
Research Reports on

Mathematical and

Computing Sciences

Department of
Mathematical and
Computing Sciences

Tokyo Institute of Technology

SERIES C: Computer Science

ISSN 1342-2812

Applying DominoJ to GoF Design Patterns

YungYu Zhuang and Shigeru Chiba

December 2011, C–277

Applying DominoJ to GoF Design Patterns

YungYu Zhuang and Shigeru Chiba
Graduate School of Information Science and Engineering, Tokyo Institute of Technology, Japan

Technical Report

Abstract

In this report we study practical effectiveness of method slot, which is a new language construct
integrating events and methods. We use its language implementation, DominoJ, to implement design
patterns in the “GoF” book, and found that 16 out of 23 patterns can benefit from it. Here we list
down the sample code in Java and DominoJ for the 16 patterns, and discuss the benefits.

1 Introduction

Events have been known as useful programming concepts. In the languages without events support,
some techniques such as Observer pattern are developed. On the other hand, in some languages such as
EScala [3], events are introduced by language constructs which are separate from methods. We proposed
a single mechanism named method slot, which supports both events and methods, and DominoJ 1, which
extends Java to support method slots. In order to study its practical effectiveness, we implemented design
patterns in the “GoF” book [2] in DominoJ and Java, and compared them with respect to the number
of lines of code and modularity criteria borrowed from [4] as shown in Table 1. We classify the patterns
into five categories according to the benefit brought by method slots. In the following sections we discuss
what modularity properties can be improved and why method slots can be applied.

Table 1: The benefit of applying DominoJ to design patterns

Modularity Properties #Lines of Sample Code

Pattern Name Locality Reusability Composition Unpluggability Non-inheritance in Java in DominoJ

Chain of Responsibility
√ √ √ √ √

? 38 28
Composite

√ √ √ √
? 41 16

Decorator
√ √ √

26 20
Observer

√ √ √ √ √
? 71 32

Proxy
√ √

? 47 61
State

√
66 69

Strategy
√ √ √

? 36 28
Visitor

√ √ √
63 69

Abstract Factory
√

?
√

? 41 58
Bridge

√
?

√
? 58 64

Builder
√

?
√

? 55 69
Factory Method

√
?

√
? 67 97

Template Method
√ √

? 31 45

Adapter
√

51 48
Facade

√
? 34 53

Mediator
√ √

68 49

Command
Flyweight
Interpreter
Iterator Same implementation for Java and DominoJ
Memento
Prototype
Singleton

The
√

mark means that DominoJ has better modularity than Java when implementing the pattern.
The ? mark means that AspectJ does not provide such modularity when implementing the pattern, while DominoJ does.

1The DominoJ compiler is available on the project page: http://www.csg.is.titech.ac.jp/projects/dominoj/

1

2 Event propagation

2.1 Observer Pattern

Intent

“Define a one-to-many dependency between objects so that when one object changes state, all its depen-
dents are notified and updated automatically.”—From the GoF book. What this pattern does is event
mechanism. Once observers register themselves to the subject, the subject will notify them when some-
thing happens. The dependent list, registration, and notification are built in DominoJ, so the only thing
we have to do is binding observers to the subject.

Sample Code in Java

1 // here we define Observer and Subject as interfaces due to single inheritance limitation
2 // pattern code will be put into the classes which implement them
3 public interface IObserver {
4 public void updateBySubject(ISubject s);
5 }
6
7 public interface ISubject {
8 public void attachObserver(IObserver o);
9 public void detachObserver(IObserver o);

10 public void notifyObservers ();
11 }
12
13 public class Timer {
14 :
15 }
16
17 // the subject
18 public class ClockTimer extends Timer implements ISubject {
19 private ArrayList <IObserver > observers;
20
21 public ClockTimer () {
22 observers = new ArrayList <IObserver >();
23 }
24
25 public void attachObserver(IObserver o) {
26 observers.add(o);
27 }
28
29 public void detachObserver(IObserver o) {
30 observers.remove(o);
31 }
32
33 public void notifyObservers () {
34 Iterator <IObserver > iter = observers.iterator ();
35 while(iter.hasNext ()) {
36 iter.next (). updateBySubject(this);
37 }
38 }
39
40 // have to notify observers at the end of the method
41 public void tick() {
42 :
43 notifyObservers ();
44 }
45 }
46
47 public class Widget {
48 :
49 }
50
51 // the observer
52 // the attaching and detaching are set inside
53 public class DigitalClock extends Widget implements IObserver {
54 private ISubject subject;
55
56 public DigitalClock(ClockTimer s) {
57 subject = s;
58 subject.attachObserver(this);
59 }
60
61 // must handle the detaching manually
62 public void finalize () {
63 subject.detachObserver(this);
64 }
65
66 public void updateBySubject(ISubject s) {
67 if(s == subject) {

2

68 draw ();
69 }
70 }
71
72 public void draw() {
73 :
74 }
75 }
76
77 // client usage
78 ClockTimer ct = new ClockTimer ();
79 DigitalClock dc = new DigitalClock(ct);
80 // then dc.draw () will be called after ct.tick () is called

Sample Code in DominoJ

1 public class Timer {
2 :
3 }
4
5 // the subject
6 public class ClockTimer extends Timer {
7 public ClockTimer {
8 tick += notifyObservers;
9 }

10
11 public void notifyObservers () {}
12
13 public void tick() {
14 :
15 }
16 }
17
18 public class Widget {
19 :
20 }
21
22 // the observer
23 public class DigitalClock extends Widget {
24 public DigitalClock(ClockTimer s) {
25 // bind to single method and let the subject control the notification
26 s.notifyObservers += draw;
27 // of course you also can bind to tick () directly
28 // ex: s.tick += draw;
29 }
30
31 public void draw() {
32 :
33 }
34 }
35
36 // client usage is the same as the one in Java
37 ClockTimer ct = new ClockTimer ();
38 DigitalClock dc = new DigitalClock(ct);
39 // then dc.draw () will be called after ct.tick () is called

Consequences

Since multiple inheritance is prohibited in Java, we have to use interfaces instead and put pattern code
(registration and notification) into ClockTimer and DigitalClock. We may move pattern code to their
parent classes, Timer and Widget, but the classes which do not inherit from Timer or Widget still cannot
take advantage of this pattern. It is a good idea to put pattern code into ancestor classes such as Object,
but the best solution is putting them into language itself—what DominoJ does.

Locality The code that defines the relation can be gathered up, and no pattern code.
Reusability This pattern can be applied to any classes easily since it is built-in functionality.
Unpluggability The subject-observer binding is object-based, and easy to be added or removed.
Composition The code tangling can be avoided when a class is involved in several subject-object

relations. For example, an object is observed by several observer groups for different
purposes, and also observes another object at the same time.

Non-inheritance No need to create classes or interfaces for the subject and the observer.

3

2.2 Chain of Responsibility Pattern

Intent

“Avoid coupling the sender of a request to its receiver by giving more than one object a chance to handle
the request. Chain the receiving objects and pass the request along the chain until an object handles it.”—
From the GoF book. The chain logic can be described by a series of events, so we can implement it in
DominoJ by binding handlers in order.

Sample Code in Java

1 // there are two choices due to single inheritance limitation
2 // let every class implements chain interface (HelpHandler)
3 // or put chain logic into the parent class (Widget)
4 // here we choose the latter
5 public class Widget {
6 private Widget successor = null;
7
8 public Widget(Widget parent) {
9 setHandler(parent);

10 :
11 }
12
13 public void setHandler(Widget handler) {
14 successor = handler;
15 }
16
17 public boolean handleHelp () {
18 if(successor == null) return false;
19 return successor.handleHelp ();
20 }
21 }
22
23 public class Button extends Widget {
24
25 public boolean handleHelp () {
26 // return true if it can offer help
27 // otherwise return super. handleHelp ()
28 ...
29 return true;
30 ...
31 return super.handleHelp ();
32
33 }
34 :
35 }
36
37 public class Dialog extends Widget {
38 // overrides handleHelp like what Button does
39 :
40 }
41
42 // client usage
43 Dialog dialog = new Dialog ();
44 Button btn1 = new Button(dialog);
45 Button btn2 = new Button(dialog);
46 // client may change the successor
47 btn1.setHandler(btn2);

Sample Code in DominoJ

1 // no need to define HelpHandler interface or put chain logic into Widget
2 // because the handler chain is built -in
3 // declare handleHelp method in parent class directly
4 public class Widget {
5 public Widget(Widget parent) {
6 handleHelp += parent.handleHelp;
7 :
8 }
9

10 public boolean handleHelp () {}
11 }
12
13 public class Button extends Widget {
14 public boolean handleHelp () {
15 // just return if it is handled
16 if($ret) return true;
17 // return true if it is handled here , otherwise return false
18 ...

