
A Dissertation Submitted to Department of Mathematical and
Computing Sciences, Graduate School of Information Science and

Engineering, Tokyo Institute of Technology
In Partial Fulfillment of the Requirements for the Degree of

Doctor of Science in Mathematical and Computing Sciences

Tool support for Modularized

Documentation at the Design and

Implementation Phase

実装時ドキュメントへのモジュール構造の導入と
支援ツールの提案

Michihiro HORIE Dissertation Chair:
Shigeru CHIBA

February 2011,
Copyright c© 2011 Michihiro HORIE.

All Rights Reserved.

Abstract
Through software development, writing documents is a significant task al-
though the main pillar of software development is programming. Software
developers have to write various documents such as the specifications of the
software, bug tracking reports, and users’ manual. During implementations,
writing documents in program source files has been known as good practice.
In the Lisp family of languages, a function definition can include the descrip-
tion of that function. The descriptions in function definitions are collected by
a programming tool/environment to be browsable as documentation views.

While modern programming languages provide several language con-
structs for modularly describing programming concerns, there is no sufficient
support for the modularity in documentation. Even if programs are well mod-
ularized, documentation is not necessarily modularized. Thus, documents of-
ten contain scattering or tangling text, which decreases their maintainability
and reusability.

This thesis proposes tool supports for modularized documentation in pro-
gram source files. During implementation, documentation helps developers
to understand a behavior of an encapsulated module such as a method and
class. Our tool named AspectScope automatically generates woven docu-
mentation and shows it via an IDE. When software is released, the precise
API documentation is required because insufficient documentation will mis-
lead user programmers. Our documentation tool named CommentWeaver
enables to generate precise documentation that are woven from modular-
ized documents written in source codes. Finally, after software is released,
it often evolves through several versions. Sometimes new specifications will
be added, or sometimes simple refactorings will be given. Our tool named
Universal AOP enables to write robust documentation against refactorings.

i

ii

These three tools are developed on the basis of the notion of the aspect ori-
entation. They support to describe documents for programs written in Java
and AspectJ.

Acknowledgements
This thesis was supervised by Shigeru Chiba. I would like to express my deep
gratitude to him. I also profoundly thank Awais Rashid, who supported me
for our collaborating research at Lancaster University in the United Kingdom.
Ruzanna Chitchyan and Phil Greenwood gave me a plenty of constructive
comments and criticism with spending a lot of time. Steffen Zschaler gave me
a chance to reconsider what my thesis is essentially tackling on. Joost Noppen
and Safoora Shakil Khan taught me to have a positive thinking to write my
thesis. Yoshisato Yanagisawa always gave me useful advices and supported
me to advance my research. The committees are organized by Shigeru Chiba,
Masataka Sassa, Satoshi Matsuoka, Ken Wakita, and Kazuyuki Shudo.

I thank all of my colleagues in the research group in Tokyo Institute
of Technology. Especially, I would be deeply grateful to Takeshi Azumi,
who came to encourage me during my stay in Lancaster. Also, Takeshi
Azumi, Kohei Betchaku, Sungho Arai, Kei Kanazawa, and Yuki Teramoto
significantly helped me to conduct time-consuming case studies.

iii

Contents

1 Introduction 1
1.1 Motivating Problem . 2
1.2 Approach by this thesis . 4
1.3 Position of this thesis . 9
1.4 Structure of this thesis . 10

2 Modularization of Documentation 12
2.1 An ideal description for documentation 15
2.2 Existing tools for modular documentation at the implementation

phase . 17
2.3 Other documentation-related systems 22
2.4 Summary . 30

3 AspectScope 32
3.1 Modular Reasoning . 33
3.2 AspectScope . 36

3.2.1 Outline view . 37
3.2.2 Refactoring revisited . 41
3.2.3 Javadoc pane . 42

3.3 Examples . 45
3.3.1 Using the execution pointcut 45
3.3.2 Denotation of cflowbelow pointcut 46
3.3.3 Defining a new class implementing Shape 46

3.4 Preliminary evaluation . 47
3.4.1 The frequency of simple execution pointcuts 48
3.4.2 The callee-side extension 48

CONTENTS iv

CONTENTS v

3.5 Summary . 50

4 CommentWeaver 52
4.1 Writing doc comments . 53

4.1.1 API documentation . 53
4.1.2 Scattering and tangling 54

4.2 CommentWeaver . 59
4.2.1 Scattering text by procedure abstraction 62
4.2.2 Scattering text by aspect 64
4.2.3 Tangling text by inheritance 65
4.2.4 Another example: weaving text at an appropriate location 66
4.2.5 Semantics . 68

