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ABSTRACT
Implementation of distributed dynamic weaving is a cross-
cutting concern since the implementation is divided into sev-
eral sub-concerns and some of them are crosscutting con-
cerns. For example, it often includes a monitoring concern,
which monitors the progress of the target program running
on remote hosts. It must be dynamically woven in the target
program in a crosscutting way. Existing dynamic distributed
languages do not provide sufficient support for modularly
implementing such distributed dynamic weaving. This pa-
per proposes our new language named DandyJ, which en-
ables developers to implement distributed dynamic weaving
by an aspect. The aspect implementing it is reusable and
hence DandyJ allows developers to write an aspect library
for weaving a given aspect in distributed environments. We
designed DandyJ by integrating a few good ideas borrowed
from existing work, such as first-class aspects, remote point-
cuts, and atomic weaving. The contribution of this paper is
to show a set of language constructs necessary for writing
an aspect library for distributed dynamic weaving, which is
also a crosscutting concern.

Categories and Subject Descriptors
D.3.3 [Programming Languages]: Language Constructs
and Features — Classes and objects

Keywords
Aspect Oriented Programming, Java, AspectJ.

1. INTRODUCTION
Aspect-Oriented Programming (AOP) languages allow pro-

grammers to modularize crosscutting concerns by aspects.
This idea has been extended to distributed computing and
some AOP languages even allow applying a new aspect to
a distributed program when it is running. Such languages
are called distributed dynamic AOP languages. Weaving
an aspect and changing the behavior of a running program
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is only possible when the program is in a stable state. If a
program is distributed, weaving must be more carefully con-
trolled to keep the consistency among the machines where
that program is running.

According to our experience, keeping the consistency when
dynamically weaving an aspect has not been drawing much
attention from researchers. This issue has not been deeply
discussed with respect to the design of dynamic AOP lan-
guages. Current distributed dynamic AOP languages, there-
fore, do not provide language constructs that sufficiently
support consistent aspect weaving.

This paper reports that the control of distributed dynamic
weaving itself is a crosscutting concern, which is another
interesting application of AOP. A typical control program
depends on the semantics of a target program where a tar-
get aspect is woven under that control. It must monitor
the progress of the target program to know when it reaches
a stable state. Thus, it is often closely related to the tar-
get program and the code is tangled with each other. This
means that, if the control program is written in a traditional
programming language, (at least part of) it is embedded into
the target program and hence hard to be reused.

To avoid this problem, this paper proposes using an as-
pect to implement a control program of distributed dynamic
weaving. Since previous distributed dynamic AOP languages
do not sufficiently support this, this paper also proposes our
new AspectJ-like language named DandyJ. It provides a use-
ful set of language constructs for writing an control aspect
of distributed dynamic weaving. They are first-class aspects
with two-phase weaving, remote pointcut, and one-time as-
pects. These language constructs are not very new; they
have been already proposed in other literature. DandyJ has
been developed by a synthesis and re-engineering of ideas
borrowed from other related languages. The contribution of
this paper is the following:

• Showing a useful set of language constructs that dis-
tributed dynamic AOP languages should provide for
supporting distributed dynamic weaving, which itself
is a crosscutting concern.

In the rest of this paper, Section 2 illustrates issues of dis-
tributed dynamic weaving. Section 3 presents DandyJ and
Section 4 illustrates sample programs written in DandyJ.
Section 5 shows the results of our experiment using DandyJ.
Section 6 mentions related work and Section 7 concludes this
paper.



2. DISTRIBUTED DYNAMICWEAVING
Dynamic aspect orientation is a language mechanism for

customizing the behavior of a running program at runtime.
An aspect is a module implementing one kind of customiza-
tion. Applying an aspect to its target program is called
weaving. An aspect can dynamically replace a whole method
body with a new one and/or a method call with a call to
another method. The substituted methods are described in
an aspect and they are called advice. The replaced method
bodies and method calls are specified by a language con-
struct named pointcut, which is also described in an aspect.
Here, being dynamic means that an aspect woven at runtime
may not be written yet or known when its target program
starts running. The code of the aspect must be inserted dur-
ing runtime into the target program, for example, by code
transformation and runtime supports.