4

19 return true;
20 ...
21 return false;
22 }
23 :
24 }
25
26 public class Dialog extends Widget {
27 // overrides handleHelp like what Button does
28 :
29 }
30
31 // client usage
32 Dialog dialog = new Dialog ();
33 Button btn1 = new Button(dialog);
34 Button btn2 = new Button(dialog);
35 // clients may also append/prepend/replace the handler
36 btn1.handleHelp = btn2.handleHelp;

Consequences

DominoJ makes the chain relation more clear, especially when there are many chain relations among
objects.

Locality The chain relation among objects can be gathered up.
Reusability The pattern can be applied anywhere since it can be described by built-in operators.
Unpluggability The pattern is simply unplugged by removing the binding.
Composition The code becomes complicated when there are multiple chain relations. It needs

more fields and setter to keep successors for different chains. With DominoJ the
code tangling can be avoided.

Non-inheritance In Java the chain relation is usually declared as interface rather than base class
because participant classes have to inherit from others. The chain logic has to be
implemented by every participant class since the interface cannot contain imple-
mentation. Another solution is merging the chain logic into base class as shown in
the sample code, but this solution makes it difficult to separate pattern code from
main logic.

2.3 Composite Pattern

Intent

“Compose objects into tree structures to represent part-whole hierarchies. Composite lets clients treat
individual objects and compositions of objects uniformly.”—From the GoF book. Usually the purpose of
composing objects into tree structures is doing a specified operation. For example, UI libraries maintain
a container tree for drawing the widgets in order. We can implement the idea by binding the operation
methods.

Sample Code in Java

1 // in this sample we want to get the sum of the values returned by operation method
2 // define a leaf class
3 public class Component {
4 :
5 // this method return a value
6 public int operation () {
7 int value = 0;
8 // do something and change the value
9 :

10 return value;
11 }
12 }
13
14 // define a composite class
15 public class Composite extends Component {
16 ArrayList <Component > list;
17
18 public Composite () {
19 list = new ArrayList <Component >();
20 :
21 }
22
23 public void add(Component c) {

5

24 list.add(c);
25 }
26
27 public int operation () {
28 int value = 0;
29 // do something and change the value
30 :
31 // get the values returned by children
32 for(int i=0; i<list.size (); i++) {
33 value += list.get(i). operation ();
34 }
35 return value;
36 }
37 }
38
39 // client usage
40 Composite comp1 = new Composite ();
41 Component leaf1 = new Component ();
42 Composite comp2 = new Composite ();
43 Component leaf2 = new Component ();
44 Component leaf3 = new Component ();
45 // construct the tree
46 comp1.add(leaf1);
47 comp1.add(comp2);
48 comp2.add(leaf2);
49 comp2.add(leaf3);
50 // get the sum
51 int sum = comp1.operation ();

Sample Code in DominoJ

1 // Composite class is unnecessary
2 // bind the operation method of leaves to a leaf directly
3 public class Component {
4 :
5 public int operation () {
6 int value = 0;
7 // do something and change the value
8 :
9 return $ret + value;

10 }
11 }
12
13 // client usage
14 Component comp1 = new Component ();
15 // Component can be used as a leaf or a composite
16 // you could construct the tree by binding leaves directly
17 Component leaf1 = new Component ();
18 Component leaf2 = new Component ();
19 Component leaf3 = new Component ();
20 leaf1.operation += leaf2.operation;
21 leaf1.operation += leaf3.operation;
22 // get the sum
23 int sum = leaf1.operation ();
24 // you also could let the tree look like the one in Java
25 // Component comp1 = new Component ();
26 // Component leaf1 = new Component ();
27 // Component comp2 = new Component ();
28 // Component leaf2 = new Component ();
29 // Component leaf3 = new Component ();
30 // comp1. operation += leaf1. operation ;
31 // comp1. operation += comp2. operation ;
32 // comp2. operation += leaf2. operation ;
33 // comp2. operation += leaf3. operation ;
34 // int sum = comp1.operation ();

Consequences

Because a class can be a leaf or a composite, it is easy to adjust the structure. We do not have to prepare
a composite class for a component class.

Reusability No need to define and create the composite class, the relation can be applied to
any class.

Unpluggability The unplugging can be done by removing the binding between objects.
Composition When an object is put into several tree structures for different methods, we do not

have to maintain similar code in several places.
Non-inheritance A class can be used as a composite directly, so we can avoid declaring additional

subclasses for composite.

6

2.4 Decorator Pattern

Intent

“Attach additional responsibilities to an object dynamically. Decorators provide a flexible alternative to
subclassing for extending functionality.”—From the GoF book. The idea is similar to the idea in DominoJ,
which provides a flexible alternative to extend functionality. It is easy to bypass the method calling in
DominoJ.

Sample Code in Java

1 // define a class which is wrapped
2 public class VisualComponent {
3 :
4 public void draw() {
5 :
6 }
7 public void resize () {
8 :
9 }

10 }
11
12 // the decorator
13 public class Decorator extends VisualComponent {
14 private VisualComponent component;
15
16 public Decorator(VisualComponent c) {
17 component = c;
18 }
19
20 public void draw() {
21 component.draw ();
22 }
23
24 public void resize () {
25 component.resize ();
26 }
27
28 // provide other functionality
29 :
30 }

Sample Code in DominoJ

1 // the wrapped class is the same as the one in Java
2 public class VisualComponent {
3 :
4 public void draw() {
5 :
6 }
7 public void resize () {
8 :
9 }

10 }
11
12 // the decorator
13 public class Decorator extends VisualComponent {
14 private VisualComponent component;
15
16 public Decorator(VisualComponent c) {
17 component = c;
18 // bypass some methods
19 draw = component.draw;
20 resize = component.resize;
21 }
22
23 // provide other functionality
24 :
25 }

Consequences

There are two reasons that we still let Decorator inherit from VisualComponent. First, this pattern assumes
the decorator is used as the wrapped component. Second, we do not have to define empty methods in
the decorator for binding. Instead of bypassing, we can also use ^= or += to do some operations before
or after the original method.

7

Locality All bindings are put in the constructor together.
Unpluggability Adding or removing the bypassing is easy, even in runtime.
Composition When the decorator wraps many components at the same time, the relations are

clear and can be switched dynamically.

3 Switch by method calls

3.1 Proxy Pattern

Intent

“Provide a surrogate or placeholder for another object to control access to it.”—From the GoF book.
With DominoJ the behavior of an object can be changed by binding the methods in another object to it.
In other words, clients can use the same object whether it has proxy logic or not.

Sample Code in Java

1 // the original class
2 public class Image extends Graphic {
3 public Image(String f) {
4 :
5 }
6
7 public void draw() {
8 :
9 }

10
11 public Point getExtent () {
12 :
13 }
14 }
15
16 // create a proxy for the original class
17 public class ImageProxy extends Graphic {
18 private Image image;
19 private String filename;
20 private Point extent;
21
22 public ImageProxy(String f) {
23 image = null;
24 filename = f;
25 extent = Point.ZERO;
26 }
27
28 public Image getImage () {
29 if(image == null) {
30 image = new Image(filename);
31 }
32 return image;
33 }
34
35 public void draw() {
36 getImage (). draw ();
37 }
38
39 public Point getExtent () {
40 if(extent == Point.ZERO) {
41 extent = getImage (). getExtent ();
42 }
43 return extent;
44 }
45 }
46
47 // client usage
48 ImageProxy proxy = new ImageProxy("anImageFileName");
49 TextDocument text = new TextDocument ();
50 // here we assume that insert method accept all Graph classes
51 text.insert(proxy);

Sample Code in DominoJ

1 // if there is an Image class which cannot be modified
2 public class Image extends Graphic {
3 // in this sample we need two -phase construction
4 public void load(String f) {
5 :

