
A Dissertation Submitted to Department of Mathematical and
Computing Sciences, Graduate School of Information Science and

Engineering, Tokyo Institute of Technology
In Partial Fulfillment of the Requirements for the Degree of
Doctor of Science in Mathematical and Computing Sciences

A study of superinstructions and

dynamic mixin optimizations

(融合命令およびダイナミック・ミックスインの最適化)

Salikh ZAKIROV Dissertation Chair:
Shigeru CHIBA

February 2011,
Copyright c© 2011 Salikh ZAKIROV.

All Rights Reserved.

Abstract
This thesis considers the performance of the dynamic language implementa-
tion in the context when dynamic system updates such as dynamic mixin in-
stallation or removal are performed repeatedly and with high frequency. High
dynamicity has not been widely studied, and many existing high-performance
implementation techniques behave badly under highly dynamic load. Dy-
namic languages are an important step on the never ending quest of improv-
ing productivity of programmers, while the complexity of the computing
systems increases together with technological progress. Dynamic features
contribute to improving productivity by enabling easy-to-use interfaces and
metaprogramming. Performance of dynamic language implementation still
remains an issue.

We propose two optimization techniques for the implementation of dy-
namic languages. Merging arithmetic instructions can be used in the poly-
morphic interpreter to reduce the allocation rate of boxed floating-point num-
bers, but has no adverse impact with regard to dynamic features. Superin-
structions has been used before to reduce the overhead of interpreter dispatch,
but with progress of indirect branch predictors the benefits of traditional
approach diminishes. We also evaluate the application of superinstructions
technique to Ruby interpreter and explain why the traditional approach gives
limited results.

Another proposal is optimization for dynamic mixin operations. Dynamic
mixin opens new horizons for the adaptation of the existing code for new re-
quirements or new environment. It can also be used as an implementation
techniques for different programming paradigms, such as context-oriented
programming or aspect-oriented programming. However, the current per-
formance of dynamic mixin if used frequently is less than desirable. Inline

i

ii

caching, a primary optimization technique for method dispatch in dynamic
languages, suffers from continuous invalidation due to dynamic mixin oper-
ations, as well as from too coarse granularity of invalidation. We propose
a combination of three techniques: fine-grained state tracking, polymorphic
inline caching and alternate caching to solve the issue of invalidation granu-
larity and to allow efficient caching even in case of frequent dynamic mixin
operations.

We show that our techniques improve performance of workloads, but does
not introduce overly complex implementation or reduce the dynamicity.

Acknowledgments
First of all, I would like to express my deepest gratitude to my supervisors,
Prof. Etsuya Shibayama and Prof. Shigeru Chiba. It is the combination of
unrestrained and long-prospective insight of Prof. Shibayama and down-to-
the-earth lets-get-this-published approach of Prof. Chiba that contributed
most to the preparation of the contents of this thesis. Without their guidance,
no doubt, this work would not have been possible.

I am very grateful to my wife Asuka, who took all the needed courage and
patience to marry a PhD student, and provided me with constant support
even in the darkest of times.

My thanks go to the current and graduated members of Chiba laboratory
and Shibayama laboratory who never failed to produce a cheerful and comfort
atmosphere to work in.

Finally, I would like to express my gratitude to Ministry of Education,
Culture, Sports, Science and Technology of the Japanese government for the
scholarship provided over the course of four years.

Salikh Zakirov
February 2011

iii

Contents

1 Introduction 1
1.1 Dynamic languages . 1
1.2 Tradeoffs of implementation techniques 2
1.3 The tradeoff point chosen by our techniques 4
1.4 Contributions of this thesis . 4

1.4.1 Position of superinstructions 5
1.4.2 Position of dynamic mixin optimizations 5

1.5 The structure of this thesis . 6

2 Background 8
2.1 Interpreters . 8

2.1.1 Superinstructions (inline threading) 12
2.1.2 Quickening . 12
2.1.3 Register-based VM vs. stack-based VM 13
2.1.4 Stack caching . 13
2.1.5 Dynamic interpretation 14

2.2 Inline caching . 15
2.3 Compilation techniques . 15

2.3.1 Object maps . 16
2.3.2 Method specialization 17
2.3.3 Message inlining . 17
2.3.4 Type inference . 18
2.3.5 Message splitting . 18

2.4 Adaptive techniques . 19
2.4.1 Just-in-time compilation 19
2.4.2 Mixed-mode execution 20

CONTENTS iv

CONTENTS v

2.4.3 Adaptive recompilation 20
2.4.4 Type feedback-directed inlining 21

2.5 Trace compilation . 21
2.5.1 Trace recording . 21
2.5.2 SSA-based trace optimizations 21
2.5.3 Trace linking . 22
2.5.4 Trace nesting . 22
2.5.5 Just-in-time specialization 23
2.5.6 Meta-techniques . 24

3 Superinstructions 25
3.1 Introduction . 25
3.2 Superinstructions . 26
3.3 Boxing optimization in superinstructions 29

3.3.1 Implementation . 30
3.3.2 Limitations . 31

3.4 Experiments . 32
3.4.1 Choice of the benchmarks 32
3.4.2 Methodology . 32
3.4.3 Results . 33
3.4.4 Profiling data . 33

3.5 Related work . 36
3.6 Summary . 38

4 Dynamic mixin optimization 39
4.1 Introduction . 39
4.2 Ruby and dynamic mixins . 41
4.3 Fine-grained state tracking . 46

4.3.1 Method lookup path-based state tracking 47
4.3.2 Scheme of correctness proof 49
4.3.3 Polymorphic inline caching 50
4.3.4 Caching alternating states 51
4.3.5 Correctness of alternate caching 52

4.4 Generalizations . 54
4.4.1 Delegation object model 54
4.4.2 Thread-local state caching 55

4.5 Evaluation . 56
4.5.1 Overhead on a method call 57
4.5.2 Microbenchmarking dynamic mixin 58

CONTENTS vi

4.5.3 Application benchmarking 60
4.6 Related work . 63
4.7 Summary . 65

5 Evaluation of dynamic mixin optimization in a compiled system 70
5.1 Introduction . 70
5.2 Delegation and dynamic mixin 71
5.3 Dynamic mixin optimization . 73
5.4 Approach to compilation . 74
5.5 Evaluation . 76

5.5.1 Overheads of state checks 76
5.5.2 Dynamic mixin performance 77

5.6 Related work . 80
5.7 Summary . 80

6 Conclusion 82
6.1 Superinstructions for Ruby interpreter 83
6.2 Dynamic mixin optimization . 83

List of Figures
2.1 Switch-based interpreter . 9
2.2 Approaches to interpreter implementation 10
2.3 Direct-threaded interpreter . 11
2.4 Indirect threading . 11
2.5 Stack caching . 14
2.6 Object maps . 16
2.7 Message splitting . 19
2.8 Trace linking . 23
2.9 Trace nesting . 23

3.1 Effects of introducing naive superinstructions one by one. 28
3.2 Comparison of execution time with indirect branch mispredictions. 29
3.3 Source code of opt plus implementation 31
3.4 Execution time of benchmarks, 32 bit mode (left) and 64 bit

mode (right). The lower, the better. 34
3.5 Execution time of other benchmarks, 32 bit mode 34
3.6 Sampling profiling . 36

4.1 Example of using mixin inclusion in Ruby 43
4.2 Class hierarchy before and after mixin inclusion 44
4.3 Inline caching . 45
4.4 State object association with method lookup path 47
4.5 lookup procedure with state tracking 66
4.6 Inline caching with fine-grained state tracking 67
4.7 Example of situation when state objects need to be merged . . . 67
4.8 Polymorphic inline caching . 68
4.9 Thread-local state tracking . 68

LIST OF FIGURES vii

LIST OF FIGURES viii

4.10 Three cases of a microbenchmark 69
4.11 Method lookup outcome profile for the application benchmark . . 69

5.1 Application server example . 72
5.2 Alternate caching . 74
5.3 Compiled polymorphic inline cache 75
5.4 Cost of state checks in compiled polymorphic inline cache 77
5.5 Mixin microbenchmark . 78

List of Tables
3.1 Branch misprediction in baseline version 27
3.2 Branch misprediction in naive superinstructions version 35
3.3 Branch misprediction in opt-opt version 35
3.4 Allocation data . 36
3.5 Dynamic instruction counters 37
3.6 Applicability of opt-opt superinstructions in benchmarks 37

4.1 Profile of the application benchmark on baseline ruby 46
4.2 Single call performance . 58
4.3 Microbenchmark performance 61
4.4 Application benchmark results 62
4.5 Profile of the benchmark on modified Ruby version 63
4.6 Memory usage approximation 63

5.1 Mixin microbenchmark execution time, mixin switch on every it-
eration . 78

5.2 Rerun of mixin microbenchmark, mixin switch on every 100th
iteration . 79

LIST OF TABLES ix

Chapter

1
Introduction

Programming languages have observed the increase in the productivity
throughout their history. The abstraction level has been constantly rising,
from native code programming to assemblers, and then to high-level pro-
gramming languages. Dynamic languages for a long time has been acknowl-
edged as providing the potential for high productivity (for example, Lisp),
however, the performance and other concerns lead to low penetration to the
mainstream market. This situation has changed in the last two decades, with
several so called ”scripting” languages becoming mainstream. For example,
six of the twenty leaders of the TIOBE programming languages index [2]
are dynamic languages. The technological progress of computer hardware
made this possible, making even the näıve implementation performance ac-
ceptable for the wide-spread use. Whole fields of programming enjoy the
benefits of increased productivity due to dynamic languages, for example,
web applications and application prototyping.

1.1 Dynamic languages

Dynamic programming languages is class of programming languages, that
executes at runtime some behaviors, that are traditionally done at program
compilation time. Example include adding new code to the system, extending

INTRODUCTION 1

Tradeoffs of implementation techniques

type system, redefining semantics of operations. Dynamic languages are
typically dynamically typed, that is, the type checking is performed at run-
time, rather than at compile-time. This follows from the ability to extend
the type system at run-time, which precludes the possibility of complete type
checking before program execution.

The increase of productivity due to use of dynamic languages comes from
several sources. The easiest to notice is dynamic typing, which relieves the
programmer from the necessity to specify types everywhere in the program.
However, apologists of static typing systems counter this with statements
that lack of type checking reduces the quality of the program. Dynamic lan-
guages compensate for lack of static checking by increased ability to adapt the
code to changing external requirements. The good example is the ability to
test the code in different conditions, such as unit testing of individual classes,
functional testing of components and end-to-end testing of the whole appli-
cation. The flexibility of dynamic languages allows to choose the boundaries
of components freely and quickly write the interfacing components. It is for
this reason that the new paradigm of development, agile programming [48]
has got most attention among dynamic language programmers. It does not
mean that agile programming cannot be applied to static programming lan-
guages, but demonstrates that dynamic languages pose less hurdles and thus
are more productive.

1.2 Tradeoffs of implementation techniques

The design of a dynamic language processor is governed by a tradeoff between
several competing factors. The major factors influencing the design are:

• Run-time efficiency

• Implementation complexity

• Responsiveness to changes

Run-time efficiency is obviously important to make the computing tasks
complete faster, thus increasing the overall efficiency of human activity, of
which computation is part of. While run-time efficiency is important, there
are cases, when other sides of the tradeoff take precedence. Exploratory
programming or research into new languages require short implementation
time, so maintaining low implementation complexity becomes paramount.
The tasks that involve porting of a language processor to multiple hardware

INTRODUCTION 2

Tradeoffs of implementation techniques

platforms also benefit from low implementation complexity substantially by
reducing the time necessary to do the ports, in some cases by several orders
of magnitude. Responsiveness to changes is a specific feature of dynamic lan-
guage, because in static languages the program is assumed to be constant.
In dynamic languages, however, the running program itself can modify its
own behavior. If the program requires recompilation on each change, high
rate of dynamic changes can severely impact the performance of the program.
Some techniques that provide highest peak efficiency may prove useless if the
lengthy recompilation is required to be done on each dynamic change. So a
tradeoff between compilation speed and execution efficiency significantly af-
fects responsiveness. A high rate of dynamic changes is typical for interactive
debugging environments, and for certain styles of meta-programming.

Let us discuss some existing examples of the design and see where do
they fall on the design space. Interpreter is the most popular implementation
techniques for dynamic languages, because it maps the implementation code
straightforwardly to the operational semantics of the language. In fact, many
of the existing dynamic languages go as far as to define their own semantics
via interpreted implementation!

A step necessary in processing of any language is parsing of the input.
Some of the dynamic languages do construct a representation of its input in
the form of an abstract syntax tree (e.g. Ruby [49]), and others process the
input along with the parsing process (e.g. Forth [40]). After the input pro-
gram has been parsed, some systems start executing the code by interpreting
the elements of the abstract syntax tree (e.g. Ruby until 1.8), while others
elect to do an additional processing step and transform the code from the ab-
stract syntax tree into stream of operations, where operations can be native
instructions (e.g. Javascript V8 [1]) or instruction of a virtual machine (e.g.
Python). This design choice is mainly influenced by relative importance of
efficiency and implementation complexity, as translation of the source code
into instruction stream introduces some complexity, in return obtaining im-
provement in performance.

Compilation of the executable code to native code may reduce the over-
heads of the interpreted execution, thus improving the run-time efficiency, at
the price of the much more complex implementation. Traditional ahead-of-
time compilers may provide high peak performance, but with long compila-
tion time, which makes them less responsive. Most significant improvements
require more than just translation to native code. Example of techniques that
improve performance by extracting some information about running program
and using it for optimized execution are: static representation of objects us-

INTRODUCTION 3

The tradeoff point chosen by our techniques

ing maps, type-specialized version of the methods. Type inference allows to
deduce all possible type values and generate better code. Type prediction
and devirtualization allows to replace generic method call sequences with
static calls. The better execution performance is traded for the necessity of
analysis algorithms and invalidation infrastructure, so as to ensure correct
semantics even if some of the assumptions has been broken after the apply-
ing the optimization. Adaptive recompilation and trace-based compilation
make focus on detecting frequently executed code blocks and thus get better
return on optimization investment. Adaptive techniques is an example when
responsiveness is traded off for maximum performance in the stable phase of
the long-running application, such as server applications. On the other hand,
the short-running or highly dynamic applications profit less from adaptive
optimizations, and require higher system responsiveness.

1.3 The tradeoff point chosen by our techniques

In this thesis we propose two dynamic language implementation techniques
that emphasize the two sides of the design tradeoff: low implementation com-
plexity and applicability to the systems with high-frequency use of dynamic
features. We focus on the case when dynamic features of the language are
used sufficiently frequently. Our choice of the tradeoff point is based on the
current design of Ruby, which emphasizes the metaprogramming capabilities
and high responsiveness to dynamic changes, rather than execution efficiency.
Our goal is to improve the execution performance of the Ruby interpreter
without affecting its responsiveness.

1.4 Contributions of this thesis

In this thesis we studied application of superinstructions to the Ruby in-
terpreter, explained and experimentally verified limited benefits of the tra-
ditional approach to superinstructions, and proposed a novel approach to
superinstructions, which is beneficial to numeric benchmarks.

The second contribution of this thesis is proposal of optimization tech-
niques for dynamic mixin. We proposed an effective scheme of inline caching
that remains efficient even in presence of frequent dynamic mixin optimiza-
tions.

INTRODUCTION 4

Contributions of this thesis

1.4.1 Position of superinstructions

Superinstructions has been proposed before with the goals of reducing code
size and improving performance by reducing interpreter dispatch overhead.
With progress in hardware, the memory size became less of an issue. The
prior research has demonstrated, that superinstructions can be effective if the
VM interpreter satisfies certain conditions: the average cost of a VM opera-
tion is low — on the order of 10 hardware instructions for 1 VM operation,
and the overhead of interpreter dispatch is high. It has been demonstrated
that on processors without indirect branch predictor the interpreter dispatch
cost can be as high as 50% of total execution time. However, modern proces-
sors have greatly improved the quality of indirect branch prediction, and this
reduces the potential benefit of superinstructions. In this thesis, we show and
experimentally verify the limited benefit of the traditional superinstructions
for the Ruby interpreter.

Further, we propose a novel way of using superinstructions to reduce
boxing of intermediate results of floating-point computations. It benefits
the numerical benchmarks. With regard to dynamicity, the superinstruc-
tions provide exactly the same response to dynamic changes as the original
interpreter, thus it is suitable for highly dynamic applications.

1.4.2 Position of dynamic mixin optimizations

Dynamic mixin is a limited special case of a more general delegation tech-
niques, which has been introduced by some popular dynamic languages such
as Javascript. Ruby also has dynamic mixin, but in a limited way, because
only the dynamic mixin installation is supported, and there is no reverse
operation of dynamic mixin removal. The omitting is explained by the un-
certainty about what to do with transitive inclusion. We implemented a
variant of dynamic mixin removal which has copy semantics on mixin instal-
lation and does not remove linked copies on mixin removal.

The frequent use of dynamic mixin operations is a recent proposal, and
has not been researched thoroughly. Existing inline caching techniques has
low performance in this case. The techniques we propose provide an effective
way to maintain the performance of the inline caching even in presence of
dynamic mixin operations. The optimization is achieved by a combination
of several techniques:

• Fine-grained state tracking

INTRODUCTION 5

The structure of this thesis

• Alternate caching

• Polymorphic inline caching

Fine-grained state tracking seems to be in use in several dynamic language
systems which allow for updates at runtime, however, no detailed publications
are available on the subject. We proposed a novel way of maintaining the
fine-grained dependency links between inline caches, state objects and class
hierarchy, which facilitates further novel improvement — alternate caching.
Polymorphic inline caching has been known before, but it required small
modification to be suitable for our use.

1.5 The structure of this thesis

The rest of the thesis is organized as follows:

Chapter 2: Background

This chapter gives an overview of existing implementation techniques for
dynamic programming languages.

Chapter 3: Superinstructions

In this chapter we describe the application of superinstruction technique
to Ruby interpreter. We evaluate experimentally the performance of the
traditional approach to superinstructions and analyze the limited benefit.
Further we propose a novel approach: arithmetic superinstructions, describe
our implementation and evaluate it experimentally.

Chapter 4: Dynamic mixin optimization

This chapter proposes dynamic mixin optimization, structured as combina-
tion of three implementation techniques: fine-grained state tracking, poly-
morphic inline caching and alternate caching. We give the description of the
techniques, outline the proof of correctness and give some generalizations.
Experimental evaluation is given for the Ruby interpreter.

INTRODUCTION 6

The structure of this thesis

Chapter 5: Evaluation of dynamic mixin optimization in a

compiled system

In this chapter we describe evaluation of the dynamic mixin optimization
in a context of a dynamic language system with a compiler. We describe
how the data from polymorphic inline cache can be used to produce highly
performant compiled code, and evaluate the performance of this approach
experimentally using microbenchmarks.

Chapter 6: Conclusion

Finally, we summarize and conclude the thesis in Chapter 6.

INTRODUCTION 7

Chapter

2
Background

The implementation techniques for dynamic programming language has been
researched for a long time, starting from the first Lisp systems in the late
60s. A surge in new developments and techniques occurred in the 80s, re-
lated to the development of Smalltalk and Self languages. From the 90s, so
called scripting languages came into popularity, but somehow did not profit
from the wealth of implementation techniques. The emergence of ”Web 2.0”
and proliferation of rich internet applications brought about a renaissance
in dynamic language implementation research, this time mainly focused on
Javascript. In this chapter we review the currently existing approaches to
the implementation of dynamic languages and notable implementation tech-
niques.

2.1 Interpreters

The easiest way to implement dynamic languages is interpretation, because
interpreted systems make few assumptions on dynamic state of the program,
and just recompute everything as needed. Accordingly, interpretive execu-
tion has a fair amount of the execution overhead. The overheads come from
several sources: the execution of the program involves reading its representa-
tion, deciding what to do, and ultimately performing the computation itself.

BACKGROUND 8

Interpreters

One can classify interpreters based on the program representation during
program execution, where on one side of the spectrum will be the systems
with interpretation made over abstract syntax tree or over the program text
immediately, and on the other side sophisticated representations of the code.
Execution of the abstract syntax tree or program text requires repeated inter-
pretation, that is, going from representation to the computation that needs
to be done. For this reason, efficient interpreters use linear representation of
the program, where individual elements more directly reference the compu-
tation necessary for the program execution [24]. The operation of such an
interpreter can be described in terms of instruction set of an abstract hard-
ware architecture referred to as a virtual machine (VM), because usually no
hardware implementation of an instruction set exists.