4.3 Case studies . 70
4.3.1 Javassist . 71
4.3.2 The standard library of Java 6 72
4.3.3 Eclipse . 75
4.3.4 An AspectJ version of Javassist 77

4.4 Summary . 78

5 Universal Aspect Oriented Programming 79
5.1 Fragile document composition against changes 81

5.1.1 Refactoring in Javassist 81
5.2 Modularization revisited . 84

5.2.1 Programming Languages for Modularity 85
5.2.2 Natural Languages for Modularity 87
5.2.3 IDEs for Modularity . 88

5.3 Towards Technology beyond AOP 89
5.3.1 Structure and Language Independence 92

5.4 Impact of Modular Views . 93
5.5 Case study . 94
5.6 Future research directions . 99
5.7 Summary . 100

6 Conclusion 101

Bibliography 104

List of Figures
2.1 The number of bug reports about documentation in Eclipse . . . 13
2.2 The number of bug reports about documentation in Eclipse . . . 14
2.3 Scattering and tangling documentation 16
2.4 Revised documentation in AspectJ 20
2.5 Literate programming . 22
2.6 Composition with ARCADE . 23
2.7 Example of RDL descriptions 24
2.8 Verb categories in RDL . 24
2.9 Bubbles related with documentation in Code Bubbles 30

3.1 A figure editor implemented in AspectJ 34
3.2 The new revision of moveBy method 35
3.3 AJDT indicates advised join points 35
3.4 The caller side and the callee side 35
3.5 AspectScope . 37
3.6 The outline view presents the effect of the execution pointcut. . . 38
3.7 The outline view presents the effect of the call pointcut. 38
3.8 AJDT indicates the effect of the call pointcut (the red underline

was drawn by the authors). 39
3.9 A conditional extension by the within pointcut (the red underline

was drawn by the authors) . 39
3.10 There is a before advice associated with the get pointcut. 40
3.11 An intertype declaration of the distance method 40
3.12 Two advices extend the setX method. 40
3.13 The javadoc pane for the setX method (the red dotted lines and

text were drawn by the authors) 43

LIST OF FIGURES vi

LIST OF FIGURES vii

3.14 The definition of an advice and a pointcut 43
3.15 AJDT only shows that moveBy is advised. 45
3.16 The arrow icon indicating a join point shadow of cflowbelow . . . 45
3.17 The javadoc pane mentions cflowbelow. 47
3.18 The notification of moveBy method 47
3.19 The analysis of the source program of ActiveAspect 48

4.1 Scattering text in the doc comments 56
4.2 Tangling text in the doc comment 57
4.3 Text that should belong to the doc comment in an aspect 60
4.4 Syntax of CommentWeaver tags 61
4.5 @quote and @export tags in the CtClass class 62
4.6 A doc comment moved into an aspect 64
4.7 A doc comment moved to a public super class 66
4.8 A doc comment moved to a factory method 67
4.9 The doc comments for Javassist 70
4.10 The crosscutting doc comments in Java 6 73
4.11 The crosscutting doc comments in Java 6 74
4.12 The doc comments for Eclipse (on average per package) 75

5.1 Refactoring in Javassist between version 2.6 to version 3.1 82
5.2 OO LineReading concern example. 93
5.3 Functional LineReading concern example. 93
5.4 The number of tags that need initially for CommentWeaver . . . 96
5.5 The number of tags that need initially for Universal AOP 96
5.6 The number of tags added/removed/modified through ver.2.6 to

ver.3.1 in CommentWeaver . 97
5.7 The number of tags added/removed/modified through ver.2.6 to

ver.3.1 in Universal AOP . 98

List of Tables
2.1 Comparison of existing tools . 31

3.1 All pointcuts declared in the source code of ActiveAspect 49

4.1 The tangling text in the doc comments for the CtClass class . . . 76
4.2 The aspects implemented for Javassist 76

5.1 Advice tags in Universal AOP 90
5.2 The pointcuts available in Universal AOP 91
5.3 Metrics suite summary . 95
5.4 The ratio of the precision in weaving documents in Universal AOP 99

LIST OF TABLES viii

Chapter

1
Introduction

Writing documents is a significant part of software development [60, 74]. Soft-
ware developers have to write various documents such as the requirements,
specifications, bug tracking reports, and users’ manual. Documentation of
the requirements and specification phase is imperative, because concrete pro-
grams have not been implemented yet, and so, documentation is the only tool
to define the whole behavior of software. On the other hand, documenta-
tion at the design and implementation phase (and later phases such as the
maintenance phase) must not be written necessarily because the main pil-
lar of these phases is programming. However, even during implementation,
documentation is still very significant to make other developers understand
the behavior of a program before investigating its implementation. It is also
important to make developers themselves remind the behavior of a program.
However, unlike in the requirement and specification phase, documentation
in the design and implementation phase has to be paid attention to the lan-
guage constructs given by programming languages such as methods. There
may be many similar documentation in one program because of the methods
that provide a similar functionality. Besides, new programming paradigms
have been developed such as Object-Oriented Programming (OOP), and re-
cently Aspect-Oriented Programming (AOP). New programming languages
for them have been also released, and some of them are widely used among

INTRODUCTION 1

Motivating Problem

academia and industries. Therefore, a new documentation system is needed
that can be applied to these different language paradigms and its languages.