8

6 }
7
8 public boolean isLoaded () {
9 :

10 }
11
12 public void draw() {
13 :
14 }
15
16 public Point getExtent () {
17 :
18 }
19 }
20
21 // create a proxy class to delay loading and cache some values
22 // without inheriting from Image or Graphic
23 public class ImageProxy {
24 private Image image;
25 private String filename;
26 private Point extent = Point.ZERO;
27
28 public ImageProxy(Image i) {
29 image = i;
30 // it only works for two -phase construction because we cannot replace constructor
31 // keep filename and load it later
32 image.load = fake;
33 // use generic handlers to load file before some operations
34 image.draw ^= voidLoad;
35 image.getExtent ^= objLoad;
36 // get extent value when it is used at the first time
37 image.getExtent += getExtent;
38 }
39
40 public void fake(String f) {
41 filename = f;
42 }
43
44 // for methods which have return type
45 public Object objLoad(Object [] args) {
46 voidLoad(args);
47 return null;
48 }
49
50 // restore original load function and call it
51 public void voidLoad(Object [] args) {
52 if(! image.isLoaded ()) {
53 image.load = image.load;
54 image.load(filename);
55 }
56 }
57
58 // cache the value
59 public Point getExtent () {
60 if(extent == Point.ZERO && $ret != null) extent = $ret;
61 return extent;
62 }
63 }
64
65 // client usage
66 Image image = new Image ();
67 // create a proxy and still use the image object
68 ImageProxy proxy = new ImageProxy(image);
69 image.load("anImageFileName");
70 // the image will be loaded when it is really used
71 image.draw ();
72 image.getExtent ();
73 // use cache value in the future
74 image.getExtent = proxy.getExtent;
75 TextDocument text = new TextDocument ();
76 // transparent to others , so can be given to which only accepts Image
77 text.insert(image);

Consequences

DominoJ provides a way to do proxy by binding methods instead of using a wrapper. Although it needs
some tricks to do something like delay loading, the original object can be used directly. Furthermore,
the proxy policy can be applied dynamically. In the sample we toggle the getExtent method manually. A
solution to avoid toggling binding manually is inheriting from the original object and put the proxy logic
in it. However, the solution falls back to use subclassing, and clients have to decide using proxy or not.

9

Unpluggability The proxy can be unplugged by removing the binding.
Transparency Clients are unaware of proxy. What clients create is the same whether applying

proxy or not.
Non-inheritance When the same proxy logic is used in different classes, we can create a proxy for

all. We do not have to create a lot of proxies, and worry about which class should
be inherited from.

3.2 State Pattern

Intent

“Allow an object to alter its behavior when its internal state changes. The object will appear to change
its class.”—From the GoF book. With DominoJ all the state changes can be gathered together. This
makes state transition clear.

Sample Code in Java

1 // the class which uses states inside
2 public class TCPConnection {
3 private TCPState state;
4
5 public TCPConnection () {
6 state = TCPClosed :: getInstance ();
7 }
8
9 public void changeState(TCPState s) {

10 state = s;
11 }
12 }
13
14 // define state
15 public class TCPState {
16 public void transmit(TCPConnection t, TCPOctetStream s) {
17 :
18 }
19
20 public void activeOpen(TCPConnection t) {
21 :
22 }
23
24 public void passiveOpen(TCPConnection t) {
25 :
26 }
27
28 public void close(TCPConnection t) {
29 :
30 }
31
32 public void synchronize(TCPConnection t) {
33 :
34 }
35
36 public void acknowledge(TCPConnection t) {
37 :
38 }
39
40 public void send(TCPConnection t) {
41 :
42 }
43
44 public void changeState(TCPConnection t) {
45 t.changeState(this);
46 }
47 }
48
49 // here only show the detail in TCPClosed class
50 public class TCPEstablished extends TCPState {
51 :
52 }
53
54 public class TCPListen extends TCPState {
55 :
56 }
57
58 public class TCPClosed extends TCPState {
59 public void activeOpen(TCPConnection t) {
60 :
61 // change the state at the end
62 TCPEstablished.getInstance (). changeState(t);

10

63 }
64
65 public void passiveOpen(TCPConnection t) {
66 :
67 // change the state at the end
68 TCPListen.getInstance (). changeState(t);
69 }
70 :
71 }

Sample Code in DominoJ

1 // TCPConnection and TCPState are the same as the one in Java
2 public class TCPConnection {
3 private TCPState state;
4
5 public TCPConnection () {
6 state = TCPClosed :: getInstance ();
7 }
8
9 public void changeState(TCPState s) {

10 state = s;
11 }
12 }
13
14 public class TCPState {
15 public void transmit(TCPConnection t, TCPOctetStream s) {
16 :
17 }
18
19 public void activeOpen(TCPConnection t) {
20 :
21 }
22
23 public void passiveOpen(TCPConnection t) {
24 :
25 }
26
27 public void close(TCPConnection t) {
28 :
29 }
30
31 public void synchronize(TCPConnection t) {
32 :
33 }
34
35 public void acknowledge(TCPConnection t) {
36 :
37 }
38
39 public void send(TCPConnection t) {
40 :
41 }
42
43 public void changeState(TCPConnection t) {
44 t.changeState(this);
45 }
46 }
47
48 public class TCPEstablished extends TCPState {
49 :
50 }
51
52 public class TCPListen extends TCPState {
53 :
54 }
55
56 // the only difference is the state transition in TCPClosed
57 public class TCPClosed extends TCPState {
58 public TCPClosed () {
59 // state transition code
60 activeOpen += TCPEstablished.getInstance (). changeState;
61 passiveOpen += TCPListen.getInstance (). changeState;
62 }
63
64 public void activeOpen(TCPConnection t) {
65 :
66 // no need to change the state at the end
67 }
68
69 public void passiveOpen(TCPConnection t) {
70 :
71 // no need to change the state at the end
72 }

11

73 :
74 }

Consequences

The code of state transition is always specified at the end of methods, so it is a typical usage of appending
handler. In addition, the state transition can be adjusted dynamically.

Locality All state transition statements are defined in the same place, so the transition is
easy to understand.

3.3 Strategy Pattern

Intent

“Define a family of algorithms, encapsulate each one, and make them interchangeable. Strategy lets the
algorithm vary independently from clients that use it.”—From the GoF book. The GoF book mentions
two issues when applying this pattern. The first one is that clients must know how to choose between
different strategies. DominoJ can hide the strategies from clients by providing another interface. Clients
just give some conditions and do not have to decide which strategy object should be created. The
second one is the parameter passing. Every strategy may need different information for its algorithm.
The parameter passing is annoying because different strategies may need different information. Using
DominoJ the strategy switch is set inside the class.

Sample Code in Java

1 // the class which accepts different strategies
2 public class Composition {
3 private Compositor compositor;
4
5 public Composition(Compositor c) {
6 compositor = c;
7 :
8 }
9

10 public void repair () {
11 :
12 compositor.compose(...);
13 :
14 }
15 :
16 }
17
18 // the strategy
19 public class Compositor {
20 public abstract int compose(...);
21 }
22
23 public class SimpleCompositor extends Compositor {
24 public int compose (...) {
25 :
26 }
27 :
28 }
29
30 public class TeXCompositor extends Compositor {
31 public int compose (...) {
32 :
33 }
34 :
35 }
36
37 // client usage
38 // clients must know which strategy is suitable for the situation
39 Composition quick = new Composition(new SimpleCompositor ());
40 Composition slick = new Composition(new TeXCompositor ());

Sample Code in DominoJ

1 // the class which has several strategies
2 public class Composition {
3 // the method which will be called to do a strategy
4 private void compose () {}

12

5
6 // different strategies
7 private void compose_simple () {
8 :
9 }

10
11 private void compose_tex () {
12 :
13 }
14
15 // select a strategy automatically
16 // clients do not have to understand which one should be initialized
17 public void configure(...) {
18 ...
19 // bind to different strategies according to some conditions
20 ...
21 compose = compose_simple;
22 ...
23 compose = compose_tex;
24 }
25
26 public void repair () {
27 :
28 // no need to do annoying parameter passing
29 compose ();
30 :
31 }
32 :
33 }
34
35 // client usage
36 Composition composition = new Composition ();
37 // clients give some conditions instead of creating compositor manually
38 composition.configure(...);

Consequences

If the strategies are also used by other classes, we can separate strategies from Composition by moving
them to another class. The configure method is optional. If we hope no switch statement in Composition,
we can provide a select method for switching the binding directly or let clients bind the strategy by
themselves.
Unpluggability The pattern can be unplugged by removing the binding. We can leave the default

algorithm in compose method, so it can fall back to it when unplugging.
Composition When many steps in a class are exposed, clients do not have to know how to create

those strategy objects. We can also put a family of strategies into another class,
but parameter passing becomes necessary.

