
Method Shelters: Avoiding Conflicts among
Class Extensions Caused by Local Rebinding

Shumpei Akai Shigeru Chiba
Tokyo Institute of Technology, Japan

akai@csg.is.titech.ac.jp chiba@acm.org

Abstract
A class extension, also known as open classes, allows pro-
grammers to modify existing classes and thus it is supported
by several programming languages. However, class exten-
sions imply a risk that they supply different definitions for
the same method and those definitions conflict with each
other. Several module systems have been proposed to ad-
dress these conflicts. One approach lexically restricts the
scope of class extensions but they do not allow us to change
the behavior of methods called indirectly. Another approach
is to make only class extensions explicitly imported effective
while preserving the local rebinding property, which allows
us to change the behavior of indirectly called methods. How-
ever, this approach causes conflicts if potentially conflict-
ing class extensions are imported together. To address this
problem, we propose a new module system named method
shelters. A method shelter confines a scope of class exten-
sions while preserving the local rebinding property. Hidden
class extensions in a method shelter are not visible from the
outside. We implemented a prototype of the proposed mod-
ule system in Ruby. This paper illustrates several examples
of the use of method shelters and also shows the results of
benchmarks on our prototype.

Categories and Subject Descriptors D.3.3 [Programming
Languages]: Language Constructs and Features

General Terms Languages, Design

Keywords Module, Class extension, Open class.

1. Introduction
Extending existing classes by redefining methods or adding
new methods, known as class extensions, open classes [11]
or revisers [6], is an important feature for object-oriented

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
AOSD’12, March 25-30, 2012, Potsdam, Germany.
Copyright c⃝ 2012 ACM 978-1-4503-1092-5/12/03. . . $10.00

programming languages to get better expressiveness. This
feature is found in several languages: Smalltalk [8], CLOS
[4], Objective-C, Ruby [14] and aspect-oriented languages
including AspectJ [10] (as inter-type declarations). In Ruby
and especially in Ruby on Rails [13], which is a popular web
application framework for Ruby, class extensions are widely
used to make the code simpler. Class extensions are used
for three major aims: (1) adding convenient methods to core
classes, (2) traversing trees without the Visitor pattern, and
(3) redefining or adding methods to existing classes (monkey
patching).

However class extensions also cause a problem; methods
added by different libraries may conflict. If library L1 and
L2 required by the same application program define methods
with the same name for the same class and they have differ-
ent behavior, they may crash the program. In Ruby’s culture,
libraries often modify core-classes and classes in other li-
braries required by them. Avoiding conflicts among method
(re)definitions has been a serious issue.

To address this problem, several mechanisms such as se-
lector namespaces [17], Classboxes [2, 3] and Ruby’s Re-
finements have been proposed. They introduce modules to
confine class extensions. Selector namespaces and Refine-
ments allow changing the behavior of methods only in a spe-
cific lexical scope, but they cannot change the behavior of
methods indirectly called. Classboxes allows us to change
the behavior of indirectly called methods (called the local
rebinding property). Classboxes are useful to create a cus-
tomized version of an existing library, for example, to cre-
ate the Swing library from the AWT library of Java. The
change is confined within a classbox but not effective out of
the classbox. However, it is not possible to address conflicts
when a classbox imports other classboxes and they provide
conflicting class extensions.

We introduce a new module system named method shel-
ters to avoid conflicts among class extensions while address-
ing the limitations of the previous proposals. A method shel-
ter is a module for restricting a scope of method defini-
tions. By appropriately controlling a scope of every method
(re)definitions, programmers can avoid unanticipated con-
flicts. A method shelter provides:

131

1. a scope of method definitions,

2. the ability to import methods defined in other method
shelters,

3. the ability to redefine a method defined in an imported
method shelter,

4. the ability to protect methods from redefinition and

5. no ambiguity with respect to method lookup.

The main contributions of this paper are: (i) the model of
method shelters, (ii) the lookup algorithm written in Scheme
and (iii) a proof-of-concept implementation for Ruby with
performance benchmarks. According to our benchmarks,
overheads due to method shelters are acceptable and one
benchmark showed that method shelters may even improve
execution performance.

In the rest of this paper, Section 2 presents motivating ex-
amples and the problem in the existing systems. In Section 3
we illustrate the model and lookup algorithm of method shel-
ters. Section 4 shows our proof-of-concept implementation
on the Ruby virtual machine. In Section 5 we show that
method shelters and our implementation can be used to avoid
conflicts among class extensions. In Section 6 we discuss the
performance of method shelters. Section 7 describes related
work. Section 8 concludes this paper.

2. Motivation: class extensions and method
conflict

Subclassing and inheritance are popular techniques to ex-
tend a program in object-oriented programming languages.
Subclassing allows programmers to create a new class with
different behavior while partly reusing the implementation
of its super class. However it cannot redefine an existing
class. Class extensions and open classes are proposals to en-
able that. They are useful when programmers want to reuse
a whole program (or framework) and partly customize it to
build new software as we mentioned in Section 2.1 of [6].

2.1 Usage of class extensions
Class extensions are frequently used in Ruby[14]. For exam-
ple, a number of use cases are found in Ruby on Rails[13].
We below show typical usage of class extensions in Ruby.

Convenient methods Class extensions are used to add con-
venient methods to core classes: Integer, String, Array and
so on. For example, in Ruby on Rails, a suite of bytes meth-
ods are added to Numeric class, which is a super class of
Integer and Float classes. The method call “n.kilobytes”
(where n is a number) returns n×1024 and “n.megabytes”
returns n × 10242. These bytes methods are useful when
writing a program that handles file sizes. Programmers’ in-
tentions will be clear.