The simplest and most straightforward implementation of virtual machine
interpreter uses linear representation of the program in the form of bytecodes
— numeric codes for encoded operations, often chosen to match the byte
size — a minimal addressable unit on many current architectures (Fig 2.1).
Switch-based interpretation can be implemented in ANSI C, compilers for

1 while (1) {
2 switch (code[PC++]) {
3 case ADD:
4 stack[−−sp] = stack[sp] + stack[sp+1];
5 break;
6 case CONST:
7 stack[++sp] = code[PC++];
8 break;
9 // ...

10 }
11 }

Figure 2.1. Switch-based interpreter

which are widely available on many platforms. However, compiled form of a
switch-based interpreter typically executes at least two branch instructions
for each bytecode, and uses the same code site for dispatch of all instructions,
thus making the job of the branch predictor unit hard, and thus causing a
performance overhead due to branch misprediction penalties.

Direct threading [7] has been proposed as a techniques for compact code
representation, by using a custom instruction set that matches a problem
at hand. Using the carefully chosen set of software subroutines, the de-

BACKGROUND 9

Interpreters

sired algorithm can be coded very compactly using just the references to
the subroutines. The executable program is encoded as the sequence of in-
structions, each represented as the address of the implementation subroutine
(Fig. 2.2(b)). Program counter points to the instruction stream, and dis-
patch to the next instruction involves loading the address of the subroutine,
branching to it and incrementing the program counter. Threaded interpreter
can be implemented using label-as-addresses extension of the widely avail-
able gcc compiler suite [66]. The figure 2.3 shows how threaded interpreter
can be implemented using GCC.

data

fetches

interpreter

interpreted

code

interpreter

operations

(a) Switch-based interpretation

addresses of

interpreter operations

interpreter

operations

data

fetches

(b) Direct-Threaded interpretation

threaded

code

interpreter

operations

(c) Call-threaded interpretation

Figure 2.2. Approaches to interpreter implementation

Threaded code has higher performance than other interpretation tech-

BACKGROUND 10

Interpreters

1 void ∗code[] = { &&CONST, (void∗)1, &&ADD, ... };
2 void ∗∗pc = code;
3 goto ∗∗pc++;
4 ADD:
5 stack[−−sp] = stack[sp] + stack[sp+1];
6 goto ∗∗pc++;
7 CONST:
8 stack[++sp] = (intptr t)∗pc++;
9 goto ∗∗pc++;

Figure 2.3. Direct-threaded interpreter

niques. It is currently used in many implementations [24], including the
Ruby 1.9 implementation, which we used in our studies.

However, in some language implementation direct threading techniques
may cause access patterns — instruction reads interleaved with data reads in
nearby locations — which are handled inefficiently by some architectures that
prohibit the data cache and instruction cache to have duplicating entries.
Thus instruction reads followed by data read can lead to thrashing of the
cache line between instruction and data caches.

Indirect-threaded code, traditionally used in many Forth implementation,
is free from this deficiency, at the cost of additional memory indirection.
Originally indirect threading was devised to achieve better code size reduction
for variable words, that represent both the memory location to store the
variable, as well as code to put the variable address to the data stack. In
order to share code for accessing data variable address, it is accessed using
double indirection from the executable code.(Fig. 2.4).

code

code

code

code

code

code

direct-threaded code indirect-threaded code

Figure 2.4. Indirect threading

Another variation of direct threaded code is direct call threading

BACKGROUND 11

Interpreters

(Fig. 2.2(c)), where dispatch to the instruction uses call instruction instead
of indirect jump. It is beneficial for the portable interpreter construction, be-
cause standard ANSI C is sufficient to encode this technique. It is however
slower than direct threading, although faster than switch-based interpreta-
tion [26]. Call-threading also enables easy combination of interpreted code
and fragments of native code, for example, partial compilation [74].

Replacing indirect calls with direct calls, by rewriting the virtual machine
instruction stream into stream of native call instructions with addresses en-
coded immediately much improves the branch prediction and leads to per-
formance comparable with direct threading [8].

All described interpretation techniques of can be implemented in a single
codebase, with execution details controlled via macros, which allows flexi-
bility, for example, building the interpreter from the same source code on
multiple platforms, with configuration adjusted appropriately to the avail-
able compilers for a particular platform, so that performance characteristics
of the platform are taken into account.

2.1.1 Superinstructions (inline threading)

Direct threading lends itself well to further optimization. Since the dispatch
between the instruction takes time, it is possible to concatenate code of in-
structions that are frequently executed together, and thus create a so called
superinstruction. Inline threading is capable of reducing the overhead of
operation dispatch, which is important for the interpreters with low-level
instruction set [52]. As we show in chapter 2, the overhead of interpreter dis-
patch has became less important for processors with good branch predictor.

2.1.2 Quickening

Quickening is the technique that dynamically rewrites some operations in the
interpreted code with other operations, which have higher performance. It
typically involves very simplistic code rewriting without sophisticated code
analysis.

Quickening is especially often used in Java VMs, where field access and
method call operations has complex semantics with respect to dynamic class
loading and initialization. Since only the first execution of a bytecode requires
complex checks and initializations, it is beneficial to rewrite the operation to
a simpler one without the checks [25].

BACKGROUND 12

Interpreters

Quickening has also been used recently to speedup interpreters, for exam-
ple, to implement stack caching for the variables which are normally accessed
by indirect memory access [13].

2.1.3 Register-based VM vs. stack-based VM

There exist two different approaches to represent the operands of the opera-
tions in the interpreted code. In the stack based approach, the instructions
take operands from the top of the stack, and the operation result is put back
to the stack, thus modifying the stack contents. This lends itself for the
compact code representation, because less different operations are needed.
For this reason the interpreters that use bytecodes usually use stack-based
virtual machine, e.g. Java [47].

The alternative representation is register-based, where a virtual machine
have several registers, which can be addressed directly as operands of the in-
structions. This increases the number of necessary distinct virtual machine
operations, thus making it hard to fit the operation code into a single byte.
However, threaded implementation techniques are a good match for register-
based virtual machine, since single instruction is coded with pointer-sized
word, giving a plenty of space to encode instruction operands. Obviously,
register-based representation leads to increased size of the individual com-
mands, though it has been suggested that longer operations are compensated
with fewer instructions [20]. Use of register-based architectures in recent effi-
cient programming language implementations such as Dalvik VM [11] and ex-
plicit comparisons [64] suggest that register-based interpreters provide higher
overall performance.

Stack-based virtual machine is an easy target for writing source code
compilers, since it removes the necessity of doing register allocation and
enables simple one-pass code generators. On the other hand, register-based
virtual machines with sufficient number of registers use code representation,
which is close to representation used in advanced compiler optimizations such
as dead code elimination and constant folding, thus making compiler building
simpler.

2.1.4 Stack caching

The gap between performance of stack-based and register-based virtual ma-
chines can be compensated somewhat using stack caching optimization,
which effectively stores the values at the top of the stack in registers (Fig. 2.5),

BACKGROUND 13

Interpreters

with static or dynamic cache management [26]. In static cache management,
a source code compiler is aware of a cache state, and it generates appro-
priate instructions. It allows to completely reduce some stack-manipulation
instructions, as it suffices to for the compiler to note the state change. One
can consider stack caching optimization as a kind of automatic register al-
location policy, which uses simple finite state automaton to guide register
allocations. However, this approach adds some complexity in instruction
generator.

stack[0]: $8
stack[1]: $9

stack[0]: $9

Figure 2.5. Stack caching

Dynamic approach to stack caching, on the other hand, makes manage-
ment of the cache state a responsibility of the interpreter. In effect this
requires duplicating each interpreter operation for each cache state, so the
dispatch procedure needs to dynamically select between variants. The addi-
tional overhead of dispatch between cache states cancels out benefit of stack
caching and makes the dynamic approach impractical.

2.1.5 Dynamic interpretation

Dynamic interpretation [73] uses a special non-linear intermediate represen-
tation of the executed program, where each instruction is specialized on the
types of its operands, and special type-directed nodes are used to dispatch
on the type of the operation result. The dynamic representation is built
on demand during first execution of the regular static representation. The
dynamic representation is a flow graph, where nodes contain the specialized
instructions, and edges direct the program flow, based on control and type
changes in a program. Dispatch on the dynamic representation is more ex-
pensive than in traditional interpreters, but this is compensated by higher
efficiency of the type-specialized instructions, effectively moving the type
checks out of the instructions and into the type-directed edges. The main
promise of dynamic interpretation is the profile information built automati-
cally in the dynamic code representation, which potentially can be used for
compilation to more efficient native code, or even for optimizations on the
dynamic representation.

BACKGROUND 14

Inline caching

2.2 Inline caching

One of the possible observations on execution of dynamic programs is distri-
bution of object types on method calls. It has been noted [36] that many call
sites call only one method during the whole program execution. Even for the
call sites which call more than one target method, it is often true that one
method is called much more often than others. This makes feasible predic-
tion of the target method based on observation of earlier execution. Inline
caching [23] associates a cache with the call site, in some implementation the
code and cache data can be in the same memory area, which is why it is called
inline caching. Typically inline cache stores the target of the last method
invocation, as well as type of the method receiver. On the subsequent call
site execution, the type of the receiver is checked against the one stored in
the inline cache, and if the type matches, the target method from the cache
is used without full method lookup. In the case of dynamic languages, where
method implementation can be redefined or overridden by a dynamic mixin,
inline caching requires some means of invalidation, for example by storing
state counter snapshot. We elaborate on this in the chapter 4.

Inline caching has been extended in the past to store more than one tar-
get method for different receiver types [36]. The authors found out, that in
a typical Self program the call sites can be classified into three categories:
monomorphic — with only one receiver type, polymorphic — with a few
receiver types, and megamorphic — with very many receiver types. Poly-
morphic inline caching allows to store up to a fixed small number of different
method targets for different receiver types and thus to improve performance
of polymorphic call sites. The information that polymorphic inline caches
collect in the course of program execution can also be used for other opti-
mizations, such as inlining during recompilation of the code, for example, as
we describe in the chapter 5.

2.3 Compilation techniques

Compilation of dynamic languages usually involves more advanced techniques
than interpretation. This increases implementation complexity considerably.
Compiled code removes certain overheads of interpretation, for example, dis-
patch overhead between instructions. Since compilation already involves non-
trivial code transformation, it is natural that typical compiler implementa-
tions for dynamic language do other transformations to increase performance.

BACKGROUND 15

Compilation techniques

A general approach is to detect some repeated patterns in program execution
and specialize the code for that pattern of execution.

2.3.1 Object maps

Objects in dynamic languages typically do not have their structure fixed,
instead, new fields can be added or removed at any time. Straightforward
approach like representing each object as a hashmap would cause space and
time overheads, especially because the majority of the objects during pro-
gram execution have similar contents, as for example would have objects cor-
responding to the records in the database. An object map technique [14] ad-
dresses the overheads resulting from dynamic object representation. Though
the structure of an object can change at any time, in fact the majority of
objects have constant structure during its lifetime. With maps, objects are
represented as simple list of the slots containing values of object fields, and
an additional link to an object map, which describes the layout of object:
the names of the object fields and their offsets. Maps are immutable and are
shared by all objects with the same structure. In the case of a rare event
when object changes its structure, its object map pointer is updated to point
to a new map.

rho

theta

x

y

x

y

3

4

7

2

...

...

(a) Without maps

rho

theta

x

y

...

...

3

4

offset 1

offset 2
7

2

parent

objects maps

(b) With maps

Figure 2.6. Object maps

BACKGROUND 16

Compilation techniques

2.3.2 Method specialization

The difficulty of efficient compilation of dynamic languages mostly arises from
the fact that no exact type information is available, and compiled methods
must accept arguments of any types. Customized compilation [14] creates
a separate specialized version of compiled code for each receiver type. Due
to this, the static type (or an object map) of the receiver is known during
compilation, and some operations like field accesses or calls to other methods
of the same object can be compiled efficiently. This is similar to generic
programming, where generic description is used to create customized concrete
code for each set of parameters. So each method is implicitly generic with
respect to concrete receiver type.

2.3.3 Message inlining

Inlining is the substitution of the method body in place where the method
is called. Inlining in dynamic programming language implementation is im-
peded by the fact that the type of the receiver may not be known until run
time. However, customized compilation and message splitting allows to in-
crease the amount of type information, available to the compiler. In cases,
where the type of the message receiver is known at the time of compilation,
compiler may look up the method and compile the method body directly
instead of emitting the method call [14]. In some cases, the target of the
method call can be determined unambiguously even if the type information
is incomplete, for example when only a single method implementation with
the given name exists in the system.

The same approach can be used for compiling primitives operations, which
are commonly encoded as method calls with predefined method names. In-
lining the primitive operations, which may consist of just several hardware
instructions, significantly improves performance compared to using the calls
into the external functions of the virtual machine.

Message inlining can be applied even in cases where the type of the re-
ceiver is not known statically, but only probabilistically is known that some
type of the receiver is more likely than others. To maintain correctness the
additional check on the type of the receiver is necessary. The technique is
called guarded inlining in this case. A number of checks can be employed to
guard the inlined code, such as type test or the lookup and method test [22].

Inlining obviously removes the overhead of the method call, but the large
part of the improvement comes not from the removed overhead, but from the

BACKGROUND 17

Compilation techniques

optimizations, that can be applied to a larger code body resulting from the
inlining. Thus inlining is an enabling optimization.

Redefinition of the methods or dynamic loading of new code is a pos-
sible operation in dynamic languages, and thus some of the assumptions
made during method inlining may be invalidated later. This requires guards
or an compiled method invalidation infrastructure to discard the code that
relies on assumptions that are no longer true. Especially difficult is inval-
idation of the currently active methods. On-the-stack replacement [27] is
an approach that restores the source-level state of an active methods, re-
compiles the method without the broken assumption and reconstructs the
machine-level state of for the new version of the compiled method. It has
been reported informally that on-the-stack replacement involves significant
engineering difficulties. The easier approach is using guards in all inlined
methods or dynamic code patching.

2.3.4 Type inference

Using type inference allows compiler to acquire more information about types
of the objects, by doing dataflow analysis. However, in the case of dynamic
languages, type inference is hindered by the dynamic dispatch, so that the
target of the method calls is not known until the runtime. Constraint-based
type inference [3] deals with this problem by using iterative analysis, and
using the inferred type information to determine targets of the method calls
which were not known in advance. The iteration is terminated after reaching
a fixed point or after exceeding a threshold for a number of iterations. The
information produced by type inference can be used to guide other optimiza-
tions such as method inlining.

2.3.5 Message splitting

Sometimes the static information about values (e.g. the information about
the literal value type) can be lost in merges in control flow graph, because
the same variable can get different values from different merged branches.
The compiler may elect to duplicate the code following the merge for each
of the merged branches, so that the available information could be used
for optimizations like the method inlining. Message splitting is particularly
important for language like Self, where even control flow is represented as
closures passed as parameters to methods.

BACKGROUND 18

Adaptive techniques

i1

i2

i3 i4

i5

i6

i1

i2

i3 i4

i5

i6

i5

i6

before after

control flow graph

Figure 2.7. Message splitting

2.4 Adaptive techniques

Dynamic languages challenge implementers with insufficient information
about the program, types of variables and targets of method calls. To make
efficient execution possible, more information is needed than is contained in
the code itself. Adaptive techniques work around this problem by observing
execution of the program with specific input data, and making optimization
decisions based on observation data. The time period, during which opti-
mization is postponed directly affects the resulting responsiveness to changes,
making adaptive techniques more suitable for long-running applications.

2.4.1 Just-in-time compilation

Just-in-time compilation [23] has been devised as a tradeoff between higher
efficiency of compiled method execution and higher space requirement for
the compiled code. Method can be compiled from original virtual machine
bytecode to native executable code dynamically, when the method is executed
for the first time. Since the original representation remains available, a code
cache of limited size can be used when the memory is scarce. When code
cache overflows, some compiled methods can be discarded and recompiled
later if needed.

BACKGROUND 19

Adaptive techniques

2.4.2 Mixed-mode execution

Mixed-mode execution deals with space and time overhead of pure compila-
tion system by allowing execution of code without prior compilation. Since
a good deal of the typical program code is executed only once, there is no
point in expending substantial effort in compilation of that code. In mixed-
mode execution [4], all code is initially executed using an interpreter, without
incurring cost of compilation. At the same time methods and code blocks
are profiled using counters, and as soon as counter for some method exceeds
threshold value, the compiler is activated. In this way, the overhead of com-
pilation is restricted to frequently executed methods and loops, where it is
likely to be compensated by benefit in reduced execution time.

2.4.3 Adaptive recompilation

Availability of dynamic compilation infrastructure opens the possibility for
collecting profiling data about running application and using it for optimized
recompilation of frequently executed code [6]. Typically an adaptive com-
pilation system has two or more levels of optimization — an unoptimized
level, that allows to collect information about target of the called methods,
and several optimization levels. The base unoptimized level is usually im-
plemented as an interpreter or fast non-optimizing compiler, because it must
handle a lot of code, including initialization code, which is run only once.
The profiling information allows to select hot methods or other fragments
of code that are suitable for expending large effort for optimized compila-
tion, because it is highly likely that these pieces of code will be executed
many times more. While just-in-time compilation or mixed-mode execution
already provide the benefit of concentrating the compilation effort on the
code that brings maximal benefit, use of profile information enables other
optimizations, such as profile-guided inlining, code positioning, instruction
scheduling and multi-version code.

Adaptive techniques also allow for continuous program optimization,
when profiling is performed on optimized code as well as on non-optimized,
and if profiling detects that conditions changed significantly from the time
when the optimized methods were compiled, it may be beneficial to recompile
the code to better match to changed conditions. For example, LLVM [45]
is an example of intermediate code that is targeted for lifelong program op-
timization. Profiling of the optimized code is usually involves using low-
overhead sampling profiling instead of code instrumentation.

BACKGROUND 20

Trace compilation

2.4.4 Type feedback-directed inlining

Using a run-time profiling is a viable alternative to type inference in guid-
ing inlining decisions, and can be more effective [35]. Inlining decisions on
method calls are guided not by the statically provable type of the receiver,
but by observation of the real behavior of the application. Information about
frequency and receiver types allows to apply inlining precisely in places where
it is going to bring most benefits.

2.5 Trace compilation

Trace compilation [30] differs from traditional compilers in its choice of com-
pilation unit. Instead of using methods as compilation units, trace compiler
observes and compiles the real execution trace. Trace can include operations
from several different methods, thus providing inlining automatically, and it
excludes the operations that were not executed during trace collection. To
maintain correctness, it is necessary to insert guards into the trace to ensure
that method dispatch and conditional operations will branch in the same
way was as during trace collection. If the condition check fails and execution
must proceed in a way different from original, trace execution typically exits
the trace and falls back to interpreted execution.

2.5.1 Trace recording

The typical approach to detect a good trace head is to count executions of
backward branch targets. Since loop heads are backward branch targets,
counting execution frequency allows to detect loop headers of hot loops. The
trace collection proceeds to record operations executed by the interpreter
and terminates either if the loop header is encountered again, thus closing
the loop, or if the trace recording fails due to overly long trace or unsupported
by compiler condition, such as exceptions or calls to native methods.

2.5.2 SSA-based trace optimizations

Compilation of a linear trace allows for cheap and easy generation of static-
single-assignment (SSA) form, which in turn facilitates aggressive optimiza-
tions such as common subexpression elimination, dead code elimination and

BACKGROUND 21

Trace compilation

loop invariant hoisting. Linear structure of the code make implementation
of the optimization both easy and efficient.

2.5.3 Trace linking

Loops rarely have strictly linear control flow, and conditional branches fre-
quently occur in the loop. Trace compilation has several approaches to treat
branched control flow. Trace tree compilation [29] continues trace collection
from trace exit, where the guard check failed, and later restarts the trace
compiler from the branching point, reusing the state of the compiler at failed
guard. This allows for direct use of hardware branch instructions between
compiled traces. The tail of the loop is traced and compiled separately for
each branched trace to keep the code linear. In case of highly branched
loop body this may cause significant code bloat, as the code after any branch
needs to be duplicated in every compiled trace. Another problem of trace tree
compilation on highly branched trace trees is the amount of recompilation,
because the trace tree needs to be recompiled on each new trace addition,
and so compilation cost is quadratic on the number of traces.