Transparency Usually a strategy is set for an algorithm rather than according to the situation,
so clients have to know the detail. DominoJ hides the detail from clients.

Non-inheritance The strategy is not dispatched by inheritance, so it can avoid defining a lot of class
families.

3.4 Visitor Pattern

Intent

“Represent an operation to be performed on the elements of an object structure. Visitor lets you define a
new operation without changing the classes of the elements on which it operates.”—From the GoF book.
The purpose of this pattern is a little similar to Composite pattern. Both of them provide a way to do
an operation on a bunch of components. The main difference is that Visitor pattern lets you put the
operation logic outside of component classes. GoF book uses Composite pattern (Chassis class) in this
sample, so we also show how to use with composite classes in DominoJ. In fact, with DominoJ composite
classes such as Chassis can be eliminated and all components can be connected directly (please refer to
Composite pattern).

Sample Code in Java

1 // we want to define a visitor for this class
2 public class Equipment {
3 public int netPrice () {
4 :
5 }

13

6
7 public int discountPrice () {
8 :
9 }

10
11 public abstract void accept(EquipmentVisitor visitor);
12 :
13 }
14
15 public class Disk extends Equipment {
16 public void accept(EquipmentVisitor visitor) {
17 visitor.visitDisk(this);
18 }
19 }
20
21 public class Chassis extends Equipment {
22 ArrayList <Equipment > parts;
23
24 public Chassis () {
25 parts = new ArrayList <Equipment >();
26 }
27
28 public void accept(EquipmentVisitor visitor) {
29 Iterator <Equipment > iterator = parts.iterator ();
30 while(iterator.hasNext ()) {
31 iterator.next (). accept(visitor);
32 }
33 visitor.visitChassis(this);
34 }
35 :
36 }
37
38 public class EquipmentVisitor {
39 public abstract void visitDisk(Disk d);
40 public abstract void visitChassis(Chassis c);
41 }
42
43 public class PricingVisitor extends EquipmentVisitor {
44 private int total;
45
46 public int getTotalPrice () {
47 return total;
48 }
49
50 public void visitDisk(Disk d) {
51 total += d.netPrice ();
52 }
53
54 public void visitChassis(Chassis c) {
55 total += c.discountPrice ();
56 }
57 }
58
59 // client usage
60 PricingVisitor visitor = new PricingVisitor ();
61 // assume equipment can be gotten by the following method
62 Equipment [] components = getEquipments ();
63 for(int i=0; i<components.length; i++) {
64 components[i]. accept(visitor);
65 }
66 int total = visitor.getTotalPrice ();

Sample Code in DominoJ

1 // first define visitor interface for accept method
2 // the accept method in this sample is used for composite class
3 // actually there is no need to define composite class
4 public interface IEquipmentVisitor {
5 // provide a slot for visitor
6 public Equipment visit ();
7 }
8
9 // we want to define a visitor for this class

10 public class Equipment {
11 public int netPrice () {
12 :
13 }
14
15 public int discountPrice () {
16 :
17 }
18
19 public Equipment visit() {
20 return this;

14

21 }
22
23 // give clients a method to set the binding , you also can do it in client
24 public void accept(IEquipmentVisitor visitor) {
25 visitor.visit += visit;
26 visitor.visit += visitor.visit;
27 }
28 :
29 }
30
31 public class Disk extends Equipment {
32 :
33 }
34
35 // with DominoJ you can avoid defining such composite class
36 // please refer to Composite pattern section
37 public class Chassis extends Equipment {
38 ArrayList <Equipment > parts;
39
40 public Chassis () {
41 parts = new ArrayList <Equipment >();
42 }
43
44 public void accept(IEquipmentVisitor visitor) {
45 Iterator <Equipment > iterator = parts.iterator ();
46 while(iterator.hasNext ()) {
47 visitor.visit += iterator.next (). visit;
48 visitor.visit += visitor.visit;
49 }
50 visitor.visit += visit;
51 visitor.visit += visitor.visit;
52 }
53 }
54
55 // the purpose of the visitor is calculating total price
56 public class PricingVisitor implements IEquipmentVisitor {
57 private int total;
58
59 public int getTotalPrice () {
60 return total;
61 }
62
63 public Equipment visit() {
64 if($ret != null) {
65 if($ret instanceof Disk) total += $ret.netPrice ();
66 else if($ret instanceof Chassis) total += $ret.discountPrice ();
67 }
68 return null;
69 }
70 }
71
72 // client usage
73 PricingVisitor visitor = new PricingVisitor ();
74 // assume equipment can be gotten by the following method
75 Equipment [] components = getEquipments ();
76 // set the binding
77 for(int i=0; i<components.length; i++) {
78 // if we do not use composite class , we can set the binding here , for example:
79 // visitor.visit += components [i]. visit;
80 // visitor.visit += visitor.visit;
81 components[i]. accept(visitor);
82 }
83 // start visiting
84 visitor.visit ();
85 // get result
86 int total = visitor.getTotalPrice ();

Consequences

Using DominoJ can avoid the similar method calling in every subclass such as visitDisk method and
visitChassis method. The visit method can be defined in parent class and simply return itself. All handling
for different subclasses are moved to visitor class. When adding a new subclass, only the visitor should
be modified. Furthermore, if we remove Chassis in this sample, accept method and IEquipmentVisitor are
also unnecessary. Clients can set the binding by themselves.

15

Locality Unlike accept method, visit method is defined in parent class. We do not have to
define accept method in subclasses. On the other hand, putting the handling for
subclasses in one method of visitor class makes it possible to share the same logic for
different subclasses. For example, maybe the handling for Disk and Chassis are the
same, and we do not have to maintain the same code in visitDisk and visitChassis.
Besides, it can provide default behavior for the subclass that may be declared in
the future.

Unpluggability The visitor pattern can be disabled simply by removing the visit method in the
parent class.

Composition When there are different class families and the behaviors of their visitors are the
same, the visitors can be shared by setting the return type of visit method to Object.

4 An alternative to inheritance

4.1 Abstract Factory Pattern

Intent

“Provide an interface for creating families of related or dependent objects without specifying their concrete
classes.”—From the GoF book. In some cases the objects in different product families have the same
feature, for example, MotifScrollBar and MotifWindow in the following sample. We cannot extract the
feature to their parent class because they have inherited from different products and multiple inheritance
is prohibited in Java. The following sample shows how to use DominoJ to resolve the problem.

Sample Code in Java

1 // define the factory for creating products
2 public abstract class WidgetFactory {
3 public abstract ScrollBar createScrollBar ();
4 public abstract Window createWindow ();
5 :
6 }
7
8 // a concrete factory
9 public class MotifWidgetFactory extends WidgetFactory {

10 public ScrollBar createScrollBar () {
11 return new MotifScrollBar ();
12 }
13
14 public Window createWindow () {
15 return new MotifWindow ();
16 }
17 }
18
19 // define the first product family
20 public abstract class ScrollBar {
21 :
22 }
23
24 public class MotifScrollBar extends ScrollBar {
25 // the common feature which can be used in MotifScrollBar and MotifWindow
26 public void transparent () {
27 :
28 }
29 :
30 }
31
32 // define the second product family
33 public abstract class Window {
34 :
35 }
36
37 public class MotifWindow extends Window {
38 // the common feature which can be used in MotifScrollBar and MotifWindow
39 public void transparent () {
40 :
41 }
42 :
43 }
44
45 // client usage
46 // create a concrete factory
47 MotifWidgetFactory factory = new MotifWidgetFactory ();
48 // create products without specifying their concrete classes