Another example is sum method. Ruby on Rails also adds
sum method to Enumerable module, which is a mixin [5]
module for list-like classes. This method computes the sum

of elements in an Enumerable object. This method is simple
and useful although the Ruby’s standard library does not
provide it. By using class extensions, third party libraries
such as Ruby on Rails can easily add convenient methods.

Operator redefinition In Ruby, several operators, such as
+, -, * and /, are normal methods. Thus anyone can redefine
them.

Division of integers in Ruby returns an integer by default,
for example, 1/2 returns 0. On the other hand, the Ruby’s
standard library mathn redefines it. Once you load this li-
brary, division of integers returns a rational. 1/2 returns a
Rational object that represents 1

2 . This library makes it pos-
sible to describe mathematical expressions with normal no-
tations.

Tree traversal Class extensions simplify tree traversal. If
you naively write traversal code separately from tree-node
classes, the code includes runtime type checking and it must
be modified when a new node class is added. Although the
code following the Visitor pattern is more extensible, all
node classes must have methods for the Visitor pattern in
advance. The Visitor pattern is not applicable to a tree if the
node classes do not conform the Visitor pattern or they are
not modifiable since a third-party library provides them.

If class extensions are available, you can add methods for
traversal to node classes on demand. For example, suppose
that a tree consists of Integer and Array and you want to sum
up every integer elements in a tree. You only have to write
the following code

1 class Integer
2 def sum tree
3 self
4 end
5 end
6
7 class Array
8 def sum tree
9 result=0

10 for child in self
11 result += child.sum tree
12 end
13 result
14 end
15 end

The Visitor pattern is not required to traverse trees if
you have class extensions. The code including runtime type
checking is not needed.

Serialization libraries for Ruby often use this technique.
For example, a JSON [7] library for Ruby adds to json
method to core classes, such as Integer, String, Array and
Hash. A JSON serializer uses this method to traverse a tree
made by core classes and dump a JSON file.

Monkey patching When a third-party library has a bug,
class extensions allow programmers to patch and fix it. A
method that includes a bug can be replaced with a correct
implementation of that method. Programmers do not have to

132

directly modify the source code of the library. This technique
is known as monkey patching.

2.2 A problem: method conflicts
Redefinition of a method by a class extension is visible from
all classes. If more than one libraries redefine a method with
the same name in the same class, those redefinitions conflict
with each other. In Ruby, if there are multiple definitions,
only the definition loaded last is made effective. Thus, which
method definition is executed when the method is called de-
pends on the order of loading classes and libraries. A library
including class extensions implies a risk that it crashes other
libraries calling the methods that those class extensions re-
defines.

This is a real problem in Ruby. If you load mathn library,
all integer division results in a rational number. However,
almost all programs in Ruby expect it results in an integer.
Except writing small scripts, programmers have to treat this
library with special care.

Library developers can avoid method conflicts to a certain
degree by introducing a naming convention. If all method
names include a unique prefix or suffix, a risk of conflicts is
decreased against other libraries. This approach avoids con-
flicts of added methods but it is not suitable for method re-
definition. Moreover, this approach may degrade the usabil-
ity of a library.

2.3 Classboxes and Ruby’s Refinements
To address the problem of conflicting method definitions,
several module systems have been proposed. Classboxes[3]
and Classbox/J[2] provide a module named a classbox.
Classboxes allow programmers to write class extensions to
modify a library while not affecting other application pro-
grams using that library. A classbox can import a class from
another classbox and it can redefine a method of the im-
ported class. The redefinition is visible from not only that
importing classbox but also the methods of the classes im-
ported by that classbox. Hence a classbox can override the
behavior of its imported classbox; this property is called
local rebinding in the literature.

Although a classbox hides method definitions from the
outside1, it exposes them to classboxes importing it. Thus, if
a classbox imports classes from other classboxes and those
classes contain conflicting method definitions, the problem
occurs. Figure 1 shows an example of the problem. CB0
is a classbox that provides Integer class and its div method
returning an integer. Classbox CB1 provides List class with
avg method. To calculate an average, CB1 imports Integer
class from CB0 and redefines div method to return a rational
number. Since avg method calls div method internally, it
returns an average of elements by a rational number. CB2
imports List from CB1 to calculate an average, and imports

1 As far as we know, the original design of classboxes does not provide a
mechanism for communicating between a class box and its outside. A whole
application program has to run in a classbox.

Figure 1. A problem in classboxes

Integer from CB0 to perform integer division. Although the
programmer of CB2 does not know CB1 internally modifies
Integer class, she will expect that avg method returns a
rational number. However, Integer from CB0 overwrites the
whole Integer class including the definition of div method
due to the local rebinding property. Thus, in CB2, avg returns
not a rational but an integer number since the two definitions
of div conflict in CB2 and the conflict resolution does not fit
the programmer’s anticipation.

To address the problem of conflicting method definitions,
another approach named Refinements were proposed for
Ruby in the ruby-core mailing list. Refinements make class
extensions effective only when the (re)defined methods are
directly called within a specific lexical scope. Figure 2 shows
a sample code for Refinements. A block starting with refine
(line 2) defines class extensions. In the example, the / op-
erator for Fixnum is redefined to return a rational number.
Then, the using declaration makes class extensions effective
within the current lexical scope. For example, using at line
10 makes the class extensions in MathN effective and hence
a call to the / operator at line 12 executes the definition in
MathN instead of one in the standard library. However, the
class extension in MathN is effective only within the lexi-
cal scope from line 9 to 14. If foo method at line 11 calls
another method out of this scope and it calls the / operator,
then the definition in MathN is not executed. Refinements
do not preserve the local rebinding property.

