
Do We Really Need to Extend Syntax for Advanced Modularity?

Shigeru Chiba1

Tokyo Institute of Technology

chiba@acm.org

Michihiro Horie2

Tokyo Institute of Technology

horie@csg.is.titech.ac.jp

Kei Kanazawa

Tokyo Institute of Technology

kanazawa@csg.is.titech.ac.jp

Fuminobu Takeyama

Tokyo Institute of Technology

f takeyama@csg.is.titech.ac.jp

Yuuki Teramoto

Tokyo Institute of Technology

teramoto@csg.is.titech.ac.jp

Abstract
For every new language construct (or abstraction), we have
been always developing new syntax. Is this a right approach?
In this paper, we propose that, if we develop a new language
construct for advanced modularity, we should consider the
use of dynamic text for designing the construct. We mention
that language constructs designed with only syntactic exten-
sions (i.e. static text) are not satisfactory in aspect oriented
programming. Then we present our two prototype systems
to demonstrate language constructs designed with dynamic
text. One is synchronous copy and paste and the other is a
virtual-file editor named Kide. We show how they enable
aspect-oriented programming in plain Java.

Categories and Subject Descriptors D.3.3 [Programming
Languages]: Language Constructs and Features

General Terms Languages, Design

Keywords Modularity, aspect-oriented programming, dy-
namic text.

1. Introduction
Providing linguistic mechanisms for modularization is one
of the primary concerns of programming language design.
A recent trend in such mechanisms is aspect orientation.
A number of language constructs for the aspect-orientation
mechanisms have been proposed, for example, at a series
of AOSD conferences. The most popular one is an aspect

1 Also, The University of Tokyo and JST CREST.
2 Currently, IBM Research – Tokyo.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

AOSD’12, March 25-30, 2012, Potsdam, Germany.
Copyright c© 2012 ACM 978-1-4503-1092-5/12/03. . . $10.00

in AspectJ [12], which consists of pointcut definitions and
advice declarations.

An aspect in AspectJ is expressed with a syntactic ex-
tension to Java as other language constructs for aspect ori-
entation in Java. This is natural; whenever we invent a new
language construct (or abstraction), we have been develop-
ing a new syntactic extension. The question we discuss in
this paper is “Is this a right approach?”

A significant role of language constructs for modularity
is to visually present module structures of programs. Tra-
ditional syntactic extensions lexically present the structures
and thus they have a limitation in the presentation. Since a
program is a one-dimensional array of characters, they can
only present hierarchical or nested structures without ab-
stract reasoning such as tracing references through symbolic
names. This limitation was not a serious problem until cross-
cutting concerns are widely recognized.

Some code snippets implementing a crosscutting concern
often relate to other secondary concerns. Thus, in an ideal
presentation, developers should be able to easily compre-
hend that those code snippets are included in more than one
modules if we follow the principle that every concern is im-
plemented by a different dedicated module. Unfortunately,
such an ideal presentation is not available through source
code in aspect-oriented languages like AspectJ. Using tool
supports like AJDT [18] is mandatory to obtain such an ideal
presentation. This problem is also known as obliviousness
[5], that is, a developer cannot see which aspect is woven
into a class when she is working on that class and not read-
ing the source code of the aspect.

To overcome this problem, we propose using not only
static text but also dynamic text to design a language con-
struct for modularity. Dynamic text automatically changes
its shape depending on the contexts. It enables to express
more complex module structures of programs, such as cross-
cutting structures, than hierarchical ones. The resulting lan-
guage might be categorized into visual languages, which
require tool supports for editing a program, but its pro-

grams still consist of only a (dynamically changing) charac-
ter string. Since tool supports like AJDT are almost manda-
tory in today’s software development, considering tool sup-
ports at language design is a natural approach.

In the paper, we present two prototype systems based on
this idea. One is synchronous copy and paste and the other is
a virtual-file editor named Kide. Although the essential ideas
behind these two systems are not very unique or novel, we
developed these systems to demonstrate the design of lan-
guage constructs with dynamic text. We show new linguis-
tic extensions to Java for aspect-oriented programming al-
though we do not extend the syntax of Java. Some readers
might think that our extensions are not language constructs
but just new tool supports because of no syntactic exten-
sions. However, our extensions are integrated into the lan-
guage and hence they are not genuine tool supports, which
are optional when programming.

In the rest of the paper, Section 2 mentions the aims of
modularization and a brief introduction of aspect orientation.
Then it presents limitations of syntactic extensions. Section
3 describes our idea and presents synchronous copy and
paste. Then Section 4 presents Kide. Section 5 discusses
related work and Section 6 concludes this paper.

2. Language design for aspect orientation
Modularization is a significant issue in modern programing
language design. It has at least four aims: code reuse, in-
formation hiding [16], composability, and grouping related
code.

Here, code reuse is to run the same code snippet at dif-
ferent sites in a program. In other words, it is to avoid code
duplication as much as possible. Since a program often con-
tains a number of code snippets that are not identical but
alike, most modularization mechanisms enable the reuse in
that case by some generic expressions such as parametriza-
tion.