16

49 Window w = factory.createWindow ();
50 ScrollBar s = factory.createScrollBar ();

Sample Code in DominoJ

1 // MotifScrollBar and MotifWindow also need to inherit from Motif for some features
2 // but Motif , ScrollBar , and Window cannot be interfaces
3 // because they all have implementation
4 // the factory is the same as the one in Java
5 public abstract class WidgetFactory {
6 public abstract ScrollBar createScrollBar ();
7 public abstract Window createWindow ();
8 :
9 }

10
11 // a concrete factory
12 public class MotifWidgetFactory extends WidgetFactory {
13 public ScrollBar createScrollBar () {
14 return new MotifScrollBar ();
15 }
16 public Window createWindow () {
17 return new MotifWindow ();
18 }
19 }
20
21 // you can define an interface for those methods and bind implementation to them
22 public interface IMotif {
23 public void transparent ();
24 }
25
26 // then put the implementation in Motif class
27 public class Motif implements IMotif {
28 // let all Motif widgets share the same object
29 private static motif = null;
30
31 public static Motif getInstance () {
32 if(motif == null) motif = new Motif ();
33 return motif;
34 }
35
36 // the common feature which can be used in MotifScrollBar and MotifWindow
37 public void transparent () {
38 :
39 }
40 :
41 }
42
43 // replace the implementation with the one in Motif
44 public class MotifScrollBar extends ScrollBar implements IMotif {
45 public MotifScrollBar () {
46 transparent = Motif.getInstance (). transparent;
47 :
48 }
49
50 // empty method for binding
51 public void transparent () {}
52 :
53 }
54
55 // maybe there are additional operations for MotifWindow
56 // we use += or ^= instead of =
57 public class MotifWindow extends Window implements IMotif {
58 public MotifWindow () {
59 // call transparent method in Motif after transparent method is called
60 transparent += Motif.getInstance (). transparent;
61 :
62 }
63
64 // put additional operations in this method
65 public void transparent () {
66 :
67 }
68 :
69 }
70
71 // client usage is the same as the one in Java
72 // create a concrete factory
73 MotifWidgetFactory factory = new MotifWidgetFactory ();
74 Window w = factory.createWindow ();
75 ScrollBar s = factory.createScrollBar ();

17

Consequences

DominoJ helps to extract the common implementation among objects in different product families such
as transparent method in this sample.

Locality In this example, common features in MotifScrollBar and MotifWindow can be ex-
tracted into another class, Motif.

Non-inheritance Unlike interface, using this approach can gather similar implementation together,
and allow the objects to inherit from other classes.

4.2 Bridge Pattern

Intent

“Decouple an abstraction from its implementation so that the two can vary independently.”—From the
GoF book. The following sample shows how to use the implementor in the abstraction and its sub-
classes. The detail of implementor (WindowImpl) is defined in concrete implementors (XWindowImpl and
PMWindowImpl), and use inheritance to delegate. If we also want to let XWindowImpl inherit from XImpl
for some reasons, we have to choose between WindowImpl and Ximpl. With DominoJ XWindowImpl and
PMWindowImpl can be delegated without using inheritance.

Sample Code in Java

1 // the abstraction class , which only needs to know WindowImpl
2 public class Window {
3 private WindowImpl impl = null;
4
5 public WindowImpl getWindowImpl () {
6 if(impl == null) {
7 // return a XWindowImpl or PMWindowImpl object
8 impl = WindowSystemFactory.getInstance (). makeWindowImpl ();
9 }

10 }
11 :
12 }
13
14 // the class delegate its method to subclasses
15 public abstract class WindowImpl {
16 :
17 public abstract void deviceBitmap(String filename , int l, int t, int r, int b);
18 }
19
20 public class XWindowImpl extends WindowImpl {
21 :
22 public void deviceBitmap(String filename , int l, int t, int r, int b) {
23 :
24 }
25 }
26
27 public class PMWindowImpl extends WindowImpl {
28 :
29 public void deviceBitmap(String filename , int l, int t, int r, int b) {
30 :
31 }
32 }
33
34 public class WindowSystemFactory {
35 private WindowSystemFactory factory = null;
36
37 public static getInstance () {
38 if(factory == null) {
39 factory = new WindowSystemFactory ();
40 }
41 return factory;
42 }
43
44 public WindowImpl makeWindowImpl () {
45 WindowImpl impl;
46 // create an object of subclass of WindowImpl according to some conditions
47 :
48 impl = new XWindowImpl ();
49 :
50 impl = new PMWindowImpl ();
51 return impl;
52 }
53 }
54
55 // usage

18

56 public class IconWindow extends Window {
57 private String filename;
58 :
59 public void drawContents () {
60 WindowImpl impl = getWindowImpl ();
61 if(impl != null) impl.deviceBitmap(filename , 0, 0, 0, 0);
62 }
63 }

Sample Code in DominoJ

1 // the abstraction class is the same as the one in Java
2 public class Window {
3 private WindowImpl impl = null;
4
5 public WindowImpl getWindowImpl () {
6 if(impl == null) {
7 // return a XWindowImpl or PMWindowImpl object
8 impl = WindowSystemFactory.getInstance (). makeWindowImpl ();
9 }

10 }
11 :
12 }
13
14 // maybe XWindowImpl has inherited from XImpl
15 // and PMWindowImpl has inherited from PMImpl
16 // so we cannot create WindowImpl class as their parent
17 // define IWindowImpl for consistency
18 public interface IWindowImpl {
19 public void deviceBitmap(String filename , int l, int t, int r, int b);
20 }
21
22 // WindowImpl is used directly , so it cannot be abstract
23 public class WindowImpl implements IWindowImpl {
24 :
25 // empty method for binding
26 public void deviceBitmap(String filename , int l, int t, int r, int b) {}
27 }
28
29 public class XWindowImpl extends XImpl implements IWindowImpl {
30 :
31 public void deviceBitmap(String filename , int l, int t, int r, int b) {
32 :
33 }
34 }
35
36 public class PMWindowImpl extends PMImpl implements IWindowImpl {
37 :
38 public void deviceBitmap(String filename , int l, int t, int r, int b) {
39 :
40 }
41 }
42
43 // WindowSystemFactory always creates a WindowImpl object
44 // but replace its implementation
45 public class WindowSystemFactory {
46 private WindowSystemFactory factory = null;
47 private IWindowImpl real;
48
49 public static getInstance () {
50 if(factory == null) {
51 factory = new WindowSystemFactory ();
52 }
53 return factory;
54 }
55
56 public WindowImpl makeWindowImpl () {
57 // the object will be used
58 WindowImpl impl = new WindowImpl ();
59 // create an object of subclass of WindowImpl according to some conditions
60 ...
61 real = new XWindowImpl ();
62 ...
63 real = new PMWindowImpl ();
64 // and bind its implementation to the WindowImpl object
65 impl.deviceBitmap = real.deviceBitmap;
66 return impl;
67 }
68 }
69
70 // the usage is the same as the one in Java
71 public class IconWindow extends Window {
72 private String filename;
73 :

19

74 public void drawContents () {
75 WindowImpl impl = getWindowImpl ();
76 if(impl != null) impl.deviceBitmap(filename , 0, 0, 0, 0);
77 }
78 }

Consequences

This sample shows a typical usage of DominoJ. The methods are delegated by binding instead of inheri-
tance.
Locality XWindowImpl and PMWindowImpl can inherit from XImpl and PMImpl respectively

to avoid implementing the same logic again.
Non-inheritance The approach allows the implementor is delegated by non-inheritance way, and

lets concrete implementors inherit from other classes for getting some common
implementations.

4.3 Builder Pattern

Intent

“Separate the construction of a complex object from its representation so that the same construction
process can create different representations.”—From the GoF book. Sometimes the concrete builders
need to inherit from other classes for its implementation, but we still want to put some common code in
the builder class. Using DominoJ the delegation of builder class can be done by binding.