Trace linking [16] instead starts a new trace compilation at the branch
point of the original trace. This requires some compensation code to tran-
sition from the compilation state at the branch point to the new trace, but
allows to reuse traces in the case when control flow merges back after branch-
ing. Since the merge can be detected only when compiling a second or later
traces in a loop, at least one copy of the tail of the loop will have been already
compiled. Trace merging is effective only for third and later traces that pass
through the same control flow nodes, but nevertheless is an improvement
compared to trace trees. In the case of highly branching loop, the trace tree
approach causes high overhead for repeated compilation of the duplicated
loop tail, and trace linking allows to limit the overhead.

2.5.4 Trace nesting

The high-level structure of the program source code can help to the trace
collector to determine the exact extent of the loop in the bytecode, and
thus to collect traces for the outer and inner loop separately [31]. Having a
strict correspondence of traces to loops in the structured high-level program
provides solution for the code bloat caused by ”inside-out” compilation of
outer loop as inner traces. To implement trace nesting, the trace collector

BACKGROUND 22

Trace compilation

i1

i2

i3 i4

i5

i6

i7

branch trace

merge trace

first
trace

Figure 2.8. Trace linking

tracks the current loop, and terminates the trace collection on leaving the
loop, or switches to the inner loop trace on entrance to a nested loop.

i1

i2

i3 i4

i5

i6

i7

i1

i7

i6

i6

i2

i3

i5

i4

i5

outer trace tree

inner trace tree

trace
call

trace
return

control flow graph

Figure 2.9. Trace nesting

2.5.5 Just-in-time specialization

Just-in-time specialization is a variation on the trace compiler, which make
focus on specialization rather than on trace collection.

Psyco [57] does not separate the trace recording and compilation steps,
instead it compiles the code and executes it by small steps. The specializer

BACKGROUND 23

Trace compilation

then tries to guess specializing decisions, that can be profitable in the future.
The specializer saves continuations of the compiler for specialization and dis-
patch points, and in case of guard failure restarts execution of the specializer
from the point where execution branched differently from prior executions.

2.5.6 Meta-techniques

Combination of existing implementation of execution techniques allows for
interesting application [58]. PyPy project [10] proposed to implement in-
terpreter for the dynamic language in RPython — a statically typeable re-
stricted subset of Python. Applying tracing JIT involves two level of inter-
pretation — a language interpreter, which is written in RPython and which
interprets user program, and a tracing interpreter, which traces operations
of the RPython interpreter and compiles them. A single hottest loop exe-
cuted by the tracing interpreter is the bytecode interpretation loop of the
language interpreter. Thus, if tracing compilation is used näıvely, the num-
ber of traces through interpretation loop will be equal to the number of
operations in language interpreter. In order to increase the benefit of trac-
ing compiler, the tracing compiler uses a combination of program counter of
tracing interpreter and language interpreter, and tries to detect loops in the
user program, rather than in the language interpreter. In order to do that,
the developer of the language interpreter needs to provide hints on what is
the language interpreter program counter, and what operations are backward
branches.

While the performance of the two-level interpreter can be several orders
of magnitude slower than direct interpretation, application of trace compila-
tion allows to produce a direct interpreter, or even compile specialized user
application loops, resulting in competitive performance. At the same time,
construction of an interpreter in a high-level language as RPython makes
implementation much more simple and maintainable. Thus, meta-technique
provide a good potential for dynamic language research.

BACKGROUND 24

Chapter

3
Superinstructions

3.1 Introduction

Dynamic languages are characterized by fully dynamic typing, that is, the
program text does not make or enforce any conditions on types of variables,
and the same program may be fed values of different types during single
run. This prompts implementer of dynamic languages to provide for a full
generality, proliferating type checks and conversions as a frequent operation.
A prominent example is an interpreted implementation, where individual
operations are prepared to handle values of any incoming type. Ruby 1.9 is an
example of such an implementation. However, fully polymorphic instructions
of the interpreter come at a price: each instruction need to perform type
checks. Another disadvantage of a fully dynamically typed interpreter is
that it must treat all values uniformly, which in practice results in using a
pointer-sized encoding of data, representing either a pointer to an object on
a heap or a bit-encoded data directly. In particular, the data that cannot fit
into the pointer-sized word, such as double precision floating point number
on a 32-bit architecture, needs to be stored on the heap, even in the case
when it is only a temporary computation result.

Performance of Ruby is a subject of much concern. Speed of numeric
benchmarks is particularly often quoted, where Ruby sometimes is 100 or

SUPERINSTRUCTIONS 25

Superinstructions

more times slower than implementation in C. Thus, improving Ruby per-
formance is an important problem. Interpreter dispatch has been found to
be a major factor contributing to execution time. Many techniques have
been proposed to improve interpreter performance. Among others, threaded
interpreter and superinstructions are already implemented in Ruby 1.9.

Superinstructions [55] have been proposed in past as a means to reduce
the overhead of interpreter dispatch — jumps between pieces of executed
code. This comes from the assumption that overhead of interpreter dispatch
is high, based on past research of some interpreter systems. However, as
results of our measurements show, this assumption is incorrect for Ruby
interpreter on current hardware. Misprediction rate is low at 5–17%, and
overall overhead of mispredictions due to interpreter dispatch is 0.6–3%. So
we propose a new way of using superinstructions to improve performance of
numeric workloads. According to our analysis, a majority of object allocated
in numerical workloads are boxed floating point numbers, and a large part
of execution time is spent in allocating and garbage collecting them. That
is where superinstructions can help to reduce the number of produced boxed
floats.

The contributions of this chapter are:

• We explain why prior approach to superinstructions does not produce
substantial benefits for Ruby, based on experimental data.

• We propose using superinstructions composed of pairs of arithmetic
operations to reduce allocation of boxed floating point numbers and
experimentally show speedup of up to 23%.

3.2 Superinstructions

The Ruby programming language is implemented as a virtual machine inter-
preter since version 1.9. Among many approaches to interpreter performance,
superinstructions have got much attention. In this chapter, we specifically
concentrate on studying the effects and benefits of superinstructions.

Superinstructions apply to virtual machine interpreters, which typically
work with bytecode representation of the program. Superinstruction is a
sequence of two or more VM instructions, which have their implementation
merged together. Superinstructions may affect the program performance for
multiple reasons:

1. Jumps between merged instructions are eliminated.

SUPERINSTRUCTIONS 26

Superinstructions

2. Merged instructions have multiple copies (merged and unmerged) of
their implementation.

3. Merging implementation of several instructions into single non-
branching block of code provides more opportunities for optimization
compared to separately compiled fragments of code.

Interpreter dispatch, that is, branching between implementation of VM
operations, was found to be major contributor to interpreter execution time
due to indirect branch misprediction. The indirect branch predictor widely
used in the past hardware consists of the branch target buffer (BTB), which
is a cache of indirect branch targets, keyed with branch site address. Such a
structure has a limit of one prediction per branch site, while in interpreters
it is common for an indirect branch site to have multiple targets. As Ertl
et al. describe [24], branch misprediction overhead can be as high as half of
total execution time on a processor with simple BTB.

Since the overhead of interpreter dispatch has been found high, it is natu-
ral that most of the prior superinstruction research efforts were concentrated
on studying and exploiting points (1) and (2). However, Ruby interpreter on
modern hardware shows different performance characteristics.

The processor we used in experiments, Intel Core 2 Duo E8500, has an
enhanced branch predictor, and is quite good at predicting indirect branches
due to threaded interpreter dispatch (see Table 3.1). Scarce information is
available on details of branch predictor that is used in current Intel proces-
sors, however, it is hinted, that it uses two-level scheme with branch history,
and observed branch misprediction rates fully support that conjecture.

Table 3.1. Branch misprediction in baseline version

benchmark mandelbrot nbody partial sums spectral norm
total cycles 600 · 108 790 · 108 730 · 108 690 · 108

br. misp. stall cycles 16 · 108 13 · 108 10 · 108 4 · 108
hw. instructions 1019 · 108 1287 · 108 1097 · 108 1161 · 108

VM ops 9 · 108 10 · 108 8 · 108 18 · 108
indirect branches 17 · 108 21 · 108 18 · 108 23 · 108

mispredicted ind. br. 2.9 · 108 3.5 · 108 2.8 · 108 1.2 · 108
misprediction rate 17.0% 16.4% 15.5% 5.1%

misprediction overhead 2.6% 1.7% 1.4% 0.6%

Moreover, interpreter dispatch does not constitute large proportion of exe-
cution time of Ruby on numeric benchmarks. Our experiments with straight-

SUPERINSTRUCTIONS 27

Superinstructions

0 1 2 3 4 5 6 7 8 9 10 11

95
97

99

0 1 2 3 4 5 6 7 8 9 10 11

95
97

99
nbody%

0 1 2 3 4 5 6 7 8 9

92
96

10
0

0 1 2 3 4 5 6 7 8 9

92
96

10
0 mandelbrot

%

0 1 2 3 4 5 6 7 8 9 10 11 12

96
98

10
0

0 1 2 3 4 5 6 7 8 9 10 11 12

partial_sums%

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

94
98

10
2

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

spectral_norm%

ex
ec

ut
io

n
tim

e,
 n

or
m

al
iz

ed

number of superinstructions introduced

Figure 3.1. Effects of introducing naive superinstructions one by one.

forward static superinstructions implemented in Ruby 1.9 [60] (referred to as
“naive superinstructions”) showed limited benefit in performance of about
4% (see section 3.4). Selection of superinstructions is based on frequency of
occurrence of instruction pairs in benchmark execution trace.

Figure 3.1 shows graphs of execution time for the naive superinstructions,
introduced one by one. ”Naive” denotes that no effort is made to optimize the
merged superinstruction beyond what C compiler can do. Numbers on the x
axis denote the number of superinstructions introduced. The instructions to
merge into superinstructions are chosen according to occurrence frequency in
the execution trace of the very same benchmark, so that the most frequently
occurring combination of 2 instructions is introduced in version ”1”, the
second most frequent combination is added to version ”2” and so on.

While general trend matches expectation of slightly improving perfor-
mance as more superinstructions are introduced, the graphs are not strictly
monotone, which allows us to observe, that some factors at play have more
influence than mere number of indirect branches. As figure 3.2 shows, the
characteristic that is closely related to the effect on performance is number
of indirect branch mispredictions.

Particularly noticeable change in performance occurs when superinstruc-
tion is always followed by the same instruction during execution, which means
that indirect branch instruction that transfers control to next operation be-
comes single-target. In our experiments, hardware branch predictor did
an excellent job of flawlessly predicting the target of single-target indirect
branches, resulting in a small but visible change in overall performance.

SUPERINSTRUCTIONS 28

Boxing optimization in superinstructions

8 7 6 9 4 2 5 1 0 3

92
94

96
98

10
0

8 7 6 9 4 2 5 1 0 3

92
94

96
98

10
0 mandelbrot

ex
ec

ut
io

n
tim

e
no

rm
al

iz
ed

%

8 7 6 9 4 2 5 1 0 38 7 6 9 4 2 5 1 0 3

85
90

95
10

0
%

in
di

re
ct

 b
ra

nc
h

m
is

pr
ed

ic
tio

ns
no

rm
al

iz
ed mandelbrot

17 13 19 15 14 3 16 12 18 11 10 8 9 1 0 5 4 7 6 2

94
96

98
10

0
10

2

17 13 19 15 14 3 16 12 18 11 10 8 9 1 0 5 4 7 6 2

spectral_norm

ex
ec

ut
io

n
tim

e
no

rm
al

iz
ed

%

17 13 19 15 14 3 16 12 18 11 10 8 9 1 0 5 4 7 6 2

90
10

0
11

0
12

0
13

0

17 13 19 15 14 3 16 12 18 11 10 8 9 1 0 5 4 7 6 2

spectral_norm%

in
di

re
ct

 b
ra

nc
h

m
is

pr
ed

ic
tio

ns
no

rm
al

iz
ed

number of superinstructions introduced, reordered by indirect branch mispredictions

Figure 3.2. Comparison of execution time with indirect branch mispredictions.

Introducing superinstructions may both improve or worsen branch mis-
prediction rate. For example, because three consecutive VM operations can
be merged into dual-operation superinstruction and remaining single instruc-
tion in two ways, the positive effect described above can happen or not de-
pending on which two instructions get merged. Our experiments also showed,
that even seemingly harmless changes like reordering operations in the source
code of interpreter can have visible effects on branch misprediction rate and
thus on performance.

As a result, the effects of introducing superinstructions cannot be pre-
dicted precisely without profiling, and so there is little hope of getting best
possible performance out of superinstructions using VM operation frequency
profile alone.

3.3 Boxing optimization in superinstructions

We propose to use superinstructions in Ruby to reduce GC overhead due
to boxed floating point numbers. This is reasonable, as profiling of nu-

SUPERINSTRUCTIONS 29

Boxing optimization in superinstructions

meric benchmarks shows that overwhelming majority of allocated objects
are floating-point numbers, and garbage collection has significant share in
execution time (see section 3.4.4).

3.3.1 Implementation

The boxing overhead comes from Ruby bytecode structure. In Ruby, ev-
erything is an object. Operations like addition and subtraction are in fact
method calls. For example, the assignment x = x * 2.0 is equivalent to x

= x.send(:*,2.0) and produces the following bytecode:

1 0000 getdynamic x, 0 (1)
2 0003 putobject 2.0
3 0005 send :∗, 1, nil, 0, <ic>
4 0011 dup
5 0012 setdynamic x, 0

where :* is notation for the symbol of multiplication and dup bytecode is
needed because every statement in Ruby is also an expression, and have to
leave a return value on the stack.

To reduce overhead due to method call, calls generated from common
arithmetic operation are rewritten as separate bytecodes:

1 0000 getdynamic x, 0 (1)
2 0003 putobject 2.0
3 0005 opt mult
4 0006 dup
5 0007 setdynamic x, 0

The bytecodes for arithmetic operations must accept arguments of any
type. In order to discern between values of different types, integers are
implemented using tagging, and floating point number are implemented with
boxing.

Ruby has five instructions that deal with floating point numbers:
opt plus, opt minus, opt mult, opt div, and opt mod. Figure 3.3 shows
somewhat simplified source code of opt plus instruction (code to deal with
tagged implementation of fixint is omitted). In line 10 macro DBL2NUM

allocates new boxed floating point object for storing results of arithmetic
operation.

Superinstructions make it possible to reduce the number of boxed floating
point numbers. For example, in the superinstruction, which resulted from
merging opt mult with opt plus, the following code is used:

SUPERINSTRUCTIONS 30

Boxing optimization in superinstructions

Figure 3.3. Source code of opt plus implementation

1 DEFINE INSN opt plus
2 () /∗ immediate parameters ∗/
3 (VALUE a, VALUE b) /∗ stack inputs ∗/
4 (VALUE val) /∗ stack output ∗/
5 {
6 /∗ ... ∗/
7 if (HEAP CLASS OF(a) == rb cFloat && /∗ check types of arguments ∗/
8 HEAP CLASS OF(b) == rb cFloat &&
9 BASIC OP UNREDEFINED P(BOP PLUS)) { /∗ and validity of optimization ∗/

10 val = DBL2NUM(RFLOAT VALUE(a) + RFLOAT VALUE(b));
11 } else {
12 PUSH(a);
13 PUSH(b);
14 CALL SIMPLE METHOD(1, idPLUS, a);
15 }
16 }

1 val = DBL2NUM(RFLOAT VALUE(a) + RFLOAT VALUE(b) ∗ RFLOAT VALUE(c));

In this way, superinstruction allocates only the final result of the two oper-
ations, while the regular instruction allocate two numbers: the intermediate
result of multiplication, and the final result.

In our implementation, we implemented all 25 combinations of 5 arith-
metic instructions. These superinstructions are referred to as “opt-opt” su-
perinstructions throughout this paper. Since C compiler is not capable of
optimizing out excessive allocation, we chose to manually implement su-
perinstructions.

3.3.2 Limitations

The approach of using superinstructions for reducing garbage collector over-
head has some grave limitations. First of all, superinstructions can only be
used when arithmetic operations strictly follow one another. Intermission
of other instructions, such as stores to local variables, duplication, or loads
restrict the applicability of superinstructions approach. Local variable access
instructions occur between arithmetic instructions especially frequently, and

SUPERINSTRUCTIONS 31

Experiments

thus deserve creation of special superinstructions of length 3, arith. op–var.
access–arith. op.

Application of superinstructions to types other than boxed floats has
limited effectiveness. With fixed integers, which are implemented as tagged
in-line values, there is no boxing overhead in the first place, so superin-
structions have little effect. With strings and arbitrary precision integers
(Bignum), boxed form is essentially the only form of existence of these ob-
jects, so unboxed representation is impossible, and handling takes more time
than that with floating point numbers, so potential benefit of reduced allo-
cation is much lower.

Arithmetic superinstructions longer than 2 instructions do not seem prac-
tical if implemented statically, as adding many superinstructions will notice-
ably increase code size, while probability of a long superinstruction being
applicable in a benchmark is quite low. For this reason in this work we did
not consider superinstructions of length more than 2.

3.4 Experiments

3.4.1 Choice of the benchmarks

Since the goal of this research is to optimize handling of floating point num-
bers, the following numeric benchmarks from Ruby Benchmark Suite are
used: mandelbrot, nbody, partial sums, and spectral norm.

3.4.2 Methodology

For performance evaluation we used repeated measurements of wall clock ex-
ecution time of the benchmarks. The median of 31 individual measurements
is taken. Trace instruction is disabled in reported data to expose more op-
portunities for opt-opt superinstructions, though it had little influence in our
experience. The machine we used for experiments is Intel Core 2 Duo E8500
3.16 GHz with 3 Gb of memory and Gentoo Linux operating system. Ruby
source code was compiled using gcc compiler version 4.1.2, which produced
8087 instructions for floating-point operations.

SUPERINSTRUCTIONS 32

Experiments

3.4.3 Results

Figure 3.4 shows performance measurements. The left column in each group
is normalized to 100% baseline measurement. The right column shows exe-
cution time of our implementation.

In three cases out of four, the proposed optimization shows comparable
or better results than naive superinstructions. Note, that naive superinstruc-
tions were chosen specifically for each benchmark, and opt-opt superinstruc-
tions were the same for all benchmarks. As figure 3.5 shows, using opt-opt
superinstructions results in no changes of performance on other benchmarks.

The benchmark mandelbrot does not show any improve-
ment, because no superinstructions were applicable. To illustrate,
we show the excerpt of hot code from mandelbrot benchmark:

1 tr = zrzr − zizi + cr 1 getdynamic zrzr, 3
2 getdynamic zizi, 3
3 opt minus
4 getdynamic cr, 3
5 opt plus
6 setdynamic tr, 0

A simple rewrite as tr = cr + (zrzr - zizi) reorders the operations,
putting arithmetic operations together. Two small tweaks in mandelbrot

benchmark can improve performance of opt-opt version by 20%. A better
approach to rewriting the application would be to provide superinstructions
of the form op-x-op, where op is an arithmetic operation, and x can be
access to local variable or load of constant. We believe it will provide similar
speed-up.

Tables 3.2 and 3.3 give some profiling numbers on naive and opt-opt
version for comparison with baseline version.

3.4.4 Profiling data

Profiling data illustrates why benefit from opt-opt superinstructions is possi-
ble. Garbage collection takes big share in execution time (figure 3.6). Second
big contributor to the execution time on Ruby is main interpreter loop (im-
plementation of bytecodes). The other categories shown in the figure are:
hash lookups (due to instance variable access, method lookup and direct use
of hash maps), time spent in instance variable access (besides hash lookup),

SUPERINSTRUCTIONS 33

Experiments

0

75
80
85
90
95

100
%

mandelbrot nbody
partial_sums

spectral_norm

32 bit platform

base
naive
opt−opt

0

75
80
85
90
95

100
%

mandelbrot nbody
partial_sums

spectral_norm

64 bit platform

base
opt−opt

N
or

m
al

iz
ed

 e
xe

cu
tio

n
tim

e

Figure 3.4. Execution time of benchmarks, 32 bit mode (left) and 64 bit mode
(right). The lower, the better.

