early as possible. Once all the pages where the bitmap is
embedded are mapped and then unmapped, the VMM considers that the
bitmap is restored. This validity can be checked by the hashes embedded
in the pages. At this time, the VMM copies the embedded bitmap back to
the encryption bitmap in the VMM. Since the embedded bitmap is sorted
by the PFN but the encryption bitmap is by the MFN, the VMM translates
the embedded bitmap with the M2P table in the VMM. Using the P2M
table is natural for this translation, but the P2M table of domain U is not
yet restored correctly. When the VMM extracts the embedded bitmap, it
decrypts all the already restored pages on the basis of the encryption bitmap.
To prevent pages still mapped on domain 0 from being decrypted, the VMM
maintains a map count, which is how many times each page is mapped on
domain 0 without being unmapped. When the map count becomes zero,
the VMM can securely decrypt the contents of the page without exposing
them to domain 0. After that, the VMM refers to the encryption bitmap
whenever pages of domain U are mapped on domain 0. After domain 0
issues the unpause hypercall, domain U starts running and the guest OS
performs resume operations.

VMCRYPT 60

Implementation

4.3.7 Introspection with VMCrypt

When domain 0 introspects certain data in domain U, it first translates its
virtual address to an MEFN by traversing the page table in domain U. Since
the page table is not encrypted, domain 0 can perform this translation as
usual. Then, domain 0 maps the page of the MFN. At this time, the VMM
does not encrypt it if the page is used for permitted types of kernel objects.
If the page includes data pointed by permitted symbols, the VMM does not
encrypt it. Otherwise, the page is encrypted. For example, domain 0 can
traverse the process list in domain U if the task_struct structure and the
init_task symbol are permitted by the users of the domain U.

4.3.8 Security Consideration

In VMCrypt, the management VM could interfere with the VMM through
the alteration of unencrypted pages of the user VMs. For example, when the
VMM traverses the P2M table, it might crash if the table was altered by the
attackers so that it includes non-existing memory pages. To prevent this,
our VMM carefully checks that the accessed pages belong to the target VM.

VMCrypt increases the size of the VMM, resulting in a larger trusted
computing base. This may make the whole system more vulnerable, but the
increased code size is 12500 lines, including 6500 lines of code for AES. This
size is only 5 % of the original VMM.

VMCRYPT 61

Chapter

Experiments for the Monarch

Scheduler

We performed experiments to examine the overheads and the scheduling
abilities of the Monarch scheduler. For a server machine, we used a PC
with one Intel Core 2 Duo processor E6600, 6 GB of memory, and a Gigabit
Ethernet NIC. We ran Xen 3.4.2 for the x86-64 architecture on this PC. For
domain 0, we allocated two virtual CPUs and 1 GB of memory and we ran
Linux 2.6.18. For domain U, we allocated one virtual CPU and 1 GB of
memory and we ran Linux 2.6.18 as a guest OS. For a client machine, we
used a PC with one Intel Core 2 Quad processor Q9550S, 8 GB of memory,
and a Gigabit Ethernet NIC. These two machines were connected with a
Gigabit Ethernet switch.

5.1 Scheduling Overheads

To examine the overheads of running the Monarch scheduler, we measured
the time needed for traversing the process lists in guest OSes. Each VM
is paused during this traversal. In this experiment, the Monarch scheduler
searched target processes from the process lists by comparing process names
and did not suspend or resume any processes. On each guest OS, 36 processes

EXPERIMENTS FOR THE MONARCH SCHEDULER 62

Scheduling Overheads

were running originally. We performed the traversal of the process lists 1000
times and obtained the average time.

First, we changed the number of processes in one VM between 36 and
6000 to examine the impact of the length of the process list. Spawning more
than 6000 processes caused an out-of-memory error. To adjust the number
of processes, we ran dummy processes that always slept. As in Figure 5.1(a),
the traversal time is proportional to the number of processes and 36 ns for one
process. For traversing 6000 processes, it takes 220 us and the overhead is
2.2% when the scheduling interval is 10 ms. However, running 6000 processes
in one VM is not realistic. For 400 processes, it takes 15 us and the overhead
is 0.15%.

Next, we changed the number of VMs between one and five. The purpose
of this experiment is to clarify the overheads of inspecting multiple VMs.
Therefore, we fixed the total number of processes in the whole system to
300. Figure 5.1(b) shows that the time for traversing 300 processes depends
on the number of VMs but increases only 0.88 us per VM. This overhead
comes from increasing the number of pausing virtual CPUs and checking
locks for kernel data. From this result, the scheduling overheads mainly
come from the number of processes.

EXPERIMENTS FOR THE MONARCH SCHEDULER 63

Monitoring Overheads

250
200
150

100

execution time (usec)

50

0
0 1000 2000 3000 4000 5000 6000

total number of processes

(a) For processes

18
16
14

o
()
g
v 10
£
= 8
C
o
S 6
]
o
o 4
V]

2

0

0 1 2 3 4 5

total number of VMs

(b) For VMs

Figure 5.1. The time for traversing process lists.

5.2 Monitoring Overheads

To examine the overheads of monitoring process execution in the VMM, we
measured the time needed for recording the execution time of processes with
CR3 and the number of context switches per second. We performed this
experiment at the VM start-up time and in a steady state. We regarded 15
seconds after booting a VM as the VM start-up time. While many processes
were created at the VM start-up time, only a few processes ran in a steady

EXPERIMENTS FOR THE MONARCH SCHEDULER 64

Performance Degradation

state. We used between one and five VMs.

At the VM start-up time, it took 0.26 us per context switch and context
switches occurred 1467 times per second on average. From these results, the
overhead of process monitoring is 0.04%. In a steady state, on the other
hand, it took 0.20 us per context switch. Since context switches occurred
129 times per second, the overhead of process monitoring is 0.003%. The
reason why it takes more time at the start-up time is that newly created
processes need to allocate new recording area. In any cases, this overhead is
negligible.

5.3 Performance Degradation

To examine the performance degradation due to the above scheduling and
monitoring overheads, we measured the throughput and response time of the
lighttpd web server [34]. In this experiment, we created one VM and ran the
lighttpd process and dummy processes. The Monarch scheduler traversed the
process list to find target processes and did not change the process scheduling.
We used the ApacheBench benchmarking tool [95] and sent ten requests
concurrently.

We changed the scheduling interval at which the Monarch scheduler was
invoked between 0.1 and 100 ms. We measured the throughput and response
time when the number of processes was 36, 500, and 2000. We chose the
maximum number of processes so that the time for traversing the process
list was less than 0.1 ms. Figure 5.2 shows the results. The performance was
degraded largely when the interval was 0.1 ms and the number of processes
was 2000. However, this interval is too short realistically. When the interval
was 10 ms, which is the default in the Monarch scheduler, the throughput
was degraded by 1.5% and the response time became 1.3% longer even for
2000 processes. For 500 processes, the performance was degraded by less
than 0.3%.

EXPERIMENTS FOR THE MONARCH SCHEDULER 65

System-wide Idle-time Scheduling

& 36 == 500 v-2000
processes processes processes
25000
K
v 20000
0
§a] | ' % '
4 000 v
15
> \%
()
—
~ 10000
o
>
£
o 5000
=}
o
—_
= 0
0.1 1 10 100
scheduling interval (msec)
(a) Throughput
i 36 == 500 V2000
processes processes processes
0.8
__ 07 %
(9]
Y 06 v
:E, 0.5 ‘ ﬂ j—i H =]
(]
£ 04
=
o 0.3
2
o 02
o
8 0.1
—
0
0.1 1 10 100

scheduling interval (msec)

(b) Response time

Figure 5.2. The performance degradation of a web server.

5.4 System-wide ldle-time Scheduling

We examined the effectiveness of idle-time scheduling achieved by the
Monarch scheduler. We ran lighttpd in VM 1 and the file indexing in Hy-
per Estraier [28] in VM 2. Hyper Estraier is a high-performance text search
engine. First, we monitored the activities of these two processes when we
did not use the Monarch scheduler. Figure 5.3(a) shows the changes of the
CPU utilization of these two processes. While lighttpd was running in VM

EXPERIMENTS FOR THE MONARCH SCHEDULER 66

System-wide Idle-time Scheduling

1, the file indexing was also running because it was only an active process in
VM 2. Therefore, the file indexing largely affected the execution of lighttpd
although it should stop. The throughput of lighttpd was degraded by 24%
and the response time was 32% longer.

Second, we used the Monarch scheduler to execute the file indexing only
at idle time in the whole system. To examine the accuracy of scheduling, we
disabled hybrid scheduling in this experiment. Figure 5.3(b) shows the results
of this system-wide process scheduling. When lighttpd started running in
VM 1, the file indexing stopped immediately in VM 2. The throughput of
lighttpd was degraded by 2.4% and the response time was 2.5% longer.

120 mm Hyper Estraier == lighttpd
100
80
60

40

CPU utilization (%)

20

0

elapsed time (sec)

(a) Default scheduling

120 mm Hyper Estraier == lighttpd

100

o]
o

CPU utilization (%)
By [e)}
o o

N
o

elapsed time (sec)

(b) Idle-time scheduling

Figure 5.3. System-wide idle-time scheduling for Hyper Estraier.

EXPERIMENTS FOR THE MONARCH SCHEDULER 67

System-wide Idle-time Scheduling

Third, we enabled hybrid scheduling of the Monarch scheduler. Without
hybrid scheduling, the attackers can completely prevent the execution of the
file indexing by making lighttpd always busy. We changed the ratio of the
controlled and autonomous modes. Figure 5.4(a) shows the CPU utiliza-
tion of the file indexing for the various ratios of the autonomous mode. As
the ratio becomes large, the file indexing runs more. Figure 5.4(b) shows
the changes of the CPU utilization of two processes when the ratio is 50%.
Strictly speaking, hybrid scheduling violates idle-time scheduling but pre-
vents DoS attacks from the VM that executes lighttpd. When the ratio
of the autonomous mode is more than 80%, the CPU utilization increases
steeply. This is because the Monarch scheduler switches from the controlled
mode to the autonomous one before the manipulation of guest OSes works
effectively.