3. Method Shelters
We propose a new module system called method shelters
to address conflicts among class extensions. Our idea is to

133

1 module MathN
2 refine Fixnum do
3 def /(other)
4 Rational(self,other)
5 end
6 end
7 end
8
9 class Foo

10 using MathN
11 def foo()
12 p(1 / 2)
13 end
14 end
15
16 f = Foo.new
17 f.foo # prints ”(1/2)”
18 p(1 / 2) # prints ”0”

Figure 2. Example of Ruby’s Refinements

make some class extensions effective only within the module
defining them and ones imported by that module. We also
protect some class extensions from accidental overriding by
outer modules, which directly/indirectly import that module.
Thus, if programmers carefully control the scope of class
extensions, unexpected conflicts among class extensions are
avoidable.

We designed method shelters to provide the local rebind-
ing property but make conflicts avoidable to a certain degree.
On the other hand, the refinements of Ruby does not provide
the local rebinding property. Classboxes provide it but may
cause conflicts among class extensions if multiple versions
of class extensions are used in an importing chain.

3.1 Overview
A method shelter, which is a unit of our module system,
consists of two chambers: an exposed chamber and a hid-
den chamber. A chamber contains import declarations and
method definitions. An import declaration imports another
method shelter. A method definition may define a new
method added to an existing class and it may redefine an
existing method in an existing class.

Figure 3 shows a code sample in Ruby. It is a solu-
tion of the problem mentioned in Figure 1. In the code in
Figure 3, three method shelters CoreShelter, AverageShel-
ter, and ClientShelter are defined. CoreShelter has an Inte-
ger#div method in its exposed chamber. CoreShelter is im-
ported by ClientShelter in its exposed chamber. Importing
another method shelter in an exposed chamber is called ex-
posedly importing.

If only exposed chambers are used, method shelters are
similar to classboxes. The local rebinding property is pre-
served. The methods in exposed chambers are executed as if
they all were in the exposed chamber of the outermost or root
method shelter, which exposedly imports their method shel-
ters directly or indirectly. If there are multiple definitions of

1 shelter :CoreShelter do
2 class Integer
3 def div(x)
4 # <returns integer result>
5 end
6 end
7 end
8
9 shelter :AverageShelter do

10 class Array
11 def avg
12 s = self.sum
13 return s.div(self.size) # rational version is called
14 end
15 end
16
17 hide
18 import :CoreShelter
19 class Integer
20 def div(x)
21 # <returns rational result>
22 end
23 end
24 end
25
26 shelter :ClientShelter do
27 import :Core
28 import :AverageShelter
29 def calc
30 [1,2,3,4].avg # returns ”(5/2)”
31 5.div(2) # returns ”2”
32 end
33 end

Figure 3. Code sample (a solution of the problem in Fig-
ure 1)

the same method m, the method definition of the outermost
method shelter S is selected, and other method definitions of
m in method shelters imported from S are overridden. Thus,
if a method calls another method in the same method shel-
ter, the call selects and executes a different definition of that
method in an outer method shelter. Programmers must con-
sider that a method in an exposed chamber may be redefined
by another method shelter importing it.

On the other hand, method definitions in a hidden cham-
ber are not visible from the outside. Furthermore, they are
never redefined by another method shelter importing them.
In Figure 3, AverageShelter has a hidden chamber (below
line 17), which contains another Integer#div method. It is
visible within AverageShelter but not from ClientShelter,
which imports AverageShelter. Thus a call to div at line 31
in ClientShelter never selects the definition in AverageShel-
ter whereas a call to div at line 13 in the exposed chamber
of AverageShelter selects the definition at line 20 in the hid-
den chamber of AverageShelter. The problem in Figure 1
does not happen. However, hidden chambers have trade-off.
A method defined in a hidden chamber cannot be redefined
even if it has a bug and the user wants to fix it by monkey
patching. The concept of exposed and hidden chambers are

134

Figure 4. Ambiguous methods in a method shelter

similar to public/private methods in OOP languages. How-
ever method shelters are orthogonal to the public/private ac-
cess control. We decided to use exposed and hidden as key-
words to avoid misunderstanding.

Importing another method shelter in a hidden chamber is
called hiddenly importing. The methods imported in a hid-
den chamber are visible only within the method shelter im-
porting them, both its exposed and imported chambers. Note
that those methods are imported only from an exposed cham-
ber since methods in a hidden chamber are not visible from
the outside. The methods imported in the hidden chamber of
a method shelter S are not visible from other method shelters
importing S.

The local rebinding property is preserved in a method
shelter hiddenly imported. A method imported in a hidden
chamber may be redefined in that hidden chamber. A hidden
chamber is used to import and redefine several classes freely
for local use only.

Our method-shelter system does not allow ambiguity
with respect to method lookup. For example, in Figure 4,
a method shelter S0 imports S1 and S2. Since both S1 and
S2 have a method named m in C class, a call to C#m in the
method shelter S0 is ambiguous and hence raises an error.
It was possible to design the system so that such ambiguity
can be implicitly resolved by introducing some precedence
rules, for example, the last imported method shelter has the
highest precedence. However, we did not adopt such im-
plicit ambiguity resolution since we believe it will confuse
programmers.

Global methods. We call methods (re)defined not within a
method shelter global methods. A method in a method shel-
ter can call a global method. Our module system considers
that all global methods are contained in some anonymous
method shelter. This method shelter is implicitly exposedly-
imported by the method shelter that contains a caller method
to a global method. Thus, the global methods can call meth-
ods in the exposed chamber where the caller method is de-
fined. A redefinition of a method in that chamber is also ef-
fective when a global method calls it. On the other hand,
the methods in the hidden chambers of the caller’s method
shelter are not visible from the global methods. If a global

method calls another global method, these two methods can
access the same shelters. For example, if a global method m0
is called from a method in a shelter S and m0 calls a global
method m1, then m1 can call the same set of methods in the
exposed chamber of S that m0 can call.