0

75
80
85
90
95

100
%

knucleotide
lucas_lehmer

quicksort
petstore

mandelbrot
nbody app_fib

fannkuch fasta
spectral_norm

partial_sums
hilbert_matrix

32 bit platform

base
opt−opt

N
or

m
al

iz
ed

 e
xe

cu
tio

n
tim

e

Figure 3.5. Execution time of other benchmarks, 32 bit mode

and method calls.
Considering the share of time spent in garbage collection and the fact,

that overwhelming majority of allocation in numeric benchmarks is due to
boxed floating point numbers (see table 3.4), it is quite reasonable that any re-
duction in boxed values allocation will produce visible benefit in performance.
The table 3.5 shows the measurements of number of executed arithmetic
operations in the benchmark runs, the number of garbage collections and ob-
served improvement. It can be seen that the number of garbage collections
and reduction in garbage collection count due to use of superinstructions
very closely matches. The expected benefit due to reduction of garbage col-
lections, received as the product of garbage collection ratio to the reduction
in garbage collection number, for two benchmarks, nbody and partial sum ex-

SUPERINSTRUCTIONS 34

Experiments

Table 3.2. Branch misprediction in naive superinstructions version

benchmark mandelbrot nbody partial sums spectral norm
total cycles 580 · 108 770 · 108 700 · 108 650 · 108

br. misp. stall cycles 4.5 · 108 6.7 · 108 6.8 · 108 1.5 · 108
hw. instructions 1000 · 108 1300 · 108 1100 · 108 1100 · 108

VM ops 6 · 108 7 · 108 5 · 108 11 · 108
indirect branches 13 · 108 18 · 108 15 · 108 16 · 108

mispredicted ind. br. 1.8 · 108 1.9 · 108 1.8 · 108 0.13 · 108
misprediction rate 13.7% 10.7% 11.9% 0.8%

misprediction overhead 0.8% 0.9% 1.0% 0.2%

Table 3.3. Branch misprediction in opt-opt version

benchmark mandelbrot nbody partial sums spectral norm
total cycles 640 · 108 640 · 108 640 · 108 650 · 108

br. misp. stall cycles 14 · 108 8.2 · 108 8.6 · 108 3 · 108
hw. instructions 1057 · 108 997 · 108 922 · 108 1114 · 108

VM ops 9 · 108 9 · 108 7 · 108 16 · 108
indirect branches 18 · 108 17 · 108 16 · 108 22 · 108

mispredicted ind. br. 3 · 108 2.3 · 108 2.6 · 108 1.2 · 108
misprediction rate 17.2% 13.3% 17.0% 5.4%

misprediction overhead 2.2% 1.3% 1.3% 0.5%

plains the great part of the run time reduction. In the case of spectral norm
benchmark, the obtained reduction is less than expected from GC reduction.
For mandelbrot benchmark, the pure arithmetic superinstructions did not
apply, so there were no reduction.

Table 3.6 provides data on how opt-opt superinstructions affected an
inner computation loop of the benchmarks. First column gives the total
number of instructions in the inner computation loop, the second — the
number of arithmetic instructions, in the third column number of consecutive
arithmetic instruction pairs is shown, and the forth column presents number
of arithmetic instruction after application of superinstructions.

SUPERINSTRUCTIONS 35

Related work

gc interp hash instance var method other
0%

10%

20%

30%

40%

50%

mandelbrot
nbody
partial_sums
spectral_norm

Figure 3.6. Sampling profiling

Table 3.4. Allocation data

benchmark allocated objects allocated floats ratio of floats
mandelbrot 204119688 203253333 99.58%
nbody 29013440 29000433 99.96%
partial sums 87512302 87500027 99.99%
spectral norm 1216914 1200416 98.6%

3.5 Related work

An alternative approach to reducing overhead of boxing floating point num-
bers in Ruby has been evaluated by Sasada [62]. It works by stealing a
few bits from pointer binary representation, which normally are zero due to
pointer alignment, and using non-zero tag to trigger special handling of the
remaining bits. Since Ruby uses double precision for its floating point arith-
metic, this approach is limited to 64 bit architectures, while our approach
provided similar benefits on both 32 bit and 64 bit platforms. Tag bits
do not allow to store complete double precision value, so fall-through path
for boxed representation is still required. Since range of values represented
in-line is chosen to include most commonly occurring values, this approach
allows eliminate most of overhead due to boxing of floating point values at
the expense of small overhead of checking tag bits. Also, using tagged values
incurs small overhead to programs that do not use floating point values at
all. Overall, tagging approach resulted in 28–35% improvement in execution
time, compared to 0–23% improvement of opt-opt superinstructions.

Kawai [41] studied possibilities of using limited form of garbage collec-
tion over stack-allocated heap of floating-point registers and wide stack tech-
niques. Their approach produced 25%–50% improvements in numerically
intensive programs, so is a good alternative way to reduce boxing of interme-

SUPERINSTRUCTIONS 36

Related work

Table 3.5. Dynamic instruction counters

benchmark mandelbrot nbody partial sums spectral norm

b
as
e arith ops 204253320 240000373 227650007 524460431

float allocation 203253333 232000433 274750027 157327596
garbage collections 26115 30170 35065 11291

op
t-
op

t merged arith ops 0 84000105 70650000 157325290
floats allocated 203253333 148000328 204100027 106239988
garbage collections 26115 19252 26080 7702
reduction in allocation 0% 36% 26% 32%
reduction in GC 0% 36% 26% 32%
GC share 38% 42% 50% 24%
expected reduction 0% 15% 13% 8%
reduction in runtime 0% 23% 18% 7%

Table 3.6. Applicability of opt-opt superinstructions in benchmarks

Instructions in the inner loop
benchmark total arithmetic pairs merged after merge
mandelbrot 60 9 0 9
nbody 103 26 9 17
partial sums 124 29 9 20
spectral norm 34 10 3 7

diate floats. Stack allocation of intermediate computation results was earlier
discussed by Steele [67].

Owen et al. [51] proposed lazy boxing optimization in context of compiler
for Java-like language with generics over value-types. Lazy boxing works by
allocating boxed objects in stack frame, and moving the object to heap only
when needed, thus reducing the number of heap allocations and associated
overhead. This techniques relies on static compiler analysis to detect paths
where the stack object may escape scope of its stack frame.

Superinstructions were proposed in past for improving performance of
interpreted systems and reducing code size. Proebsting [55] used superin-
structions to optimize size and speed of interpreted execution of ANSI C
programs. The operations of the virtual machine were chosen to closely
match intermediate C compiler representation.

Piumarta et al. [52] achieved good performance improvements for the

SUPERINSTRUCTIONS 37

Summary

low-level interpreter with RISC-like instruction set and somewhat smaller
improvements for Objective Caml interpreter. Interpreters they studied are
much more low-level than Ruby interpreter, studied in this work, and have
low average number of native instructions per VM operation.

Hoogerbrugge et al. [37] built a hybrid compiler-interpreter system, in
which time-critical code is compiled, and infrequently executed code inter-
preted. The system employs dictionary-based compression by means of su-
perinstructions. Instruction set of the interpreter is also based on the native
instructions of the processor used.

Recent study by Prokopski et al. [56] predicted and verified limited effect
of code copying techniques (analog of naive superinstructions in our work)
on Ruby VM. Our results are in good accordance with theirs.

3.6 Summary

We evaluated the effect of naive superinstructions for Ruby interpreter, and
verified, that it has limited effect due to high quality of indirect branch pre-
dictor in modern hardware, as well as due to VM operations being complex.
The result of experimental evaluation confirms the expectation. Improve-
ments of performance using naive superinstructions is about 4%.

Further we proposed and evaluated a novel way of constructing superin-
structions for Ruby 1.9 — arithmetic superinstructions. Reduction in floating
point number boxing provides a visible reduction in GC overhead and thus
improves overall performance by 0–23%.

SUPERINSTRUCTIONS 38

Chapter

4
Dynamic mixin optimization

4.1 Introduction

Many dynamic constructs available in popular scripting languages such as
Ruby, Python and Perl are used in constrained ways. For example, definition
of a new method at runtime is being used to adapt the programming system
to the environment and to create helper or convenience methods. Typically
this is done during program or library initialization stage. Although opti-
mization of dynamic dispatch is well-explored [71], the case of dynamically
changing class hierarchy has not been widely considered. The performance
of current implementations in case dynamic method redefinition occurs is
not as good as we would like it to be. For this reason current applications
use dynamic techniques at program run time sparingly. Together this forms
a kind of chicken-and-egg problem, because developers of interpreters and
virtual machines do not expend much effort in optimizing components that
are not widely used by applications.

However, there exist certain applications, that would greatly benefit from
dynamic technique such as dynamic mixin, which allows to insert mixed-in
class at arbitrary place in class hierarchy. For example, during live devel-
opment on an interactive system without stopping a program, a code mod-
ification can be introduced as a dynamic mixin installation, which overrides

DYNAMIC MIXIN OPTIMIZATION 39

Introduction

old versions of code with new versions. The widely known examples of live
systems are Lively Kernel [38] and Squeak [39]. The programming systems
steadily acquire complexity, and programming in a live environment proves
to be a challenge. According to anecdotal evidence from developers of Lively
Kernel system, it is useful to restrict the scope of modifications to some parts
of the program. Dynamic mixin provides a means to control the application
of overriding methods by inserting or removing the mixin dynamically.

Another example of application of dynamic mixin is refactoring of pre-
existing applications to add support for context-awareness. Recent mobile
applications running on mobile phone have a life-cycle very different from tra-
ditional desktop applications. The geolocation data obtained by the means of
GPS receiver or scanning Wi-Fi access points can be used to modify the be-
havior of software to match the context. Context information can be provided
by other sensors in the mobile device, such as luminosity sensor or micro-
phone. Dynamic mixin technique makes it possible to introduce variation in
behavior without redesigning the original context-unaware application. Dy-
namic mixin technique can also be used as a substrate for implementation of
paradigms such as dynamic aspect-oriented programming [54] and context-
oriented programming [34].

Implementation of dynamic mixin in Ruby is currently not well-tuned to
these use cases. It is short of being useful in full measure for two reasons: the
operation of mixin removal is not provided, though it can be implemented in
straightforward way; second, global method cache and inline caches — the
optimization of method dispatch — rely on global state tracking, which can
cause significant overhead if dynamic mixin functionality is used with high
frequency. The particular issue with frequent changes is inefficient cache
invalidation.

In this chapter we propose fine-grained state tracking as a solution for
efficient cache invalidation in Ruby, which allows to reduce the overhead of
cache flushes on dynamic mixin inclusion or other changes to classes. Our
solution associates state objects with method lookup paths, which provides
strong guarantees in case of unchanged state object. We assume that an ex-
ecuted application dynamically changes its behavior by mixin inclusion with
high frequency, and that the system is alternating between few states. This
happens, for example, when mixins are used to represent advice applica-
tion at cflow pointcut, by including mixin on each entry to dynamic context
of pointcut and excluding it on exit. Switching layers in context-oriented
programs can be straightforwardly represented by dynamic mixin inclusion
and can happen arbitrarily often. Strong guarantees that fine-grained state

DYNAMIC MIXIN OPTIMIZATION 40

Ruby and dynamic mixins

tracking provides allow us to improve performance of alternating program
behavior. We propose an algorithm of caching alternating states, based on
fine-grained state tracking and polymorphic inline caching. We saw six-fold
performance improvement on a microbenchmark, and 48% improvement on
a small dynamic-mixin heavy application. We also consider generalization
of the caching algorithm to the delegation object model with thread-local
changes to class hierarchy [33], and develop an extension to the caching
algorithm — thread-local state caching, which is important for efficient im-
plementation of context-oriented with-active-layer program construct.

The contribution of this chapter is as follows: we propose an algorithm
of fine-grained state tracking to optimize dynamic method lookup, and show
how its application to Ruby can reduce overhead of global method cache.
Further, we propose an algorithm of caching alternating states that makes
dynamic mixin inclusion and exclusion much more amenable to performance
optimization by preventing inline cache misses. We also describe thread-local
extension to caching algorithm.

4.2 Ruby and dynamic mixins

Ruby is a dynamic pure object-oriented language, which has got much at-
tention recently. As Furr et al. found in [28], the majority of applications in
Ruby use dynamic features to some extent, either directly or via standard
libraries. The purposes range from adapting to environment to reducing
amount of typing, while providing rich and convenient API. However, in
majority of cases use of dynamic features is limited, and can be expressed
without resorting to use of eval construct.

When talking about dynamism of application written in object-oriented
language, one can classify the extent to which dynamic features are used. The
lowest level involves creating a fixed class hierarchy and relying on dynamic
method dispatch and polymorphism to achieve desired program behavior.
This limited use of dynamic features is quite common and is possible even
in statically typed languages like C++ or Java. Furthermore, the major-
ity of research on dynamic language performance concerns exactly this level
of dynamism. The next level of dynamism arises when the program can
modify its behavior by changing the relationships between existing classes,
but rarely creates code on the fly. The main assumption is that changes
in class hierarchy and reuse of code happen much more often than creation
or loading of new code. This is exactly the scenario we are targeting with

DYNAMIC MIXIN OPTIMIZATION 41

Ruby and dynamic mixins

our research. The highest level of dynamism we can think of is complete
and thorough inclusion of meta-programming, a system that repeatedly gen-
erates substantially new code and incorporates it into the running system,
constantly changing its state without much repetition or code reuse. We
consider that a subject of future research.

Ruby as a programming language supports all three levels of dynamism.
The lowest level of dynamism is implicit in the semantics of the method
call. Mix-in composition of modules provides a flexible way to handle and
rearrange units of behavior, representing the second level of dynamism. The
third and highest level of dynamism is achievable by constructing arbitrary
source code strings and passing them to eval function.

In recent research the delegation object model [46] has been suggested as
a universal substrate for implementation of many programming paradigms.
For example, substantial part of aspect-oriented programming can be for-
malized and implemented on top of delegation object model [33]. So is
context-oriented programming [63]. The fundamental operation, on which
these implementations are based is dynamic insertion of an object to a dele-
gation chain or its removal. We call that operation dynamic mixin inclusion
(respectively exclusion). Dynamic mixin inclusion can represent weaving of
the aspect, activation of the context layer, or even smaller change in program
state, as we describe below. Contrary to the typical use of mixins as they
were conceived by the inventors [12], dynamic mixin composition happens
not at the application compile time, but at runtime. Moreover, dynamic
mixin inclusion cannot be treated as a solitary or infrequent event. For ex-
ample, programming in context-oriented style may involve frequent change of
layers. Recent trend in application of dynamic aspect-oriented programming
is self-tuning aspect [70], which can dynamically install and remove other as-
pects or even reweave an optimized version of itself. Representation of some
constructs, such as cflow and within pointcuts of AspectJ [42], is possible
through repeated operations of mixin installation and removal for each entry
into and exit from the dynamic context of the specified pointcut, which can
happen with arbitrary frequency. For example, the pointcut cflow(call(A.f()))
&& call(B.g()) can be implemented as two mixins, one of which is perma-
nently inserted to intercept the call to A.f(), and the other is inserted and
removed dynamically. Each time method A.f() is called, the first mixin will
(1) insert a mixin with advice implementation at B.g(), then (2) execute the
original method A.f() by a superclass call, and after it gets control back from
a superclass call, (3) remove the advice mixin. In this way, the advice mixin
inclusion and exclusion at B.g() happens for each call of A.f(). The perfor-

DYNAMIC MIXIN OPTIMIZATION 42

Ruby and dynamic mixins

mance of programming systems that perform mixin inclusion operation with
high frequencies have not been studied much, and our research goal is to try
to fill the gap. We make dynamic mixin the main target of our consideration.

Mix-in composition in Ruby is provided by modules — a kind of class
that can be dynamically inserted as a superclass at arbitrary place in class
hierarchy (we use the term mixin to denote module that is used for dynamic
inclusion). The inclusion can be done at program run time. Fig. 4.1 gives
an example of a server application. The mixin ServerMonitor, after having

1 class Server
2 def process() ... end
3 ...
4 end
5

6 class NetworkServer < Server
7 ...
8 end
9

10 module ServerMonitor
11 def process()
12 ... # monitor request
13 super # delegate to superclass
14 end
15 end
16

17 # this can be done during program execution
18 NetworkServer.class eval do
19 include ServerMonitor
20 end

Figure 4.1. Example of using mixin inclusion in Ruby

been included to the class NetworkServer, intercepts calls to the methods of
the base class Server, and provides monitoring functionality, while delegat-
ing the operation itself to an original implementation in Server. Within an
overriding method implementation, it is possible to call the next overridden
implementation in superclass chain by using super keyword; the system au-
tomatically passes all the arguments to a superclass method. The construct
class eval is equivalent to opening the class definition, but can be used in an
arbitrary context, even deep in the call chain, while regular class definition

DYNAMIC MIXIN OPTIMIZATION 43

Ruby and dynamic mixins

is only allowed in the top-level context of the source file. The class hierarchy
before and after mixin inclusion is shown in Fig. 4.2.

Current Ruby implementation has a drawback concerning dynamic use of
mixins, as it allows dynamic inclusion of a mixin, but does not provide a sym-
metric operation of mixin removal. A remove operation reportedly has been
omitted because of ambiguity of mixin remove operation due to the fact, that
mixin inclusion involves creating a copy of the original mixing object, so that
a mixin can be installed multiple times in different places in class hierarchy.
We chose a simple semantics for the remove operation, which does not affects
copies of a mixin. Mixin removal implementation is straightforward and is
very similar to mixin inclusion. Operation of mixin removal greatly facili-
tates implementation of context-oriented programming constructs in Ruby,
because it allows expressing the with-active-layer construct with a bunch of
mixin inclusion operations on entering the dynamic scope of layer activation,
and mixin exclusion on exit. In the above example, it is useful to be able to
remove the monitoring mixin after monitoring is no longer needed.

�������

���	��
���	��

���	��

������

�����������

���������

�����������

���������

�������

���	��
���	��

Figure 4.2. Class hierarchy before and after mixin inclusion

We implemented mixin removal operation using a development snapshot
of CRuby 1.9.2 as a base. Let us consider the method lookup algorithm first.
Each object has an embedded class pointer. When a method is called on
an object, first the method name is looked up in the method table of the
class object. If the method is not found, search continues in the superclass
of the class, and so on. The algorithm is common to many object-oriented
programming languages. If implemented naively, it incurs significant over-
head on each method call. That is why Ruby employs several optimizations
to reduce method dispatch overhead.

Ruby uses method cache optimization [44]. Method cache is a global hash
table, indexed by a combination of a method identifier and a class identifier,
which is consulted before doing regular method lookup. In Ruby, method
cache has 2048 entries by default. Since normal method lookup typically
involves multiple hash lookups, and hit in method cache requires just one

DYNAMIC MIXIN OPTIMIZATION 44

Ruby and dynamic mixins

lookup, method cache usually benefits the system performance.
To further improve method dispatch performance, Ruby includes an im-

plementation of inline caching, techniques pioneered in Smalltalk [23]. Inline
caching heavily relies on an assumption that most call sites are monomorphic,
i.e. they mostly dispatch to a single target method during application run,
so cached in the call site prior lookup result can be used in future instead of
normal method lookup. In CRuby 1.9, the program is compiled to a stream of
interpreted instructions, which may have arguments embedded into the code
stream. To implement inline caching, a method call instruction (alterna-
tively called ”message send” instruction) has an additional argument, which
holds pointer to the cache object, allocated and associated with the method
call instruction at compile time. The cache object holds the class pointer
and a snapshot of a state counter (explained in next paragraph). During
first execution, the receiver class and current value of the state counter are
stored into the cache object. On subsequent executions the inline caching
code checks whether the receiver is of the same class as in the first execution
and if the saved state value matches the current value of the state counter.
On successful check, it uses cached method pointer without further search,
otherwise, if class is different or cache has been invalidated by change of
the state value, it does a full lookup and updates values stored in the cache
(Fig. 4.3).