Information hiding is to hide the knowledge of design
decisions on code snippets included in a module. Only the
limited knowledge is visible through its interface from the
outside. Implementation details are normally invisible.

Composability allows composing a complete program of
arbitrarily selected modules with little or no modification of
the module code. For example, a procedure is a minimal
form of module and it can be added into a program as is
without modification. Only the caller-site code in the pro-
gram must be modified to explicitly invoke it. When the pro-
cedure is replaced with another, the code at the caller site
must be modified since the name of the called procedure
changes. However, the definitions of the old and new pro-
cedures are not modified at all.

Finally, grouping related code is to increase the spacial
locality of code snippets belonging to the same concern. This
enables independent development of every group of code,
which is a module. This also helps developers efficiently

Listing 1. DisplayUpdate aspect
1 aspect DisplayUpdate {

2 pointcut change(Shape s):

3 execution(void Shape+.set *(..)) && this(s);

4

5 after(Shape s): change(s) {

6 s.display (). repaint(s);

7 }

8 }

maintain a program. Reasoning about the behavior of the
program on a specific concern is made easier since devel-
opers do not have to read an entire program when they want
to understand that behavior.

Aspect orientation
Aspect orientation is a modularization technique of a re-
cent trend. It was invented to modularize a crosscutting con-
cern. Under the existence of crosscutting concerns, some
code snippets in a program belong to multiple concerns.
Hence, existing modularization mechanisms are not satisfac-
tory with respect to the criterion of grouping related code.

An example of crosscutting concern is a security concern.
Suppose that there is a database of academic papers and
every access to the database must be checked to confirm
that the access is permitted. The code snippets to check
this obviously belong to the security concern. On the other
hand, they also belong to other application-level concerns,
for example, to generate a web page showing a list of papers
presented at some past AOSD conference, or to process an
HTTP request for registering a new paper in the database.

Since these concerns are functional, some readers might
not think that the security-check code belongs to them as
well as the security concern, which is non-functional. How-
ever, when developers discuss the user interface of obtaining
a web page listing papers at a specified AOSD conference,
they will want to consider when the security-check code is
executed; at the very beginning when the user visits this
web site? just before submitting a database query? Except
for small applications, the security-check code is not trans-
parent or independent of the code belonging to a functional
concern, such as generating a web page.

AspectJ
AspectJ [12] is a programming language designed for ad-
dressing the modularity problem of crosscutting concerns. It
provides three language constructs such as aspects, pointcut,
and advice, and it provides syntactic extensions to Java for
them.

An aspect in AspectJ is a main module for implement-
ing a crosscutting concern. Listing 1 is a famous example of
aspect, which is an aspect-oriented implementation of Ob-
server pattern [6]. This aspect is part of the implementation

Listing 2. Line class
1 class Line extends Shape {

2 int angle , len;

3 void setPos(int nx , int ny) {x = nx; y = ny;}

4 void setLength(int nlen) { len = nlen; }

5 void setAngle(int a) { angle = a; }

6 int getLength () { return len; }

7 }

of a figure editor and its concern is to notify a Display object
to repaint a window whenever a figure is manipulated by the
user and thereby its field is set to a new value. We assume
that a figure is represented by Line objects, Rectangle ob-
jects, and so forth and Shape is their super class. Listing 2 is
an example of Line class.

The DisplayUpdate aspect contains one pointcut change
and one advice (with no name). The change pointcut (line 2-
3) specifies join points, which are the execution points when
a method with a name starting with set (here, * represents a
wild card) is invoked on an instance of Shape or its subclass.
For example, the join points will include the time when a
setLength method on a Line object is invoked. The change
pointcut takes a parameter s that is bound to the object on
that a set* method is invoked. The body of the advice (line 5-
7) in the DisplayUpdate aspect is at line 6 and it is implicitly
invoked just after the join points specified by the change
pointcut since the advice declaration starts with a keyword
after. While executing the advice body, the parameter s is
bound by the change pointcut to the object on that the set*
method is invoked.

The resulting behavior by the aspect is equivalent to
object-oriented code shown in Listing 3 although the object-
oriented code is inferior to the AspectJ code with respect
to composability. Note that in Listing 3 a call to the advice
method in the DisplayUpdate class has been inserted at the
end of every method in the Line class. Where the method
calls are inserted corresponds to the join points specified by
the change pointcut in Listing 1. Since those method-call
expressions are embedded in the Line class, decoupling the
DisplayUpdate class from the Line class needs code modi-
fication to remove those call expressions in the Line class.
In AspectJ, decoupling the DisplayUpdate aspect does not
need modifying the Line class. The DisplayUpdate aspect
can be removed from the rest of the program by just deleting
or moving to elsewhere its source file in the source tree.