Sample Code in Java

1 // the output
2 public class Maze {
3 :
4 }
5
6 // the director class
7 public class MazeGame {
8 :
9 // this method calls builder to construct

10 public Maze createMaze(MazeBuilder builder) {
11 builder.buildMaze ();
12 builder.buildRoom (1);
13 builder.buildRoom (2);
14 builder.buildDoor(1, 2);
15 return builder.getMaze ();
16 }
17
18 // construct another Maze
19 public Maze createComplexMaze(MazeBuilder builder) {
20 builder.builderRoom (1);
21 :
22 builder.buildRoom (1001);
23 return builder.getMaze ();
24 }
25 }
26
27 // builder class
28 public abstract class MazeBuilder {
29 public void buildMaze () {}
30 public void buildRoom(int n) {}
31 public void buildDoor(int from , int to) {}
32 public Maze getMaze () {
33 return 0;
34 }
35 }
36
37 // define a concrete builder
38 public class StandardMazeBuilder extends MazeBuilder {
39 private Maze maze = null;
40
41 public void buildMaze () {
42 maze = new Maze ();
43 }
44
45 public void buildRoom(int n) {
46 :
47 }
48
49 public void buildDoor(int from , int to) {

20

50 :
51 }
52
53 public Maze getMaze () {
54 return maze;
55 }
56 }
57
58 // client usage
59 MazeGame game = new MazeGame ();
60 StandardMazeBuilder builder = new StandardMazeBuilder ();
61 game.createMaze(builder);
62 Maze maze = builder.getMaze ();

Sample Code in DominoJ

1 // Maze class is the same as the one in Java
2 public class Maze {
3 :
4 }
5
6 // MazeGame class is the same as the one in Java
7 public class MazeGame {
8 :
9 // this method calls builder to construct

10 public Maze createMaze(MazeBuilder builder) {
11 builder.buildMaze ();
12 builder.buildRoom (1);
13 builder.buildRoom (2);
14 builder.buildDoor(1, 2);
15 return builder.getMaze ();
16 }
17
18 // construct another Maze
19 public Maze createComplexMaze(MazeBuilder builder) {
20 builder.builderRoom (1);
21 :
22 builder.buildRoom (1001);
23 return builder.getMaze ();
24 }
25 }
26
27 // MazeBuilder will be used directly , so it cannot be abstract
28 public class MazeBuilder {
29 public void buildMaze () {}
30 public void buildRoom(int n) {}
31 public void buildDoor(int from , int to) {}
32 public Maze getMaze () {
33 return 0;
34 }
35 }
36
37 // assume that StandardMazeBuilder has to inherit from another class Standard
38 public class StandardMazeBuilder extends Standard {
39 private Maze maze = null;
40 private MazeBuilder builder;
41
42 public StandardMazeBuilder () {
43 builder = new MazeBuilder ();
44 // redirect the calling
45 builder.buildMaze = buildMaze;
46 builder.buildRoom = buildRoom;
47 builder.buildDoor = buildDoor;
48 builder.getMaze = getMaze;
49 }
50
51 public MazeBuilder getBuilder () {
52 return builder;
53 }
54
55 public void buildMaze () {
56 maze = new Maze ();
57 }
58
59 public void buildRoom(int n) {
60 :
61 }
62
63 public void buildDoor(int from , int to) {
64 :
65 }
66
67 public Maze getMaze () {
68 return maze;

21

69 }
70 }
71
72 // client usage
73 MazeGame game = new MazeGame ();
74 StandardMazeBuilder standard = new StandardMazeBuilder ();
75 MazeBuilder builder = standard.getBuilder ();
76 game.createMaze(builder);
77 Maze maze = builder.getMaze ();

Consequences

Although in most cases the builder looks like an interface, sometimes we need to keep some fields in it.
However, the concrete builders also want to take advantage of other classes for their construction process.
Using DominoJ the issue can be resolved.

Locality StandardMazeBuilder can get the feature from Standard by inheritance rather than
copying the code.

Non-inheritance This sample shows how to use the binding in DominoJ instead of inheritance.
Concrete builders can inherit from other classes for reusing the code in their con-
struction process. It avoids maintaining similar code in different places.

4.4 Factory Method Pattern

Intent

“Define an interface for creating an object, but let subclasses decide which class to instantiate. Factory
Method lets a class defer instantiation to subclasses.”—From the GoF book. In this pattern DominoJ
can replace product instantiation methods easily, so we do not need to subclass the creator for replacing
those methods.

Sample Code in Java

1 // the creator class , which has factory methods for instantiate products
2 public class MazeGame {
3 public Maze makeMaze () {
4 return new Maze ();
5 }
6
7 public Room makeRoom(int n) {
8 return new Room(n);
9 }

10
11 public Wall makeWall () {
12 return new Wall ();
13 }
14
15 public Door makeDoor(Room r1, Room r2) {
16 return new Door(r1, r2);
17 }
18
19 // call factory methods to instantiate products
20 public Maze createMaze () {
21 Maze m = makeMaze ();
22 Room r1 = new MakeRoom (1);
23 Room r2 = new MakeRoom (2);
24 Door d = makeDoor(r1 , r2);
25 m.addRoom(r1);
26 m.addRoom(r2);
27 :
28 return m;
29 }
30 }
31
32 // a concrete creator class
33 public class BombedMazeGame extends MazeGame {
34 // some product instantiation method are replaced
35 public Wall makeWall () {
36 return new BombedWall ();
37 }
38
39 public Room makeRoom(int n) {
40 return new RoomWithABomb(n);
41 }
42
43 // common "Bombed" feature

22

44 public void bomb() {
45 :
46 }
47 :
48 }
49
50 // another concrete creator class
51 public class EnchantedMazeGame extends MazeGame {
52 // some product instantiation method are replaced
53 public Room makeRoom (int n) {
54 return new EnchantedRoom(n, castSpell ());
55 }
56
57 public Door makeDoor(Room r1, Room r2) {
58 return new DoorNeedingSpell(r1, r2);
59 }
60
61 public Spell castSpell () {
62 :
63 }
64
65 // common "Enchanted " feature
66 public void enchant () {
67 :
68 }
69 :
70 }
71
72 // client usage
73 // create different subclasses for different products
74 BombedMazeGame bmg = new BombedMazeGame ();
75 Maze m1 = bmg.createMaze ();
76 EnchantedMazeGame emg = new EnchantedMazeGame ();
77 Maze m2 = emg.createMaze ();

Sample Code in DominoJ

1 // MazeGame class is the same as the one in Java
2 public class MazeGame {
3 public Maze makeMaze () {
4 return new Maze ();
5 }
6
7 public Room makeRoom(int n) {
8 return new Room(n);
9 }

10
11 public Wall makeWall () {
12 return new Wall ();
13 }
14
15 public Door makeDoor(Room r1, Room r2) {
16 return new Door(r1, r2);
17 }
18
19 // call several methods to instantiate products
20 public Maze createMaze () {
21 Maze m = makeMaze ();
22 Room r1 = new MakeRoom (1);
23 Room r2 = new MakeRoom (2);
24 Door d = makeDoor(r1 , r2);
25 m.addRoom(r1);
26 m.addRoom(r2);
27 :
28 return m;
29 }
30 }
31
32 public class Bombed {
33 // common "Bombed" feature
34 public void bomb() {
35 :
36 }
37 }
38
39 // if BombedMazeGame has to inherit from another class Bombed
40 public class BombedMazeGame extends Bombed {
41 MazeGame mg;
42
43 public BombedMazeGame () {
44 mg = new MazeGame ();
45 mg.makeWall = makeWall;
46 mg.makeRoom = makeRoom;
47 createMaze = mg.createMaze;

23

48 }
49
50 public Maze createMaze () {
51 return null;
52 }
53
54 public Wall makeWall () {
55 return new BombedWall ();
56 }
57
58 public Room makeRoom(int n) {
59 return new RoomWithABomb(n);
60 }
61 :
62 }
63
64 public class Enchanted {
65 // common "Enchanted " feature
66 public void enchant () {
67 :
68 }
69 }
70
71 // if EnchantedMazeGame has to inherit from another class Enchanted
72 public class EnchantedMazeGame extends Enchanted {
73 MazeGame mg;
74
75 public EnchantedMazeGame () {
76 mg = new MazeGame ();
77 mg.makeRoom = makeRoom;
78 mg.makeDoor = makeDoor;
79 createMaze = mg.createMaze;
80 }
81
82 public Maze createMaze () {
83 return null;
84 }
85
86 public Room makeRoom (int n) {
87 return new EnchantedRoom(n, castSpell ());
88 }
89
90 public Door makeDoor(Room r1, Room r2) {
91 return new DoorNeedingSpell(r1, r2);
92 }
93
94 public Spell castSpell () {
95 :
96 }
97 :
98 }
99

100 // client usage is the same as the one in Java
101 BombedMazeGame bmg = new BombedMazeGame ();
102 Maze m1 = bmg.createMaze ();
103 EnchantedMazeGame emg = new EnchantedMazeGame ();
104 Maze m2 = emg.createMaze ();

Consequences

In this sample we replace inheritance with the binding for delegating factory methods.