1 def send(name, args, cache)
2 receiver = args[0]
3 if cache.class == receiver.class and cache.state == state
4 method = cache.method
5 else
6 method = lookup(receiver.class, name)
7 cache.state = state
8 cache.class = receiver.class
9 cache.method = method

10 end
11 method(args)
12 end

Figure 4.3. Inline caching

One important detail not described in the pseudo-code in Fig. 4.3 is the
nature of the state. In current Ruby implementation, it is a global integer
variable, which represents the state of the whole system. Global nature of

DYNAMIC MIXIN OPTIMIZATION 45

Fine-grained state tracking

the state counter makes invalidation very coarse-grained: any action that
potentially can change dispatch of any method triggers increment of the
global state counter, and thus invalidates all inline caches, as well as global
method cache. Global method cache further affects performance, because it
does not save a snapshot of global state counter to ensure validity, and for this
reason, on mixin inclusion or other modification of global state, the whole
method cache needs to be scanned in order to invalidate affected entries.
With the size of the cache of 12 kb this may incur substantial overhead if the
rate of global state changes is high.

Our target application, similar to example of the Fig. 4.1, exhibits very
high overhead due to global state tracking. During application run, a mon-
itoring mixin is repeatedly installed on each request. As a result, the ap-
plication has very high rate of mixin inclusion and exclusion, each of which
causes bump of the global state counter, and subsequent complete clearing of
method cache. Flushing the method cache may take more than one quarter
of the execution time, as can be seen in Table 4.1, the line method cache.
The application is described in more detail in Section 4.5.

Table 4.1. Profile of the application benchmark on baseline ruby
item runtime share

method cache 27.8 %
hash lookup 13.8 %

interpreter loop 13.2 %
method call 4.0 %

other 41.2 %

4.3 Fine-grained state tracking

To overcome the inefficiencies of global state, we devised a fine-grained state
tracking technique. The goal is to factor the dependencies between inline
and method caches and classes, so that modification of class methods or
class hierarchy would require invalidation of fewer caches. Fine-grained state
tracking replaces single global state counter with multiple state objects, each
responsible only for the part of method dispatch space of classes and method
names. Change in method definitions or class hierarchy propagate to associ-
ated state objects, which in turn invalidate dependent method cache entries

DYNAMIC MIXIN OPTIMIZATION 46

Fine-grained state tracking

and inline caches. Further, we propose several techniques to realize the ben-
efit from the fine-grained state tracking.

4.3.1 Method lookup path-based state tracking

������

���		

�����������

� � �

���������

�	
��

���	

�	
��

����	�	�
�
���

	�
�����		 	�
�����		 	�
�����		

Figure 4.4. State object association with method lookup path

Our algorithm extends the standard method lookup procedure with state
handling. We associate a state object with the method lookup path, which
starts at the class provided as a parameter of lookup function, and con-
tinues on to its superclasses until the matching method implementation is
found. Association is implemented by adding a method table entry to each
class along the lookup path, and storing a pointer to the state object there
(Fig. 4.4). A state object is allocated on the first lookup and reused on later
lookups. A detailed definition of the lookup procedure is given in Fig. 4.5.
For each method selector we add a method table entry to all classes that
are accessed during the method lookup, and allocate a single state object.
For some time, every distinct method implementation will have its own state
object, but after dynamic mixin insertion, lookup of overridden method will
find existing state object and reuse it for overriding method, so that overrid-
ing and overridden methods will get associated with the same state object.
The algorithm guarantees that any set of methods that have been dispatched
to with the same method selector and with the same type of receiver object
will get the same state object. A special case when calls to overriding and
overridden methods have caused creation of separate state objects and later
turned out to be callable with the same receiver class is discussed at the end
of this section. A property of reusing existing state objects gives us a bound
on the total number of allocated state objects: it cannot be greater than
total number of methods in a program.

State object is implemented as an integer counter. To make use of the
state information, we change the inline caching code in the way shown in
Fig. 4.6, and use the pstate pointer, returned by the lookup procedure. We

DYNAMIC MIXIN OPTIMIZATION 47

Fine-grained state tracking

modified method cache to store the last returned state object and a snapshot
of state object counter. On method cache lookup, a validity check is per-
formed, and if the check is successful, the cached method pointer and state
object pointer are returned. In this way fine-grained state tracking is applied
to both method cache and inline caches.

Using information collected during method lookups, we enforce an invari-
ant: a state object must change its value on any change in object method
tables or class hierarchy that might affect the outcome of lookup. To main-
tain an invariant, it is sufficient to do the following:

• On addition of a method to a method table we increase the correspond-
ing state object counter, if there is a matching method entry.

• On mixin inclusion or exclusion, the method table of modified class
contains precisely the list of methods, whose lookup may be affected
by the change of delegation pointer. So we loop over method table and
increase the counter in each state object.

A rare case when we encounter more than one existing state object during
method lookup requires special handling. An example code that illustrates
how this can happen in the setting of example of Fig. 4.1 is shown in Fig. 4.7.
At the call s.process in the line 3 a new state object s1 is allocated and asso-
ciated with lookup path (Server,process), where first element of pair denotes
the starting class, and the second — method selector. At later call in the line
8 another state object s2 is allocated for path (NetworkServer,process), which
starts at class NetworkServer and ends in the mixin ServerMonitor, where the
method is found. The mixin ServerMonitor is removed in lines 9–11. The
method lookup (NetworkServer,process) in the line 12 starts in the class Net-
workServer, and ends in the class Server, finding both s2 and s1. In this case
the call site will use the state object s1 associated with (Server,process), be-
cause lookup algorithm gives precedence to a state object found later, i.e.
higher in the class hierarchy (line 13 in Fig. 4.5). The state object s2, earlier
recorded at (NetworkServer,process) will be overwritten by s1. Since existing
call sites may still hold pointers to overwritten state object s2, we add a de-
pendency link s1 → s2 between the two state objects (lines 10–11 in Fig. 4.5).
Increment of a state object counter recursively triggers increment in all de-
pendent state objects, which guarantees cache invalidation in all affected call
sites. To assure correctness it is enough to do recursive invalidation only
once, because subsequent execution of a call will do a full lookup and cache
a pointer to the correct state object. One-time recursive invalidation is suf-
ficient for correctness, however, it is not enough to ensure convergence to a

DYNAMIC MIXIN OPTIMIZATION 48

Fine-grained state tracking

single state object per call site. In this example, the link to the state object
s2 remains recorded in the mixin ServerMonitor and could reappear after next
mixin inclusion. It is possible to prevent further use of s2 by flagging it as
”overridden” and recording a link to an ”overriding” state object s2 → s1.
Similar treatment is necessary to ensure that polymorphic call sites use a
single state object. We have not implemented this though.

4.3.2 Scheme of correctness proof

The properties of the invariant outlined in the previous subsection can be
proved using following lemmas. We assume that the lookup procedure takes
the pair (class,methodname) as an input, and stores the lookup result —
tuple (stateobjectpointer, targetmethod, stateobjectsnapshot) in the inline
cache.

We use the the term lookup path to denote the set of classes which has
been traversed during lookup, so formally

lookuppath(class,methodname) = {set of classes referenced during lookup}

Lemma 1: For any inline cache that has been initialized with a pointer
to the state object, and for any pair (class,methodname) in the in-
line cache contents, either the state object is referenced from the
lookuppath(class,methodname), or the inline cache is in an invalid state.

Proof : First we note, that an inline cache is initialized with a pointer to the state
object during lookup, which by definition of the lookup algorithm stores a
pointer to the state object in all classes traversed during lookup, i.e. on the
lookup path. This gives us the base of induction on the number lookup and
dynamic mixin operations.

For the induction step we consider an inline cache and assume that the
statement of the lemma holds. Then, if a lookup operation occurs, it may tra-
verse the classes on our lookup path. By definition of the lookup algorithm,
it either reuses the state object encountered during lookup (the same state
object referenced from the inline cache), thus does not change the pointers
on our given lookup path, or it may choose to use another state object, in
which case the original state object is either invalidated or transitively linked
from the overwritten state object, in either case preserving the condition.

If a dynamic mixin operation occurs anywhere on the given lookup path,
then it changes the value of the state object and thus invalidates the contents
of the inline cache.

DYNAMIC MIXIN OPTIMIZATION 49

Fine-grained state tracking

Lemma 2: For any inline cache, it is either invalid, or its contents caches
correct target of the lookup.

Proof : Consider a call site with an inline cache. We prove the lemma using induction
on the number of lookups and dynamic update operations, i.e. dynamic mixin
installation or removal operations and executions of the call site.

Initial case. Inline caches are allocated and constructed in an invalid
state after allocation, thus the condition is satisfied.

Induction step. First consider the execution of the call site. If the inline
cache has been invalid before the execution of the call site, then during the
execution the full lookup would be performed, which will update the pointers
to the state object on the lookup path and update the inline cache contents
with valid information. If the inline cache has been in valid state, then by
the induction assumption it already had a correct target recorded.

If the inline cache has been valid, then its contents was correct according
to the induction hypothesis, and the execution uses the correct cached target
without updating it, thus maintaining the invariant.

In case when a dynamic mixin operation is performed, the inline cache is
either already invalid, thus the condition holds, or it is correct. Then using
lemma 1 we know that all classes on the lookup path of (class,methodname)
has a pointer to the state object. A dynamic mixin operation, that can affect
the outcome of the lookup for our given inline cache must be performed
somewhere on the lookup path. And since anywhere on the lookup path
we have a pointer to the state object, the dynamic mixin operation will
necessarily invalidate the cache by changing the value of the state object.
Thus, after the dynamic mixin operation either the outcome of the lookup is
not affected, and inline cache still contains correct value, or the inline cache
is invalidated – which is exactly the induction assumption.

The correctness of the inline caching with fine-grained state tracking fol-
lows from the lemma 2, because for any executed call site with an inline
cache, it either will be in an invalid state, and thus a full lookup will be
executed, or it will have a correct cached contents.

4.3.3 Polymorphic inline caching

To meet our goal of optimizing alternating changes (mixin inclusion and ex-
clusion), it is necessary to cache information about multiple method dispatch
destinations, so we implemented polymorphic inline caching [36]. We extend
the inline cache object to include array of inline cache entries instead of a

DYNAMIC MIXIN OPTIMIZATION 50

Fine-grained state tracking

single method pointer and a state snapshot. Each inline cache entry includes
a class pointer, a state value and a method pointer. The call site is asso-
ciated with a single state object, but existence of multiple entries allows to
cache multiple different methods, potentially belonging to different classes,
each with its own snapshot of state object. The pseudo-code of method call
operation using polymorphic inline caching (PIC) is shown in Fig. 4.8.

At the moment of allocation of a polymorphic inline cache, we allocate
only a single entry, and further entry allocation happens as needed, after
subsequent cache misses. To record a new entry in filled up polymorphic
inline cache, we use random eviction policy, following the advice of the origi-
nal inventors of polymorphic inline caching [36], which guarantees a constant
overhead on cache miss independently of number of entries in cache.

4.3.4 Caching alternating states

The guarantees of fine-grained state tracking allow us to benefit from re-
peated behavior of our target application. Unchanged value of state object
guarantees that associated method has not been changed or overridden by
mixin. This invariant allows to implement caching optimization for tempo-
rary changes in class hierarchy. When installing a mixin object, we snapshot
the state of method table of the class, where mixin is included. We record
it in a snapshot cache of the modified class. A snapshot includes values
of state objects for each method in the method table, before (”old”) and
after (”new”) the superclass pointer change. Later on, when the mixin is re-
moved, the snapshot cache is looked up for the corresponding snapshot, and
the found snapshot is compared against current method table. If the state
object value for a method matches the ”new” state value recorded in the
snapshot, it means that no other changes affected this method lookup, and
thus we can safely rewind state object value to ”old” value from the snap-
shot, instead of regular invalidation by increasing the state object counter.
A separate cache is maintained for each class, and several alternating state
snapshots are stored in a cache with LIFO eviction policy. In case several dy-
namic mixins override the same method, they will use the same state object.
Since the cache contains pairs of state transitions, the caching technique is
effective if the scopes of mixin inclusion are properly nested with respect to
each other. Dynamic inclusions of mixins that are disjoint with respect to
set of methods does not interfere (except for potential overflow of snapshot
cache).

This technique relies on availability of polymorphic inline caching to re-

DYNAMIC MIXIN OPTIMIZATION 51

Fine-grained state tracking

alize the benefit. After mixin inclusion, calls of the overridden methods will
miss in the inline caches, and so the new value of state object together with
the overridden method pointer will be recorded in cache. However, there is
high probability that a prior state and prior method pointer will be retained.
Thus, when the mixin is later excluded, and the value of a state object is
restored to prior value, this prior value still is present in polymorphic in-
line caches, and method lookup can be served from the cache. If the mixin
is included again at the same place in class hierarchy, the system finds a
matching snapshot in the snapshot cache and updates the state object val-
ues for all entries in the method table using the same algorithm as on a
mixin removal, but with reversed pairs of state values: on mixin removal the
state changes from ”new” value to ”old”, and on mixin insertion from ”old”
to ”new” (where ”old” and ”new” refers to the first mixin inclusion). This
liberal reuse of state object values places some restriction on the state object
invalidation, because simple counter increment by 1 does not guarantee that
a new value has not been used in some snapshot. To avoid this problem, on
invalidation of a state object we generate fresh values using global counter,
so that the new value of a state object never coincides with earlier cached
values.

In practice there exist a problem of wrapping around the maximum value
of the counter, which can produce values that were already seen in the sys-
tem. To prevent the incorrect operation in case when a global counter wraps
around, it is necessary to walk over all inline caches in the system and clear
their contents. We expect that counter wrap-around is a rare event and the
overhead of clearing all the caches is acceptable.

4.3.5 Correctness of alternate caching

In order for the alternate cache to be useful, a number of conditions need
be hold. For example, our polymorphic inline cache has only one pointer to
the state object, and it is necessary to show that all of the methods that are
called from a single call site will eventually use the same state object.

Lemma 3: Given that the number of classes and methods in the system is
bounded, any call site will eventually settle on a single state object.

Proof : First, the number of allocated state objects is bounded by the number of
distinct method in the system, because lookup algorithm only allocates a
new state object if it has not found any on the lookup path.

DYNAMIC MIXIN OPTIMIZATION 52

Fine-grained state tracking

Second, whenever lookup algorithm encounters more than one state ob-
ject referenced from the inline cache and on the lookup path, the state object
merge is initiated, so that one of the state objects will go out of use.

Lets consider a call site with an inline cache. After a first lookup, the
inline cache receives a pointer to a state object. The call site can have
the state object pointer changed only on call site executions, that missed in
the inline cache and caused full method lookup. And whenever the lookup
returns a state object different from the one originally referenced from the
inline cache, that means that the former object has been put out of use, and
so it cannot be returned by any subsequent lookup. Thus, lookup operation
on a call site cannot infinitely return different state objects, because that
would mean that the number of state objects out of use is monotonically
growing, while this very same number is limited.

The correctness of the alternate caching can be shown using the same
approach as for the plain fine-grained state tracking plus the following lemma.

Lemma 4: Each value of a state object can have at most one corresponding
shape of the part of class hierarchy, which has pointers to the given state
object.

Proof : We construct the proof by induction on the number of dynamic updates.
Induction base is trivial, because the class hierarchy has not been changed
yet and thus only one shape exists.

Proving the induction step is trivial in the case of regular invalidation,
since state object always obtains a fresh value, which has not existed in the
system before. A case when state object gets an old value from alternate
cache is more interesting.

Let’s consider an entry in an alternate cache (class,methodname), which
has a pointer to a state object state, and assume that a dynamic mixin
removal updates the state object state from a value s1 to an old value s0.
Alternate caching only returns the state object to an old value when its
current value matches the recorded value

state = s1

From the induction hypothesis follows, that the shape
lookuppath(class,methodname) is currently exactly the same as it
was just after the mixin installation, which changed the state object value
from s0 to s1. Thus the mixin removal operation will return the lookup path
to exactly the same state as before mixin installation, and the induction

DYNAMIC MIXIN OPTIMIZATION 53

Generalizations

hypothesis of correspondence of state object values to class hierarchy shape
is preserved.

The case of mixin removal and installation pair is completely analogous.

Using the invariant from the lemma 4, it is easy to see that alternate
caching correctly interacts with polymorphic caching, because any value of
the state object uniquely determines the relevant class hierarchy shape (where
relevant part of class hierarchy is a union of all lookup paths dependent on
the state object), and thus the method dispatch target is also determined
uniquely. Given the lookup target was correct when it was recorded in the
inline cache for the first time, and it does not change, it is obvious that
information stored in the inline cache remains correct.

4.4 Generalizations

4.4.1 Delegation object model

The techniques described in previous section can be generalized and applied
to much wider range of systems than just Ruby. One particularly interest-
ing model is delegation object model, which is used in Javascript and other
prototype-based languages. Dynamic mixins in Ruby object model can be
seen directly as delegate objects, because class-based method lookup algo-
rithm conforms to that of delegation object model, and superclass calls have
the same semantics as message resend. Of course, Ruby object model is lim-
ited by restrictions it places on dynamic delegation changes: delegation can
be changed only by mixin inclusion or removal, and only for classes, but not
for instance objects.

Despite of differences, algorithm for fine-grained state tracking remains
valid for more general delegation object model without significant changes.
A minor change is necessary in the algorithm of caching alternating states,
because operation of delegation pointer change does not provide information
on whether it is used for mixin installation, removal, or even entirely arbitrary
change in delegation structure. We identify each change of delegation pointer
as a pair of pointer values (old,new) and attach this identifier to the snapshot
in the snapshot cache. On delegation pointer change, we check whether
the snapshot cache has a matching pair on record, and apply it if found.
The difference with mixins is that the check for matching pairs in cache

DYNAMIC MIXIN OPTIMIZATION 54

Generalizations

needs to be done in both directions (old,new) and (new,old). If a match is
not found, a new state change snapshot is recorded and inserted into the
snapshot cache using LIFO eviction policy. Cache of alternating states is
maintained separately for each delegating object, and is allocated only for
objects, for which delegation is in fact changed during program execution.

We implemented general form of proposed techniques in C, using an ob-
ject model similar to id [53], with behavior kept in separate objects, and
delegation being possible between behavior objects. Behavior objects in this
object model play the role similar to classes in Ruby object model. This im-
plementation is further referred to as ”C-impl”. We implemented dynamic
method dispatch functionality using macros, and inline cache is represented
by local static variables. The implementation structure is very close to that
Objective-C [19], and with some changes could be used as runtime library for
Objective-C with dynamic extensions. We believe fine-grained state tracking
can be applied to Javascript systems too.

4.4.2 Thread-local state caching

Application of the dynamic mixin as a base for implementing aspect-oriented
or context-oriented constructs in a multi-thread system requires thread-local
delegation. For example, layer activation in COP and thread-specific advice
application requires that a mixin be applied in one thread, and not applied in
other. Representation of cflow construct of AspectJ [42] requires even more
complicated structure, where pointcut selection is represented by a mixin,
which dynamically installs or removes advice mixin on entering and leav-
ing pointcut shadow. The program execution state is different on different
threads, and so has to be advice application. To resolve these issues, thread-
specific delegation — an extension to delegation object model — has been
proposed [33].

We noted that the scheme of caching alternating states can be extended
to cover thread-specific delegation as well, by extending the state objects
to hold thread-specific values. The algorithm described in Section 4.3.4 is
extended in the following way

• State objects can have thread-local as well as global value. Global
value of a state object includes a flag to indicate presence of thread-
local values.

• Cache entries record the state value with cleared thread-local flag. If
state object has its thread-local flag set, checks of global value against

DYNAMIC MIXIN OPTIMIZATION 55

Evaluation

inline cache entries will fail, leading to a separate ”thread-local” branch
in inline caching code.

• ”Thread-local” branch reloads the thread-local value of the state object,
which has the thread-local flag masked out.

• Thread-local mixin inclusion changes the thread-local value of affected
state objects, either with a fresh value to invalidate all dependent
caches, or with a value used in the past to switch to one of the cached
states.

With this modifications in place, polymorphic inline caching and caching
alternating states works as is. Fig. 4.9 shows an example of a mixin insertion
in thread T1: the delegation graph is different when viewed from thread T1

and other threads, and so is thread-local value of the associated state object.
Accessing the thread-local value of state object is more costly than load of
global value. Using the global value in the fast path and loading the thread-
local value only after initial check failure removes the overhead of thread-local
delegation in call sites where it is never used.

Thread-local delegation technique is not applicable to current Ruby, be-
cause Ruby does not allow multiple interpreter threads to be running simul-
taneously due to so called global interpreter lock arrangement [61]. As a
result, multiprocessing in Ruby applications is typically implemented using
multiple separate processes, and the issue of thread-local mixin installation
does not occur.