Entry point. Since a method in a method shelter is not
visible from the outside, we need a special mechanism to
call it at the beginning. In other words, we have to jump into
a method shelter from normal execution contexts. We call
that method shelter an entry point, which is the outermost
method shelter in the import chain. An appropriate strategy
depends on the base language:

• define a main function or method in a method shelter if
the base language has it. The method shelter containing
a main function is an entry point. A main function is a
function that is first executed when a program starts.

• define a special code block specifying a method shelter.
The code block is executed as if it existed within that
method shelter. The entry point is that method shelter.
Our ruby prototype adopts this strategy since Ruby does
not have a main function like other scripting languages.

Note that in our programming model, every library, frame-
work and application program is in a separate method shel-
ter. The method shelter of an application program imports
other method shelters of libraries and frameworks. Hence,
having an entry point is natural.

3.2 Lookup semantics
In this section, we present the semantics of method shelters
by showing its method lookup algorithm.

3.2.1 Method shelter tree
Method shelters can be imported from other method shel-
ters. Hence the import relation among shelters constructs a
directed graph. For the sake of presentation, we first trans-
form this graph into a tree. We will use this tree to describe
where we start looking up a method. This transformation
is also used in our implementation in Section 4 for perfor-
mance reason.

Figure 5 shows an example, where method shelter A im-
ports B and C, and B imports C. We do not have to dis-
tinguish a type of importing, exposedly or hiddenly, in this
transformation. If a method shelter (C in the example) is im-
ported by multiple different method shelters, the node of that
imported method shelter C is duplicated and the importing
method shelters B and A import a different node of C (Fig-
ure 6). The resulting graph after this transformation is a tree,
where every (node of a) method shelter is imported by at
most one method shelter, that is, every node has at most one
parent. We use this property of the tree for describing the
algorithm of method lookup. Although this transformation
does not work if import relations make a cycle, method shel-

135

Figure 5. An example of an import graph of method shelters

Figure 6. A method shelter tree reconstructed from Figure 5

ters prohibit cyclic importing. If cyclic importing is detected,
this graph-to-tree transformation raises an error.

Our semantics currently supposes that method shelters
are immutable. If importing relations of method shelters
are changed at run time, a method shelter tree should be
reconstructed.

3.2.2 The lookup algorithm
We show the algorithm for looking up a method in a method
shelter. Figure 7 lists the algorithm written in Scheme.
lookup is the main function. It takes three arguments: con-
text, methodname and class. methodname and class are the
name of a called method and the class of the receiver object.
context is a node in the tree of method shelters mentioned
above. It indicates the method shelter that contains the caller
method, which is currently running and attempts to call the
method on the receiver object. The result of the method
lookup depends on where the caller method is located.

lookup first tries to find a method in a given class by call-
ing lookup-method-of-class. If a method is not found there,
then lookup tries to find a method in the super class. Note
that Ruby adopts single inheritance. lookup and lookup-
method-of-class return a pair of the found method and the
tree node of the method shelter containing that method,
which will be implicitly passed to the found method for fur-
ther method lookup.

lookup-method-of-class looks up a method in method
shelters. First, it looks up the hidden chamber of the given
method shelter node. If the method is found in that chamber,
the found method is returned. If not found, it tries to look up
a method again in the subtree rooted at the source chamber.

1 (define (lookup context class methodname)
2 (let ((method (lookup−method−of−class context class

methodname)))
3 (cond
4 (method method)
5 ((superclass class) (lookup context (superclass class)

methodname))
6 (else (error "no␣method␣error" class name)))))
7
8 (define (lookup−method−of−class context class methodname)
9 (let ((hidden−method (lookup−hidden context class

methodname)))
10 (if hidden−method
11 hidden−method
12 (let∗ ((source−chamber (find−source−chamber context))
13 (source−node (node−of−chamber source−))
14 (exposed−method
15 (if (is−exposed? chamber)
16 (lookup−exposed source−node class

methodname)
17 (lookup−hidden source−node class

methodname))))
18 (if exposed−method
19 exposed−method
20 (lookup−global node class name))))))

Figure 7. Method lookup functions of method shelters

1 (define (hidden−imported? node)
2 <Is the given node is hidden−imported from parent?>)
3 (define (exposed−imported? node)
4 <Is the given node is exposed−imported from parent>)
5
6 (define (find−source−chamber node)
7 (cond
8 ((not (parent−node node)) (list node ’exposed))
9 ((hidden−imported? node) (list (parent−node node) ’hidden))

10 ((exposed−imported? node) (find−source−chamber (
parent−node node)))

11))

Figure 8. Definition of source-node and source-chamber

Methods in the given shelter’s exposed-side are looked up
from the source chamber. The root chamber or hidden cham-
bers which imports the given node can be the source cham-
ber. The one nearest to the given shelter is selected as the
source chamber. Figure 8 shows the find-source-chamber
function that computes the the source chamber.

Figure 9 shows an example. Suppose that S0 exposedly
imports S1, S1 exposedly imports S2, and S1 also hiddenly
imports S3. Then the source chamber of S0, S1 and S2
is the exposed chamber of S0. Note that S0 is the method
shelter at the entry point. The source chamber of S3 is the
hidden chamber of S1 since S3 is hiddenly imported.

Figure 10 shows the definitions of lookup-exposed, lookup-
hidden, and lookup-global functions used in lookup-method-
of-class. lookup-exposed first searches the exposed chamber
of the given node. If a method is found, the function returns

136

Figure 9. An example of source-node and source-chamber

a pair of the given node and the found method body. Oth-
erwise, the function recursively calls itself on all the nodes
of the subtree rooted at the given node although the nodes
hiddenly imported are excluded from the search space. Then
the function makes a list of the values returned by the re-
cursive calls. The list is processed by filter-methods, which
returns an element if the list contains only one element.
filter-methods raises an error if the list contains multiple
elements since the method to look up is ambiguous. lookup-
hidden is similar. It first searches the hidden chamber of the
given node and then the subtree rooted at the given node.
It searches only the nodes exposedly imported by the given
node directly or indirectly. Finally, lookup-global searches
the global method table. If it finds a method, it returns a pair
of a method-shelter node and the body of the method found.
This method-shelter node represents a method shelter that
corresponds to the global method table and it is directly im-
ported by the node given to lookup-global.