EXPERIMENTS FOR THE MONARCH SCHEDULER 68

System-wide Idle-time Scheduling

50
40
9
c 30
°
=
8
= 20
=}
)
(=9
O 10
0
0O 10 20 30 40 50 60 70 80 90 100
ratio of autonomous mode (%)
(a) CPU utilization
120 mm Hyper Estraier == lighttpd
100

o]
o

CPU utilization (%)
By [e)}
o o

N
o

o

elapsed time (sec)

(b) Hybrid scheduling

Figure 5.4. The effects of hybrid scheduling with idle-time scheduling.

Hybrid scheduling degrades the performance of lighttpd even when
lighttpd runs normally. The performance degradation is shown in Figure 5.5.
As the ratio of the autonomous mode is increasing, the throughput is de-
creasing and the response time becomes longer. When the ratio is 50%, the
throughput degradation is 9.7% and the response time is 8.8% longer.

EXPERIMENTS FOR THE MONARCH SCHEDULER 69

System-wide Priority Scheduling

50000
45000
40000
35000
30000
25000
20000
15000
10000

5000

0
0 10 20 30 40 50 60 70 80 90 100

ratio of autonomous mode (%)

throughput (requests/sec)

(a) Throughput

1.2

1r.__-—l—‘_f.
0.8

0.6
0.4

0.2

response time (msec)

0
0 10 20 30 40 50 60 70 80 90 100

ratio of autonomous mode (%)

(b) Response time

Figure 5.5. The performance degradation by hybrid scheduling.

5.5 System-wide Priority Scheduling

We examined the effectiveness of priority scheduling by the Monarch sched-
uler. We ran the power test of the DBT-3 benchmark [106] in VM 1 and
the virus scanner of ClamAV [88] in VM 2, a virus scanner is frequently run
at a lower priority [12]. DBT-3 tested the performance of PostgreSQL in a
decision support system. Without system-wide priority scheduling, the virus
scanner interfered with PostgreSQL across VMs as shown in Figure 5.6(a).

EXPERIMENTS FOR THE MONARCH SCHEDULER 70

System-wide Priority Scheduling

When we ran only DBT-3, the power test took 221 seconds. On the other
hand, it took 384 seconds when we ran the power test with the virus scanner.

120

== clamav == postgresql

100

80

60

40

CPU utilization (%)

20

0 -
0 100 200 300 400 500
elapsed time (sec)

(a) Default scheduling

120

== Clamay == postgresql

100

©
o

CPU utilization (%)
B [e)]
o o

N
o

0
0 50 100 150 200 250 300 350 400 450

elapsed time (sec)

(b) Priority scheduling
Figure 5.6. System-wide priority scheduling for DBT-3 and ClamAV.

To execute the virus scanner in a lower priority than PostgreSQL, we
configured the priorities of PostgreSQL and the virus scanner so that their
CPU shares were 2 and 1, respectively. Figure 5.6(b) shows the results.
When PostgreSQL needs much CPU time, for example, between 100 and 150
seconds and between 320 and 380 seconds, the CPU utilization of PostgreSQL
is approximately double that of the virus scanner. When PostgreSQL is idle,
the virus scanner uses most of the CPU time. Under this scheduling, the

EXPERIMENTS FOR THE MONARCH SCHEDULER 71

System-wide Priority Scheduling

power test took 275 seconds, which was 28% faster than when we did not use
the Monarch scheduler.

Next, we performed other experiments to demonstrate DoS attacks to
ClamAV and show the effectiveness of hybrid scheduling. We ran four pro-
cesses for MEncoder [58] in VM 1 and the virus scanner of ClamAV [88] in
VM 2. MEncoder encoded MPEG-4 [57] video data of 800MB to the SONY
PSP [87] format. We assigned a high priority to MEncoder and a low pri-
ority to the virus scanner so that their shares were 2 and 1, respectively.
Figure 5.7(a) shows the total CPU utilization of all MEncoder processes and
that of the virus scanner when we did not use the Monarch scheduler. The
virus scanner could use more than 50% of the CPU time. However, when we
used the Monarch scheduler, the CPU utilization of the virus scanner was
reduced to 12%, as in Figure 5.7(b). As such, the attackers can perform DoS
attacks using system-wide scheduling.

EXPERIMENTS FOR THE MONARCH SCHEDULER 72

System-wide Priority Scheduling

100 == Clamav gms mencoder

90
80
70
60
50
40
30
20
10

CPU utilization (%)

0 50 100 150 200 250 300
elapsed time (sec)

(a) Default scheduling

100 == clamav == mencoder,

90 WWW W'“.‘
80

70
60
50

40
30

20

il AN Shobatpne
0

0 50 100 150 200 250 300
elapsed time (sec)

CPU utilization (%)

(b) Priority scheduling

Figure 5.7. System-wide priority scheduling for MEncoder and ClamAV.

Figure 5.8(a) shows the CPU utilization of these two when we enabled hy-
brid scheduling. The virus scanner can obtain more CPU time. Figure 5.8(b)
shows the relationship between the number of MEncoder processes and the
CPU utilization of the virus scanner. Without hybrid scheduling, as the at-
tackers ran more MEncoder processes in VM 1, the CPU utilization of the
virus scanner in VM 2 was decreasing. When we configured the ratio of the
autonomous mode to 50% in hybrid scheduling, the virus scanner can obtain
more than 16% of CPU time even for more than four MEncoder processes.

EXPERIMENTS FOR THE MONARCH SCHEDULER 73

Proportional-share Scheduling in One VM

100
90
80
70
60
50
40
30
20
10

0

== clamav == mencoder

CPU utilization (%)

0 50 100 150 200 250 300
elapsed time (sec)

(a) Hybrid scheduling

50 - -
sm no hybrid =es hybrid
scheduling scheduling

N
o

w
o

N
o

CPU utilization (%)
=
o

o

1 2 3 4 5 6 7 8
total number of mencoders

(b) Impact of MEncoder

Figure 5.8. The effects of hybrid scheduling with priority scheduling.

5.6 Proportional-share Scheduling in One VM

We ran four 7 calculator processes [17], PI;, PIy, PI3, and PI, in a VM. We
assigned k shares to Py, respectively, so that the ratio of the allocated CPU
times is 1 : 2 : 3 : 4. For stable scheduling, we limited the sum of the CPU
times allocated to these four processes to 60%. Figure 5.9 shows the changes
of the CPU utilization of these four processes. The averages of the CPU
utilization are 7.8%, 13%, 18%, and 24%, respectively, and its ratio is 1.3 :

EXPERIMENTS FOR THE MONARCH SCHEDULER 74

System-wide Proportional-share Scheduling

CPU utilization (%)

k
0 20 40 60 80 100 120 140

elapsed time (sec)

Figure 5.9. The CPU utilization in proportional-share scheduling for processes
in one VM.

2.2 : 3 : 4. The Monarch scheduler achieves the target ratio approximately.
These standard deviations are 2.2%, 2.1%, 1.3%, and 1.9%, respectively.

5.7 System-wide Proportional-share Scheduling

We ran two MEncoder processes, E; and Fs3, in VM 1 and one MEncoder
process, Fo, in VM 2. We assigned 1 share to E;, 2 shares to F, and 4
shares to Fj3, so that the ratio of the allocated CPU timesis 1 : 2 : 4. From
Figure 5.10, the averages of the CPU utilization are 19%, 39%, and 74%,
respectively, and its ratio is 1 : 2.1 : 3.9. Even when target processes are
in two VMs, the Monarch scheduler achieves the target ratio approximately.
These standard deviations are 5.5%, 11%, and 5.7%, respectively.

5.8 System-wide Multi-OS Process Scheduling

We examined the idle time scheduling targeted at Windows and Linux to
show that the Monarch Scheduler can schedule processes with one scheduling
poly in the multi-OS environment. We ran lighttpd in VM1 with Linux, and
ran Searchlndexer in VM2 with Windows. SearchIndexer is a process to
create regularly indexes to search files on Windows. The scheduling policy
of the idle-time scheduling is the same as the section 5.4, replacing the name

EXPERIMENTS FOR THE MONARCH SCHEDULER 75

System-wide Multi-OS Process Scheduling

= E2 E3

100
e B0
X
c 60
© o
© i g it
S g0 {@aniif !
= HEERESE R EEEES
2 20 qi .Rﬂ ﬂ F.ﬂ
& P

0 I I I I I \
0 50 100 150 200 250 300

elapsed time (sec)

Figure 5.10. The CPU utilization in proportional-share scheduling for processes
among two VMs.

of HyperEstraier with SearchIndexer.

EXPERIMENTS FOR THE MONARCH SCHEDULER 76

System-wide Multi-OS Process Scheduling

—indexer —lighttpd

120
100

9
= 80
o
ﬁ 60
g 40
-]
o 20
O
0
0 20 40 60 80 100 120
elapsed time (sec)
(a) Default Scheduling
=—indexer —lighttpd
120
_ 100
X
- 80
]
§ 60
5 40
-]
o 20
O

0 20 40 60 80 100 120

elapsed time (sec)

(b) Idle-time Scheduling

Figure 5.11. System-wide idle-time scheduling across multiple OSes.