Modularization in AspectJ
AspectJ improves modularity with respect to crosscutting
concerns. As for code reuse, AspectJ eliminates redundant
method calls in the Line class, which are necessary to invoke
the advice method in the DisplayUpdate class in the object-
oriented code in Listing 3. Information hiding is preserved as
in the object-oriented code since the logic of how to repaint a

Listing 3. An object-orientated equivalence
1 class DisplayUpdate {

2 static void advice(Shape s) {

3 s.display (). repaint(s);

4 }

5 }

6

7 class Line extends Shape {

8 int angle , len;

9 void setPos(int nx, int ny) {

10 x = nx; y = ny; DisplayUpdate.advice(this);

11 }

12 void setLength(int nlen) {

13 len = nlen; DisplayUpdate.advice(this);

14 }

15 void setAngle(int a) {

16 angle = a; DisplayUpdate.advice(this);

17 }

18 int getLength () { return len; }

19 }

20

21 // other subclasses of Shape are not shown.

window is hidden in the advice of the DisplayUpdate aspect.
Composability is improved against the object-oriented code
since the developers do not have to modify the program
when the functionality of the DisplayUpdate aspect is added
to the program or when it is removed. They do not have to
modify the Line class or other subclasses of Shape.

However, the program in AspectJ is less satisfactory with
respect to grouping related code. Listing 1 collects all the
code snippets related to the concern of updating a display.
On the other hand, the Line class in Listing 2 does not con-
tain all the code related to the Line concern. The Line class
in Listing 3 contains a method call to advice. The call to
advice belongs primarily to the display-update concern but
also to the concern of the Line figure. Since the AspectJ de-
velopers do not easily recognize that a call to set* method
in Line causes update on a display, they are recommended
to use tool supports by an integrated development environ-
ment (IDE), such as AJDT [18]. AJDT graphically shows on
a source code editor that the advice in DisplayUpdate is in-
voked after the execution of set* methods in the Line class.
The syntactic extension to Java alone does not fully express
the modularity introduced by the new language construct, an
aspect.

Another problem is that code duplication increases in
AspectJ if an advice body needs local contexts different for
each join point. Suppose that we want to call the repaint
method at line 6 in Listing 1 only when an attribute of the
Shape object is changed so that flicker noise will be reduced.
Since it is different for every join point how to check whether
an attribute is changed, the aspect will have multiple advice

Listing 4. Another DisplayUpdate aspect
1 aspect DisplayUpdate {

2 void around(Line line , int x, int y):

3 execution(void Line.setPos(int ,int))

4 && this(line) && args(x, y) {

5 if (line.x != x || line.y != y) {

6 proceed(line , x, y);

7 line.display (). repaint(line);

8 }

9 }

10

11 void around(Line line , int len):

12 execution(void Line.setLength(int))

13 && this(line) && args(len) {

14 if (line.len != len) {

15 proceed(line , len);

16 line.display (). repaint(line);

17 }

18 }

19

20 void around(Line line , int angle):

21 execution(void Line.setAngle(int))

22 && this(line) && args(angle) {

23 if (line.angle != angle) {

24 proceed(line , angle);

25 line.display (). repaint(line);

26 }

27 }

28

29 // advice bodies for other subclasses

30 // :

31 }

bodies for each method and subclass as we show in Listing 4.
The first advice (line 2-9) is for the setPos method in the
Line class while the second advice (line 11-18) is for the
setLength method and the third one (line 20-27) is for the
the setAngle method. They compare the argument(s) with
the value(s) of the corresponding attribute(s) and, if they are
different, execute the original method body by proceed and
call the repaint method. Although Listing 4 does not show,
the aspect will also have an advice body for every method in
the other subclasses of Shape. Since the difference is only
the condition of the if statement, those number of advice
bodies are similar to each other and hence redundant with
respect to code duplication.

3. Language constructs designed with
dynamic text

Our observation is that the problem mentioned in the previ-
ous section is due to using only a static syntactic extension
for designing a new language construct for modularity. The
use of a static syntactic extension is natural since program-

ming languages have been “languages” in that programs are
expressed in the form of one-dimensional simple character
array. However, this design approach implies a limitation;
software development in AspectJ premises tool supports by
IDEs with respect to grouping related code.

Our idea is to use not only static text but also dynamic
text for expressing a new language construct for modularity.
Dynamic text automatically changes its shape while editing
and browsing. We borrowed this concept from an interactive
web page, in which its contents dynamically change in ac-
cordance with the user’s input by, for example, embedded
JavaScript code. A language using dynamic text is a varia-
tion of visual language but it is still a traditional text-based
language since visual icons or fancy graphics are not used.
Our proposal is that the text that may dynamically change
could be considered as a building block when designing a
new language construct. Thus we still design a syntactic ex-
tension although the syntax deals with not only static but
dynamic text.

To further investigate this idea, we have developed two
preliminary systems. We present the first one in the rest of
this section and the other one in the next section. By us-
ing these systems, we illustrate language constructs with dy-
namic text to extend plain Java for aspect-oriented program-
ming.

3.1 Synchronous copy and paste
“Copy and Paste” is an easiest way to reuse a code snip-
pet. On most source-code editors, developers can copy a se-
lected text into an internal memory (“the clipboard”) and
then paste it at a different position. Although this practice
is easy to learn and thus it is popular with novice develop-
ers, it is known as bad one with respect to code reuse since
it degrades the maintainability of programs. After finishing
the paste action, a new copy of the code snippet inserted by
that action is independent of the original copy of that code
snippet. If a developer wants to modify text in the code snip-
pet, she has to edit the two copies of the code snippet at the
same time.