4. A proof-of-concept implementation
We made a proof-of-concept implementation 2 of method
shelters in Ruby since Ruby already has a class extensions
feature and its source code is publicly available. We modified
the virtual machine of Ruby 1.9.2.

Since Ruby has already powerful expressiveness, we de-
cided not to extend Ruby’s syntax. The syntax of method
shelters is based on Ruby’s syntax. Figure 11 shows a sam-
ple code for illustrating method shelters’ syntax. Although
shelter looks like a keyword, it is a method name. “shelter”
method takes shelter’s name and a block. “:S2” represents a
symbol S2. “do . . . end” represents a block. The methods de-
fined in the block are contained in the method shelter. By de-
fault, those methods belong to an exposed chamber. On the
other hand, the methods defined after a call to hide method

2 The source code is available at
http://github.com/flexfrank/ruby_with_method_shelters

1 (define (lookup−exposed node class name)
2 (if (exposed−method−table−exists? node class name)
3 (list node
4 (exposed−method−table−get node class name))
5 (filter−methods class name
6 (map (lambda (e) (lookup−exposed e class name))
7 (exposedly−importings node)))))
8
9 (define (lookup−hidden node class name)

10 (if (hidden−method−table−exists? node class name)
11 (list node
12 (hidden−method−table−get node class name))
13 (filter−methods class name
14 (map (lambda (e) (lookup−exposed e class name))
15 (hiddenly−importings node)))))
16
17 (define (lookup−global node class name)
18 (if (global−method−table−exists? class name)
19 (list <a node which is exposedly imported by the given node>
20 (global−method−table−get table name))
21 #f))

Figure 10. Definition of lookup-exposed and lookup-
hidden

(at line 15) belong to a hidden chamber. To import another
method shelter, call import method. Its argument is a method
shelter’s name. If import method is called after hide method,
the imported shelter is hiddenly imported and hence belongs
to a hidden chamber.

The method shelter at the entry point is specified by
shelter eval method. For example, the line 24 and 25 in
Figure 11 is executed within the contexts of the method
shelter S0.

4.1 Implementation details
When a shelter method is called, we create a shelter object.
A shelter object consists of five members: its name, a list
of exposedly imported shelters, a list of hiddenly-imported
shelters, an exposed method table and a hidden method table.
When a method is defined in a method shelter, its method
name is converted to a unique name. The mapping between
the original method name and the converted one is recorded
in the shelter object’s method table. At method lookup, the
table of converted method names is searched first.

As mentioned in Section 3.2, the method lookup algo-
rithm needs a current node in a method-shelter tree rep-
resenting import relations. To maintain a current node, we
added a new member to the stack frame of the Ruby VM.
When shelter eval method is called, a method shelter tree is
constructed from the specified method shelter and the root
node of the tree is set to the stack frame of the block.

4.2 Optimization
We implemented a few optimization techniques for method
shelters to improve execution performance. First, we added
a method cache to every node of a method-shelter tree. It
records a mapping from a pair of a class name and a method

137

1 shelter :S2 do
2 class Integer
3 def inc(n)
4 self + n
5 end
6 end
7 end
8
9 shelter :S1 do

10 class Integer
11 def inc10
12 self.inc(10)
13 end
14 end
15 hide
16 import :S2
17 end
18
19 shelter :S0 do
20 import :S1
21 end
22
23 shelter eval :S0 do
24 p(1.inc10) # prints 11
25 p(1.inc(1)) # error: method is not found
26 end

Figure 11. The syntax of method shelters

name to a pair of a method entry and the tree node where the
method is found. A method entry is a primitive data structure
for calling a method in the Ruby VM. A cache entry is
updated at method lookup. This cache reduces the overhead
of method lookup in particular when an import chain is long.

Since method shelters change the algorithm of method
lookup, we also modified the implementation of the in-
line cache of the Ruby VM. The modified implementation
records a current node of a method-shelter tree.

4.3 Compatibility
Our implementation keeps the compatibility with the origi-
nal Ruby. A normal Ruby program written without method
shelters can run on our modified Ruby interpreter. Although
we added an additional member to a stack frame of the Ruby
VM, this member for maintaining a current node of a method
shelter tree is set to NULL at initialization. If the current node
is NULL, the method lookup uses the original algorithm for
Ruby.

5. Applications
We below illustrate several examples of the use of method
shelters.

5.1 Convenient methods in Ruby on Rails
The first example is Ruby on Rails. The ActiveSupport li-
brary, which is part of Ruby on Rails, provides a number of
convenient methods for Ruby’s core classes. Among those
methods, we moved time-related methods in the Numeric

1 shelter :ActiveSupportNumericTime do
2 class Numeric
3 # ∗∗ snip ∗∗
4
5 def days
6 ActiveSupport::Duration.new(self ∗ 24.hours, [[:days, self]])
7 end
8 alias :day :days
9

10 # ∗∗ snip ∗∗
11 end
12 end

Figure 12. The time-related methods we defined in a
method shelter

1 shelter :DateControllerShelter do
2 class DateController < ApplicationController
3 def days ago
4 @text=params[:id].to i.days.ago
5 end
6 end
7
8 hide
9 import :ActiveSupportNumericTime

10 end

Figure 13. A client code of Ruby on Rails

class into a method shelter. ActiveSupport adds minutes,
hour and days methods to Numeric class. These methods re-
turn Duration objects representing time. They simplify writ-
ing code for calculating time. For example,
10.minutes.ago

returns Time object representing the time 10 minutes before
the current time.