Figure 5.11(a) shows the CPU utilizations of the processes without
Monarch Scheduler. Lighttpd and Searchlndexer ran simultaneously, the
throughput of lighttpd degraded by 25% and the response time increased
by 34%. Next, we ran Monarch Scheduler to run SearchIndexer whenever
the whole system is idle. Figure 5.11(b) shows that the SearchIndexer in the
VM2 stopped whenever the lighttpd ran in the VM1, and Monarch Scheduler
could control SearchIndexer according to the policy of the idle time schedul-
ing. Therefore it is showed that Monarch Scheduler can control processes in
another OSes with the identical policy. In this situation, the throughput of
lighttpd degraded by 4.3%, the response time increased by 4.5%.

EXPERIMENTS FOR THE MONARCH SCHEDULER 77

Dependence on Guest OSes

5.9 Dependence on Guest OSes

The Monarch scheduler depends on the internal structures of guest OSes
because it directly monitors and manipulates the kernel data. Even for the
same OS, its internal structures can change among different versions. Several
data structures are altered by refactoring, adding new features, changing the
scheduling algorithm. To examine how much the Monarch scheduler has to
be modified when the Linux kernel is updated, we inspected 33 versions of
the Linux kernel 2.6.

The kernel was largely modified between these versions, but it was shown
that the Monarch scheduler was not affected by most of kernel updates be-
cause it depends only on the scheduling and management of processes. When
new data structures are added to an OS, the Monarch scheduler can ignore
them if it does not refer to them. Even if data structures that the Monarch
scheduler refers to are changed, the Monarch scheduler just obtains type
information on them from the debug information of the kernel again.

To examine how much the Monarch scheduler has to be modified when
the Linux kernel is updated, we inspected 33 versions of the source code of
the Linux kernel 2.6. Figure 5.12 shows the changes of the lines of code in
the process scheduler from 2.6.0 to 2.6.32. The scheduler was changed in
most of kernel updates and the lines of code increased more than 5 times.
The Table 5.1 shows, however, that there were several small changes that
we had to modify manually. In 2.6.14, a field of the spinlock_t structure was
changed so that it was contained in another structure. In 2.6.18, the runqueue
structure was simply renamed to rq. In 2.6.30, the calculation of the address
of a run queue was changed so that a fixed offset was added to the value of
the GS base register. For these changes, we could easily modify the Monarch
scheduler.

On the other hand, the scheduling algorithm was changed from the O(1)
scheduler to the completely fair scheduler (CFS) in 2.6.23 [50]. The O(1)
scheduler uses doubly-linked lists of processes as run queues while CFS uses
a red-black tree. Since the new scheduler changed both data structures and
a scheduling algorithm, we needed to modify the Monarch scheduler largely.
According to our deep inspection, we could modify the Monarch scheduler
so that it can change the behavior of CFS.

EXPERIMENTS FOR THE MONARCH SCHEDULER 78

Dependence on Guest OSes

Version ‘ Changes ‘ Difficulty
2.6.14 | The internal structure of spinlock_t has changed. Easy
2.6.18 The name of runqueue has renamed to rq. Easy
2.6.23 The process scheduler has changed from Difficult but Possible
O(1) to the Completely Fair Scheduler(CFS)
2.6.30 The way to calculate the address Easy
of runqueue has changed.

Table 5.1. Modifications of the Monarch scheduler when the Linux kernel is
updated.

18000
16000
14000
12000
10000

8000

6000

4000

=il
0

01234567 891011121314151617181920212223242526272829303132

loc (kernel/sched*)

version (2.6.*)

Figure 5.12. The changes of the lines of code in the Linux process scheduler.

5.9.1 The Cost of Supporting CFS by the Monarch sched-
uler

The new CFS scheduler’s runqueue is implemented by the Red Black Tree [81,
47] library in 1lib/rbtree.c. To examine how much the Monarch scheduler
has to be modified when accessing the runqueue by the VMM or the domain
0. We inspected rbtree.c of the source code of the Linux kernel 2.6.23. To
access the domain U’s CFS runqueue, the VMM or the domain 0 access
the structure of the red brack tree. It is plausible to reuse the rbtree.c.
Figure 5.13 shows the code to obtain the last node of the tree in rbtree.c.
When accessing this structure from the VMM or the domain 0, We rewrite
all pointer accesses via mapping domain’s memory. Figure 5.14 shows the
code to obtain the last node of the tree from the VMM. The code shows that

EXPERIMENTS FOR THE MONARCH SCHEDULER 79

The Comparison between the Monarch scheduler and the Central scheduler

struct rb_node *rb_last(struct rb_root *root)
{
struct rb_node *n;
n = root->rb_node;
if (!'n)
return NULL;
while (n->rb_right)
n = n->rb_right;
return n;
}

Figure 5.13. A code fragment of red black tree library in the Linux kernel

every memory access has to be replaced by the memory map code. Next,
we inspected whole rbtree.c. rbtree has 397 line of code. There is about
91 pointer access and the Monarch scheduler has to modify 91 places to
accessing via memory map code.

5.10 The Comparison between the Monarch
scheduler and the Central scheduler

We have implemented the the Central scheduler as the process in the domain
0 in Xen 3.3.0 [3].

Domain 0 is a privileged VM for managing the other VMs and it is often
regarded as a part of the VMM.

5.10.1 Architecture

The Central scheduler is implemented as a userland process in domain 0,
as shown in Figure 5.15. One advantage of this implementation is that any
modification is not required in the other parts except that process, such as
the VMM, the OS kernel in domain 0, and all domain Us. This is impor-
tant to easily apply the Monarch scheduler to production systems. Another
advantage is ease of development. The developers can easily develop custom
scheduling policies by a trial-and-error approach. They can repeat modifying
a scheduling policy and restarting a scheduler process without rebooting the

EXPERIMENTS FOR THE MONARCH SCHEDULER 80

The Comparison between the Monarch scheduler and the Central scheduler

struct rb_node *rb_last(struct rb_root *root, struct domain* d)
{

struct rb_node *n;

n = map_domain_memory(d, root + offsetof (root, rb_node));

if ('n) {
unmap_domain_memory (n) ;
return NULL;

}

while (true) {
struct rb_node *right;
right = map_domain_memory(d, n + offsetof(n, rb_right));

if ('right) {
unmap_domain_memory(right) ;

break;
}
n = right;
}
return n;

Figure 5.14. An example code of red black tree library accessing domain U's
memory by the VMM or the domain 0

whole system. If the Monarch scheduler is implemented inside the VMM, the
developers need to reboot the system whenever they change their scheduling
policies.

The Monarch scheduler invokes a registered scheduling function at reg-
ular intervals. Before that, it pauses target domains by using a hypervisor
call and checks whether it can access kernel data consistently. The invoked
function inspects kernel data in target domains and manipulates them to
achieve a custom scheduling policy. After the inspection and manipulation,
the function returns to the Monarch scheduler and then the Monarch sched-
uler continues all paused domains.

Since the scheduler process in domain 0 has to always run properly, the

EXPERIMENTS FOR THE MONARCH SCHEDULER 81

The Comparison between the Monarch scheduler and the Central scheduler

Domain0 DomainU
“process
Central Process
Scheduler }]
runqueue

b4

Figure 5.15. The architecture of the Central scheduler.

Xen VMM

Monarch scheduler does not allow any custom scheduling policies to be ap-
plied to the scheduler process itself. In addition, the VMM allocates sufficient
CPU time to domain 0 by exploiting the VM scheduler, so that sufficient CPU
time is allocated to the scheduler process. We believe that such special treat-
ment of the scheduler process is not a serious problem. The special treatment
of only one process is simpler than that in cooperative scheduling, which has
to specially treat scheduling threads in all VMs.

Xen manages the memory of domains by binding machine memory to
pseudo-physical memory. Machine memory is physical memory installed in
the machine and consists of a set of machine page frames. For each machine
page frame, a machine frame number (MFN) is consecutively numbered from
0. Pseudo-physical memory is the memory allocated to domains and gives
the illusion of contiguous physical memory to domains. For each physical
page frame in each domain, a physical frame number (PFN) is consecutively
numbered from 0.

In Xen, a process in domain 0 can map arbitrary machine page frames
allocated to domain Us to its address space using a hypervisor call. To access
a specific virtual address in a domain, it first translates a virtual address to

EXPERIMENTS FOR THE MONARCH SCHEDULER 82

The Comparison between the Monarch scheduler and the Central scheduler

a PFN by looking up a page table in the domain. Since the page table is
also located in the memory of the domain, the process looks up a PFN by
mapping machine page frames used for the page table. The physical address
of the page table is obtained from the CR3 register. Next, the process looks up
a MFN corresponding to the PFN by mapping a translation table from PFNs
to MFNs, which is also located in the memory of the domain. Finally, the
process obtains a local address where a machine page frame corresponding
to the MFN is mapped.

The Monarch scheduler maintains the result of this translation from a
virtual address in domain U to a local address in domain 0 as a cache. When
it accesses the same or near virtual address in the same domain, it can
obtain the local address from the cache. This is very efficient because any
memory mapping is not necessary for the address translation. In addition
to this cache, the Monarch scheduler maintains the memory pages mapped
once from domain U, so that it can access local addresses obtained from the
cache without any memory mapping. The Monarch scheduler invalidates the
cache and unmaps all the memory pages in domain U before it continues
the domain. The page table and the translation table in domain U can be
changed by its guest OS while the domain is running.

When the Monarch scheduler accesses a certain field in a data structure,
it maps only the memory page including the field. To do this, it calculates
the virtual address of the field from the address of the data structure and
the offset of the field. If the size of a data structure is more than that of a
memory page, one data structure occupies multiple pages. Although these
pages may be contiguous in pseudo-physical memory, they are not always
contiguous in machine memory. Therefore, the Monarch scheduler has to
map such pages one by one and it takes time depending on the number of

pages.