To decrease the negative impact of the original copy and
paste on maintainability while keeping its intuitiveness, we
propose a new mechanism named synchronous copy and
paste. We also implemented its prototype on Eclipse IDE
(Figure 1). Our idea is simple; a pasted copy of text is au-
tomatically updated when the original copy is modified by
a developer, and vice versa. If there are multiple pasted
copies, all the copies (including the original) are updated
when one of them is modified. In Figure 1, the code snippets
highlighted in green in editor panes are synchronously up-
dated. The proposed mechanism also provides a small win-
dow (called “View” on Eclipse) that shows which group of
copies of text synchronously update each other. This small
window is called the concerns view of the synchronous copy
and paste. Developers can name every group of copies syn-

Figure 1. The synchronous copy and paste on Eclipse IDE

chronously updated so that they can easily identify it in the
concerns view.

3.2 Procedure abstraction
The synchronous copy and paste is a simple approach to
introduce dynamic text into a programming language. It
can be used to express a language construct. For example,
the expression of procedures can be redesigned with this
mechanism. We first present this example to demonstrate
our idea although the new design is much worse than typical
design of procedure with static text. In Listing 3, the advice
method is used as a procedure. Let us rewrite this procedure
with our proposed mechanism. We would first modify the
setPos method in the Line class into the following:

void setPos(int nx, int ny) {
x = nx; y = ny;
this.display().repaint(this);

}

The method call would be inlined. Then, for the setLength
method, we would copy the inlined code and paste it in the
setLength method by the proposed mechanism:

void setLength(int nlen) {
len = nlen;
this.display().repaint(this);

}

Since the pasted code is synchronized, if we change it to, for
example,

void setLength(int nlen) {
len = nlen;
for (Display d: this.display()) {

d.repaint(this);}
}

then the body of setPos is also updated (Figure 2). Once
the code is “copied,” it is listed in the concerns view and
the developers can give it an appropriate name to easily
identify. This name corresponds to a procedure name. Since
the concerns view lists all the code snippets copied before
(this information is saved as part of the project), when the
developers want to reuse one of those code snippets, they
can select its name in the concerns view and paste it at an
appropriate place. This corresponds to write a procedure-call
expression there.

The proposed mechanism can express a procedure with
parameters. Developers can make “holes” in a copied code
snippet so that the text in the holes will not be synchronized.
The holes are highlighted in magenta in Figure 1. The holes
correspond to procedure parameters. If a code snippet has
multiple holes, it is possible to synchronize some of the holes
and keep them holding the same text. For example, suppose
that the two green text-regions in the following code are
pasted copies of the same code snippet:

(1)

(2)

(3)

Figure 2. Synchronously updated code snippets are like
inlined procedure bodies.

The boxes represent the holes. In the upper green text region,
three boxes of mhp and two boxes of p are holes. They
are synchronously updated, respectively. This is similar to
a macro function in the C language. Note that the text in the
boxes is given at every pasted place; different text can be
given to (every copy of) the same box at a different place.
In the lower green text region, three red boxes hold mhq and
two blue boxes hold q instead of mhp and p.

The new design of procedure using the synchronous copy
and paste provides acceptable ability with respect to code
reuse, composability, and grouping related code. Code reuse
is easy; pasting code is a simple and intuitive action. Compo-
sition is as simple as traditional procedures with static text.
Since the code snippets synchronized with each other are
listed in the concerns view, developers can easily identify
a group of related code snippets. However, the new design
of procedure does not provide information hiding since the
pasted code is directly inlined. The details of the code is not
hidden at all. To address this problem, the proposed mech-
anism should be able to fold the pasted text into short text,
such as its name, so that it will look like a procedure-call
expression. We have not implemented this on our prototype
system yet.

Some readers might wonder how to declare local vari-
ables when using the proposed mechanism. If a local vari-
able is needed, we can surround the code with braces {}
and put a variable declaration into it.3 The proposed mecha-
nism, however, cannot prevent the pasted code from access-
ing variables in an outer block. Furthermore, the proposed
mechanism does not support recursive procedure calls. To
do that, we must introduce something like “delayed paste”
to represent an infinite recursive structure. It only indicates
that some text will be pasted there on demand (conceptually
at runtime). Note that our claim is not that the synchronous
copy and paste replaces language constructs, which provide
useful abstraction. Our claim is that it can be used for the
expression of such language constructs.

Another issue is code size. Since our prototype naively
implements the synchronous copy and paste, too many past-
ing may cause code explosion. This drawback, however, will
be reduced if a compiler recognizes synchronous pasting and
avoid generating redundant code. Again, the synchronous
copy and paste is for just expressing a language construct.
It is not a language construct itself.