Weaving an aspect on multiple hosts in distributed en-
vironments is not a simple task. It is more complicated
when an aspect is dynamically woven with a running pro-
gram. Suppose that we are now running a parallel program
on multiple hosts to compute a N-body problem. A pro-
gram on every machine computes the position, velocity, and
acceleration of particles allocated to the machine. At every
tick, the program exchanges the positions of particles with
other machines and computes the new positions etc. of the
particles allocated to it.

Let us weave a logging aspect with this running N-body
program. This logging aspect will send at every tick the po-
sitions of particles on every machine to a monitor machine,
which then displays the visual image of the current positions
of the particles. The visual image will be used by a scien-
tist to watch the computation in progress and see that the
program is running as expected. If she is satisfied with the
result, we will unweave the logging aspect.

Since the logging aspect is woven on every computing ma-
chine, weaving it must be atomic — the aspect code must be
woven“simultaneously and consistently”on every machine in
a coordinated means. Otherwise, the aspect code will start
sending data at different ticks since weaving may take dif-
ferent time on each machine due to network latency.

An easiest approach for atomic weaving is to suspend the
programs on all the machines at some certain tick, weave
the aspect, and restart them. However, which tick do we
suspend the program at? How do we do that? We could not
know the progress of the running programs or suspend them
at a safe point unless we modified the original programs in
advance to enable us to do so. Otherwise, before weaving the
logging aspect, we must weave another aspect for monitor-
ing the progress and suspend the programs; but that aspect
must be also dynamically woven in a distributed environ-
ment. We must consider this distributed dynamic weaving
as well. This may cause infinite regression.

Another known approach is to split distributed dynamic
weaving into two phases: deploy and activate [20]. In this
approach, an aspect is not activated immediately after the
aspect code is delivered and ready to run. It is first deployed ;
the aspect code is delivered to a remote machine and then
embedded into a running program for example, by dynamic
code instrumentation. After the deployment finishes, the
aspect is activated when it is explicitly activated. Thus, by
waiting for a while after starting deployment, programmers
might be able to guarantee that an aspect is simultaneously
activated after it is deployed on all machines. However, a

question is when we should activate the logging aspect after
the deployment of it finishes on all machines. Since network
latency differs, a signal of activation will not simultaneously
arrive at every machine. We must find a means to activate
the aspect on all machines at the same tick. Splitting into
deploy and activate may minimize the pause time for atomic
weaving but it is not a direct solution of distributed atomic
weaving.

Atomic weaving in distributed environments is not inde-
pendent of the semantics of target applications. An aspect
must be woven and activated at the time determined by
using knowledge of the target application. For example,
to weave our logging aspect atomically, after the aspect is
deployed, the N-body program on each machine will check
whether or not the aspect is deployed on all the machines. It
will check this whenever it blocks by barrier synchronization
at the beginning of every tick. When the check result be-
comes true, the program will successfully activate the aspect
on its machine. This will ensure the atomicity.

To do this control, another aspect is needed since the code
for controlling the weaving of the logging aspect is obviously
distributed and crosscutting over the N-body program. For
example, the check code mentioned above must be dynami-
cally embedded into the barrier-synchronization code of the
N-body program. Hence, the control of atomic weaving can-
not be implemented without dynamic aspect-orientation. A
lesson from this discussion is that distributed atomic weav-
ing often needs another aspect for controlling that weav-
ing. However, the support by existing distributed dynamic
AOP languages are not sufficient. For example, although
the control of atomic weaving is a distributed algorithm,
some languages do not provide programming supports for
implementing that distributed algorithm. Other languages
do not enable an aspect for that control to be an indepen-
dent aspect. It is merged into the aspect that should be
woven under that control. The woven aspect contains the
code for monitoring the progress of the weaving on other
machines and runs its logging code only after the aspect is
woven on all machines. A woven concern (i.e. logging) and
a concern of atomic weaving of it are not separated but both
are implemented in the same aspect. The two concerns are
tangling. This fact makes it difficult to reuse (part of) the
control code for weaving another kind of aspect. Further-
more, removing the control code after the weaving finishes is
also difficult. For example, the check code mentioned above
is not necessary any longer after the weaving and hence it
should be removed for reducing performance overheads.