Locality In order to avoid implementing the same logic twice, BombedMazeGame and En-
chantedMazeGame can inherit from Bombed and Enchanted, respectively.

Non-inheritance The factory methods in creator are delegated by binding, so concrete creators can
inherit from other classes.

4.5 Template Method Pattern

Intent

“Define the skeleton of an algorithm in an operation, deferring some steps to subclasses. Template Method
lets subclasses redefine certain steps of an algorithm without changing the algorithm’s structure.”—From
the GoF book. This pattern divides an operation in one class into some steps and let subclasses have the
ability to redefine the implementation in the steps. On the other hand, we cannot let the subclasses take
advantage of other classes by multiple inheritance. With DominoJ the “subclasses” role can inherit from
another class, and the original “parent class” role still can defer the steps by binding.

24

Sample Code in Java

1 // clients always call display method of View
2 public class View {
3 public void display () {
4 // this operation are divided into 3 steps
5 // only doDisplay method can be replaced by subclasses
6 setFocus ();
7 doDisplay ();
8 resetFocus ();
9 }

10
11 private void setFocus () {
12 :
13 }
14
15 // doDisplay do nothing in this class. subclasses can override it
16 protected void doDisplay () {}
17
18 private void resetFocus () {
19 :
20 }
21 :
22 }
23
24 // subclasses override doDisplay method to add specific drawing behavior
25 public class FancyView extends View {
26 protected void doDisplay () {
27 // add specific drawing behavior here
28 :
29 }
30
31 // common "Fancy" feature
32 public void getInfo () {
33 :
34 }
35 }
36
37 // client usage
38 FancyView view = new FancyView ();
39 view.display ();

Sample Code in DominoJ

1 // clients always call display method of View
2 public class View {
3 public void display () {
4 // this operation are divided into 3 steps
5 // only doDisplay method can be replaced by binding
6 setFocus ();
7 doDisplay ();
8 resetFocus ();
9 }

10
11 private void setFocus () {
12 :
13 }
14
15 // doDisplay must be public
16 public void doDisplay () {}
17
18 private void resetFocus () {
19 :
20 }
21 :
22 }
23
24 public class Fancy {
25 // common "Fancy" feature
26 public void getInfo () {
27 :
28 }
29 }
30
31 // if FancyView has to inherit from another class Fancy
32 public class FancyView extends Fancy {
33 View view;
34
35 public FancyView () {
36 view = new View ();
37 view.doDisplay = doDisplay;
38 }
39

25

40 public View getView () {
41 return view;
42 }
43
44 public void doDisplay () {
45 // add specific drawing behavior here
46 :
47 }
48 }
49
50 // client usage
51 FancyView my = new FancyView ();
52 View view = my.getView ();
53 view.display ();

Consequences

In the sample FancyView can use the logic in Fancy by inheritance rather than copy it to FancyView. And
the redefinition of doDisplay method still can be used by View.

Locality FancyView can inherit from Fancy to avoid duplicating code.
Non-inheritance DominoJ provides an alternative to inheritance for this pattern. This pattern can

be applied even if FancyView does not inherit from View. We can decide whether
using inheritance or binding depending on the circumstances.

5 Parameters passing

5.1 Adapter Pattern

Intent

“Convert the interface of a class into another interface clients expect. Adapter lets classes work together
that could not otherwise because of incompatible interfaces.”—From the GoF book. The binding can pass
parameters between methods, but the signatures of methods must be the same except their names. The
simplest case is that the methods in adapter and adaptee are almost the same except their names, but
it is a rare case. In the following example taken from [1], the binding can be used in the adapter for
bypassing to its component and setting execution order.

Sample Code in Java

1 // if you would like to rewrite an awt program using JFC
2 // JFC JList is adaptee , and awt List is adapter
3 // define an interface according to awt List
4 public interface awtList {
5 public void add(String s);
6 public void remove(String s);
7 public String [] getSelectedItems ();
8 }
9

10 // object adapter
11 // wrap JFC JList and let it looks like awt List
12 // client can use it without changing original methods in the program
13 public class JawtList extends JScrollPane implements awtList {
14 private JList window;
15 // use JListData as model. its definition is shown below
16 private JListData contents;
17
18 public JawtList(int rows) {
19 contents = new JListData ();
20 window = new JList(contents);
21 :
22 }
23
24 public void add(String s) {
25 contents.addElement(s);
26 }
27
28 public void remove(String s) {
29 contents.removeElement(s);
30 }
31
32 public String [] getSelectedItems () {
33 Object [] obj = window.getSelectedValues ();
34 String [] s = new String[obj.length];

26

35 for(int i=0; i<obj.length; i++) {
36 s[i] = obj[i]. toString ();
37 }
38 return s;
39 }
40 }
41
42 // define JListData , the model used in JList
43 public class JListData extends AbstractListModel {
44 private Vector data;
45
46 public JListData () {
47 data = new Vector ();
48 }
49
50 public void addElement(String s) {
51 data.addElement(s);
52 fireIntervalAdded(this , data.size()-1, data.size ());
53 }
54
55 public void removeElement(String s) {
56 data.removeElement(s);
57 fireIntervalRemoved(this , 0, data.size ());
58 }
59 }

Sample Code in DominoJ

1 // the interface is the same as the one in Java
2 public interface awtList {
3 public void add(String s);
4 public void remove(String s);
5 public String [] getSelectedItems ();
6 }
7
8 // can be used to bypass implementation or pass parameters
9 // when the signature of methods are the same

10 public class JawtList extends JScrollPane implements awtList {
11 private JList window;
12 private JListData contents;
13
14 public JawtList(int rows) {
15 contents = new JListData ();
16 window = new JList(contents);
17 // bypass to contents
18 // maybe some methods can be bypassed directly
19 add = contents.addElement;
20 remove = contents.removeElement;
21 :
22 }
23
24 // empty methods for binding
25 public void add(String s) {}
26 public void remove(String s) {}
27
28 public String [] getSelectedItems () {
29 Object [] obj = window.getSelectedValues ();
30 String [] s = new String[obj.length];
31 for(int i=0; i<obj.length; i++) {
32 s[i] = obj[i]. toString ();
33 }
34 return s;
35 }
36 }
37
38 // define JListData
39 public class JListData extends AbstractListModel {
40 private Vector data;
41
42 public JListData () {
43 data = new Vector ();
44 // you may put data related code here
45 // and set the execution order
46 addElement ^= data.addElement;
47 removeElement ^= data.removeElement;
48 }
49
50 public void addElement(String s) {
51 fireIntervalAdded(this , data.size()-1, data.size ());
52 }
53
54 public void removeElement(String s) {
55 fireIntervalRemoved(this , 0, data.size ());
56 }

27

57 }

Consequences

The method bypassing is quite intuitive and makes code clear. The execution order setting is useful when
there are more complicated execution dependencies. By setting the execution order we can avoid calling
them one by one in methods explicitly.

Locality The code of method bypassing and execution order setting can be gathered together.
This makes the code easy to understand.

5.2 Facade Pattern

Intent

“Provide a unified interface to a set of interfaces in a subsystem. Facade defines a higher-level interface
that makes the subsystem easier to use.”—From the GoF book. For this pattern, the binding only can
be applied when the interface of subsystems are designed for it. Because the signature of methods in a
binding must be the same, it needs some trick to define the interface of subsystems. If the interfaces can
be bound by DominoJ, the interaction among subsystems is more clear and easy to change.