3.3 Aspects
The synchronous copy and paste can be used in normal Java
for expressing an aspect, which is a primary language con-
struct in aspect-oriented programming. We next demonstrate
it by rewriting the aspect in Listing 1. To implement this
modularity in AspectJ, we start with the object-oriented code
in Listing 3. Since this code contains several method calls to
advice and those calls are redundant, we use the synchronous
copy and paste so that all the call expressions to advice will
be synchronized for updates. This improves the code reuse in
Listing 3. Information hiding by the after advice in Listing 1
(line 6) is achieved by the advice method in the DisplayUp-
date class in Listing 3 (line 3).

Although the obliviousness property [5] by AspectJ is not
provided, composability is also improved than the original
Listing 3, which has the problem mentioned in the previous
section. In the original Listing 3, every method call to advice
must be manually deleted when the DisplayUpdate class
is decoupled from the Line class and other subclasses of
Shape. Now it is easier to delete all the method calls all at
once (or change them to empty expressions) since they are
synchronously updated. Restoring the deleted method calls
in the Line class is also easy since the synchronized code
snippets remain as blanks after the method calls are deleted.

The synchronous copy and paste also improves grouping
related code. Since the concerns view presents where the
method calls to advice are pasted in the program, developers
can see at a glance the overview of where all the code
snippets of the display-update concern are. This is similar to

3 Java does not allow variable declarations with the same name as a variable
declared in an outer block. Hence this approach does not provide equivalent
ability in Java to local variables within a procedure.

the information available from the DisplayUpdate aspect in
Listing 1, that is, about the code related to the display-update
concern.

Furthermore, unlike in AspectJ, developers can also see
the entire code of the Line concern, which includes the
method calls to advice. Since the method calls to advice
belong to both concerns, showing this fact with traditional
language constructs with static text is difficult. If only static
text is used, every code snippet must belong to a single lex-
ical module such as a source file. Otherwise, it would make
extra code duplication. Dynamic text provides better flexi-
bility to the language design as we showed above with the
synchronous copy and paste.

The aspect in Listing 1 can be rewritten in another ap-
proach. This is preferable for addressing the problem of As-
pectJ shown in Listing 4 in the previous section. This prob-
lem was that code duplication increases if an advice body
needs local contexts different for each join point. In fact, the
DisplayUpdate aspect in Listing 4 has a number of similar
advice bodies for every join point. Since the differences are
only the condition part of the if statement, those advice bod-
ies are somewhat redundant.

This redundancy is minimized if we use the synchronous
copy and paste. See a normal Java program in Figure 3,
where the advice bodies in Listing 4 are inlined in each cor-
responding method. Although this naive program may look
problematic with respect to modularity, the synchronous
copy and paste reduces this modularity problem. Suppose
that the entire body of every method is synchronized for
updates but the condition part of the if statement and the
first statement of the then block are “holes,” which are not
synchronized. This text synchronization works as a macro
function and hence improves code reuse.

Furthermore, the synchronous copy and paste provides
the concerns view, which presents the same information that
the pointcut in the AspectJ aspect in Listing 4 provides. It
gives a view of the code snippets implementing the display-
update concern as that AspectJ aspect does. The developers
can easily see two views of group of related code: one is
an editor pane of Line.java for the Line concern (and other
shape concerns) and the other is the concerns view in Fig-
ure 4 for the display-update concern. Note that code snippets
are shared by both views. In AspectJ, since the if statement
and the call expression to repaint, such as line 4 and 6 in Fig-
ure 3, are contained only in the aspect in Listing 4, the entire
overview of the code belonging to the Line concern is diffi-
cult to see without an appropriate tool support. Moreover, the
concern view in Figure 4 presents the text in every “hole”.
This corresponds to arguments passed to an advice body in
AspectJ although an aspect in AspectJ abstracts formal pa-
rameters from them. To obtain the information available in
the concerns view, AspectJ developers must read the class
declaration where the aspect is woven.

Figure 3. An aspect-oriented Line class in Java

Figure 4. The concerns view for the synchronous copy and
paste

4. Kide
We next show another prototype system for using dynamic
text. We developed this system named Kide for investigating
our idea of using dynamic text for modularizing a crosscut-
ting concern (Figure 5). It is a plug-in for Eclipse IDE.

As we mentioned in Section 2, AspectJ assumes that
every code snippet belongs to a single concern. An aspect
in AspectJ is designed for moving a code snippet from an
irrelevant class, where otherwise the code snippet would be
placed, to an appropriate aspect, a special module provided

Figure 5. Showing the DisplayUpdate concern by Kide

by AspectJ as well as a class, if that code snippet is for
a crosscutting concern. However, such code snippets often
belong to not only the crosscutting concern but also other
non-crosscutting concerns. Since an aspect in AspectJ is
based on static text, it cannot directly show that the other
concerns also need those code snippets; some extra tool
supports are required to know the fact. For example, the
method call to repaint at the line 6 in Listing 1 belongs to not
only the display-update concern implemented by the aspect,
but also the concerns of the Line class and other subclasses
of Shape.