3. DANDYJ
We present our distributed dynamic aspect-oriented lan-

guage named DandyJ. This is an extension of Java and it
provides sufficient supports for implementing an aspect that
controls atomic weaving of another aspect. In DandyJ, an
aspect to control weaving can be an independent aspect.

DandyJ provides three language constructs for this pur-
pose. They are first-class aspects with two-phase weaving,
remote pointcuts, and one-time aspects. They are not new
but there have been no distributed dynamic AOP languages
providing all the three constructs as far as we know. We
designed DandyJ to illustrate that the combination of these
constructs is useful for distributed atomic weaving.



Table 1: The methods available on dynamic aspects

methods description
void deploy() deploy a dynamic aspect with being inactive

void undeploy() remove an aspect
void activate() activate an aspect

void unactivate() inactivate an aspect
boolean isDeployed() returns true if an aspect has been deployed
boolean isActivated() returns true if an aspect is active

3.1 First-class aspects and two-phase weaving
DandyJ provides a dynamic aspect, which is an aspect

that can be dynamically woven during runtime. If an as-
pect declaration has the dynamic modifier, it is a dynamic
aspect. A dynamic aspect is a first-class object; it has to
be explicitly instantiated by the new operator before being
woven but can be assigned to a variable and passed as a
method parameter. This enables us to write an aspect that
takes another aspect as a parameter and dynamically weaves
it while keeping atomicity. Such an aspect can be used as
reusable library code.

Any dynamic aspect is implicitly a subtype of DAspect.
On a DAspect object, several methods listed in Table 1 is
available for dynamic weaving. DandyJ provides two-phase
weaving, which is another significant feature of DandyJ since
it enables efficient distributed weaving. When an aspect is
woven, it first deployed and then activated. If the deploy
method is called on an aspect instance, in the current im-
plementation of DandyJ, the runtime system performs code
transformation on a running program so that the aspect in-
stance will be ready to run. Since it will take time, the de-
ployment is performed asynchronously; the deploy method
starts deployment and returns immediately. After the de-
ployment finishes, the aspect is not active yet. It starts
being effective when it is explicitly activated by the activate
method, which blocks until the activation finishes (but it
is an instant since this method only updates the value of a
boolean field). If an aspect is activated before its deploy-
ment finishes, it becomes active immediately after the de-
ployment finishes. To know when the deployment finishes,
DAspect also provides the isDeployed method. The asyn-
chronous deploy and synchronous activate methods allow us
to minimize the duration of the “stop the world” time for
dynamic weaving.

These methods enable us to write a method that receives
any dynamic aspect and weaves it according to some specific
policy. For example,

void doDynWeave(DAspect aspect) {
aspect.deploy();
do {
Treed.sleep(1000);

} while (!aspect.isDeployed())
aspect.activate();

}

This method first deploys a given dynamic aspect and waits
for one second. Then it activates the aspect if the deploy-
ment has finished.

3.2 Remote pointcut
Although DandyJ supports distributed weaving, an in-

stance of a dynamic aspect is not copied or migrated to other

hosts1 when it is woven. It stays on the machine where it
was created by the new operator. The advice of that aspect
is basically applied to the program on the same machine
where the aspect instance exists.

To replace a method call on a remote machine, DandyJ
provides remote pointcuts [11]. Remote pointcuts select join
points (i.e. execution events such as method calls) on a re-
mote machine. When a selected join point happens there,
the advice body associated with that remote pointcut is in-
voked on the host where the aspect instance exists. This host
may be different from the host where the join point happens.
This language construct is useful to implement a control pro-
gram of distributed weaving, in particular, when the control
program adopts a centralized approach. The control pro-
gram will be implemented by another dynamic aspect on
a central host machine and it will use remote pointcuts to
monitor the progress of its target programs on remote ma-
chines where the target aspect is woven.