Sample Code in Java

1 // there are 3 subsystems : authentication , authorization , and database
2 public class Authentication {
3 public Token authenticate(String id, String pw) {
4 :
5 }
6 :
7 }
8
9 public class Authorization {

10 public Ticket authorize(Token t) {
11 :
12 }
13 :
14 }
15
16 public class Database {
17 public FileList getFileList(Ticket t) {
18 :
19 }
20 :
21 }
22
23 // the facade provides a simple method to get file list by id and password
24 // without sending request to several subsystems in order
25 public class Facade {
26 public FileList getFilesByIdPw(String id , String pw) {
27 // get a token from authentication subsystem
28 Authentication authen = Authentication.getInstance ();
29 Token token = authen.authenticate(id, pw);
30 if(token == null) return null;
31 // give authorization subsystem the token to get a ticket
32 Authorization author = Authorization.getInstance ();
33 Ticket ticket = author.authorize(token);
34 if(ticket == null) return null;
35 // give database subsystem the ticket for querying file list
36 Database database = Database.getInstance ();
37 return database.getFileList(ticket);
38 }
39 :
40 }

Sample Code in DominoJ

1 // the three subsystems
2 public class Authentication {
3 public Token authenticate(String id, String pw) {
4 :
5 }
6
7 // add an adapter method
8 public Object authenticate(Object [] obj) {

28

9 if(obj.length < 2 || ! (obj[0] instanceof String) || ! (obj[1] instanceof String)) return null;
10 return authenticate ((String)obj[0], (String)obj [1]);
11 }
12 :
13 }
14
15 public class Authorization {
16 public Ticket authorize(Token t) {
17 :
18 }
19
20 // add an adapter method
21 public Object authorize(Object [] obj) {
22 if(! ($ret instanceof Token)) return null;
23 return authorize ((Token)$ret);
24 }
25 :
26 }
27
28 public class Database {
29 public FileList getFileList(Ticket t) {
30 :
31 }
32
33 // add an adapter method
34 public Object getFileList(Object [] obj) {
35 if(! ($ret instanceof Ticket)) return null;
36 return getFileList ((Ticket)$ret);
37 }
38 :
39 }
40
41 // the facade class
42 public class Facade {
43 public Facade () {
44 Authentication authen = Authentication.getInstance ();
45 Authorization author = Authorization.getInstance ();
46 Database database = Database.getInstance ();
47 // authenticate always should be done before authorize
48 author.authorize ^= authen.authenticate;
49 // authorize always should be done before getFileList
50 database.getFileList ^= author.authorize;
51 // define more execution order
52 :
53 }
54
55 public FileList getFilesByIdPw(String id , String pw) {
56 // just focus on main logic
57 Database database = Database.getInstance ();
58 Object obj = database.getFileList(new Object []{id , pw})
59 if(obj instanceof FileList) return (FileList)obj;
60 else return null;
61 }
62 }

Consequences

With the defined execution order, we can avoid putting similar logic into every method. In this sample
most methods in Facade need authentication and authorization. We move the calling from getFilesByIdPw
to the constructor, so we do not have to write the calling for other methods again. The return value of
getFilesByIdPw also can be sent to other methods by binding.

Locality Similar method calling in methods of the facade class can be collected. The ex-
ecution order can be expressed more meaningfully. When the basic behavior is
changed, for example the parameters of authorize method is changed or adding one
operation between authenticate and authorize, we do not need to check the calling
in every method.

5.3 Mediator Pattern

Intent

“Define an object that encapsulates how a set of objects interact. Mediator promotes loose coupling by
keeping objects from referring to each other explicitly, and it lets you vary their interaction indepen-
dently.”—From the GoF book. In this pattern the binding can be applied only when the interface of
objects are designed for it. In order to bind between methods, the signature of methods must be the
same except their names.

29

Sample Code in Java

1 // the base class of colleague classes. it knows its mediator
2 public class Widget {
3 // keep its mediator
4 private DialogDirector director;
5
6 public Widget(DialogDirector d) {
7 director = d;
8 }
9

10 public void changed () {
11 director.widgetChanged(this);
12 }
13 :
14 }
15
16 // colleague class
17 public class Button extends Widget {
18 :
19 }
20
21 // colleague class. a widget to let user picks up a string for the list
22 public class ListBox extends Widget {
23 // keep current selected string
24 private String current;
25
26 public String getSelection () {
27 return current;
28 }
29
30 // this method will be called when user clicks on an item in the list
31 public void setSelection(String s) {
32 current = s;
33 changed ();
34 }
35 :
36 }
37
38 // colleague class. a widget which shows a string
39 public class EntryField extends Widget {
40 // the string shown in the field
41 private String text;
42
43 public void setText(String s) {
44 text = s;
45 changed ();
46 }
47 :
48 }
49
50 // the mediator
51 public class DialogDirector {
52 public abstract void widgetChanged(Widget w);
53 protected abstract void createWidgets ();
54 :
55 }
56
57 // a concrete mediator for coordinating colleagues in FontDialog
58 public class FontDialogDirector extends DialogDirector {
59 private Button ok;
60 private Button cancel;
61 private ListBox fontList;
62 private EntryField fontName;
63
64 public void widgetChanged(Widget w) {
65 if(w == fontList) {
66 // pass the selected string from ListBox to EntryField
67 fontName.setText(fontList.getSelection ());
68 } else if(w == fontName) {
69 :
70 } ...
71 }
72
73 protected void createWidgets () {
74 ok = new Button(this);
75 cancel = new Button(this);
76 fontList = new ListBox(this);
77 fontName = new EntryField(this);
78 }
79 }

Sample Code in DominoJ

30

1 // the base class of colleague class. no need to keep its mediator
2 public class Widget {
3 // no need to notify director manually
4 :
5 }
6
7 // colleague class
8 public class Button extends Widget {
9 :

10 }
11
12 // colleague class. a widget to let user picks up a string for the list
13 public class ListBox extends Widget {
14 // keep current selected string
15 private String current;
16
17 public String getSelection () {
18 return current;
19 }
20
21 // this method will be called when user clicks on an item in the list
22 public void setSelection(String s) {
23 current = s;
24 // no need to call changed ()
25 }
26 :
27 }
28
29 // colleague class. a widget which shows a string
30 public class EntryField extends Widget {
31 // the string shown in the field
32 private String text;
33
34 public void setText(String s) {
35 text = s;
36 // no need to call changed ()
37 }
38 :
39 }
40
41 // the mediator
42 public class DialogDirector {
43 protected abstract void createWidgets ();
44 :
45 }
46
47 // concrete mediator which coordinates colleague objects
48 public class FontDialogDirector extends DialogDirector {
49 private Button ok;
50 private Button cancel;
51 private ListBox fontList;
52 private EntryField fontName;
53
54 protected void createWidgets () {
55 ok = new Button(this);
56 cancel = new Button(this);
57 fontList = new ListBox(this);
58 fontName = new EntryField(this);
59 // define the behavior here
60 // no need to call changed () in every widget ,
61 // and the director doesn ’t have to switch the action in widgetChanged ()
62 fontList.setSelection += fontName.setText;
63 }
64 }

Consequences

In this sample we bind setText method in EntryField to setSelection method in ListBox because the param-
eter passing is simple. When user clicks on a string, the string will be sent to EntryField automatically.
The binding avoid calling getSelection method and switching actions in widgetChanged method of the
mediator class.
Locality The behavior is defined in the mediator, not depends on the calling in colleague

classes. We can manage the behaviors in one place.
Unpluggability We can just remove the mediator class to unplug this pattern. Colleague classes

are unaware of the mediator because they do not contain the pattern code.

31

6 No benefit to structure

Method slots provide no benefit to Command pattern, Flyweight pattern, Interpreter pattern, Iterator
pattern, Memento pattern, Prototype pattern, and Singleton pattern. The implementation in Java and
in DominoJ are the same.

Why they cannot benefit from DominoJ

These patterns focus on their structures and object creation, but DominoJ does not have the ability to
refine structure. Although DominoJ can replace method implementation, it cannot replace the constructor
to refine object creation.

References

[1] James W. Cooper. The Design Patterns Java Companion. Addison-Wesley, 1998.

[2] E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design Patterns. Addison-Wesley, 1994.

[3] Vaidas Gasiunas, Lucas Satabin, Mira Mezini, Angel Núñez, and Jacques Noyé. EScala: modular
event-driven object interactions in Scala. In Proceedings of the tenth international conference on
Aspect-oriented software development, AOSD ’11, pages 227–240, New York, NY, USA, 2011. ACM.

[4] Jan Hannemann and Gregor Kiczales. Design pattern implementation in Java and AspectJ. In Pro-
ceedings of the 17th ACM SIGPLAN conference on Object-oriented programming, systems, languages,
and applications, OOPSLA ’02, pages 161–173, New York, NY, USA, 2002. ACM.

32