5.10.2 Disadvantages of the Central scheduler

One disadvantage of this implementation is its high overheads. Accessing
domain U’s memory by the domain 0 is massively slow because the domain
0 must access domain U’s memory repeatedly. If the domain 0 wants to
access a virtual address of the domain U’s memory, firstly the domain 0
must translate its virtual address into machine frame number by accessing
domain U’s page table. This is about 5 times must be accessed due to page
table is 5 level on x86-64 architecture. We examined this overheads in the
Section 5.10.

EXPERIMENTS FOR THE MONARCH SCHEDULER 83

The Comparison between the Monarch scheduler and the Central scheduler

what is doing | time (ps)
stop and restart of DomainU 11.1
calculation of frame number

corresponding to virtual address 58.8
map and unmap the page to process of

Domain0 7.0
access of 1 word of mapped memory 0.0

Table 5.2. The breakdown of the time needed for accessing memory of Do-
mainU from Domain0.

Another is that the Central scheduler cannot treat processes of the domain
0. Since the Central scheduler is implemented as the process in the domian 0,
the Monarch scheduler does not make the processes the scheduler’s target. If
the Monarch scheduler suspends the process of the Monarch scheduler itself,
the scheduler has reached into the state of deadlock. Not only the suspension
but also lowing the priority may cause the problem. If the process of the
Monarch scheduler runs in the low priority, the schedule may not happen
periodically so that the accurate scheduling cannot be achieved.

5.10.3 Costs of Accessing Memory of DomainU

We conducted an experiment on the time of accessing memory of DomainU
from Domain0. We measured the breakdown of the time by executing the
following code 100 million times. Firstly, we stopped a DomainU, and cal-
culated machine frame number corresponding to an address of a process’
virtual address space. Secondly, we mapped the address to an address of a
process of Domain0, and read one word from the mapped address. Lastly,
we unmapped the mapped address, and restart the DomainU.

Table 5.2. shows an average time of each process. The experimental
result suggests that the greatest part of time is the calculation of machine
frame number from virtual address. It is because that it takes long time to
lookup the page table of Guest OS.

5.10.4 The Accuracy of Scheduling Interval

We examined the accuracy of scheduling interval about Monarch Scheduler
and the Central scheduler, show that the Monarch Scheduler can achieve the

EXPERIMENTS FOR THE MONARCH SCHEDULER 84

The Comparison between the Monarch scheduler and the Central scheduler

more accurate scheduling interval. We compared the accuracy of two versions
scheduler, one is implemented in the VMM and another is in the domain 0
which are set up to run regulary 10ms. The scheduler in the domain 0 which
is not overloaded resulted in the 20ms of scheduling interval. It is considered
that the process scheduling of the domain 0 may affect the interval. On the
other hand, the scheduler in the VMM achieved the accurate 10ms scheduling
interval.

Next, we tested the same experiment on the condition that Bonnie++ [76]
ran in the domain U and the domain 0 and the domain U used the same
physical CPU. In the case of the scheduler process in the domain 0, the
scheduling interval increased to 32ms. On the other hand, in the case of
the scheduler in the VMM, the scheduling interval did not increase, but
remained 10ms. We think this is because the CPU time was not allocated
for the scheduling process in domain 0 due to the load. The scheduler process
in the VMM can schedule accurately processes even if the load is heavy.

5.10.5 The Accuracy of Measuring Process Times

We conducted experiments showing that measuring process times in the
VMM is more accurate than doing in the domain 0. We ran two VMs,
VM1 and VM2, with Linux 2.6.16.33 as guest OSes, and ran the process
of infinite loop on each VM. We setup that these VMs share one physical
CPU and their priorities of the VMs are the same level. We compared the
CPU time used by the process in the VM1, between a value measured by
the VMM and one measured by the domain 0. Because two same priority
processes share one physical CPU, the actual CPU time used by the process
in the VM1 shall become the half of the total execution time.

Figure 5.16 shows the execution time and the process times. As Monarch
Scheduler does, the process time tracked by the VMM is accurate as the half
of the total execution time. On the other hand, as the Central scheduler did,
the process time obtained from a guest OS is not accurate as the same of the
total execution time. This is because that the guest OS cannot understand
the time which does not use physical CPUs.

5.10.6 The Proficiency of Process State Rewriting

We conducted experiments showing that the process state rewriting con-
tributes to the more accurate process control. We examined the proportion
of the process which is stopped by the stop operation in a constant time.

EXPERIMENTS FOR THE MONARCH SCHEDULER 85

The Comparison between the Monarch scheduler and the Central scheduler

—from VMM —from OS

12000
10000
8000
6000
4000
2000

0
01 2 3 4 5 6 7 8 9 10

executed CPU time (msec)

elapsed time (sec)

Figure 5.16. The difference between the process times obtained from a guest
OS and that tracked by the VMM.

We examined two cases, one case consisted of only the runqueue operation
as the Central scheduler did. Another case consisted of both the runqueue
operation and the process state rewriting The target processes are the pro-
cess of infinite loop and Bonnie++, we ran each process alone. The process
of infinite loop always used CPU time, its state is always running because it
ran alone. Bonnie++ used 53% of its time as blocked state because it had
many /O and waited for the I/O completion.

Figure 5.17(a) shows that only runqueue operation stopped only 11% of
the process of infinite loop in 60 sec. However, using both the runqueue
operation and the process state rewriting stopped the processes acurrately.
This is because the process state rewriting enables to control the process
which could not be controlled only by the runqueue operation. Figure 5.17(b)
shows, in case of Bonnie++, only the runqueue opration could stop the 66%
of the process in 1 sec, however, using both the runqueue opration and the
process state rewriting could stop the 93% of the process in 1 sec. This shows
the 1/O heavy process could be controlled.

5.10.7 Performance Degradation by the Central scheduler

We performed experiments to exaine performance degradation by the Central
scheduler. We conducted the same experiments as section 5.3

Figure 5.18 shows the results. When the scheduling interval was 10ms
and the number of process is 36, the throuput of lighttpd degraded by 27%

EXPERIMENTS FOR THE MONARCH SCHEDULER 86

The Comparison between the Monarch scheduler and the Central scheduler

and the response time increased by 27%. Even when the scheduling interval
was 100ms, both the throuput and the response time degraded by more than
50%. These shows that if the number of processes increases, the scheduling
interval cannot be shorten.

36 processes 500 processes - 2000 processes
25000
20000
15000
10000
5000

0
10 100 1000

throughput (requests/sec)

scheduling interval (msec)

(a) Throuput

= 36 processes <500 processes 2000 processes

1.4
1.2

1
0.8
0.6
0.4
0.2

0
10 100 1000

response time (msec)

scheduling interval (msec)
(b) Response Time

Figure 5.18. The performance degradation of a web server with the Central
scheduler.

EXPERIMENTS FOR THE MONARCH SCHEDULER 87

The Comparison between the Monarch scheduler and the Central scheduler

=—runqueue —runqueue & rew rite

100

80

60

40

20

0

cumulative success rate (%)

0 10 20 30 40 50 60

elapsed time (sec)

(a) infinite loop

—runqueue —runqueue & rew rite
100
80
60
40
20

0
0 1 2 3 4

cumulative success rate (%)

elapsed time (sec)

(b) Bonnie++

Figure 5.17. The distribution of times elapsed for stopping a process.

EXPERIMENTS FOR THE MONARCH SCHEDULER 88

Chapter

Experiments for VMCrypt

We performed experiments to measure the overheads of VMCrypt and con-
firm that VMCrypt prevents information leakage via domain 0. We used two
PCs, each of which has one Intel Xeon processor 2.67 GHz with 8 cores, 12
GB of memory, a 1 TB of SATA HDD, and a Gigabit Ethernet NIC. We ran
modified Xen 4.0.1 for the x86-64 architecture on these PCs. For domain
0, we allocated 6 GB of memory and ran Linux 2.6.32-5-xen-amd64. For
domain U, we allocated 1 GB of memory if not specified in each experiment
and ran para-virtualized Linux 2.6.32.27. These PCs were connected with a
Gigabit Ethernet switch.

Through the experiments, VMCrypt used AES-XTS with a key size of
256 bits for the encryption of domain U’s memory. We have implemented the
AES-XTS support in the VMM but not yet fully optimized. The performance
can be improved by using AES-NI, a set of special instructions for AES.
To exclude the overhead of cryptographic operations, we also used the null
cipher, which did not encrypt or decrypt data. For comparison, we conducted
the experiments in the vanilla Xen.

EXPERIMENTS FOR VMCRYPT &9

Overhead of Constructing an Encrypted View

6.1 Overhead of Constructing an Encrypted View

To examine the overhead of constructing an encrypted view, we measured
the time needed for mapping and unmapping a memory page of domain U
on domain 0. We performed this experiment for writable mapping, read-only
mapping, and the mapping of uninitialized memory. VMCrypt encrypts and
decrypts a writable page, only encrypts a read-only page, and only decrypts
an uninitialized page, respectively. We repeated memory mapping and un-
mapping 100000 times. Figure 6.1 shows the mean time.

@®
o

60

execution time (us)

Vanilla Xen VMCrypt (null) VMCrypt (AES)

- writable - read-only - uninitialized

Figure 6.1. Time for the domain 0's mapping a page of a domain U.

When VMCrypt used the null cipher, the execution time increased by
3 ps in comparison with the vanilla Xen. This overhead comes from ex-
amining the encryption bitmap and replicating a page. The optimization for
encrypted replication was not effective because the memory copies were com-
pleted only on the CPU cache. When VMCrypt performed both encryption
and decryption of AES, the execution time was 81 us, which was 7.7 times
longer than that in the vanilla Xen. When the optimization was enabled,
the execution time was reduced to less than 60 % of the non-optimized case.
This shows that our optimization for reducing cryptographic operations is
effective.