For remote pointcut, DandyJ provides two pointcut des-
ignators listed in Table 2. The following is sample code of
remote pointcut:

pointcut sending(String h): execution(void Client.send())
&& hosts("node000", "node001") && hostName(h);

This pointcut selects join points that are the execution of
the send method in the Client class running on node000 or
node001. The name of the host machine where the send
method is executed is bound to the parameter h to the send-
ing pointcut. The value of h, which will be either ”node000”
or ”node001”, is available in the advice body associated with
this pointcut.

Since a remote pointcut selects join points on different
machines, when an aspect using a remote pointcut is woven,
the runtime system has to perform some preparation on the
remote machines. Thus, the deployment of that aspect will
take longer time. For example, the hook code for capturing
events of method calls will be inserted in the program run-
ning on the remote machines. The deployment does not fin-
ish until inserting the hook code finishes on all the machines.
Note that an aspect instance is not copied or migrated to
the remote machine even if a remote pointcut is used.

For convenience, DandyJ also provides a local pointcut. A
pointcut becomes local if the local modifier is attached at the
beginning of the pointcut definition. If an aspect includes a
local pointcut, an instance of that aspect is replicated on the
remote machines specified by the hosts pointcut designator
in the local pointcut when that aspect instance is deployed.
Then, when a join point happens (i.e. the selected kinds
of events happens), the advice body associated with that
local pointcut is executed on the replication on the remote
machine where that join point happens. Note that replicated
copies of an aspect instance are not automatically updated
when a field of the aspect instance (or one of the replications)
gets a new value. A local pointcut is useful to implement
an action that has to be performed on the same machine
where a join point happens since a remote pointcut causes
an action on a different machine.

3.3 Onetime aspect
DandyJ also provides an onetime aspect. It is an aspect

automatically undeployed after all its advice bodies are ex-

1Currently, DandyJ assumes that there is only a single Java
process on every host.



Table 2: Pointcut designators of DandyJ
Pointcut designator Selected join points
hosts(hostName1, hostName2 ..) selects join points on hostName1, hostName2, ..
hostName(varName) binds a variable varName to the name of the host

machine where the selected join point exists.

ecuted. Each advice body in an onetime aspect is executed
only once. An aspect becomes an onetime aspect if the one-
time modifier is attached at the beginning of the aspect dec-
laration.

An onetime aspect is useful to implement a program for
controlling distributed atomic weaving. Such a program of-
ten needs to monitor the progress of the programs that the
target aspect is woven with. Monitoring the progress can
be implemented, for example, by a remote pointcut but it
is not necessary any longer after the target aspect is suc-
cessfully woven. If that monitoring is implemented by an
onetime aspect, it is automatically removed and hence the
performance overhead due to the monitoring is eliminated.

3.4 Notes on details of DandyJ
DandyJ is an extension to Java and a program written

in DandyJ runs on the Java virtual machine (JVM). Most
of the syntax and language constructs are borrowed from
AspectJ [7]. When an aspect is dynamically woven at run-
time, the bytecode of a running base-program is modified
and reloaded to accept the aspect.

The language processor of DandyJ consists of a compiler
ddjc and a runtime system. The ddjc compiler is a compiler
implemented by extending the abc compiler [2], which is one
of the AspectJ compilers [1]. The abc compiler we used is
based on the JastAdd compiler [5]. ddjc transforms a source
program into Java bytecode.

The runtime system performs bytecode instrumentation
for weaving a new aspect at runtime. It uses Javassist [4] for
this. When an aspect is deployed, the runtime system gen-
erates modified bytecode of the running base-program and
substitutes it for the original program by using the HotSwap
technology of the java.lang.instrument API.