4.5 Evaluation

It is hard to find a good application benchmark to evaluate the techniques
proposed in this chapter, because dynamic mixin inclusion has not (yet)
become a popular techniques. For this reason, to evaluate the techniques we
use microbenchmarks, as well as a small application, which we specifically
created to exercise dynamic mixin inclusion. We specifically look to establish
the following:

• Proposed techniques in fact can reduce the inline cache misses on target
application.

• Proposed techniques provide performance advantage on the target ap-
plication, and reduce the overhead due to global method cache de-
scribed in section 4.2.

DYNAMIC MIXIN OPTIMIZATION 56

Evaluation

• What impact on dynamic mixin performance proposed techniques
make.

• What overhead proposed techniques have on regular method calls, when
no dynamic mixins are involved.

We cover these questions in the reverse order. All experiments were per-
formed on an Intel Core i7 860 running at 2.8 GHz with 8 Gb of memory,
with Ubuntu Linux 9.10 installed with GNU libc 2.10.1 and gcc 4.4.1. Mea-
surements were repeated at least 7 times, and an average value and sample
standard deviation is shown.

4.5.1 Overhead on a method call

To evaluate the overhead of fine-grained state tracking and polymorphic in-
line caching can have on performance of a single call, we used a simple mi-
crobenchmark. Since techniques of caching alternating states only affects
dynamic mixin inclusion, it is not evaluated by this microbenchmark. The
microbenchmark executes a tight loop, and on each iteration calls an instance
method on an object, which increments a global variable. We determined
the cost of loop and counter increments by running the same loop without a
method call, and subtracted this time from times measured in other bench-
mark runs, so that the table includes pure time for the method call and
return. Measurements are presented in Table 4.2. Method cache hit implies
prior inline cache miss, and the case of full lookup implies that method lookup
missed both in inline cache and in method cache. The ratio column gives the
ratio of measurements between modified Ruby versions and baseline Ruby,
for each of the cases separately, with PIC hit ratio computed against baseline
inline cache hit. Versions are written in the leftmost column sideways, base
meaning baseline Ruby version, fgst —Ruby with fine-grained state tracking,
fgst+PIC — version with both fine-grained state tracking and polymorphic
inline caching, and C-impl — our implementation in C. C-impl does not have
method cache, and has unoptimized implementation of method lookup. On
Ruby, fine-grained state tracking overhead is barely visible in case of inline
cache hit, as the difference of 1% is below measurement noise level. In case
of lookup in method cache and full lookup, the overhead is more pronounced
due to increased bookkeeping costs, 9% for the case of method cache hit
and 16% for the case of full method lookup. Polymorphic inline caching
incurs higher overhead, 49% for the case of monomorphic inline cache hit.
After conversion of inline cache to polymorphic, overhead changes to 78%.

DYNAMIC MIXIN OPTIMIZATION 57

Evaluation

Overhead in cases of method cache hit and full lookup is even higher, up to
almost 2 times. Despite high overhead of PIC, it still can be beneficial, as
we show in further experiments. The inline cache hit and PIC hit numbers
for C-impl provide peek into what level of method call performance would
be possible without overheads of method call, such as arguments marshaling
or boxing, which make method call in Ruby much more slow. To give a scale
for absolute numbers, in the last table section we show the typical cost of
static function call in C on the same hardware.

Table 4.2. Single call performance
Case single call time ratio

R
u
b
y

b
as
e inline cache hit 33.5± 0.9 ns 100 %

method cache hit 43.1± 0.9 ns 100 %
full lookup 52.7± 0.5 ns1 100 %

fg
st

inline cache hit 33.9± 0.8 ns 101 %
method cache hit 47± 1 ns 109 %
full lookup 61± 1.5 ns1 116 %

fg
st
+
P
IC

inline cache hit 49.8± 0.6 ns 149 %
PIC hit 59.6± 0.8 ns 178 %
method cache hit 78± 1 ns 181 %
full lookup 105± 1 ns1 199 %

C
-i
m
p
l

gl
ob

al inline cache hit 3.1± 0.1 ns
PIC hit 6.0± 0.1 ns
full lookup 71± 1 ns
C static call < 2 ns

4.5.2 Microbenchmarking dynamic mixin

To evaluate performance of dynamic mixin inclusion and exclusion, we use
another microbenchmark. It is designed to measure effects in the extreme
case, when frequency of mixin inclusion and exclusion is the same as fre-
quency of method call. In this benchmark, two classes and a mixin object
are arranged in structure shown in Fig. 4.10, with class A inheriting from
class B. Even iteration of a microbenchmark inserts and odd iteration re-

1Cost of full method lookup obviously depends on class hierarchy. The number shown
is for a single method defined directly in the object class, and so can be thought of as
minimal cost of full lookup.

DYNAMIC MIXIN OPTIMIZATION 58

Evaluation

moves the mixin M between classes A and B, which is graphically depicted as
a bold arrow between alternating values of superclass pointer of class A. Be-
sides mixin insertion or removal, each iteration also calls an empty method f
on an object of class A. To analyze the contribution of method call and mixin
switch to microbenchmark run time, we separately report time for the loop,
which includes only mixin switch (column switch only), and for the loop
with both the method f call and mixin switch (column switch+call). Three
cases of the benchmark exercise different dependencies of method dispatch
on mixin.

• below — the method f is defined in class A, so that mixin M inclusion
does not have any effect on dispatch of method A.f;

• non-affect — the method f is defined in class B, and mixin M does
not override it, so mixin inclusion does not have effect on dispatch of
method A.f, but it has the potential;

• affect — the method f is defined both in class B and in mixin M, so
mixin inclusion overrides implementation in class B and causes different
outcome of dispatch of method A.f.

Measurements of microbenchmark runs on Ruby are shown in Table 4.3, in
the upper half. Altern refers to Ruby with all proposed techniques imple-
mented, including fine-grained state tracking, polymorphic inline caches and
caching alternating states, fgst denotes Ruby with just the fine-grained state
tracking. Base is the baseline Ruby version, and mc is the baseline Ruby
with method cache flush implemented through check against saved value of
global state, rather than complete clearing of the hashtable. We included mc
version in comparison, because as we discovered in table 4.1, the clearing of
method cache constitutes large overhead, and it makes sense to question our-
selves, which part of improvement is due to fixing this performance bug, and
which part is due to advantages of fine-grained state tracking. Version with
our techniques drastically outperforms baseline Ruby version, for several rea-
sons. First, the overhead of clearing method cache on each mixin inclusion
or exclusion has been eliminated, as can be seen by reduction of switch+call
time from 3200 ns for baseline version to 750 ns for mc version. Second,
fine-grained tracking further improves performance by 28% on average. The
f method call is not the only call in the microbenchmark loop, because in-
sertion and removal of the dynamic mixin is also performed by method calls,
so improvement over mc version in both switch and switch+call times can
be attributed to reduced inline cache misses. Below case for fgst version is

DYNAMIC MIXIN OPTIMIZATION 59

Evaluation

visibly faster than non-affect and affect cases, because mixin inclusion does
not flush inline cache at method f call site in below case. Third, with all
of our techniques (altern line) method calls consistently hit in PIC, and in
this particular case the cost of PIC hit is less than the cost of full method
lookup in fgst version. This effect can be seen by comparing times over 500
ns of fgst version with times less than 500 ns in altern version: reduction by
12% on average. So despite of high per-call overhead of PIC in comparison
with monomorphic inline cache hit, it still delivers benefit by reducing inline
cache miss rate.

Measurements of the same microbenchmark on C-impl are shown in the
lower half of the Table 4.3, with global showing results when object delegation
is modified globally, and thread — with delegation modified using thread-
local delegation, as described in section 4.4.2. In all cases, our techniques
allow to run the microbenchmark with method calls consistently resulting in
inline cache hits, as can be seen by low difference between measurements of
loop with both switch and method call, and just a mixin switch. Thread-
local caching support doubles the cost of mixin switch (about 40 ns vs. 19
ns) and more than doubles the cost of inline cache hit due to necessary use
of PIC and thread-specific state values (about 10 ns vs. 4 ns), as can be seen
from non-affect and affect cases of C-impl with thread-local caching. Note,
that below case does not incur that cost on method call, because the method
f dispatch is not affected by mixin inclusion, and is served by regular global
inline caching mechanism.

4.5.3 Application benchmarking

To evaluate application-level impact of proposed techniques we developed a
small application. We tried to imitate style typical for Ruby-on-Rails web
application framework, using reflection for system configuration. Client re-
sides in the same Ruby application, and no network connectivity is involved.
The application structure is similar to the example in Fig. 4.1. To exercise
dynamic mixins, it installs a monitoring mixin on each client request and
removes it after request is processed. Monitoring mixin overrides processing
method with another method that immediately calls superclass method and
does nothing else. For benchmarking purposes, a client repeatedly executes
a fixed scenario of requests to the server. We measure execution time of a
fixed number of repetitions and report the average time per request.

Application benchmark is designed to stress the mix-in inclusion and ex-
clusion as much as possible, to the extent that baseline ruby has 79% of inline

DYNAMIC MIXIN OPTIMIZATION 60

Evaluation

Table 4.3. Microbenchmark performance
Case switch + call switch only

R
u
b
y

b
as
e below 3200± 30 ns 3100± 30 ns

non-affect 3200± 30 ns 3100± 30 ns
affect 3200± 30 ns 3100± 30 ns

m
c

below 750± 10 ns 640± 10 ns
non-affect 750± 10 ns 640± 10 ns
affect 750± 5 ns 640± 10 ns

fg
st

below 500± 3 ns 413± 6 ns
non-affect 565± 6 ns 414± 5 ns
affect 562± 9 ns 416± 5 ns

al
te
rn below 464± 5 ns 397± 4 ns

non-affect 479± 8 ns 400± 4 ns
affect 495± 4 ns 426± 3 ns

C
-i
m
p
l

gl
ob

al below 23± 1 ns 19± 1 ns
non-affect 23± 1 ns 19± 1 ns
affect 23± 1 ns 19± 1 ns

th
re
ad

below 42± 1 ns 39± 1 ns
non-affect 49± 2 ns 40± 2 ns
affect 51± 4 ns 41± 3 ns

cache misses on this benchmark. Using cache of alternating states prevents
inline cache misses during steady state, as can be seen in bottom graph in
Fig. 4.11. The graphs depict the number of inline cache hits, method cache
hits and full lookups during the first five iterations of the application bench-
mark. The x axis represents the time measured in number of calls, and the
y axis represents the percentages of outcomes, aggregated by 50 calls. From
0 to about 200 on the x axis, the system is in initialization phase. From that
moment, the system enters steady state. Baseline Ruby version has rate of
full lookups oscillating between 60 and 80% (the upper line in the upper
graph), but with our techniques implemented, the majority of calls result
in PIC hits (the upper line in the below graph). We report (monomorphic)
inline cache hits and PIC hits separately, because in our implementation
both monomorphic caches and PICs can coexist, and the cost of PIC hit is
higher than the cost of hit in monomorphic inline cache. The results shown
were measured with with the version of Ruby that unconditionally used poly-
morphic inline caches everywhere, that is why PIC hits dominate the lower
graph in Fig. 4.11. We also tried a version where all inline caches are ini-

DYNAMIC MIXIN OPTIMIZATION 61

Evaluation

tially monomorphic, and are converted to polymorphic on first real inline
cache miss with little difference in results, only the overhead of PICs was less
visible.

Caching alternating states completely eliminates inline cache misses in
steady-state phase, however some low but non-zero number of method cache
hits and full lookups remain. We investigated this in detail, and found out
that method cache hits and full lookups were caused by superclass calls and
use of Ruby reflection API method respond to? (question mark is a part
of method name), which is used to find out if an object has an implemen-
tation of a method. Both superclass method call and implementation of
respond to? starts the method lookup from the method cache, which is oc-
casionally invalidated by mixin inclusion or exclusion operations. As our
techniques of caching alternating states is effective only for inline caches, it
does not eliminate method cache and full lookups originating from places
other than method call instruction. Application of our inline caching tech-
niques to superclass calls is straightforward, though we have not implemented
it yet. We defer to the future the question of whether it is worthy and how
to apply caching alternating states to reflection API methods.

Table 4.4. Application benchmark results
version time ratio

baseline 20.7± 0.3 ms 100%
mc 14.5± 0.1 ms 70%
fgst 12.1± 0.2 ms 58%

PIC + fgst 12.5± 0.1 ms 60%
altern + PIC + fgst 10.7± 0.2 ms 52%

We evaluate the impact of the proposed techniques by measuring the
request time on our application benchmark. The results are shown in Ta-
ble 4.4. Eliminating clearing of method cache (by storing a state value in
each cache line and checking it on cache lookup, so that individual lines can
be invalidated just by change of global state value) improves the application
performance by 30% (mc line). Fine-grained state tracking further improves
performance by 12 percent points (fgst line). Introducing polymorphic inline
caches, as we have seen above, incurs overhead on method calls, and this
can be seen by 2 percent point increase in request time (the line marked
as PIC+fgst in the table). However, caching of alternating states (line al-
tern+PIC+fgst) improves application performance by 8 percent points. To
verify that the overhead of flushing global method cache has been elimi-

DYNAMIC MIXIN OPTIMIZATION 62

Related work

nated, we conducted the same profiling as that of Table 4.1 with our version
of Ruby. While method cache management constituted about 27% of exe-
cution time in baseline Ruby version due to excessive flushing (line method
cache in Table 4.1), our modifications reduced it to 0.2% (Table 4.5).

Table 4.5. Profile of the benchmark on modified Ruby version
item runtime share

method cache 0.2 %
hash lookup 4.6 %

interpreter loop 21.1 %
method call 6.9 %

other 67.2 %

Regarding memory footprint of the proposed techniques, we can obtain
some upper bounds from the definition of caching algorithm. The number of
allocated state objects for fine-grained state tracking is bounded by the total
number of methods in system. Number of polymorphic inline cache objects
is bounded by the total number of call sites in the system. These bounds can
be quite high in case of larger systems, and some heuristics may be needed
to limit allocation. We leave detailed evaluation of memory use with large
applications for the future work, however, to give a glimpse of memory usage
of our implementation in the Table 4.6 we show the number of minor page
faults during benchmark application run, measured with Unix time utility.
The page size is 4 kb.

Table 4.6. Memory usage approximation
version number of minor page faults

baseline 12410 ± 10
fgst 12450 ± 10

PIC+fgst 12460 ± 10
altern+PIC+fgst 9830 ± 30

4.6 Related work

Fine-grained dependency tracking has been proposed and evaluated in the
context of dynamic compilation systems with the main focus on reducing

DYNAMIC MIXIN OPTIMIZATION 63

Related work

amount of recompilation. Self system [14] maintains dependency graph be-
tween compiled methods and slots, on which the compiled method depends,
triggering recompilation of dependent methods on slot changes. Java virtual
machines such as HotSpot [43] typically include some sort of the fine-grained
state tracking functionality to minimize recompilation needed in case of dy-
namic class loading, but it appears that not much detail is available in pub-
lished articles. Chambers et al. [15] proposed an elaborated system for man-
aging complex dependency graphs, including several optimizations, such as
introduction of filter nodes and factoring nodes. They do not consider a pos-
sibility of repeated change between alternating states. Since the typical cost
of invalidation in their system is recompilation, they consider recomputing
method lookup a viable choice for preventing a potentially much more costly
method recompilation. On the other hand, we apply fine-grained state track-
ing to a Ruby interpreter with the purpose of preventing additional method
lookups. Our system also can prevent method lookups in the case of system
alternating between several states by repeated mixin inclusion and exclusion.

A similar scheme of tracking state and inline cache invalidation was im-
plemented for Objective-C by Chisnall [18]. It proposes fixed association of
state objects with methods. Our scheme generalizes this notion by associat-
ing state object with method lookup path, rather than with just the result
of method lookup, and as a result allows for caching of multiple method en-
tries, for distinct receiver types and multiple system states. The same author
also proposed dynamic extensions to Objective-C in the form of mixins and
traits [17], to which our techniques can be applied.

The general approach of using counters for selective invalidation has been
widely studied in the field of distributed cache coherence [68], for example,
in [65] the ”one-time identifiers” are proposed for selective cache invalidation
and [50] proposes using of the timestamps for the same purpose. One-time
identifier is closer to the scheme used by our technique, since it relies on
matching identifiers, rather than on monotonically growing timestamp, which
allows also less-than comparison. A global counter had been introduced in
Ruby implementation by Sasada and Maeda in 2005.

Polymorphic inline caching has been first proposed in Self [14], with the
purpose of optimizing so-called polymorphic call sites, which dispatch on
objects of several different types. In Java world, polymorphic inline caching
has been successfully used for optimizing interface calls [32]. In our work,
polymorphic inline caching is extended to cover not only distinct classes, but
also distinct states of the same class, potentially containing multiple entries
for the same class of receiver, but with different targets.

DYNAMIC MIXIN OPTIMIZATION 64

Summary

4.7 Summary

We proposed a specific way of fine-grained state tracking for highly dynamic
languages, that allow changing of class hierarchy by using dynamic mixins, or
even arbitrary delegation. Using the polymorphic inline caches and caching of
alternating state, we have been able to significantly reduce rate of inline cache
misses when the application repeatedly includes and excludes a dynamic
mixin. On a small dynamic mixin-heavy Ruby application, our techniques
eliminated the overhead of the global method cache (30%), and provided
additional improvements in performance: fine-grained state tracking (17%),
caching alternating states (12%). Due to high cost of method call in Ruby
and low difference between performance of inline cache hit and miss, the
benefits of proposed techniques are limited to applications with high rate of
dynamic mixin inclusion, however, numbers for C-impl suggest that benefit
would be higher on systems with more streamlined method call.

As inline caching has found use in compiled systems in the form of spec-
ulative method inlining [22], we expect our techniques to be applicable and
beneficial with PIC objects used to create multi-version compiled code in
dynamic compilation system, and we show that in the next chapter.

DYNAMIC MIXIN OPTIMIZATION 65

Summary

1 def lookup (klass, name, pstate)
2 cur = klass
3 while cur do
4 entry = cur.method table[name]
5 if !entry
6 cur.method table[name] = Entry.new
7 else
8 if entry.pstate
9 nst = entry.pstate.override || entry.pstate

10 if pstate and pstate != nst
11 nst.add onetime dependent(pstate)
12 pstate.override = nst
13 end
14 pstate = entry.pstate
15 end
16 break if entry.method # method found
17 end
18 cur = cur.super
19 end
20 return (nil, nil) if !cur
21 pstate = State.new if !pstate
22 cur = klass
23 while cur
24 entry = cur.method table[name]
25 entry.pstate = pstate
26 break if entry.method
27 cur = cur.super
28 end
29 return (entry.method, pstate)
30 end

Figure 4.5. lookup procedure with state tracking

DYNAMIC MIXIN OPTIMIZATION 66

Summary

1 def send(name, args, cache)
2 receiver = args[0]
3 if cache.class == receiver.class and
4 cache.state == cache.pstate.value
5 method = cache.method
6 else
7 method, pstate=lookup(receiver.class,name,cache.pstate)
8 cache.class = receiver.class
9 cache.method = method

10 cache.pstate = pstate
11 cache.state = pstate.value
12 end
13 method(args)
14 end

Figure 4.6. Inline caching with fine-grained state tracking

1 # include lines 1–15 from Fig. 1
2 s = Server.new
3 s.process #1
4 NetworkServer.class eval do
5 include ServerMonitor
6 end
7 n = NetworkServer.new
8 n.process #2
9 NetworkServer.class eval do

10 exclude ServerMonitor
11 end
12 n.process #3

SNS

SNS
s1

SNS
s1

SM

SNS
s1

SM
s2

SNS
s1s2

SNS
s1

Figure 4.7. Example of situation when state objects need to be merged

DYNAMIC MIXIN OPTIMIZATION 67

Summary

1 def send(name, args, cache)
2 receiver = args[0]
3 if cache.class == receiver.class and
4 cache.state == cache.pstate.value
5 method = cache.method
6 else
7 if cache is polymorphic
8 for entry in cache.array
9 if entry.class == receiver.class and

10 entry.state == cache.pstate.value
11 method = entry.method
12 break
13 end
14 else
15 # convert cache to polymorphic
16 end
17 if method not found
18 # lookup method and store result in cache
19 end
20 method(args)
21 end

Figure 4.8. Polymorphic inline caching

global view

class super
s

s
′

mixin

view from thread T1

class super
s
′

mixin

view from other thread

class super
s

Figure 4.9. Thread-local state tracking

DYNAMIC MIXIN OPTIMIZATION 68

Summary

�

�

��

� �

�

�

�

�

� �

�

����	

�
�����
� ����
�

Figure 4.10. Three cases of a microbenchmark

���������	
��

	
�����
������������
����
�����
�
��

0
10
20
30
40
50
60
70
80
90

0 200 400 600 800 1000 1200 1400

m
e
th

o
d
 l
o
o
k
u
p
 o

u
tc

o
m

e
,

%

number of calls

inline cache hit
PIC hit

method cache hit
full lookup

0
10
20
30
40
50
60
70
80
90

100

0 200 400 600 800 1000 1200 1400

m
e
th

o
d
 l
o
o
k
u
p
 o

u
tc

o
m

e
,

%

number of calls

inline cache hit
PIC hit

method cache hit
full lookup

Figure 4.11. Method lookup outcome profile for the application benchmark

DYNAMIC MIXIN OPTIMIZATION 69

Chapter

5
Evaluation of dynamic mixin

optimization in a compiled system

5.1 Introduction

Dynamic languages such as Ruby, Python and Javascript enjoy increasing
popularity. Advanced optimization techniques, including just-in-time com-
pilation and trace compilation are increasingly used in dynamic language
implementation with good results. However, the potential of dynamic lan-
guages is not yet fully tapped. A particular technique of our interest is dy-
namic delegation, and its limited form, dynamic mixin. As other researchers
has shown, dynamic mixin can be used as a basis for implementation of
substantial subset of aspect-oriented programming [33] and context-oriented
programming [63]. Dynamic mixin can be used on its own as well, for exam-
ple, for run-time reconfiguration and adaptive monitoring. It is also useful
for software evolution, because it makes application of some design patterns
less intrusive. For example, dynamic mixin allows to use delegation pattern
in a situation where normally one would use strategy pattern that requires
extensive upfront planning.