EXPERIMENTS FOR VMCRYPT 90

Memory Overhead for an Encrypted View

6.2 Memory Overhead for an Encrypted View

1280

1024 |

768 -

512

256

number of pages allocated in domain 0

L L L
0 0.2 0.4 0.6 0.8 1 1.2
elapsed time (sec)

(a) VM suspend

1280

1024 |-

768

512

number of pages allocated in domain 0

256

0 A L L L A L
0 0.2 0.4 0.6 0.8 1 12 14 1.6 1.8

elapsed time (sec)

(b) VM resume

Figure 6.2. The number of extra pages used for replication during VM suspend
and VM resume.

We examined the number of extra pages allocated for an encrypted view.
When domain 0 maps domain U’s pages, the VMM allocates new pages in
domain 0 for encrypted replication. At worst, the number of the allocated
pages can be equal to the total number of domain U’s pages. In this ex-
periment, we allocated 128 MB of memory to domain U. Figure 6.2(a) and
Figure 6.2(b) show the changes of the number of extra pages while we were
suspending and resuming domain U, respectively. The maximum number of
extra pages was 1024. This is because the suspend and resume programs
mapped 1024 pages at once and unmapped all of them after the memory
manipulation. 1024 pages are 4 MB of memory and not so large.

EXPERIMENTS FOR VMCRYPT 91

Overhead for VM Boot

6.3 Overhead for VM Boot

We measured the time needed for building domain U at the boot time. The
build time we measured was from when we started creating domain U un-
til the VMM completed the unpause hypercall. We changed the allocated
memory size of domain U from 26 MB to 4 GB. To exclude the impact of
the page cache in domain 0, we recorded the build times after the second
boot. The build times are shown in Figure 6.3 for VMCrypt with AES and
the vanilla Xen. We did not measure the time for VMCrypt with the null
cipher because VMCrypt does not perform any cryptographic operations on
booting domain U. The build time was slightly proportional to the memory
size of domain U and less than one second in any cases. The overhead due
to VMCrypt was only 1 % when the memory size of domain U was 4 GB.

1

Vanilla Xen —+—
VMCrypt ---3K--

execution time (sec)

0.2

L L L
0 1024 2048 3072 4096
memory size of domain U (MB)

Figure 6.3. The time for booting domain U.

6.4 Overheads for VM Suspend and Resume

First, we measured the time needed for suspending domain U. We changed
the memory size of domain U as in the above experiment. Figure 6.4 shows
the results when we suspended domain U. The suspend time was proportional
to the amount of domain U’s memory. The suspend operation in VMCrypt
with the null cipher was as fast as that in the vanilla Xen. Even the overhead
due to VMCrypt with AES was only 7 % when the memory size of domain U
was 4 GB. This is because the overhead of AES is hidden by slow disk I/O.
On suspending, domain 0 maps pages of domain U and writes the contents
to the disk asynchronously. While the VMM encrypts the pages, domain 0
can write the memory image to the disk. When we used tmpfs, a RAM disk,

EXPERIMENTS FOR VMCRYPT 92

Overheads for VM Suspend and Resume

to reduce the impact of disk I/O, the suspend time in VMCrypt with AES
became 7 times longer than that in the vanilla Xen.

80

Vanilla Xen ——
VMCrypt (null)
70 | VMCrypt (AES) ---3--

60 -
50 -
40

30

execution time (sec)

| | |
0 1024 2048 3072 4096
memory size of domain U (MB)

Figure 6.4. The time for suspending domain U.

Next, we measured the time needed for resuming domain U. Figure 6.5
shows the resume times when we resumed domain U from the file on the hard
disk. Like suspend, the resume time was also proportional to the memory size
of domain U. The overhead of VMCrypt with the null cipher was negligible,
but the resume time in VMCrypt with AES was 90 % longer than that in the
vanilla Xen. This is due to sequential processing of disk reads and decryption.
On resuming, domain 0 reads the saved file, maps pages of domain U, writes
the memory image to them, and unmaps them. Then the VMM has to
decrypt the unmapped pages synchronously. The overhead of the decryption
is not hidden by disk I/O at all.

80

Vanilla Xen —+—
VMCrypt (null) *

70 | VMCrypt (AES) --3K-- 7

60)
2 50 E
e
2
= 40t >
5 *" i
§ w0]

20

10 - w

e
0 . . .
0 1024 2048 3072 4096

memory size of domain U (MB)

Figure 6.5. The time for resuming domain U.

EXPERIMENTS FOR VMCRYPT 93

Overhead for VM Migration

6.5 Overhead for VM Migration

We measured the time needed for migrating domain U between two hosts. We
used two machines with the identical hardware, which were connected with
a Gigabit Ethernet switch. For comparison, we also performed migration
with SSL. Xen provides the mechanism of migrating domain U with an SSL
connection. Although SSL can prevent information leakage on the network,
domain 0 at both hosts can still steal information. Transferred data on the
SSL connection is decrypted at domain 0. Xen used AES with a key size of
256 bits for encryption.

100

Vanilla Xen —+—
Vanilla Xen (SSL) -} K
VMCrypt (null)

80 1 VMCrypt (AES) ---3--

60

execution time (sec)

40

20

ki

0 1024 2048 3072 4096

memory size of domain U (MB)

Figure 6.6. The time for migrating domain U.

We performed non-live migration, which stops domain U during migra-
tion, and the results are shown in Figure 6.6. We changed the memory size
of domain U as in the other experiments. Like suspend and resume, the
migration time was proportional to the memory size of migrated domain U.
The overhead of VMCrypt with the null cipher was 4 % while the migration
time in VMCrypt with AES was 2.3 times longer than that in the vanilla
Xen. Moreover, the migration time in VMCrypt with AES was 22 % slower
than that in the vanilla Xen with SSL. The reason is that the sender has
to wait for decryption at the receiver in VMCrypt. In non-live migration,
the sender transfers 16 MB of the memory image at once, but the receiver
decrypts only 4 MB at once. Therefore, the sender blocks until the receiver
completes the decryption because it cannot transfer the data exceeding the
buffer size at the receiver. When we modified the migration program so that
the sender transfers 4 MB at once, the migration time became almost the
same as that in the vanilla Xen with SSL. This problem does not happen in
the vanilla Xen with SSL because the sender encrypts the next data while

EXPERIMENTS FOR VMCRYPT 94

Overhead for Live Migration

the receiver decrypts received data.

6.6 Overhead for Live Migration

With VMCrypt, we performed live migration, which transfers the memory
image without stopping domain U and reduces the downtime of domain U.
For comparison, we also performed migration with SSL. Xen provides the
mechanism of migrating domain U via an SSL connection. Although SSL
can prevent information leakage on the network, domain 0 at both hosts can
still steal information. Transferred data on the SSL connection is decrypted
at domain 0. Xen used AES with a key size of 256 bits for encryption.

We measured the time needed for migrating domain U between two hosts.
We changed the allocated memory size of domain U from 26 MB to 4 GB.
The results are shown in Figure 6.7(a). The migration time was proportional
to the memory size of migrated domain U. The overhead of VMCrypt with
the null cipher was only 1 %. With AES, however, the migration time was
1.7 times longer than that in the vanilla Xen. These results mean that
encryption and decryption degraded the performance largely. Note that the
performance in VMCrypt with AES is almost the same as that in the vanilla
Xen with SSL. The reason why the vanilla Xen with SSL is slightly slower
than VMCrypt with AES is that SSL checks the data integrity as well.

EXPERIMENTS FOR VMCRYPT 95

Overhead for Live Migration

100

Vanilla Xen —+—
Vanilla Xen (SSL) {1
VMCrypt (null)
VMCrypt (AES) ---K--

80 !

60

40 -

execution time (sec)

20

0 g‘—"‘; L L L
0 1024 2048 3072 4096
memory size of domain U (MB)
(a) Migration time
1 T
Vanilla Xen ——
Vanilla Xen (SSL) [} F
VMCrypt (null)
08 L VMCrypt (AES) ---3K--]

downtime (sec)

| | |
0 1024 2048 3072 4096
memory size of domain U (MB)

(b) Downtime

Figure 6.7. The performance of live migration.

Next, we measured the downtimes due to live migration of domain U.
Here, the downtime is the time from when domain U is stopped at the source
host until it is restarted at the destination host. As shown in Figure 6.7(b),
the downtime was also proportional to the memory size of domain U. In
VMCrypt with AES, it was still less than one second even when the memory
size was 4 GB. It was 13 % longer than that in the vanilla Xen. These
overheads come from the transfer of the remaining memory after domain U
is stopped. The time for which VMCrypt deals with such memory pages is
included in the downtime.

Third, we measured the number of re-transferred pages, which increases
due to the re-transfer of the embedded bitmap. On average, 29.5 extra pages
were re-transferred, but this is negligible to the total pages of domain U.

Finally, we measured the CPU utilization of domain 0 during live migra-
tion. Figure 6.8(a) and Figure 6.8(b) show the CPU utilization of domain 0

EXPERIMENTS FOR VMCRYPT 96

Performance Degradation of Domain U

at the source and destination hosts, respectively. The measured CPU time
includes the CPU time consumed in the VMM by hypercalls issued by do-
main 0. Compared with the vanilla Xen, the CPU utilization in VMCrypt
with AES only increased by 35 % and 30 % at the source and destination
hosts, respectively. However, that in the vanilla Xen with SSL increased by
70 % and 65 %, respectively. One of the reasons of such high CPU utilization
with SSL is the integrity check.