An instance of the runtime system must be run on every
machine where programs will be run. Suppose that on one
machine we start running a program that requests to weave
some aspect. When an aspect is deployed, the runtime sys-
tem starts modifying the bytecode on that machine so that
the bytecode contains hook code, which invokes an advice
body of the aspect when a thread of control reaches speci-
fied execution points such as method calls. The hook code
also checks whether or not the aspect is activated. It in-
vokes an advice body only when the aspect is activated. If a
deployed aspect includes remote pointcuts, the runtime sys-
tem requests other machines to modify the bytecode on the
machines. The hook code is inserted so that an advice body
will be remotely invoked when a thread of control reaches
specified execution points on these machines. If a pointcut
is a local one, the hook code directly invokes an advice body
on a local replication of the aspect. Like a remote pointcut,
the hook code invokes an advice body only when the aspect
is activated. To check for being activated, the hook code first
inquires the (original) instance of the aspect on a different
machine from the machine where the hook code is running.
The isDeployed method returns true after the hook code is

successfully inserted and ready to run on all machines. The
runtime system notifies the original instance of the aspect
when the installation of the hook code is finished on every
machine.

In DandyJ, the deployment is asynchronous but the acti-
vation is synchronous. Thus, if a thread activates an aspect
by the activate method, it blocks until the hook code on all
machines is activated. It hence may take time. The hook
code also synchronously invokes an advice body. When a
thread reaches execution points specified by pointcuts, it
executes the hook code, which then synchronously invokes
an advice body. If the advice body is on a remote machine,
the thread will block until the invocation of the advice body
finishes.

4. EXAMPLES
This section shows two examples of DandyJ programs

where distributed atomic weaving is performed. The con-
trol programs of the weaving are implemented as separate
aspects, which can be reused for weaving a different aspect.

4.1 Weaving a logging aspect with a n-body
problem solver

We first show an aspect for atomically weaving a logging
aspect with a solver program of the N-body problem shown
in Section 2. This aspect deploys a given logging aspect and
then activates it on all the machines simultaneously. To im-
plement this simultaneous activation, this aspect has advice
that is invoked when a thread of control of the N-body pro-
gram reaches barrier synchronization on every host. Recall
that the N-body program performs barrier synchronization
at every tick for exchanging current positions of particles.
The invoked advice checks the status of the weaving and
activates the logging aspect if possible. To implement this
checking, we need a remote pointcut and thus the program
for controlling the weaving of the logging aspect must be
another aspect.

The aspect for weaving a logging aspect is shown in Fig-
ure 1. Since it is an abstract aspect, it is supposed to be
inherited from by a concrete aspect written by the users.
This concrete aspect must define the sync pointcut so that
it will select execution points where barrier synchronization
is performed in the N-body program. This design makes the
aspect in Figure 1 reusable, without modifying the code at
all, for other aspects and target programs other than the
N-body problem. We assume that barrier synchronization
is implemented by a method call. The definition of the sync
pointcut will be something like this:

pointcut sync(): call(void Barrier.doSync())

A main method first instantiates the concrete aspect and
weaves it. The constructor receives a logging aspect (i.e.
target aspect) and the names of the remote machines. It
starts the deployment of the logging aspect. Weaving this



public abstract aspect BarrierSync {
private String[] hostNames;
private DAspect dAspect; // the target aspect
private Map<String, Boolean> map =

new Hashtable<String, Boolean>();

public BarrierSync(DAspect dAspect, String[] hostNames) {
this.dAspect = dAspect;
this.hostNames = hostNames;
for (String host : hostNames)
map.put(host, false);

dAspect.deploy();
}

// selects the execution points of barrier synchronization
abstract pointcut sync();

before(String host): sync() && hostName(host) {
map.put(host, true);

}

after(String host): sync() && hostName(host)
&& if(dAspect.isDeployed()) {

synchronized(this) {
if (!map.containsValue(false)) {

dAspect.activate();
this.undeploy();

}
map.put(host, false);

}
}

}

Figure 1: An aspect for weaving a logging aspect

concrete aspect does not have to be atomic. The hook code
installed on each remote machine starts invoking an advice
body randomly.