We can move the definitions of these methods into a
method shelter. Figure 12 is a code snippet of the method
shelter containing these methods. Figure 13 shows a con-
troller class for Ruby on Rails. Like a servlet in Java, it is
executed when a corresponding web page is accessed by a
web browser. This controller class is in a method shelter,
which hiddenly imports ActiveSupportNumericTime. Thus,
days method in Figure 12 is available only in this controller
class whereas it is not in the rest of the program. Note that
days method is not visible even in method shelters importing
the method shelter in Figure 13. To call days, method shel-
ters must import ActiveSupportNumericTime again within
the method shelters.

5.2 Operator redefinition
We mentioned a problem of conflicting redefinition of the
“/” operator in Section 2.3. The sketch of the solution with
method shelters was already presented in Figure 3.

Figure 14 shows a realistic version of the code in Figure 3.
In Ruby, numbers are represented by Fixnum objects and “/”

138

1 shelter :MathNShelter do
2 class Fixnum # fixed size integer in Ruby
3 def /(x)
4 Rational(self,x)
5 end
6 end
7 end
8
9 shelter :AverageShelter do

10 class Array
11 def avg
12 sum = self.inject(0){|r,i|r+i}
13 sum / self.size
14 end
15 end
16 hide
17 import :MathNShelter
18 end
19
20 shelter :ClientShelter do
21 import :AverageShelter
22
23 def calc
24 p([1,2,3,4,5,6,7,8,9,10].avg) # prints ”(11/2)”
25 p(55/10) # prints 5
26 end
27 end
28
29 shelter eval :ClientShelter do
30 calc
31 end

Figure 14. The code that redefines “/” methods in method
shelters

method is defined in this class. Since the original division
method “/” of Fixnum is built in, this code does not include
CoreShelter shown in Figure 3. The “/” method is redefined
in MathNShelter instead of AverageShelter. This simulates
Ruby’s “mathn” library, which is a separate library providing
the redefined “/” method.

Since MathNShelter is hiddenly imported by a method
shelter AverageShelter, avg method in Array returns a ra-
tional value. The “/” operator at line 13 executes the def-
inition in MathNShelter method shelter. A method shelter
ClientShelter can safely import AverageShelter and call avg
method without being aware of MathNShelter. Note that
since Fixnum is a class in the standard library, calc method
can execute the “/” operator at line 25 without explicitly
importing Fixnum class. The “/” operator here returns an
integer.

Since Ruby is a scripting language, the lines from 28
to 30 compose the code running first when this program is
invoked. This “main function” is executed in ClientShelter
method shelter.

5.3 Protecting optimized methods
The Ruby VM optimizes several special methods including
arithmetic operators. When one of the special methods is
called and it is not redefined by the users, the VM directly

performs its operation instead of executing that method. The
VM manages for every operator a flag indicating whether or
not the special methods are redefined. The receiver class is
not considered for a reason of performance trade-off. Thus,
if “+” operator for Integer is redefined by the users, the VM
recognizes all “+” operators including one for Float are also
redefined and makes them unoptimized. Redefining a single
special method may cause serious performance overhead.

If such a special method is redefined in a method shelter,
the VM can directly perform the optimized operation when it
is out of that method shelter. Our implementation of method
shelters manages the flags per method shelter. Hence, if a
method shelter S redefines a special method in a hidden
chamber, that redefinition is not visible from other method
shelters importing S and the VM performs optimized oper-
ations for special methods in these method shelters. Other-
wise, if a method shelter S1 redefines a special method in an
exposed chamber and another method shelter S2 hiddenly
imports S1 for reusing the redefinition, then the redefinition
is not visible from method shelters importing S2, which are
ones indirectly importing S1. The VM performs optimized
operations in these method shelters.

5.4 Private instance variables
In Ruby, private instance variables are not available. A
method shelter can be used to define private instance vari-
ables visible only within the method shelter.

Figure 15 shows the code for defining getter and setter
methods for accessing an instance variable with a newly
generated unique name. When shelter accessor method is
called, accessor methods with the given name are defined.
Note that in Ruby an instance variable is automatically cre-
ated when it is first used. The code in Figure 15 does not
use method shelters but the reflection capability of Ruby.
get var name for current shelter returns a unique name for
the given name and the caller’s method shelter. If the name
and the shelter are same it returns the same variable name.

Figure 16 shows the client code. Two method shelters S0
and S1 add accessor methods to Object class. Although both
the names of the added instance variables are counter, they
access different instance variables. The methods defined by
a call to shelter accessor in different method shelters are
distinct.

6. Performance
In this section, we discuss the performance of our prototype
implementation of method shelters. Our implementation is
based on Ruby 1.9.2 3. We compare it with the original im-
plementation of Ruby 1.9.2. We ran our benchmark pro-
grams on Mac OS X 10.6 with 2.54GHz Intel Core 2 Duo
processor and 4GB memory.

3 The revision number of Ruby’s subversion repository is 30579

139

1 class Module
2 def shelter accessor(name)
3 define method name do
4 ivname= get var name for current shelter(name)
5 self.instance variable get(ivname)
6 end
7
8 define method (name.to s+"=").to sym do|val|
9 ivname= get var name for current shelter(name)

10 self.instance variable set(ivname,val)
11 end
12 end
13 end

Figure 15. The code for defining getter and setter methods
to access a private instance variable

1 shelter :S0 do
2 class Object
3 shelter accessor :counter
4 end
5 end
6 shelter :S1 do
7 class Object
8 shelter accessor :counter
9 end

10 end
11
12 o=Object.new
13 shelter eval :S0 do
14 o.counter=0
15 p o.counter #prints 0
16 end
17 shelter eval :S1 do
18 p o.counter #prints nil
19 o.counter=1
20 p o.counter #prints 1
21 end
22 shelter eval :S0 do
23 p o.counter #prints 0
24 end

Figure 16. The client code using accessor methods to a
private instance variable

6.1 Micro benchmark
First, to measure an overhead of method lookup, we ran a
program that calls a method with an empty body. The bench-
mark program calls an empty method 10,000,000 times. We
prepared five environments: the original Ruby VM, our mod-
ified VM without method shelters, our VM with one method
shelter and our VM with five method shelters imported. The
benchmark code with five method shelters is shown in Fig-
ure 17. We ran the benchmark programs 1,000 times on each
environment.