120

100 -

80

60

CPU utilization (%)

40 | i VanillaXen —— | |
| Vanilla Xen (SSL) [
§ VMCrypt (null)

VIMCrypt (AES) --3K--

X 4

S o~ | |
0 10 15 20 25
elapsed time (sec)

(a) Source host

120
100l EEEEEEZEssESsEEn|
. 80Ff
c { :
g ; i
R eof ;
E X :
> H
5 ol : VanillaXen —— | |
"T\ﬁ OO Vahilla Xen (SSL) -[-]
| YRR VMCrypt (null)
1;‘(VMCrypt (AES) -3
i : T

L
15
elapsed time (sec)

(b) Destination host

Figure 6.8. The CPU utilization during live migration.

6.7 Performance Degradation of Domain U

We measured the impact of VMCrypt on the performance of domain U. VM-
Crypt does not perform encryption or decryption unless domain 0 maps or
unmaps pages of domain U, but the VMM checks several operations even

EXPERIMENTS FOR VMCRYPT 97

Performance Degradation of Domain U

when domain U modifies page tables. We ran two benchmarks, Imbench [51]
and UnixBench [86], on domain U in the vanilla Xen and VMCrypt. Fig-
ure 6.9 shows the performance degradation in Imbench due to VMCrypt and
Figure 6.10 shows the one in unixbench. Context switching in VMCrypt was
1.8 % slower than in the vanilla Xen, but the overall average of performance
degradation in VMCrypt was 0.7 %. For UnixBench, the overall average of
performance degradation in VMCrypt was also 0.7 %.

<
é 1.5 [T | | | | | | |]
8 1.6 —
c 1.4} -
o 1.2 i
[} 1L |
° o8t i
o 0.6 | _
S 0.4 .
e 0.2—_. _
S 0 o) L I I X A x I7é
g % B % %, G b % L %
& oo o T e T G, Ve, S,
B s Q. % % O
So, 2. o, %, 4 o
O o %, % s, © B C Ty
R ¢ 6/ %, S Q ‘9((
S Oy B, M Uy N S
o. . %, 2 e
Do, ok . % . Oy G,
S % Sy O R, P e, S
@(} . O/) (9(}‘ @((, ‘9((<9(<.
0. & 0 b, %
]) % A
& & ALY é
% & B
< %o,
% %,
& %

Figure 6.9. LmBench: Performance degradation of domain U by VMCrypt.

EXPERIMENTS FOR VMCRYPT 98

Performance Degradation of Domain U

R A R e B s B B E— —
< 3r 7
5 25 —
3 2 - _|
©
§ 1.5 —
o TrF N
[85)
§ 05| _
£
e
[0]
Q&

Figure 6.10. UnixBench: Performance degradation of domain U by VMCrypt.

Next, we examined how live migration in VMCrypt affected the per-
formance of a web server running in domain U. We ran the lighttpd web
server [34] in domain U and measured its throughput with ApacheBench [95]
in a client host. The client host had one Intel Core 2 Quad processor 2.83
GHz, 8 GB of memory, and a Gigabit Ethernet NIC. The server and client
hosts were connected with a Gigabit Ethernet switch. Figure 6.11 shows that
the throughput in VMCrypt with AES was higher than that in the vanilla
Xen. This is because live migration in the vanilla Xen occupies the network
bandwidth and the web server cannot use network sufficiently. However, the
throughput in VMCrypt with AES is lower than that in the vanilla Xen with
SSL. In VMCrypt, the sender transfers 4 MB of the memory image at once
and causes bursty network traffic intermittently. This bursty traffic affects
the throughput of the web server. With SSL, in contrast, the traffic is not
bursty because the sender slowly transfers the data while encrypting.

EXPERIMENTS FOR VMCRYPT 99

Overhead of Remote Attestation

Vanilla Xen ——
5000 |- Vanilla Xen (SSL) ~{-}- |4
VMCrypt (null)

VMCrypt (AES) ---%K--

4000 5558

3000

2000

throughput (requests/sec)

1000

0 5 10 15 20 25 30 35 40
elapsed time (sec)

Figure 6.11. The throughput of a web server in domain U during live migration.

6.8 Overhead of Remote Attestation

We examined the overhead of remote attestation, which is performed only
when a host is booted. First, we measured the time needed for the measure-
ment of the VMM using TrustedGRUB 1.1.5 [85]. TrustedGRUB is a boot
loader that calculates the SHA-1 hash value of not only the VMM but also
the kernel in domain 0 and stores the value in the TPM [100]. We compared
the reboot time for TrustedGrub with that for GRUB Legacy [20]. The time
for the measurement was 0.5 sec.

Next, we attempted the verification of the masurement by the TC, but
OpenPTS [59] did not work in our experimental environment. According to
the literature [13], the verification process takes about one second. The time
should depend on the network performance.

6.9 Leakage Tests with VMCrypt

We confirmed that VMCrypt prevented information leakage from domain U’s
memory.

EXPERIMENTS FOR VMCRYPT 100

Leakage Tests with VMCrypt

6.9.1 Finding Keys from Processes’ Memory

root@mach# aeskeyfind quattrol.dump
bb2e3fe052aedffe8ddffd3fbcfa7d09
ea9b7567ae60e300d00bde56096d3170
Keyfind progress: 100%

Figure 6.12. Finding AES shared keys from domain U’s memory.

root@mach# rsakeyfind quattrol.dump
FOUND PRIVATE KEY AT 3804decO

Figure 6.13. Finding RSA private keys from domain U's memory.

We attempted an attack to find AES shared keys used by OpenSSH [97]
processes. First, we logged in domain U using SSH, so that the SSH server
generated a shared key of the AES128-CBC encryption method by default.
Next, we obtained the memory dump of the domain U by executing xm
dump-core from domain 0. The memory of running processes is included in
the memory dump. Then we used the aeskeyfind tool [23, 63] to find AES
keys from the memory dump. We could not find any keys due to VMCrypt.
Without the memory encryption by VMCrypt, we could obtain several keys
as in Figure 6.12.

Similarly, we attempted an attack to find RSA private keys generated by
OpenSSL [98]. First, we generated an X.509 certificate signing request [33] by
executing the openssl command in domain U. Next, we obtained the memory
dump of the domain U and used the rsakeyfind tool [23, 64] to find RSA
private keys. Even if processes are terminated, a part of their data still
resides in the memory. When VMCrypt was not enabled, we could find
several keys as in Figure 6.13. VMCrypt prevented the leakage of private
keys from domain U’s memory.

EXPERIMENTS FOR VMCRYPT 101

Leakage Tests with VMCrypt

6.9.2 Obtaining Passwords on the Page Cache

root@mach# strings quattrol.img | grep ’root:\$’
acroot:6aCJuBx50$5Hqj JyEGM.hDUBnczt2J. j6jN41.G0O2k
HINXHZrur0ZpqL/Elnbc489ZrZqLD2gsPDB. yVcK6trNXAquhKF
kG0:14879:0:99999:7:::

Figure 6.14. Finding a shadow password from domain U’s memory.

We attempted an attack to obtain shadow passwords from the page cache
in domain U’s memory. First, we logged in domain U as root, so that the
contents of /etc/shadow were stored in the page cache. Next, we suspended
the domain U by executing xm save from domain 0 and the memory image
was saved into a file. The page cache is included in the file. Then we applied
the strings [18] command to the file and searched the string “root:$” from the
result with the grep [19] command. A root password in /etc/shadow begins
with this string. As shown in Figure 6.14, we could find a root password when
the page cache in the saved memory image was not encrypted by VMCrypt.
However, VMCrypt disabled such a password search.

EXPERIMENTS FOR VMCRYPT 102

Chapter

Conclusion

In this thesis, we proposed coordinated and secure server consolidation, which
is enabled by the Monarch scheduler and VMCrypt. The Monarch scheduler
mediates CPUs among processes in different VMs to achieve system-wide
scheduling policies. To control the execution of processes, it suspends and
resumes processes by using a technique called direct kernel object manipu-
lation (DKOM). To hide the details of DKOM for various guest OSes, the
Monarch scheduler provides a high-level API for writing scheduling policies.
VMCrypt prevents the management VM from stealing sensitive information
in the VM’s memory. VMCrypt encrypts the VMs’ memory only for the
management VM and allows the administrators uses the existing manage-
ment software as is in the management VM. Although the existing manage-
ment software can basically run for encrypted memory, it requires accessing
unencrypted contents only for several memory regions. Therefore, VM Crypt
does not encrypt such memory regions, which are automatically identified
and maintained during the life cycle of a VM.

CONCLUSION 103

Future Work
The Monarch Scheduler

One of the future work is supporting Windows guest OSes completely. In
the current implementation, the Monarch scheduler can manipulate Windows
processes in the run queues but cannot suspend ones in the running or blocked
state. We need different techniques from ones used for Linux. Another direc-
tion is developing various system-wide scheduling policies using the Monarch
scheduler, such as a fair share scheduler [40]. Possible scheduling policies also
depends on scheduling algorithms in guest OSes. In addition, separating a
policy from the VMM is needed. In the current implementation, policies
should be compiled and linked with the VMM in advance. Changing a pol-
icy in the VMM with another securely at runtime is important. It needs not
only a dynamic linking technique but also verifying that the injected code is
truely secure.

VMCrypt

One of the future work is to reduce the overhead of memory decryption. In
the current implementation, pages mapped on the management VM are de-
crypted on unmapping synchronously. To overlap the decryption with 1/0,
the VMM should decrypt unmapped pages asynchronously. To do so, we
need to implement multithreading support in the Xen VMM. Second, cur-
rent CPUs have a set of special instructions for encryption such as AES,
called AES-NT [32]. We believe that the performance can be improved by
using AES-NI. Supporting fully-virtualized guest OSes is also necessary for
applying VMCrypt to real environments. Unlike para-virtualized ones, the
management VM needs to access other memory regions of user VMs such as
video memory and DMA memory. The VMM has to identify the memory re-
gions used for framebuffers and DMA as unencrypted pages while preventing
information leakage.