Kide allows developers to make a virtual source file that
contains code snippets taken from other source files in Java.
Hence one code snippet can be contained in multiple source
files (one physical source file and multiple virtual source
files). Since all the copies of a code snippet are shared, edit-
ing it in one source file is immediately reflected on other
source files. In the current implementation of Kide, only a
constructor, field, and method declaration can be collected
into a virtual source file. Collecting part of a method body is
not allowed. A virtual source file is saved as part of a project;
once making it, it is always available until developers explic-
itly delete it.

Kide provides a support mechanism for selecting method
declarations to be collected. While developers can manually
select method declarations one by one, they can also select
several method declarations at once. Kide currently allows
selecting all the methods overriding a specific method or all

Figure 6. A wizard of Kide for selecting methods shown
together

the methods calling a specific method through wizard-like
user interface (Figure 6). It is also possible to further screen
the methods by hand after selecting by the wizard.

The virtual source files specified by developers are listed
in a small window named the concerns view. Developers
must give an appropriate name to a virtual source file. For
every virtual source file, the concerns view presents its name
and the names of the methods, fields, and/or constructors
collected in that file. If developers open a virtual source file
in the concerns view, a source code editor is launched and
then they can edit that file. In a virtual source file, every
method (and field, constructor) has a comment indicating
the physical source file of its origin. The order of listing
those methods can be changed by developers. The editor of
a virtual source file allows developers to insert the same text
at the beginning of all the method bodies collected in that
source file or just before all the return statements contained
in the methods (if no return statement, at the end of the
method bodies).

Aspect orientation by Kide
Kide can be used to do aspect-oriented programming in Java
without syntactic extensions. A virtual source file can be
used as a module containing methods and fields related to a
crosscutting concern. Since code snippets for a crosscutting
concern often belong to other (non-crosscutting) concerns,
Kide provides better modularity than AspectJ with respect
to grouping related code. A code snippet can be contained
in multiple source files and thus developers can browse and
edit at a glance in one source file all the code snippets for a
particular concern.

For example, when developers are working on the Line
concern, they can open and edit a file Line.java, which con-
tains the Line class shown in Listing 3 and thus all the code
snippets related to the Line-figure concern. Note that, al-
though calls to the advice method (line 10, 13, and 16) be-
long to the display-update concern, they also belong to the
Line concern since they are part of the behavior of Line ob-
jects. When developers are interested in the display-update
concern, they can make a virtual source file DisplayUpdate
and collect into this file all setter methods in subclasses of
Shape, such as setPos and setLength. A getter method, such
as getLength, is not collected into the virtual file. Then de-
velopers can see all the methods related to the display-update
concern by opening that virtual file.

Crosscutting over documentation
A virtual source file in Kide can contain not only Java code
but also plain text taken from a separate text file. Like a
method declaration, developers can select a text block sur-
rounded by XML tags and put it in a virtual source file.

This helps literate programming [13] since it allows mix-
ing code and text in one file. In practice, it is useful for bug
tracking during software maintenance. When a development
team receives a bug report, they investigate the bug, discuss
how to fix it, implement the fix, and finally check the new
code into the source code repository. This activity is often
managed by a bug tracking system, which records a chat log

Figure 7. A bug report written by Kide

among developers and the revision numbers of the related
source files before/after the fix. When a similar bug is re-
ported later, developers refer to this recorded chat log and
understand how the source files are changed for fixing the
original bug.

Kide helps developers write a detailed report of how they
fixed a bug for future reference. Kide makes it easy to write
a documentation quoting several method declarations from
source files. We demonstrate this idea by using a bug re-
port for Javassist [2], which is a Java bytecode engineering
library widely used by a number of software including com-
mercial products such as Red Hat JBoss AS. One day, the
development team received a bug report that pointed out that
the software consumes too much memory.4 The team found
that the bug is not memory leak but decided to introduce a
mechanism to reduce memory consumption. Then they im-
plemented a prune method, which discards unnecessary in-
formation of a specified class file. This method is invoked
when a class file is loaded by the Java virtual machine. The
implementation of the prune method involves several sup-
port methods in different classes. Furthermore, since after
calling the prune method, part of the Javassist functionality
on the class is not available, the development team had to
modify several methods so that they would check at runtime
that the prune method is not called yet. A method call to
checkModify was inserted at the beginning of every method
that accesses the information discarded by the prune method.
After the prune method is called, the checkModify method

4 https://issues.jboss.org/browse/JASSIST-28

throws a runtime exception to notify that the functionality of
Javassist is not available.

If Kide were available, the development team could write
a virtual source file that includes the original bug report, the
description of how to change the source code for it, and the
implementations of the prune method and its support meth-
ods. The methods calling the checkModify method could be
included in that documentation since they are part of the
pruning concern (Figure 7). Both code and documentation
crosscutting over a number of classes and files are collected
into a single file. The resulting file will be useful for future
bug fixes and maintenance.

5. Related work
There have been a number of mechanisms similar to the syn-
chronous copy and paste or Kide. Our main contribution
is to propose the use of those mechanisms for designing a
language construct for advanced modularity. Those mech-
anisms should not be supplementary tool supports provided
by IDEs but they should be tightly integrated into a language.