In the chapter 4 we proposed a caching optimization for dynamic method
dispatch, which takes dynamic mixin into account. We implemented the

EVALUATION OF DYNAMIC MIXIN OPTIMIZATION IN A COMPILED SYSTEM 70

Delegation and dynamic mixin

technique in the mainline Ruby interpreter (version 1.9.1) by modifying the
inline cache handling code and evaluated its performance. However, we noted
that high cost of the method dispatch in the Ruby interpreter make inline
cache hit about 63% as expensive as inline cache miss, and the benefits of
increasing inline cache hit ratio are small. We speculated further, that the
technique can be used with much higher benefits in an environment with dy-
namic compilation. In this chapter we set out to experimentally verify that
claim. To achieve maximal flexibility and control over code inlining optimiza-
tion in the compiler, we chose to implement a dynamic compilation system
from scratch. To expedite the development process, we use LLVM [45] as the
back-end system, which facilitates development, gives a clearly defined target
of compilation, and provides with ready-to-use low-level code optimizer. As
the source language of our system, we chose the language IO [21]. It satis-
fies requirements of our research as a target language due to the following
properties:

• IO is a purely object-oriented prototype-based dynamically typed lan-
guage with multiple inheritance.

• IO object model is highly unified, having object slots and delegation as
core concepts. Global constants are stored as slots in a context object,
local variables as slots in an activation object.

• Method source code is available for introspection and modification in
the form of abstract syntax tree (AST).

• IO has minimal, but highly readable syntax.

Since many of the challenges of IO implementation are typical for other
dynamic languages as well, we believe that our results are not limited to the
IO language, but are applicable to dynamic languages in general.

The contribution of this chapter is experimental evaluation of dynamic
mixin optimization technique on a dynamic compilation system. We imple-
mented the technique and showed that it allows to efficiently cache dynamic
dispatch targets even in presence of dynamic mixin operations.

5.2 Delegation and dynamic mixin

Prototype object model is highly expressive and capable of supporting wide
range of programming paradigms: popular static class hierarchy-based object

EVALUATION OF DYNAMIC MIXIN OPTIMIZATION IN A COMPILED SYSTEM 71

Delegation and dynamic mixin

models, aspect-oriented programming, and context-oriented programming.
This power is based on the ability to modify delegation pointer of an object
during program run time. Dynamic mixin is a particular way to modify
delegation: object hierarchy is temporarily modified by inserting a mixin
object into delegate chain.

In Fig. 5.1 the example of a hypothetical application server is shown.
The process method of the Server object examines the request before possibly
changing delegate pointer to include additional security checks. The advan-
tage of such use of dynamic mixin is the full availability of the BaseServer
methods to the code in the mixin AdditionalSecurity. The mixin may over-
ride some of methods, and can delegate back to the original methods using
resend(). In IO syntax every word is a message send, messages are separated

BaseServer := Object clone do(

process := method(request, response,

... // process the request
))

AdditionalSecurity := BaseServer clone do(

process := method(request, response,

... // do some checks
resend(request, response)

... // do more checks
))

Server := BaseServer clone do(

process := method(request, response,

if (request isSensitive,

// install mixin
self proto := AdditionalSecurity)

resend(request, response)

// remove mixin
self proto := BaseServer

))

Figure 5.1. Application server example

by spaces, and arguments are optionally specified in parentheses. The result
of one message send is the receiver for the next message, and for the first
message the implicit receiver is an activation object. method() is a message
to define a new method, var := expr is implicitly translated to setSlot(”var”,

EVALUATION OF DYNAMIC MIXIN OPTIMIZATION IN A COMPILED SYSTEM 72

Dynamic mixin optimization

expr) before execution. The message setSlot() sets a slot in a receiver object.
do() temporarily switches the context to define slots in objects other than
top-level context object. proto assignment dynamically modifies delegation
pointer. Arguments to methods can be passed in unevaluated in the form
of abstract syntax tree, and can be evaluated on demand, arbitrary num-
ber of times and in arbitrary context, which allows expressing control flow
constructs and new method definitions as regular method calls.

5.3 Dynamic mixin optimization

Dynamic method dispatch has been attracting attention of researchers for a
long time, so a number of optimization techniques has been proposed: inline
caching, guarded devirtualization, speculative method inlining. Application
of any of these techniques to optimize method calls brings an important is-
sue of invalidation: in the case when subsequent dynamic code redefinition
occurs or object hierarchy changes it may be necessary to reconsider the op-
timized block of code and invalidate cached value or code. Many current
implementations of dynamic languages make an assumption that object hi-
erarchy does not change frequently, and leave it as an expensive operation,
so programs using dynamic mixin exhibit low performance. However, typi-
cal use of dynamic mixin exhibits enough regularity so as to enable efficient
optimization.

In the chapter 4 we proposed a state tracking mechanism based on method
lookup. Dependency of inline caches on object changes is organized through
state objects, which are implemented as integer counters. When the result
of method lookup is cached, a snapshot of the counter is also stored, and is
checked on each use. State objects are allocated dynamically and associated
with sets of polymorphic methods that are called from the same call site.
A pointer to the state object is installed in the method table in each object
traversed during method lookup. On any modification to the method table or
to the delegation pointer that can affect the outcome of the method dispatch,
the counter in a state object is incremented. In this way we can maintain
an invariant: whenever a target of dynamic dispatch changes, so does the
associated state object.

The invariant on state objects allows to cache the state on mixin insertion
and later rewind the system to the prior state on mixin removal. On mixin
insertion, we record the old and updated values of state objects in the alter-
nate cache associated with object, to which mixin is installed (Fig. 5.2). On

EVALUATION OF DYNAMIC MIXIN OPTIMIZATION IN A COMPILED SYSTEM 73

Approach to compilation

BaseServer

Server

BaseServer

Server

Additional

Security

f()

...

BaseS. Add.S.

s = 1 s = 2

s=1
s=2

Alternate cache

f() { ... }

f()

f() { ... }

f() { ... }

f()

Figure 5.2. Alternate caching

mixin removal we walk over the method table and check if any methods has
been invalidated by comparing the ”updated” state value in the cache with
current value. If there were no interfering invalidations, we can be sure that
removal of the mixin brings the system to exactly the same state that it was
in before mixin installation, and so we can restore the ”old” values of state
object from the alternate cache. Call sites that see several alternating targets
of the dispatch can use cache with multiple entries, similar to polymorphic
inline caching (PIC), so that all of the dispatch targets are served from cache.
This techniques is applicable to dynamic mixin, and can be generalized to
cover arbitrary delegation pointer changes. In this chapter we set out to ex-
plore if we can benefit from this caching scheme in the dynamic compilation
system, by compiling several versions of the called methods according to the
alternating states of the system, as shown in Fig. 5.3.

5.4 Approach to compilation

We implemented a minimal interpreter of IO language in Objective-C, and
then proceeded to write a dynamic compiler, using mix of interpreted IO code
and native Objective-C++ code for interfacing with LLVM infrastructure.

Since everything in an IO program is a message send, using method-
based compilation would produce very small units of compilation consisting
entirely of method calls, with overhead of method call dominating the exe-
cution time. For this reason it is essential to use inlining to increase the size
of a compilation unit. Inlining a method requires knowledge of the target

EVALUATION OF DYNAMIC MIXIN OPTIMIZATION IN A COMPILED SYSTEM 74

Approach to compilation

if (obj is Server

 && s == 1)

if (obj is Server

 && s == 2)

State and type

guards

Inlined

methods

Handle

inline cache

miss

continue

f1

f2

Figure 5.3. Compiled polymorphic inline cache

method, we resolve that by using the value cached during interpreted exe-
cution of the method. The cached method targets are likely to be the ones
called during subsequent execution, but for the correctness it is necessary
to insert a guard with a check of whether the type of the receiver and state
matches the cached values. In case of guard failure, the execution falls back
to an interpreter. When inline cache has multiple dispatch targets recorded,
we generate code for each of the cached targets separately, effectively pro-
ducing an inlined version of polymorphic inline cache. Code for control flow
constructs such as while() and if(), and arithmetic operations are generated
by compiler intrinsics.

Limitations

Our implementation is in its early stage of development, and has many lim-
itations. Only a small subset of the IO standard library and a few methods
necessary for compiler construction has been implemented. The compiler it-
self has even more limitations. Currently it is limited to compiling guarded

EVALUATION OF DYNAMIC MIXIN OPTIMIZATION IN A COMPILED SYSTEM 75

Evaluation

method inlining and integer arithmetic without overflow checking. When a
dynamic type guard fails, execution of the the whole method is restarted
from the top under the interpreter, so this restricts compilation to methods
without side effects.

Using the language under development for development itself has some
benefits and drawbacks. A main benefit is the flexibility of the chosen imple-
mentation language. The drawbacks include absent error reporting, missing
standard functionality and difficulties in localizing errors, because any mis-
behavior may be caused either by the bug in the developed code itself, or in
the underlying interpreter.

5.5 Evaluation

We present the preliminary evaluation results of our prototype implementa-
tion through micro-benchmarking. The goals are to estimate the overhead of
state checks that polymorphic inline caching with fine-grained state tracking
introduces, and verify the performance of the dynamic method dispatch in
presence of frequent dynamic mixin operations.

5.5.1 Overheads of state checks

The first experiment is to determine the cost of the state checks introduced
by the polymorphic inline caching (PIC). Resulting graphs for two types of
CPU are shown in the Fig. 5.4. The measurements are performed by the
tight loop microbenchmark, which has a single polymorphic call in it. For
the baseline of comparison we measured execution time of inlined call with
type guard but without any state checks. The value shown on the graph
is a number of CPU cycles necessary for the state checks introduced due to
polymorphic inline caching, computed as difference with a baseline. The axis
x represents the position of hitting entry in the inline cache with 4 entries in
total. We executed several slightly different benchmarks, some with entries
differing in object types, and some differing in value of the state object, i.e.
corresponding to mixin in an installed or removed state. Gray dots on the
graph represent individual run results.

To analyze the factors contributing to the state check overhead, we per-
formed to hardware profiling. The factors are additional instruction exe-
cution and branch misprediction penalty. Branch misprediction penalty is
also responsible for variation of the results within the group of benchmarks,

EVALUATION OF DYNAMIC MIXIN OPTIMIZATION IN A COMPILED SYSTEM 76

Evaluation

Intel Core 2 Duo

C
P

U
 c

yc
le

s

entry number in PIC

1 2 3 4

0

2

4

6

8

10

12

14

16

Intel Core i7

C
P

U
 c

yc
le

s

entry number in PIC

1 2 3 4

0

2

4

6

8

10

12

14

16

Figure 5.4. Cost of state checks in compiled polymorphic inline cache

where method dispatch hits in the same entry of the cache. There is interest-
ing characteristic of the measurement results when there is just a single entry
in the polymorphic inline cache: the overhead is typically as low as 1 CPU
cycle, and so the use of state checks for call sites with a single target has very
small overhead. Overall, the overhead of state checks in polymorphic inline
cache is reasonable and is within fourteen instruction cycles per method call.

5.5.2 Dynamic mixin performance

To evaluate the performance of the dynamic mixin operations and their im-
pact on the method call performance, we used the benchmark shown in the
Fig. 5.5, which is the same microbenchmark as we used in section 4.5.2. This
benchmark exercises both dynamic method dispatch and dynamic mixin op-
erations, i.e. mixin installation and removal, in the same loop. A and B are
two objects, and M is a mixin, which is repeatedly installed and removed.
The microbenchmark consists of a loop which calls a method f on the ob-
ject A. The two version being compared are altern — an implementation of
alternate caching, and nocache — a version without inline caching, which
does dynamic method lookup on each polymorphic call site (monomorphic

EVALUATION OF DYNAMIC MIXIN OPTIMIZATION IN A COMPILED SYSTEM 77

Evaluation

�

�

��

� �

�

�

�

�

� �

�

����	

�
�����
� ����
�

Figure 5.5. Mixin microbenchmark

call sites are handled by inlining in the same way as in altern version). Three
different cases shown in the Fig. 5.5 have method f defined differently. In
the affect case, there are two implementation of method f, and the dispatch
is altered with dynamic mixin operations. In the non-affect case the only
implementation of method f is defined in object B so that mixin potentially
could affect method dispatch, but in fact does not. In the below case, the
method f is defined in the object A, so that the outcome of the method lookup
does not depend on whether mixin is installed or not. This benchmark is
useful to discern caching efficiency and invalidation granularity of a language
processor.

Table 5.1. Mixin microbenchmark execution time, mixin switch on every itera-
tion

Version Case Switch+call No call

nocache
below 2880±60 ns 2860±50 ns
nonaff 3290±60 ns 3000±90 ns
affect 3260±70 ns 2990±80 ns

altern
below 3500±60 ns 3550±100 ns
nonaff 3490±60 ns 3490±70 ns
affect 3510±60 ns 3520±80 ns

Table 5.1 shows the measurements expressed as iteration time with sam-
ple standard deviation in ns. Switch+call column shows the iteration time of
the bench where mixin operation (installation or removal) is done on every
iteration of the loop, and no call shows the time of a modified benchmark,

EVALUATION OF DYNAMIC MIXIN OPTIMIZATION IN A COMPILED SYSTEM 78

Evaluation

where method call is substituted by equivalent code without method call.
The only clearly visible difference in the results table is the difference be-
tween altern and nocache versions: the microbenchmark loop in nocache
case takes around 3 µs, but altern version takes about 3.5 µs. The reason
for increase is high cost of the dynamic mixin operation, which has not been
tuned in our implementation. The noise almost completely hides the cost of
the dynamic method call.

Table 5.2. Rerun of mixin microbenchmark, mixin switch on every 100th iter-
ation

Version Case Switch+call No call

nocache
below 53.6±1.2 ns 42.1±0.8 ns
nonaff 263±6 ns 43.4±1.2 ns
affect 213±6 ns 43.0±0.7 ns

altern
below 38.8±0.8 ns 37.4±1.2 ns
nonaff 38.6±0.5 ns 36.9±0.5 ns
affect 38.5±0.6 ns 37.1±0.6 ns

To see the effect on the individual call performance better, we modified
the benchmark to call dynamic mixin operation only on each 100th loop iter-
ation. The results are shown in Table 5.2. The difference between values in
columns switch+call and no call gives us a cost of the single dynamic method
dispatch. This time the difference between columns can be clearly seen, and
while in nocache version dynamic call takes up to 220 ns, alternate caching
with multi-version code (altern version) has the cost of dynamic method dis-
patch less than 2 ns. This clearly shows the effectiveness of optimization for
dynamic method dispatch. Variation in switch+call time for nocache version
is due to varying costs of dynamic method lookup.

Overall, this experiment shows two things. First, the performance of the
dynamic method dispatch is drastically improved by caching, compared to
non-cached dynamic lookup, and alternate caching keeps caching effective
even in presence of dynamic mixin operations. Second, slow implementation
of dynamic mixin switch operation is a major problem of our implementation.
We are considering tuning the implementation and adding adaptive choice
of state tracking granularity as a possible way to improve performance.

EVALUATION OF DYNAMIC MIXIN OPTIMIZATION IN A COMPILED SYSTEM 79

Related work

5.6 Related work

The problem of compilation of dynamic languages has been thoroughly re-
searched to date. Smalltalk [23] was first to use just-in-time compilation
for a dynamic language. Self [14] is the project that pioneered many of
the commonly used techniques, including polymorphic inline caches [36] and
type-split compilation. It also had an elaborated system of fine-grained state
tracking for selective recompilation of methods [15]. Psyco [57] implemented
a specific form of compilation named just-in-time specialization, which gen-
erates code as the program executes, and generates new branches of code on
type guard failures. Trace-based compilation [29, 74] similarly compiles along
a particular program execution path (trace), but it does compilation in a bulk
after the trace collection is complete. A number of dynamic languages have
tracing compiler implementations: Python [10], Javascript [16, 31]. PyPy [59]
is notable for its use of a statically typable language RPython [5], which is
a proper subset of full dynamic Python language. An interesting feature of
RPython is the bootstrapping phase, that allows use of advanced dynamic
features, like extensible classes and generative programming. Portable ap-
proach to compilation by using compilation to C source code has been pro-
posed for Lua [72] and PHP [9]. Inlining virtual methods in Java system has
been studied in [22] and [69].

None of the related works tackled the problem of dynamic mixin optimiza-
tion, though the approach of guarded inlining and trace-based compilation
is somewhat similar and can be adapted to use fine-grained state tracking.

5.7 Summary

We devised and started an implementation of a dynamic compiler for IO lan-
guage, intended as a research vehicle for optimization of dynamic languages,
in particular inlining and inline caching. Our first target for evaluation is
guarded multi-version compilation based on the method call profile collected
in polymorphic inline cache. Due to the limitations of current compiler,
we are evaluating the implementation with microbenchmarks, which include
integer computations and method calls. Our experiments shown that the
overhead of state checks in multi-version code does not exceed 14 processor
cycles, and allows to prevent inline cache misses in the presence of dynamic
mixin operations. The proposed optimizations are applicable to any dynamic
language with support for dynamic mixin operations.

EVALUATION OF DYNAMIC MIXIN OPTIMIZATION IN A COMPILED SYSTEM 80

Summary

Completing of the compiler to completely cover the IO language and
application-level benchmarking remain our future tasks.

EVALUATION OF DYNAMIC MIXIN OPTIMIZATION IN A COMPILED SYSTEM 81

Chapter

6
Conclusion

This thesis presented the treatment of the performance for the interpreted
implementation of a dynamic language, making an emphasis on the dynam-
icity. Dynamicity is the characteristic of an implementation that describes
the dependence of the performance on the rate of the dynamic changes in
the system. Existing high-performance techniques of dynamic language im-
plementation often have bad performance characteristics when the rate of
dynamic changes is high. This necessitates further research into implemen-
tation techniques with high dynamicity.

We evaluate application of the superinstruction optimization to Ruby
interpreter and show that traditional approach produces limited benefit on
modern hardware. Then we propose a novel approach to superinstructions —
arithmetic superinstructions. Arithmetic superinstructions produce greater
benefit for numeric computation applications.