CONCLUSION 104

1]

Bi]oliography

Andrea C. Arpaci-Dusseau and Remzi H. Arpaci-Dusseau. Information
and control in gray-box systems. Proceedings of the eighteenth ACM
symposium on Operating systems principles, 35(5):43-56, 2001.

F. Baiardi, D. Maggiari, D. Sgandurra, and F. Tamberi. Psycotrace:
Virtual and transparent monitoring of a process self. Proc. Furomicro
Int. Conf. Parallel, Distributed and network-based Processing, pages
393-397, 2009.

P. Barham, B. Dragovic, K. Fraser, S. Hand, T. Harris, A. Ho,
R. Neugebauer, I. Pratt, and A. Warfield. Xen and the Art of Virtual-

ization. In Proc. Symp. Operating Systems Principles, pages 164-177,
2003.

BitVisor. BitVisor — A Secure and Lightweight Hypervisor — . http:
//www.bitvisor.org/.

J. Bonwick. The Slab Allocator: An Object-caching Kernel Memory
Allocator. In Proc. USENIX Summer 1994 Technical Conf., pages 66,
1994.

Brendan Dolan-Gavitt, Tim Leek, Michael Zhivich, Jonathon Giffin,
and Wenke Lee. Virtuoso: Narrowing the Semantic Gap in Virtual

Machine Introspection. In In Proc. IEEE Symposium on Security and
Privacy, 2011.

H. Brian and N. Kara. Forensics examination of volatile system data
using virtual introspection. SIGOPS Oper. Syst. Rev., 42(3):74-82,
2008.

BIBLIOGRAPHY 105

8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

bugcheck. GREPEXEC: Grepping Executive Objects from Pool Mem-
ory. http://uninformed.org/?v=4&a=2&t=pdf, 2006.

J. Butler. DKOM (Direct Kernel Object Manipulation). Black Hat
Windows Security, 2004.

C. Weinhold and H. Hartig. VPFS: Building a Virtual Private File
System with a Small Trusted Computing Base. In Proc. Furopean
Conf. Computer Systems, pages 81-93, 2008.

X. Chen, T. Garfinkel, E. C. Lewis, P. Subrahmanyam, C. A. Wald-
spurger, D. Boneh, J. Dwoskin, and D. R. K. Ports. Overshadow: A
virtualization-based approach to retrofitting protection in commodity
operating systems. In Proc. Intl. Conf. Architectural Support for Pro-
gramming Languages and Operating Systems, pages 2-13, 2008.

ClamWin Team. ClamWin Free Antivirus. http://www.clamwin.
com/.

C. Dixon, H. Uppal, V. Brajkovic, D. Brandon, T. Anderson, and
A. Krishnamurthy. ETTM: A Scalable Fault Tolerant Network Man-
ager. In Proc. Symp. Networked Systems Design € Implementation,
2011.

Kenneth J. Duda and David R. Cheriton. Borrowed-virtual-time (bvt)
scheduling: supporting latency-sensitive threads in a general-purpose
scheduler. SIGOPS Oper. Syst. Rev., 33(5):261-276, December 1999.

DWARF Standards Committee. The DWARF Debugging Standard.
http://dwarfstd.org/.

L. Eggert and J. Touch. Idletime Scheduling with Preemption Interval.
In Proc. Symp. Operating System Principles, pages 249-262, 2005.

Free Software Foundation, Inc. Computing billions of PI digits using
GMP. http://gmplib.org/pi-with-gmp.html.

Free Software Foundation, Inc. GNU Binutils. http://www.gnu.org/
software/binutils/.

Free Software Foundation, Inc. grep. http://www.gnu.org/software/
grep/.

BIBLIOGRAPHY 106

[20]

[21]

22]

23]

[24]

[25]

[26]

[27]

28]

[29]

[30]

Free Software Foundation, Inc. GRUB Legacy. http://www.gnu.org/
software/grub/grub-legacy.html.

T. Garfinkel and M. Rosenblum. A Virtual Machine Introspection
Based Architecture for Intrusion Detection. In Proc. Network and Dis-
tributed Systems Security Symp., pages 191-206, 2003.

Google, Inc. Google Desktop. http://desktop.google.com/.

J. A. Halderman, S. D. Schoen, N. Heninger, W. Clarkson, W. Paul,
J. A. Calandrino, A. J. Feldman, J. Appelbaum, and E. W. Felten.
Lest We Remember: Cold Boot Attacks on Encryption Keys. In Proc.
USENIX Security Symp., pages 45-60, 2008.

Hidekazu Tadokoro, Kenichi Kourai and Shigeru Chiba. Process
Scheduling among Virtual Machines. IPSJ Transactions on Advanced
Computing Systems (ACS), 1(2):124-135, 8 2008.

Hidekazu Tadokoro, Kenichi Kourai and Shigeru Chiba. A Secure
System-wide Process Scheduler across Virtual Machines. In Proc.
the 16th IEEE Pacific Rim Intl. Symp. on Dependable Computing
(PRDC"10), pages 27-36, December 2010.

Hidekazu Tadokoro, Kenichi Kourai and Shigeru Chiba. A Practical
Process Scheduler across Virtual Machines. IPSJ Transactions on Ad-
vanced Computing Systems (ACS), 4(3):100-114, 5 2011.

Hidekazu Tadokoro, Kenichi Kourai and Shigeru Chiba. Preventing
Information Leakage from Virtual Machines’” Memory in [aaS Clouds.
IPSJ Transactions on Advanced Computing Systems (ACS), 5(4):1-11,
2012.

M. Hirabayashi. Hyper Estraier: a Full-text Search System for Com-
munities. http://hyperestraier.sourceforge.net/.

Hiroshi Yamada and Kenji Kono. FoxyTechnique: Tricking Operating
System Policies with a Virtual Machine Monitor. In Proc. Int’l Conf.
Virtual FExecution Environments, pages 5564, 2007.

Ian M. Leslie, Derek McAuley, Richard Black, Timothy Roscoe, Paul T.
Barham, David Evers, Robin Fairbairns and Eoin Hyden. The Design
and Implementation of an Operating System to Support Distributed

BIBLIOGRAPHY 107

Multimedia Applications. IEEE Journal of Selected Areas in Commu-
nications, 14(7):1280-1297, 1996.

[EEE P1619 Security in Storage Working Group. IEEE P1619. http:
//siswg.net/, 2007.

Intel Corp. Intel Advanced Encryption Standard In-
structions. http://software.intel.com/en-us/articles/
intel-advanced-encryption-standard-instructions-aes-ni/.

ITU-T. Public-key and attribute certificate frameworks. http://www.
itu.int/rec/T-REC-X.509-200508-1I, 2005.

J. Kneschke. lighttpd. http://www.lighttpd.net/.

Jacob Gorm Hansen and Eric Jul. Self-migration of operating systems.
In Proc. the 11th workshop on ACM SIGOPS European workshop, 2004.

X. Jiang, X. Wang, and D. Xu. Stealthy Malware Detection through
VMM-based ” Out-of-the-box” Semantic View Reconstruction. In Proc.
Conf. Computer and Communications Security, pages 128-138, 2007.

S. Jones, A. Arpaci-Dusseau, and R. Arpaci-Dusseau. Antfarm: Track-
ing processes in a virtual machine environment. In Proc. USENIX
Annual Technical Conf., pages 1-14, 2006.

A. Joshi, S. King, G. Dunlap, and P. Chen. Detecting Past and Present
Intrusions through Vulnerability-specific Predicates. In Proc. Symp.
Operating Systems Principles, pages 91-104, 2005.

P. Kamp and R. Watson. Jails: Confining the Omnipotent Root. In
Proc. Int. SANE Conf., 2000.

Kay, J. and Lauder, P. A fair share scheduler. Commun. ACM,
31(1):44-55, January 1988.

Kenneth J. Duda and David R. Cheriton. Borrowed-virtual-time
(BVT) scheduling: supporting latency-sensitive threads in a general-
purpose scheduler. In Proceedings of the seventeenth ACM symposium
on Operating systems principles, pages 261-276, 1999.

D. Kim, H. Kim, M. Jeon, E. Seo, and J. Lee. Guest-aware Priority-
based Virtual Machine Scheduling for Highly Consolidated Server. In
Proc. Int. Euro-Par Conf. Parallel Processing, pages 285-294, 2008.

BIBLIOGRAPHY 108

[43]

[44]

[45]

[46]

[47]

[48]

[49]

[50]

[51]

[52]

[53]

[54]

H. Kim, H. Lim, J. Jeong, H. Jo, and J. Lee. Task-aware Virtual
Machine Scheduling for I/O Performance. In Proc. Int. Conf. Virtual
Ezecution Environments, pages 101-110, 2009.

Kim, Gene H. and Spafford, Eugene H. The Design and Implementa-
tion of Tripwire: a File System Integrity Checker. In CCS ’94: Proceed-
ings of the 2nd ACM Conference on Computer and Communications
Security, pages 18-29, 1994.

Y. Kinebuchi, M. Sugaya, S. Oikawa, and T. Nakajima. Task Grain
Scheduling for Hypervisor-Based Embedded System. In Proc. Int.
Conf. High Performance Computing and Communications, 2008.

KVM Project. KVM: Kernel Based Virtual Machine . http://www.
linux-kvm.org/.

Leonidas J. Guibas and Robert Sedgewick. A Dichromatic Framework
for Balanced Trees. In Proceedings of the 19th Annual Symposium on
Foundations of Computer Science, pages 821, 1978.

C. Li, A. Raghunathan, and N. K. Jha. Secure Virtual Machine Execu-
tion under an Untrusted Management OS. In Proc. Intl. Conf. Cloud
Computing, pages 172-179, 2010.