Code clone
Simultaneous editing [15] and Linked Editing [19] are the
most direct related work of the synchronous copy and paste.
Both were developed for managing duplicated code or code
clone. They allow developers to edit distinct code regions
simultaneously as they do with the synchronous copy and
paste. Simultaneous editing provides a generalization mech-
anism so that the system automatically generalizes develop-
ers’ editing actions to apply other code regions. Like our
synchronous copy and paste, a motivation of the study of
Linked Editing is to overcome limitations of the language
constructs with static text with respect to duplicated code.

However, either simultaneous editing or Linked Editing
does not provide the correspondent to the concerns view of
the synchronous copy and paste. The concerns view is sig-
nificant since the design focus of the synchronous copy and
paste is on modularity instead of code duplication whereas
Linked Editing is a tool mainly for managing code dupli-
cation than modularity as pointed out in [9]. Furthermore,
the user interface when dealing with more than two code re-
gions synchronously updated together would be inefficient
without the concerns view. Giving a name to a group of code
regions synchronously updated is also important for modu-
larity. This ability is also provided by the concerns view.

The idea of synchronous updates of copy-and-paste in-
duced code clone is also found in other systems. For exam-
ple, CReN [8] is a tool for detecting code clones and main-
taining clone evolution by synchronous updates. It enables
automated consistent renaming of program elements such
as variables in synchronized code clones. The main focus
of those systems, however, is on automated maintenance of
code clones. It is not on providing better views of programs
with respect to modularity.

Aspect orientation
In the contexts of aspect-oriented programming, several tool
supports have been proposed for providing multiple views
of programs for developers. Mylar [11] (now Eclipse My-
lyn) monitors developers’ editing actions and automatically
detect a group of related source files. This group corresponds
to a concern that the developer was working on during a cer-
tain period. For example, when the developer is working on
fixing a bug, Mylar records a group of files that the devel-
oper opens and edits for that work. Mylar uses the informa-
tion of this group for presenting only interested elements in
windows such as a package explorer and an outline view. It
filters out unnecessary source files and program elements by
using that information. A difference from our work is that
Mylar is a support tool and it deals with temporal concerns
whereas our work deals with concerns on program struc-
tures. Furthermore, unlike Kide, a source code editor of My-
lar does not dynamically change the expression of a program
according to the developer’s current concern.

Fluid AOP [7] is an IDE for aspect-oriented programming
(AOP). Like our work, the goal of Fluid AOP is to overcome
limitations of language constructs designed with static text.
Fluid AOP still uses AspectJ-like syntax but also utilizes dy-
namic text. It simultaneously provides different views of a
program independently of actual source files. A difference
is that Fluid AOP uses AspectJ-like pointcut definitions for
specifying module structures whereas our work does not in-
troduce extra syntactic extensions to Java; our developers
do not have to learn the pointcut language. They can spec-
ify module structures by copy-and-paste actions or wizard-
based user interface. Furthermore, unlike Kide, Fluid AOP
cannot deal with documentation.

A fluid source code view [3] is an source code editor in
which, when the developer clicks a method-call expression,
the declaration of that called method is superimposed on that
method-call expression. This reduces navigation efforts of
the developer. Although a fluid source code view can present
the declarations of multiple methods in a single editor pane,
the methods presented together must have caller-callee re-
lations. In Kide, it is possible to present the declarations of
arbitrary selected methods in a single editor pane.

Other systems
CIDE [10] is an Eclipse-based tool for decomposing applica-
tions into features. Developers can mark a code snippet with
a color of the feature that the code snippet belongs to. Af-
ter coloring, developers can easily include/exclude the code
snippets belonging to a specific feature as they can do with
a preprocessor directive #ifdef. CIDE also provides a nav-
igation panel similar to our concerns view. The difference is
that CIDE does not present a view of virtual source file in-
cluding all the program elements related to a specific feature.
It can change the expression of a program only within an ac-
tual source file. On the other hand, a virtual source file of

Kide can collect all program elements from different source
files. Kide is better designed for dealing with crosscutting
concerns.

Code Bubbles [1] is an IDE in which developers can make
a small editor pane for a method and freely place it on the
screen. The small editor is called a bubble. With bubbles,
developers can see and work with a complete working set
of related code-snippets. Although the Code Bubbles IDE
does not provide a wizard-based support tool, which Kide
provides, to collect methods related to a specific concern,
a set of bubbles could be used as a replacement of a vir-
tual source file in Kide. However, Kide gives developers a
uniform view of group of related code snippets, which is a
source file, whichever the code snippets are collected from
other various source files or a single physical source file. A
source file is a traditional metaphor of module.

Cedalion [14] supports projectional editing. It allows pro-
grammers to directly edit an abstract syntax tree through a
human-readable textual view of that tree. Since the textual
view is a projection of the tree, it can contain special sym-
bols and be displayed with different fonts and unorthodox
layout. The edit-time MOP [4] also enables extended pre-
sentation of source programs. These systems share a similar
idea with our proposal but their primary focus is on internal
domain-specific languages.