Table 1 shows the results. When method shelters are not
used, our VM runs 10% slower than the original VM. This
is because our VM must check whether a method shelter is
passed or not on method lookup. When one method shelter

1 shelter :S0 do
2 def a
3 end
4 end
5 shelter :S1 do import :S0 end
6 shelter :S2 do import :S1 end
7 shelter :S3 do import :S2 end
8 shelter :S4 do import :S3 end
9

10 shelter eval :S4 do
11 10000000.times do
12 a
13 end
14 end

Figure 17. The benchmark program that calls an empty
method under five method shelters

Avg. time (s) SD4

On the original VM 1.430 0.010
On our VM without method shelters 1.575 0.018
With 1 method shelter 1.476 0.013
With 5 method shelters 1.493 0.018

Table 1. Execution time of empty method (1,000 tries)

Avg. time (s) SD
On the original VM 1.000 0.005
On our VM without method shelters 1.141 0.004
With 1 method shelter 1.180 0.036
With 5 method shelters 1.192 0.049

Table 2. Execution time of fib(33) (1,000 trials)

is used, the overhead is about 3%. Method shelters make
method lookup faster, this is due to method caches that we
added. When five method shelters are used, it works with
comparative speed to one method shelter. This result is also
due to the caches.

We also measured execution time of the Fibonacci func-
tion under the same environments as above. Table 2 lists the
results. In this case the overhead of our VM is about 14%
and with method shelters is 18% to 19%.

6.2 tDiary
To measure the performance of method shelters on a real ap-
plication, we applied method shelters to tDiary [15], a web-
based diary system written in Ruby. We used tDiary 3.0.1
for this benchmark. tDiary 3.0.1 redefines three methods in
String class: to a, each and method missing. We redefined
these three methods in a method shelter and ran the main
code of tDiary in a method shelter importing it. We ran tDi-
ary on Apache 2.2.17 with CGI and measured response time

4 standard deviation

140

Avg. time (ms) SD
On the original VM 704 7.1
On our VM without method shelters 704 6.6
With method shelters 627 6.5

Table 3. Response time of tDiary (300 trials)

by ApacheBench. For comparison, we used three versions
of tDiaries: tDiary without method shelters on the original
Ruby VM, without method shelters on our Ruby VM and
with method shelters on our Ruby VM. We accessed the top
page of each diary 300 times.

Table 3 lists the results. This results show that our mod-
ified VM does not impact performance of existing applica-
tions when method shelters are not used. It also indicates
method shelters improve the execution speed. This is due to
Ruby VM’s optimizations that we mentioned in Section 5.3.
method missing, which we confined into a method shelter,
is the one of special methods. method missing is a hook
method that is called when an undefined method is called.
If method missing is not redefined, the VM can skip a call
to it since the default definition is empty. In this benchmark,
we redefined method missing for String in a method shel-
ter. Hence this redefinition does not affect the performance
of the code out of that method shelter. On the other hand,
tDiary running on the original Ruby VM gets performance
penalties due to the redefinition of method missing. This is
why method shelters improved the execution performance of
this benchmark test.

6.3 Ruby on Rails
We applied method shelters to Ruby on Rails in Section 5.1.
We measured the performance of a Ruby on Rails applica-
tion with method shelters. Figure 18 is a benchmark program
we used. index method is an action method, which calculates
time and accesses a database once. We used SQLite 3.6.12
for a database engine. The version of Ruby on Rails is 3.0.7.
We ran this application on WEBrick, a web server writ-
ten in Ruby. We requested the action 1,000 times through
ApacheBench and measured response time.

Table 4 lists the results in development environment.
In this environment, user-defined application classes are
reloaded per request. In this case, method shelters made
the execution performance about 50% slower. Table 5 lists
the results in production environment, in which application
classes are not reloaded per request. In this environment, the
overhead is less than 4%. This difference between two envi-
ronments result from the hit ratio of method caches. In the
development environment, whenever classes are reloaded,
the VM invalidates method caches for method shelters. This
implies serious performance penalties.

Table 6 lists the hit ratio of method caches in method
shelters after warming-up. In the production environment,
over 90% and 100% of lookups hit inline method cache.

1 class TestController < ApplicationController
2 def index
3 @text="#{(1.day.ago␣+␣1.day)}"

4 @accesses=Access.order("id␣desc").limit(10).find all.to a.
inspect

5 end
6 end

Figure 18. The benchmark program for Ruby on Rail

Avg. time (ms) SD
On the original VM 53.131 14.7
On our VM without method shelters 53.341 14.7
With method shelters 78.871 16.2

Table 4. Response time of Rails application (1,000 trials,
development env.)

Avg. time (ms) SD
On the original VM 10.865 7.7
On our VM without method shelters 11.049 7.8
With method shelters 11.296 7.7

Table 5. Response time of Rails application (1,000 trials,
production env.)

development production
Inline cache hit (%) 58.35 92.55
Total cache hit (%) 74.0 100.0

Table 6. Cache hit ratios of Rails application (1,000 trials,
production env.)

In the development environment, less than 75% hit inline
caches. This result indicates that method shelter is not so
slow when method caches are appropriately filled.

7. Related work
We have already mentioned several related languages and
mechanisms. This section presents other related work.