This aspect has before advice and after advice. Both use
remote pointcuts. They are invoked before/after barrier syn-
chronization specified by the sync pointcut if the logging as-
pect is already deployed. The before advice records on which
machine this aspect is deployed. It may start being invoked
by remote machines at different tick. Then, if the logging as-
pect is already deployed, the after advice checks that all the
machines notifies that the deployment finishes before the last
barrier synchronization. If the deployment has not finished,
the activation is postponed until the next tick. Otherwise,
the advice activates the logging aspect on all machines. Note
that only the first invocation of the advice activates the log-
ging aspect. The first invocation is determined by using the
hash table map. A synchronized statement is necessary for
avoiding race conditions. The call to the activate method
blocks until the aspect is activated on all machines. After
the aspect activates the logging aspect, it is undeployed to
avoid performance penalties due to the before and after ad-
vice.

The language constructs of DandyJ are suitable for a cen-
tralized algorithm. Although there might be a more effi-
cient distributed algorithm for distributed atomic weaving,
we designed DandyJ so that programmers can easily write
a (usually centralized) control program for weaving.

4.2 Weaving an encryption aspect with a mes-
saging service application

We next weave an encryption aspect with a messaging
service application [19]. Suppose that this messaging ser-
vice application exchanges a plain text between a client and
a server. For some security reason, we dynamically weave

Figure 2: Coordinated activation of encryption and
decryption aspects

aspects that implement encryption and decryption of ex-
changed texts. An encryption aspect is woven on a client
machine and a decryption aspect is woven on a server ma-
chine.

These aspects must be woven simultaneously as well. Oth-
erwise, a text might be encrypted at the client side but not
decrypted at the server side. Thus, the decryption aspect at
the server side must be woven first and then the encryption
aspect at the client server must be woven. To avoid the“stop
the world” approach, in which the application is suspended
during weaving, encrypted messages must be sent to a differ-
ent port and the server program must be able to temporarily
receive both plain text and encrypted text (Figure 2).

To guarantee this consistency, weaving encryption/decryption
aspects must be controlled by another aspect. Figure 3
shows the skeleton of an messaging service application. Fig-
ure 4 shows an aspect that controls the weaving of the en-
cryption/decryption aspects. To be reusable, it is an abstract
aspect; to use it, we have to write a concrete aspect inher-
iting that aspect. The concrete aspect defines two point-
cuts: client and server. These pointcuts select the execution
points where a text is sent or received, respectively. We as-
sume that they are implemented by a single method call.
For example, their definitions will be:

pointcut client(): call(void Client.send(String))
pointcut server(): call(void Server.receive(String))

A main method instantiates this aspect, which receives four
aspects: two for managing a network port and two for client-
side and server-side encryption/decryption (Figure 5 and 6).
When this aspect is instantiated, it deploys all the four as-
pects. Then, after the deployment of the server-side aspects
finishes, this aspect activates them just before the server
sends a new message. The server starts receiving both plain
and encrypted messages. On the other hand, this aspect
activates the client-side aspects after the encryption aspect
at the server side is activated. This ensures atomic weaving.
Since this aspect is an one-time aspect, it is automatically
unwoven after the encryption/decryption aspects are acti-
vated. The four aspects in Figure 5 and 6 use local point-
cuts. Since the advice associated with a local pointcut is
locally executed, it efficiently works without communicating
with a remote machine.



public class Client {
...
private void send(msg) {

... sendMessage(msg); ...
}

}

public class Server { ..
private void run() {

while (true) {
... accept(); ...

}
}
private void accept() {

Socket socket = getSocket();
... receive(input); ...

}
...