The idea of virtual source files in Kide is also found
in Desert [17]. Desert is an IDE in which developers can
create a virtual file to make navigation among code snippets
efficient. Desert can generate a virtual file that contains code
snippets including compilation errors or matching a given
search pattern. Our contribution is that we pointed out that
virtual source files are useful abstraction for crosscutting
modularity.

6. Conclusion
In this paper, we presented limitations of syntactic exten-
sions for new language constructs for modularity, specifi-
cally, aspect orientation. Then we proposed using dynamic
text when designing new language constructs. To demon-
strate this idea, we presented the synchronous copy and paste
and Kide. We illustrated concrete examples of language con-
structs with dynamic text as aspect-oriented programming
extensions to Java without modifying the original syntax. Al-
though there have been a number of similar linguistic mech-
anisms like ours, our main contribution is that we showed
that designing language constructs with dynamic text is use-
ful for aspect oriented programming. Another message is
that language designers should consider tool supports as not
optional features but integrated part of programming lan-
guage design.

Acknowledgments
This work has been strongly influenced by our joint work on
universal AOP with Awais Rashid, Ruzanna Chitchyan, and

Phil Greenwood. We would also like to thank Eric Tanter,
Romain Robbes, and the members of the PLEIAD group for
their insightful comments.

References
[1] A. Bragdon, S. P. Reiss, R. Zeleznik, S. Karumuri, W. Cheung,

J. Kaplan, C. Coleman, F. Adeputra, and J. J. LaViola, Jr. Code

bubbles: Rethinking the user interface paradigm of integrated

development environments. In Proc. of the 32nd ACM/IEEE
Int’l Conf. on Software Engineering (ICSE ’10), pages 455–

464. ACM, 2010.

[2] S. Chiba. Load-time structural reflection in Java. In ECOOP
2000, LNCS 1850, pages 313–336. Springer-Verlag, 2000.

[3] M. Desmond, M.-A. Storey, and C. Exton. Fluid source code

views. In 14th IEEE Int’l Conf. on Program Comprehension
(ICPC’06), pages 260–263. IEEE, 2006.

[4] A. D. Eisenberg and G. Kiczales. Expressive programs

through presentation extension. In Proc. of 6th Int’l Conf. on
Aspect-Oriented Software Development (AOSD 2007), pages

73–84. ACM, 2007.

[5] R. E. Filman and D. P. Friedman. Aspect-oriented program-

ming is quantification and obliviousness. In R. E. Filman,

T. Elrad, S. Clarke, and M. Akşit, editors, Aspect-Oriented
Software Development, pages 21–35. Addison-Wesley, 2005.

[6] E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design
Patterns. Addison-Wesley, 1994.

[7] T. Hon and G. Kiczales. Fluid aop join point models. In

Proc. of ACM OOPSLA, pages 712–713. ACM, 2006.

[8] D. Hou, F. Jacob, and P. Jablonski. Exploring the design space

of proactive tool support for copy-and-paste programming. In

Proc. of the 2009 Conf. of the Center for Advanced Studies
on Collaborative Research (CASCON ’09), pages 188–202.

ACM, 2009.

[9] C. J. Kapser and M. W. Godfrey. “cloning considered harm-

ful” considered harmful: patterns of cloning in software. Em-
pirical Software Engineering, 13(6):645–692, 2008.

[10] C. Kästner, S. Apel, and M. Kuhlemann. Granularity in soft-

ware product lines. In Proc. of the 30th Int’l Conf. on Software
Engineering (ICSE ’08), pages 311–320. ACM, 2008.

[11] M. Kersten and G. C. Murphy. Mylar: a degree-of-interest

model for ides. In Proc. of the 4th Int’l Conf. on Aspect-
Oriented Software Development (AOSD ’05), pages 159–168.

ACM, 2005.

[12] G. Kiczales, E. Hilsdale, J. Hugunin, M. Kersten, J. Palm, and

W. G. Griswold. An overview of AspectJ. In ECOOP 2001 –
Object-Oriented Programming, LNCS 2072, pages 327–353.

Springer, 2001.

[13] D. E. Knuth. Literate programming. The Computer Journal,
27(2):97–111, 1984.

[14] D. H. Lorenz and B. Rosenan. Cedalion: a language for

language oriented programming. In Proc. of ACM OOPSLA,

pages 733–752. ACM, 2011.

[15] R. C. Miller and B. A. Myers. Interactive simultaneous editing

of multiple text regions. In Proc. of the General Track:

2002 USENIX Annual Technical Conference, pages 161–174.

USENIX Association, 2001.

[16] D. L. Parnas. On the criteria to be used in decomposing sys-

tems into modules. Commun. ACM, 15:1053–1058, December

1972.

[17] S. P. Reiss. Simplifying data integration: The design of the

desert software development environment. In Proc. on Int’l
Conf. on Software Engineering (ICSE ’96), pages 398–407.

IEEE, 1996.

[18] The Eclipse Foundation. AspectJ development tools (ajdt).

http://www.eclipse.org/ajdt.

[19] M. Toomim, A. Begel, and S. Graham. Managing duplicated

code with linked editing. In 2004 IEEE Symposium on Visual
Languages and Human Centric Computing, pages 173 –180,

2004.