Further we consider application of dynamic mixin. Existing approach
to inline caching in Ruby interpreter produces substantial overhead when
dynamic mixin is used with high frequency. We propose a combination of
three techniques: fine-grained state tracking, polymorphic inline caching and
alternate caching, which allows to effectively capture the repeated pattern
of dynamic mixin inclusion and prevent inline cache misses even when the
frequency of dynamic mixin operations is high.

CONCLUSION 82

Superinstructions for Ruby interpreter

Our contributions are the study of application of superinstruction tech-
nique to Ruby interpreter and proposal of arithmetic superinstructions, and
proposal of optimization techniques for dynamic mixin.

6.1 Superinstructions for Ruby interpreter

We describe application of the superinstruction technique to Ruby inter-
preter. It works by merging the subsequent interpreter operations into a sin-
gle superinstruction without altering the semantics of the instructions. Due
to this fact the dynamicity characteristics of the interpreter is not affected
by the use of superinstructions.

Traditional approach to superinstructions is to eliminate the interpreter
dispatch within the superinstructions. It reduces the number of indirect
branch instructions necessary for program execution. In past, processors
did not have good indirect branch predictors, and the majority of indi-
rect branches, executed by direct-threaded interpreter resulted in processor
pipeline stall and thus caused substantial overhead. In our analysis and ex-
perimental evaluation we have shown that traditional approach has reduced
its efficiency with the progress of hardware, especially due to availability of
better indirect jump predictors.

We proposed a different approach to superinstructions — optimization
within the arithmetic superinstructions. Current Ruby interpreter has poly-
morphic operations, which use combination of tagging and boxing to denote
the type of values. Floating point numbers are implemented using boxing,
which causes significant costs of allocation and garbage collection. Using
superinstruction technique to merge arithmetic superinstructions allows to
reduce one boxing operation for the intermediate computation result, and
thus reduces overall allocation. Reduction in allocation in turn reduces the
rate of garbage collection and thus reduces the execution time, improving
computation application performance.

In our experiments, the performance of numeric benchmarks has been im-
proved by 0–23%, without negative impact on the non-numeric benchmarks.

6.2 Dynamic mixin optimization

Dynamic use of mixin is a typical feature of modern popular dynamic lan-
guages. Its use is useful for implementation of techniques such as dynamic

CONCLUSION 83

Dynamic mixin optimization

patching or dynamic monitoring, and also can be used as the base for imple-
mentation of substantial parts of context-oriented programming paradigm or
aspect-oriented programming.

Frequent use of dynamic mixin operations poses a challenge to current
implementation techniques and causes high overheads. Current implementa-
tion techniques make an assumption that the target of method calls mostly
remains stable, but dynamic mixin is expressly used to override some meth-
ods by implementation provided by the mixin. Current Ruby interpreter also
suffers from coarse granularity of invalidation due to global nature of the state
tracking. Thus any dynamic mixin operation causes flush of method cache
and all inline caches, causing multiple inline cache misses.

To optimize the operation of inline caches in presence of dynamic mixin
operations, we propose combination of three techniques. Fine-grained state
tracking introduces use of multiple state objects, which are referenced from
method tables, and are allocated and updated during method lookups or
dynamic mixin operations. We provide the description of the algorithm and
outline the proof of the correctness of our algorithm operation.

We propose a novel technique to capture repeated patterns of dynamic
mixin operations — alternate caching. Alternate caching works by storing
the pairs of state transitions for the individual method table entries, identi-
fied by dynamic mixin operation. On a reverse operation, the state object is
returned to an older state instead of invalidating by assigning a fresh value.
The correctness of the reuse of older state value is guaranteed by the invari-
ants, maintained by the fine-grained state tracking algorithm. The pair-wise
organization of alternate cache allows to account for multiple dynamic mixin
operations on the same class, provided that dynamic mixin installation and
removal scopes are properly nested. Dynamic mixins applied to the non-
related parts of the class hierarchy are completely independent.

Well-known technique of polymorphic inline caching is used to allow
caching of multiple targets of the call site. In our implementation we ex-
tended polymorphic inline cache to store multiple values of the state object
value, effectively allowing to cache multiple dispatch target for the same re-
ceiver object class. In situation when dynamic mixin operation is repeatedly
used to temporarily override a method, random eviction strategy of poly-
morphic inline cache with high probability will eventually record all targets
of the method, serving the subsequent calls entirely from the cache.

We implemented the dynamic mixin optimization for the Ruby interpreter
and shown that combination of techniques can produce benefits up to 6 times
on a microbenchmark, and up to 48% on a small application benchmark. The

CONCLUSION 84

Dynamic mixin optimization

most of the speedup is provided by the fine-grained state tracking, polymor-
phic inline caching causes small overhead, which is somewhat improved by
using of alternate caching.

The inline caching techniques for the dynamic mixin can be generalized
to the general delegation object model. It can also be applied in the com-
piled system. We evaluate dynamic mixin optimization techniques in a small
compiled system and show that the overhead of state checks is very low –
just a few CPU cycles. The dynamic mixin operation itself has relatively
high cost and is worth of improvement.

CONCLUSION 85

Bibliography
[1] V8 javascript engine. http://code.google.com/apis/v8/design.

html, 2008.

[2] Tiobe programming community index for november 2010, Nov 2010.
URL http://www.tiobe.com.

[3] O. Agesen. Constraint-based type inference and parametric polymor-
phism. Static Analysis, pages 78–100, 1994.

[4] O. Agesen and D. Detlefs. Mixed-mode bytecode execution. Sun Mi-
crosystems, Inc. Mountain View, CA, USA, 2000.

[5] D. Ancona, M. Ancona, A. Cuni, and N. Matsakis. RPython: a step
towards reconciling dynamically and statically typed OO languages. In
Proceedings of the 2007 symposium on Dynamic languages, page 64.
ACM, 2007.

[6] M. Arnold, S. Fink, D. Grove, M. Hind, and P. Sweeney. A survey of
adaptive optimization in virtual machines. Proceedings of the IEEE, 93
(2):449–466, 2005. ISSN 0018-9219.

[7] J. Bell. Threaded code. Communications of the ACM, 16(6):370–372,
1973. ISSN 0001-0782.

[8] M. Berndl, B. Vitale, M. Zaleski, and A. Brown. Context threading: A
flexible and efficient dispatch technique for virtual machine interpreters.
In Code Generation and Optimization, 2005. CGO 2005. International
Symposium on, pages 15–26. IEEE, 2005. ISBN 076952298X.

BIBLIOGRAPHY 86

BIBLIOGRAPHY

[9] P. Biggar, E. de Vries, and D. Gregg. A practical solution for scripting
language compilers. In SAC ’09: Proceedings of the 2009 ACM sym-
posium on Applied Computing, pages 1916–1923, New York, NY, USA,
2009. ACM. ISBN 978-1-60558-166-8.

[10] C. Bolz, A. Cuni, M. Fijalkowski, and A. Rigo. Tracing the meta-
level: PyPy’s tracing JIT compiler. In Proceedings of the 4th workshop
on the Implementation, Compilation, Optimization of Object-Oriented
Languages and Programming Systems, pages 18–25. ACM, 2009.

[11] D. Bornstein. Dalvik VM internals. InGoogle I/O Developer Conference,
2008.

[12] G. Bracha and W. Cook. Mixin-based inheritance. In Proceedings OOP-
SLA/ECOOP ’91, LNCS 512, pages 303–311. ACM, 1990.

[13] S. Brunthaler. Efficient interpretation using quickening. In Proceedings
of the 6th symposium on Dynamic languages, pages 1–14. ACM, 2010.

[14] C. Chambers, D. Ungar, and E. Lee. An efficient implementation of
SELF a dynamically-typed object-oriented language based on proto-
types. ACM SIGPLAN Notices, 24(10):49–70, 1989. ISSN 0362-1340.

[15] C. Chambers, J. Dean, and D. Grove. A framework for selective recom-
pilation in the presence of complex intermodule dependencies. Software
Engineering, International Conference on, 0:221, 1995.

[16] M. Chang, E. Smith, R. Reitmaier, M. Bebenita, A. Gal, C. Wimmer,
B. Eich, and M. Franz. Tracing for web 3.0: trace compilation for
the next generation web applications. In Proceedings of the 2009 ACM
SIGPLAN/SIGOPS international conference on Virtual execution envi-
ronments, pages 71–80. ACM, 2009.

[17] D. Chisnall. Updating objective-c. Technical report, Swansea University,
2008.

[18] D. Chisnall. A modern objective-c runtime. Journal of Object Technol-
ogy, 8(1):221–240, jan 2009.

[19] B. Cox and A. Novobilski. Object-oriented programming: an evolution-
ary approach. Addison-Wesley, 1986.

BIBLIOGRAPHY 87

BIBLIOGRAPHY

[20] B. Davis, A. Beatty, K. Casey, D. Gregg, and J. Waldron. The case
for virtual register machines. In Proceedings of the 2003 workshop on
Interpreters, virtual machines and emulators, pages 41–49. ACM, 2003.
ISBN 1581136552.

[21] S. Dekorte. Io: a small programming language. In Companion to the
20th annual ACM SIGPLAN conference on Object-oriented program-
ming, systems, languages, and applications, page 167. ACM, 2005.

[22] D. Detlefs and O. Agesen. Inlining of virtual methods. In Proceedings
ECOOP ’99, LNCS 1628, pages 258–277, 1999.

[23] L. Deutsch and A. Schiffman. Efficient implementation of the Smalltalk-
80 system. In Proceedings of the 11th ACM SIGACT-SIGPLAN sym-
posium on Principles of programming languages, page 302. ACM, 1984.
ISBN 0897911253.

[24] M. Ertl and D. Gregg. The structure and performance of efficient inter-
preters. Journal of Instruction-Level Parallelism, 5:1–25, 2003.

[25] M. Ertl, C. Thalinger, and A. Krall. Superinstructions and replication in
the Cacao JVM interpreter. Journal of .NET Technologies, 4(1):31–38,
2006.

[26] M. A. Ertl. Stack caching for interpreters. In Proceedings of the ACM
SIGPLAN 1995 conference on Programming language design and imple-
mentation, PLDI ’95, pages 315–327. ACM, 1995. ISBN 0-89791-697-2.

[27] S. Fink and F. Qian. Design, implementation and evaluation of adaptive
recompilation with on-stack replacement. In Code Generation and Op-
timization, 2003. CGO 2003. International Symposium on, pages 241–
252. IEEE, 2003. ISBN 076951913X.

[28] M. Furr, J.-h. D. An, and J. S. Foster. Profile-guided static typing for
dynamic scripting languages. In OOPSLA ’09: Proceedings of the 24th
ACM SIGPLAN conference on Object oriented programming systems
languages and applications, pages 283–300, New York, NY, USA, 2009.

[29] A. Gal and M. Franz. Incremental dynamic code generation with trace
trees. Technical Report ICS-TR-06-16, Donald Bren School of Informa-
tion and Computer Science, University of California, Irvine, 2006.

BIBLIOGRAPHY 88

BIBLIOGRAPHY

[30] A. Gal, C. Probst, and M. Franz. HotpathVM: an effective JIT compiler
for resource-constrained devices. In Proceedings of the 2nd international
conference on Virtual execution environments, pages 144–153. ACM,
2006.

[31] A. Gal, B. Eich, M. Shaver, D. Anderson, D. Mandelin, M. Haghighat,
B. Kaplan, G. Hoare, B. Zbarsky, J. Orendorff, et al. Trace-based just-
in-time type specialization for dynamic languages. In Proceedings of the
2009 ACM SIGPLAN conference on Programming language design and
implementation, pages 465–478. ACM, 2009.

[32] N. Grcevski, A. Kielstra, K. Stoodley, M. Stoodley, and V. Sundare-
san. Java just-in-time compiler and virtual machine improvements for
server and middleware applications. In 3rd Virtual Machine Research
and Technology Symposium (VM), 2004.

[33] M. Haupt and H. Schippers. A machine model for aspect-oriented pro-
gramming. In Proceedings ECOOP ’09, LNCS 4609, pages 501–524.
Springer Berlin / Heidelberg, 2007.

[34] R. Hirschfeld, P. Costanza, and O. Nierstrasz. Context-oriented pro-
gramming. Journal of Object Technology, 7(3):125–151, 2008.

[35] U. Hölzle and D. Ungar. Optimizing dynamically-dispatched calls with
run-time type feedback. In Proceedings of the ACM SIGPLAN 1994
conference on Programming language design and implementation, pages
326–336. ACM, 1994. ISBN 089791662X.

[36] U. Hölzle, C. Chambers, and D. Ungar. Optimizing dynamically-typed
object-oriented languages with polymorphic inline caches. In ECOOP’91
European Conference on Object-Oriented Programming, pages 21–38.
Springer, 1991.

[37] J. Hoogerbrugge, L. Augusteijn, J. Trum, Rik, and R. V. D. WIEL. A
code compression system based on pipelined interpreters. Softw. Pract.
Exper, 29:11, 1999.

[38] D. Ingalls. The lively kernel: just for fun, let’s take javascript seriously.
In Proceedings of the 2008 symposium on Dynamic languages, DLS ’08,
pages 9:1–9:1, New York, NY, USA, 2008. ACM.

BIBLIOGRAPHY 89

BIBLIOGRAPHY

[39] D. Ingalls, T. Kaehler, J. Maloney, S. Wallace, and A. Kay. Back to
the future: the story of Squeak, a practical Smalltalk written in it-
self. In Proceedings of the 12th ACM SIGPLAN conference on Object-
oriented programming, systems, languages, and applications, pages 318–
326. ACM, 1997. ISBN 0897919084.

[40] P. Kail. Forth programming language. SOFTWARE WORLD., 16(3):
2–5, 1985.

[41] S. Kawai. Efficient floating-point number handling for dynamically
typed scripting languages. In Proceedings of the 2008 symposium on
Dynamic languages, page 6. ACM, 2008.

[42] G. Kiczales, E. Hilsdale, J. Hugunin, M. Kersten, J. Palm, and W. Gris-
wold. An overview of aspectj. In Proceedings ECOOP ’01, LNCS 2072,
pages 327–354, 2001.

[43] T. Kotzmann, C. Wimmer, H. Mössenböck, T. Rodriguez, K. Russell,
and D. Cox. Design of the java hotspotTMclient compiler for java 6.
ACM Trans. Archit. Code Optim., 5(1):1–32, 2008.

[44] G. Krasner, editor. Smalltalk-80: bits of history, words of advice.
Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA, 1983.

[45] C. Lattner and V. Adve. LLVM: A compilation framework for lifelong
program analysis & transformation. In Proc. of the 2004 International
Symposium on Code Generation and Optimization (CGO’04), 2004.

[46] H. Lieberman. Using prototypical objects to implement shared behavior
in object-oriented systems. ACM Sigplan Notices, 21(11):214–223, 1986.

[47] T. Lindholm and F. Yellin. Java virtual machine specification. Addison-
Wesley Longman Publishing Co., Inc. Boston, MA, USA, 1999. ISBN
0201432943.

[48] R. Martin. Agile software development: principles, patterns, and prac-
tices. Prentice Hall PTR Upper Saddle River, NJ, USA, 2003. ISBN
0135974445.

[49] Y. Matsumoto and K. Ishituka. Ruby programming language. Addison
Wesley Publishing Company, 2002. ISBN 020171096X.

BIBLIOGRAPHY 90

BIBLIOGRAPHY

[50] S. MIN and J. BAER. A timestamp-based cache coherence scheme. In
1989 International Conference on Parallel Processing, University Park,
PA, 1989.

[51] T. Owen and D. Watson. Reducing the cost of object boxing. In Com-
piler Construction, pages 2726–2729. Springer, 2004.

[52] I. Piumarta and F. Riccardi. Optimizing direct threaded code by se-
lective inlining. In Conference on Programming Language Design and
Implementation: Proceedings of the ACM SIGPLAN 1998 conference on
Programming language design and implementation: Montreal, Quebec,
Canada. ACM, 1998.

[53] I. Piumarta and A. Warth. Open, extensible object models. Self-
Sustaining Systems, 5146:1–30, 2008.

[54] A. Popovici, T. Gross, and G. Alonso. Dynamic weaving for aspect-
oriented programming. In AOSD ’02: Proceedings of the 1st interna-
tional conference on Aspect-oriented software development, pages 141–
147, New York, NY, USA, 2002.

[55] T. A. Proebsting. Optimizing an ansi c interpreter with superoperators.
In In Proc. Symp. on Principles of Programming Languages, pages 322–
332. ACM Press, 1995.

[56] G. B. Prokopski and C. Verbrugge. Analyzing the performance of code-
copying virtual machines. In OOPSLA, pages 403–422, 2008. URL
http://www.prokopski.com/publications/CC2008-Prokopski.pdf.

[57] A. Rigo. Representation-based just-in-time specialization and the psyco
prototype for python. In Proceedings of the 2004 ACM SIGPLAN sym-
posium on Partial evaluation and semantics-based program manipula-
tion, pages 15–26. ACM, 2004.

[58] A. Rigo and C. F. Bolz. How to not write virtual machines for dynamic
languages. In Proceedings of Dyla 2007, 2007.

[59] A. Rigo and S. Pedroni. PyPy’s approach to virtual machine construc-
tion. In Companion to the 21st ACM SIGPLAN symposium on Object-
oriented programming systems, languages, and applications, page 953.
ACM, 2006.

BIBLIOGRAPHY 91

BIBLIOGRAPHY

[60] K. Sasada. YARV: yet another RubyVM: innovating the ruby inter-
preter. In Companion to the 20th annual ACM SIGPLAN conference
on Object-oriented programming, systems, languages, and applications,
pages 158–159. ACM, 2005. ISBN 1595931937.

[61] K. Sasada. Efficient implementation of Ruby virtual machine. PhD
thesis, The University of Tokyo, Graduate school of information science
and technology, 2007. In japanese language.

[62] K. Sasada. A lightweight representation of floating-point number on
ruby interpreter. In Proceedings of the workshop of programming and
programming languages (PPL2008), 2008.

[63] H. Schippers, M. Haupt, and R. Hirschfeld. An implementation sub-
strate for languages composing modularized crosscutting concerns. In
Proceedings of the 2009 ACM symposium on Applied Computing, pages
1944–1951. ACM New York, NY, USA, 2009.

[64] Y. Shi, K. Casey, M. Ertl, and D. Gregg. Virtual machine showdown:
stack versus registers. ACM Transactions on Architecture and Code
Optimization (TACO), 4(4):1–36, 2008. ISSN 1544-3566.

[65] A. Smith. Cpu cache consistency with software support and using” one
time identifiers. In Proceedings of Pacific Computer Communications
Symposium, 1985.

[66] R. Stallman et al. Using and porting the GNU compiler collection. 1999.
ISBN 1882114388.

[67] G. Steele Jr. Fast arithmetic in maclisp. MIT AI Memo 421, 1977.

[68] P. Stenstrom. A survey of cache coherence schemes for multiprocessors.
Computer, 23(6):12–24, 1990. ISSN 0018-9162.

[69] T. Suganuma, T. Yasue, and T. Nakatani. An empirical study of method
inlining for a java just-in-time compiler. In Proceedings of the Java
Virtual Machine Research and Technology Symposium, 2002.

[70] A. Villazón, W. Binder, D. Ansaloni, and P. Moret. Hotwave: creat-
ing adaptive tools with dynamic aspect-oriented programming in java.
In Proceedings GPCE ’09: Proceedings of the eighth international con-
ference on Generative programming and component engineering, pages
95–98. ACM, 2009.

BIBLIOGRAPHY 92

BIBLIOGRAPHY

[71] J. Vitek and R. Horspool. Compact dispatch tables for dynamically
typed object oriented languages. In Compiler Construction ’96, LNCS
1060, pages 309–325. Springer, 1996.

[72] K. Williams, J. McCandless, and D. Gregg. Portable just-in-time spe-
cialization of dynamically typed scripting languages. pages 391–398,
2010.

[73] K. Williams, J. McCandless, and D. Gregg. Dynamic interpretation
for dynamic scripting languages. In Proceedings of the 8th annual
IEEE/ACM international symposium on Code generation and optimiza-
tion, pages 278–287. ACM, 2010.

[74] M. Zaleski, A. Brown, and K. Stoodley. Yeti: a gradually extensible
trace interpreter. In Proceedings of the 3rd international conference on
Virtual execution environments, page 93. ACM, 2007.

BIBLIOGRAPHY 93