}

Figure 3: A messaging service application

public abstract onetime dynamic aspect ServerClient {
private DAspect changePort, openPort, client, server;

public ServerClient(DAspect changePort, DAspect openPort,
DAspect client, DAspect server) {

this.changePort = changePort;
this.openPort = openPort;
this.client = client;
this.server = server;
openPort.deploy();
changePort.deploy();
client.deploy();
server.deploy();

}

abstract pointcut client();
abstract pointcut server();

before(): server() &&
if(server.isDeployed() && openPort.isDeployed()) {

openPort.activate();
server.activate();

}

before(): client() &&
if(server.isActivated() && client.isDeployed()

&& changePort.isDeployed()) {
changePort.activate();
client.activate();

}
}

Figure 4: An aspect for weaving encryp-
tion/decryption aspects

public dynamic aspect ChangePort {
local void around():

execution (void Client.connect())
&& within(Client) && hosts("client.machine.org") {

// change the port for sending messages
}

}

public onetime dynamic aspect OpenPort {
local java.net.Socket around():

call(java.net.Socket ServerSocket.accept())
&& within(Server) && hosts("server.machine.org") {

// create a new thread that opens a new port and waits messages
}

}

Figure 5: Aspects for managing a network port

public dynamic aspect Encrypter {
local void around(String s):

call(void Client.send(String))
&& within(Client) && hosts("client.machine.org") && args(s) {

// encrypt the message
proceed(s);

}
}

public dynamic aspect Decrypter {
local void around(String s):

call(void Server.receive(String))
&& within(Server) && hosts("server.machine.org") && args(s) {

if (socket.getLocalPort() == /* the new port number */) {
// decrypt the message
proceed(s);

}
else
proceed(s);

}
}

Figure 6: Encryption and decryption aspects

5. EXPERIMENT
Atomicity of distributed weaving is a crucial issue in large

distributed environments. To see this is a real problem and
our solution resolves this, we performed a simple experiment
using encryption/decryption aspects for a message service
application mentioned in Section 4.2.

For this experiment, we used the InTrigger grid comput-
ing platform [6], which is a collection of computer clusters
distributed in Japan. We chose two machines in two clus-
ters 700 km away from each other. The network latency was
27 msec. between the two machines. The client machine in
Chiba had a 2.13GHz Core2Duo processor and 4 GB mem-
ory. The server machine in Hakodate had dual 2.33 GHz
Xeon E5410 processors and 16 GB memory. We used Java
1.6.0 on both machines.

We tested four scenarios:

A. deploy and activate aspects without any consideration of
atomicity,

B. deploy and activate aspects by our DandyJ aspect in Fig-
ure 4,

C. the same as B but the aspect is not one-time (hence the
aspect is not unwoven), and

D. stop the application, weave aspects, and then restart the

application (naive approach).

In every scenario, the client machine connects to the server
machine and sends a message every millisecond. The client
repeats this 1000 times. We measured the elapsed time since
the client opens connection till the connection is closed. The
aspects are woven at around the 100th message sent. The
aspect that controls the weaving of encryption/decryption
aspects was run on another machine in the same cluster
where the client machine in Chiba was running.

Figure 7 and Table. 3 present the results of our experi-
ment. In every scenario, a spike due to weaving is observed
in Figure 7. The response time of Scenario A is the best
but 100 messages were not successfully encrypted/decrypted
since atomicity was not considered. In the other scenarios,
no such failures were observed. Among the scenarios con-
sidering atomicity, DandyJ with a onetime aspect (Scenario
B) showed the best performance. Scenario C was the worst



Figure 7: The response time of a messaging service
application

since the controlling aspect was not unwoven and thus it
was a performance penalty after weaving. Scenario D was
faster than C but not than B. Since the application program
was suspended while atomic weaving, the highest peak (133
msec.) was observed around 100th message and this fact
slowed down the average performance.

The experiment showed that DandyJ allows us to im-
plement a complex but efficient algorithm for distributed
atomic weaving by a separated (and hence reusable) aspect.
To see that the failure of encryption/decryption in Scenario
A is not due to the weaving mechanism of DandyJ, we also
performed the experiment with another distributed dynamic
AOP language CaesarJ [8]. Since encryption/decryption as-
pects are statically deployed in advance in CaesarJ, the cost
of deployment is zero and only the cost of activation is paid
at runtime. Thus the variance of the length of weaving time
is small but, however, we observed that one message was still
not successfully encrypted/decrypted in the case of Scenario
A using CaesarJ.