C. Li, A. Raghunathan, and N. K. Jha. A Trusted Virtual Machine
in an Untrusted Management Environment. [EEE Transactions on
Services Computing, 2011. IEEE Computer Society Digital Library.

Linux Kernel newbies. Linux 2 6 23. http://kernelnewbies.org/
Linux_2_6_23.

L. McVoy and C. Staelin. Imbench. http://www.bitmover.com/
lmbench/.

Microsoft. ~ Windows Virtual PC. http://www.microsoft.com/
windows/virtual-pc/.

Microsoft Corp. Debugging Tools for Windows. http://www.
microsoft.com/whdc/devtools/debugging/default.mspx.

Microsoft Corp. SQL Server.

BIBLIOGRAPHY 109

[55]

[56]

[57]

[58]

[59]

[60]

[61]

[62]

[63]

[65]

[66]

Microsoft Corp. Windows ISV Software Security Defenses. http://
msdn.microsoft.com/en-us/library/bb430720.aspx.

mlocate. mlocate: a locate/updatedb implementation. https://
fedorahosted.org/mlocate/.

Moving Picture Experts Group. MPEG-4 description: ISO/IEC
JTC1/SC29/WG11 N4668. http://mpeg.chiariglione.org/
standards/mpeg-4/mpeg-4.htm, 2002.

MPlayer Team. MPlayer — The Movie Player. http://www.mplayerhq.
hu/.

S. Munetoh. Open Platform Trust Services. http://sourceforge.
jp/projects/openpts/.

D. G. Murray, G. Milos, and S. Hand. Improving Xen Security through
Disaggregation. In Proc. Intl. Conf. Virtual Fxecution Environments,
pages 151-160, 2008.

Jr. N. Petroni and M. Hicks. Automated Detection of Persistent Kernel
Control-flow Attacks. In Proc. Conf. Computer and Communications
Security, 2007.

N. Quynh and K. Suzaki and R. Ando. eKimono: A Malware Scanner
for Virtual Machines. In HITB SecConf 2009, 2009.

Nadia Heninger and Ariel Feldman. AESKeyFinder: Tool for locating
AES keys in a captures memory image. https://citp.princeton.
edu/research/memory/.

Nadia Heninger and J. Alex Halderman. RSAKeyFinder: Locating
BER-encoded RSA private keys in memory images. https://citp.
princeton.edu/research/memory/.

T. Newhouse and J. Pasquale. A User-Level Framework for Scheduling
within Service Execution Environments. In Proc. Int. Conf. Services
Computing, pages 311-318, 2004.

T. Newhouse and J. Pasquale. ALPS: An Application-Level
Proportional-share Scheduler. In Proc. Int. Symp. High Performance
Distributed Computing, pages 279-290, 2006.

BIBLIOGRAPHY 110

[67]

[68]

73]

[74]

NTsyslog. Windows NT/2000/XP syslog service. http://ntsyslog.
sourceforge.net/.

oldnewthing. Why are process and thread IDs multiples of
four? http://blogs.msdn.com/oldnewthing/archive/2008/02/28/
7925962 . aspx.

J. Ousterhout. Scheduling Techniques for Concurrent Systems. In Proc.
Int. Conf. Distributed Computing Systems, pages 22-30, 1982.

P. Barham and B. Dragovic and K. Fraser and S. Hand and T. Harris
and A. Ho and R. Neugebauer and I. Pratt and A. Warfield. Xen and
the Art of Virtualization. In Proc. Symp. Operating Systems Principles,
pages 164-177, 2003.

B. Payne, M. Carbone, and W. Lee. Secure and Flexible Monitoring
of Virtual Machines. In Proc. Annual Conf. Computer Security Appli-
cations, pages 385-397, 2007.

B. Payne, M. Carbone, M. Sharif, and W. Lee. Lares: An Architecture
for Secure Active Monitoring Using Virtualization. In Proc. Symp.
Security and Privacy, pages 233-247, 2008.

N. Petroni, T. Fraser, J. Molina, and W. Arbaugh. Copilot —
a Coprocessor-based Kernel Runtime Integrity Monitor. In Proc.
USENIX Security Symp., 2004.

Quynh Nguyen Anh, Takefuji Yoshiyasu. A Novel Approach for a File-
System Integrity Monitor Tool of Xen Virtual Machine. In ASIACCS
‘07: Proceedings of the 2nd ACM symposium on Information, computer
and communications security, pages 194-202, 2007.

Quynh, Nguyen Anh, Takefuji, Yoshiyasu. Towards a Tamper-
Resistant Kernel Rootkit Detector. In SAC ’07: Proceedings of the
2007 ACM symposium on Applied computing, pages 276283, 2007.

R. Coker. Bonnie++. http://www.coker.com.au/bonnie++/.
ReactOS Foundation. ReactOS. http://www.reactos.org/.

T. Ristenpart, E. Tromer, H. Shacham, and S. Savage. Hey, You, Get
Off of My Cloud: Exploring Information Leakage in Third-Party Com-
pute Clouds. In Proc. Conf. Computer and Communications Security,
pages 199-212, 2009.

BIBLIOGRAPHY 111

[79]

[85]
[36]
[87]
[33]

[89]

[90]

F. Rocha and M. Correia. Lucy in the Sky without Diamonds: Stealing
Confidential Data in the Cloud. In Proc. Workshop on Dependability
of Clouds, Data Centers and Virtual Computing Environments, 2011.

rsyslog. The enhanced syslogd for Linux and Unix rsyslog. http:
//www.rsyslog.com/.

Rudolf Bayer. Symmetric binary B-Trees: Data structure and main-

tenance algorithms. In Acta Informatica, volume 1, pages 290-306,
1972.

M. Russinovich and D. Solomon. Microsoft Windows Internals, Fifth
Edition: Covering Windows Server 2008 and Windows Vista.

N. Santos, K. P. Gummadi, and R. Rodrigues. Towards Trusted Cloud
Computing. In Proc. Workshop on Hot Topics in Cloud Computing,
2009.

T. Shinagawa, H. Eiraku, K. Tanimoto, K. Omote, S. Hasegawa,
T. Horie, M. Hirano, K. Kourai, Y. Oyama, E. Kawai, K. Kono,
S. Chiba, Y. Shinjo, and K. Kato. Bitvisor: A thin hypervisor for
enforcing i/o device security. In Proc. Intl. Conf. Virtual Execution
Environments, pages 121-130, 2009.

Sirrix AG. TrustedGRUB. https://projects.sirrix.com/trac/
trustedgrub/.
[Smith. UnixBench. http://code.google.com/p/

byte-unixbench/.

Sony Computer Entertainment Inc. PlayStation Portable. http://
www. jp.playstation.com/psp/.

Sourcefire, Inc. Clam AntiVirus. http://www.clamav.net/.

Stephen S. Yau and Ho G. An. Confidentiality Protection in Cloud
Computing Systems. International Journal of Software and Informat-
ics, 4(4):351-365, 2010.

Stephen T. Jones and Andrea C. Arpaci-Dusseau and Remzi H. Arpaci-
Dusseau. Geiger: monitoring the buffer cache in a virtual machine
environment. In ASPLOS-XII: Proceedings of the 12th international
conference on Architectural support for programming languages and op-
erating systems, pages 14-24, 2006.

BIBLIOGRAPHY 112

[91] syslog-ng. Nsyslog-ng - Multiplatform Syslog Server and Logging Dae-
mon. http://www.balabit.com/network-security/syslog-ng.

[92] syslogd. Kernel and system logging daemons. http://www.infodrom.
org/projects/sysklogd/.

(93] A. Tamches and B. Miller. Fine-Grained Dynamic Instrumentation
of Commodity Operating System Kernels. In Proc. Symp. Operating
Systems Design and Implementation, pages 117-130, 1999.

[94] Tetsuya Yoshida, Hiroshi Yamada, and Kenji Kono. FoxyLargo: Slow-
ing Down CPU Speed with a Virtual Machine Monitor for Embedded
Time-Sensitive Software Testing. In In Proc. of the 2008 Int’l Work-
shop on Virtualization Technology(IWVT’08), pages 1-11, June 2008.

[95] The Apache Software Foundation. Apache HTTP Server Benchmarking
Tool. http://httpd.apache.org/.

[96] The Apache Software Foundation. Apache Tomcat. http://tomcat.
apache.org/.

[97] The OpenSSH Project. OpenSSH. http://www.openssh.org/.

[98] The OpenSSL Project. OpenSSL: The Open Source toolkit for SS-
L/TLS. http://www.openssl.org/.

[99] Tripwire, Inc. tripwire. http://www.tripwire.com/.

[100] Trusted Computing Group. TPM Main Specification Version 1.2.
http://www.trustedcomputinggroup.org/.

[101] VMware, Inc. VMWare. http://www.vmware.com/.

[102] VMware, Inc. VMware vSphere for Enterprise. http://www.vmware.
com/products/vsphere/mid-size-and-enterprise-business/
overview.html.

[103] XenSource, Inc. Credit-Based CPU Scheduler. http://wiki.xen.
org/wiki/CreditScheduler.

[104] J. Yang and K. G. Shin. Using Hypervisor to Provide Data Secrecy
for User Applications on a Per-Page Basis. In Proc. Intl. Conf. Virtual
Ezecution Environments, pages 71-80, 2008.

BIBLIOGRAPHY 113

BIBLIOGRAPHY

[105] F. Zhang, J. Chen, H. Chen, and B. Zang. CloudVisor: Retrofitting
Protection of Virtual Machines in Multi-tenant Cloud with Nested Vir-

tualization. In Proc. Symp. Operating Systems Principles, pages 203—
216, 2011.

[106] J. Zhang and M. Wong. Database Test 3. http://osdldbt.
sourceforge.net/.

BIBLIOGRAPHY 114