Java class loader. Since every Java class loader makes
a separate name space, a different class loader can load a
differently declared class with the same name. However, an
instance of that class cannot be passed into the name spaces
constructed by other class loaders while method shelters
allow exchanging any instance among shelters.

Selector Namespaces. The concept of selector names-
paces was introduced by Modular Smalltalk [17]. Selector
namespaces allow scoped class extensions hence method
conflicts can be resolved to a certain degree. However, they
do not preserve the local rebinding property. In selector

141

namespaces, you can add new methods to existing classes
but cannot redefine existing methods.

Open Classes. MultiJava [11] introduces open classes
and multiple dispatch into Java. Open classes allow you to
add new methods to existing classes although redefining a
method is not allowed. The added methods are available only
within a compilation unit that explicitly imports them. Here,
a compilation unit is a module lexically specified.

Context-oriented programming. Context-oriented pro-
gramming languages [9] allows multiple definitions of a
method for the same class. Which definitions are executed at
a method call depends on the runtime contexts. On the other
hand, in method shelters, it depends on not the runtime con-
texts but the static contexts, which are static relations among
modules with respect to importing. Although we could make
these relations dynamically changeable according to the run-
time contexts, that is not necessarily required.

Open modules. Since aspect-oriented programming (AOP)
also allows class extensions, several approaches proposed in
the contexts of AOP are included in the related work. For
example, Open modules [1, 12] are modules for AOP; they
expose only selected join points to the outside. Other join
points are hidden in the modules. The exposed join points
correspond to method definitions, which are newly added
to existing classes, in an exposed chamber while the hidden
join points correspond to ones in a hidden chamber. How-
ever, open modules do not control the visibility of advices,
which correspond to method redefinitions, which modify an
existing method, in method shelters.

Type classes. Type classes [16] in functional programming
languages also provide a way to add methods or generic
functions to existing types. Although type classes help ex-
tension of software, they do not support local rebinding
property. Method shelters target programming languages
with a construct supporting it.

8. Conclusion
We propose method shelters to address conflicts among class
extensions. Each method shelter consists of exposed and hid-
den chambers. While methods defined in an exposed cham-
ber are visible from method shelters that import it, meth-
ods in a hidden chamber are visible only from the same
method shelter. We provide hidden chambers for defining
class extensions only for internal use. Hence, if programmers
carefully put class extensions in an appropriate chamber,
unanticipated conflicts will be avoidable. When updating a
method, programmers must preserve the backward compat-
ibility if the method is in an exposed chamber. If program-
mers want to keep freedom for future updates, methods must
be in a hidden chamber and other method shelters internally
used must be hiddenly imported in a hidden chamber.

We presented the lookup algorithm for method shelters
and showed a prototype implementation of method shelters

on the Ruby virtual machine. According to our benchmarks,
general overheads due to method shelters are acceptable.
Furthermore, one benchmark revealed that method shelters
may even help performance optimization and boost the exe-
cution speed.

References
[1] J. Aldrich. Open modules: Modular reasoning about advice.

In ECOOP ’05, pages 144–168, 2005.

[2] A. Bergel, S. Ducasse, and O. Nierstrasz. Classbox/j: con-
trolling the scope of change in java. In OOPSLA ’05, pages
177–189. ACM, 2005.

[3] A. Bergel, S. Ducasse, O. Nierstrasz, and R. Wuyts. Class-
boxes: Controlling visibility of class extensions. In Computer
Languages, Systems and Structures, 2005.

[4] D. G. Bobrow, L. G. DeMichiel, R. P. Gabriel, S. E. Keene,
G. Kiczales, and D. A. Moon. Common lisp object system
specification. SIGPLAN Not., 23:1–142, September 1988.

[5] G. Bracha and W. Cook. Mixin-based inheritance. In OOP-
SLA/ECOOP ’90, pages 303–311. ACM, 1990.

[6] S. Chiba, A. Igarashi, and S. Zakirov. Mostly modular com-
pilation of crosscutting concerns by contextual predicate dis-
patch. In OOPSLA ’10, pages 539–554. ACM, 2010.

[7] D. Crockford. The application/json Media Type for JavaScript
Object Notation (JSON). RFC 4627 (Informational), July
2006. URL http://www.ietf.org/rfc/rfc4627.txt.

[8] A. Goldberg and D. Robson. Smalltalk-80: the language and
its implementation. Addison-Wesley Longman Publishing
Co., Inc., Boston, MA, USA, 1983.

[9] R. Hirschfeld, P. Costanza, and O. Nierstrasz. Context-
oriented programming. Journal of Object Technology, 7(3):
125–151, March-April 2008.

[10] G. Kiczales, E. Hilsdale, J. Hugunin, M. Kersten, J. Palm, and
W. G. Griswold. An overview of aspectj. In ECOOP ’01,
pages 327–353. Springer-Verlag, 2001.

[11] T. Millstein, M. Reay, and C. Chambers. Relaxed multijava:
balancing extensibility and modular typechecking. In OOP-
SLA ’03, pages 224–240. ACM, 2003.

[12] N. Ongkingco, P. Avgustinov, J. Tibble, L. Hendren,
O. de Moor, and G. Sittampalam. Adding open modules to
aspectj. In AOSD ’06, pages 39–50. ACM, 2006.

[13] Rails core team. Ruby on rails. http://rubyonrails.org/, 2011.

[14] Ruby community. Ruby programming language.
http://www.ruby-lang.org/, 2011.

[15] tDiary.org. tDiary. http://sourceforge.net/projects/tdiary/,
2011.

[16] P. Wadler and S. Blott. How to make ad-hoc polymorphism
less ad hoc. In POPL ’89, pages 60–76. ACM, 1989.

[17] A. Wirfs-Brock and B. Wilkerson. A overview of modular
smalltalk. In OOPSLA ’88, pages 123–134. ACM, 1988.

142