6. RELATED WORK
Dynamic AOP languages have been actively studied. PROSE

[14, 13], Steamloom [3], JAsCo [16], Wool [15], and HotWave
[21] are examples. Several dynamic AOP languages even
support distributed computing; they are JAC [12], CaesarJ

Table 3: The overview of the response time (msec.)

Scenario average max.
A. no consideration of atomicity 45.4 69
B. DandyJ 46.6 71
C. DandyJ without undeployment 49.6 75
D. stop, weave, and restart (naive approach) 47.5 133

[8], DJAsCo [9], ReflexD [18], DyReS [19], a recent version
of PROSE [10], and so forth.

However, their supports of distributed weaving is limited
against DandyJ, which provides dedicated language con-
structs. First of all, most of them do not provide a weaving
mechanism that consists of two phases: deployment and ac-
tivation. As we showed, this is significant to implement an
efficient weaving algorithm. For example, JAC, which is a
Java-based framework for dynamic AOP, does not provide
this mechanism. It does not provide remote pointcut, either.

CaesarJ allows a first-class aspect like DandyJ but its
weaving mechanism is not a two-phase one. Furthermore,
an aspect must be statically deployed in the code on a re-
mote machine. It is not possible to transfer aspect code to a
remote machine and dynamically deploy it there. It is only
possible to dynamically activate an aspect that is already
deployed. Indeed, the operator deploy of CaesarJ performs
the activation of the terminology of this paper. Moreover,
CaesarJ does not provide remote pointcut.

DJAsCo is a prototype implementation of a distributed
AOP language AWED. It is an extension of JAsCo. Al-
though it supports remote pointcut like DandyJ, its weaving
mechanism is not a two-phase one. It only allows program-
mers to specify which aspect is woven first and which is
the next. This feature only works for resolving dependency
among aspects. ReflexD is another platform for distributed
AOP in Java. It is an extension of Reflex [17]. Like DJAsCo,
ReflexD supports remote pointcut but not a two-phase weav-
ing mechanism.

DyReS is another Java-based framework for distributed
dynamic AOP. Unlike DandyJ, it does not support a two-
phase weaving mechanism or remote pointcut. Moreover,
since programmers must use XML for describing how to con-
trol weaving, the expressive power is weaker than in Java.
Although an aspect is a first-class object in XML, being
first-class is not equivalent to that an aspect in DandyJ
is first-class. In XML, first-class objects are only aspects
whereas in DandyJ they are not only aspects but also other
Java objects and primitive-type data. Finally, an XML de-
scription to control weaving in DyReS cannot be installed on
demand during runtime (according to our understanding).
It must be statically installed on all machines before a tar-
get program starts. Hence it does not enable truly dynamic
weaving. In DandyJ, an aspect to control weaving can be
also dynamically woven on target machines.

As far as we know, Lasagne [20] is only the framework for
distributed dynamic AOP that provides a two-phase weav-
ing mechanism. However, unlike DandyJ, it does not provide
programming supports by dedicated language constructs since
it is a framework for Java programming. A uniqueness of
DandyJ is that DandyJ provides language constructs for
programmers to easily implement a reusable aspect to con-
trol atomic weaving. Although similar effects might be achiev-
able in Lasagne by using programming idioms and conven-
tions, we believe that distributed atomic weaving should be
implemented directly by an aspect since it is a crosscutting
concern.

7. CONCLUSION
This paper illustrates that distributed dynamic weaving is

a crosscutting concern, which should be implemented by an-
other aspect. Then it proposes our new language DandyJ.
It provides a useful set of language constructs: first-class



aspects with two-phase weaving, remote pointcuts, and one-
time aspects. Although these language constructs are not
very new, DandyJ is the first language providing all the three
constructs as far as we know. In DandyJ, a control program
for atomically performing distributed dynamic weaving can
be implemented as a reusable aspect. At the lexical level,
it is not tightly coupled with its target aspect that will be
dynamically woven under the control of that aspect. It is nei-
ther coupled with the target base-program where the aspects
are woven. Therefore, an aspect for controlling distributed
dynamic weaving can be reusable for weaving other target
aspects.
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