However, techniques to write documentation have not been so much
changed since the Lisp family of languages had been developed: documen-
tation has no modular structure, and each documentation is just written
on/in its function definitions. Despite this fact, writing documentation is
unexpectedly burdensome throughout software developments. This is be-
cause the quality and quantity of documentation is required to develop good
software. For example, the low-quality documentation will mislead user pro-
grammers who write their software by reading the documentation. Also, less
documentation will result in careful investigation of its implementations in
the end. Both of these situations mean that insufficient documentation will
become worthless after all.

To address these requirements of writing documentation with high quality
and large quantity at the design and implementation phase, we consider that
modularization mechanisms should be introduced into documentation. Sepa-
rating each documentation into modules should increase the maintainability
and reusability as well as the modularity in programming languages bring
these benefits to developers. We also consider that description of documen-
tation should be appended on each programming module as comments be-
cause comment-style description is easy to apply to new language constructs.
In addition, describing with the natural language is intuitive to developers,
so, we did not think about any special constructs to define specifications in
comments.

1.1 Motivating Problem

There are several techniques and tools to write documentation at the design
and implementation phase. However, none of them addresses our motivat-
ing problem, that is, modularization of documentation. Although writing
documentation has been considered as good practice, documentation has
become more important in OOP and AOP. One of the reason is that the
encapsulation of programs by classes hides implementation details, and thus,
it becomes difficult to understand what is implemented in an encapsulated
module. This notion is apparently paradoxical: OOP had been developed for
better reusability and maintainability of programs. Although the maintain-
ability increases by separating concerns into many modules, call hierarchies of
methods in OOP become deeper in practice [17]. This fact tells that methods

INTRODUCTION 2

Motivating Problem

in a long call chain need to be explained what they encapsulate. Therefore,
documentation and long names for each method are needed to make devel-
opers guess the encapsulated detail. Another benefit in OOP is reusability:
a module can be replaced with newly defined module in a program without
touching the other source codes. For example, framework users can insert
new modules into the framework to change its behavior. However, to exert
this benefit, developers have to know precisely how to replace a module. A
user-defined class might have to extend a certain super class and override
some methods.

Thus, documentation is not the main tool to develop a program but very
useful to understand existing modules. Especially, since AOP makes pro-
gram understanding more difficult than OOP, documentation is youthful to
do modular reasoning. The only thing developers have to do is to write doc-
umentation before/after implementing a module whether or not the module
will be declared as public.

When class libraries and application frameworks are released, developers
of them have to write API (Application Programming Interface) documenta-
tion, which describes classes, methods, and fields in the library or framework.
Good libraries or frameworks should have good API documentation, which
the users read as a reference manual to learn how to use the software [15]. In
Java, the Javadoc tool [67] helps to write API documentation. It enables writ-
ing API documentation as comments directly embedded in program source
files. These comments are called doc comments. Javadoc improves the main-
tainability of API documentation because developers can easily update the
documentation together when they modify a program.

API documentation, however, involves a non-negligible number of cross-
cutting concerns. These concerns cut across the structure of API documen-
tation, or doc comments. Although modern programming languages such as
Java provide several language constructs for modularly describing program-
ming concerns, existing documentation tools such as Javadoc do not provide
sufficient support for the modularity. Thus, doc comments often contain
scattering or tangling text, which decreases their maintainability. This is
also true for the documentation of programs written in an aspect-oriented
programming (AOP) language such as AspectJ. AOP languages modularize
several crosscutting concerns of programming but not of the documentation.
The modularity of doc comments rather gets worse as a programming lan-
guage provides better constructs for modularization.

Literate programming is an approach by Knuth to write program snippets
with documentation. In this programming style, documentation is the main

INTRODUCTION 3

Approach by this thesis

construct in source codes rather than programs. This system is developed
for functional languages such as Pascal. WEB, which is the language based
on the notion of literate programming, consists of two languages, Tex for
writing documentation and Pascal for programming. In WEB, source files
contain a Pascal program and the tex text for improving the readability of
that Pascal program. The WEAVE operation generates a well-formatted
document describing the program. WEB is one of the early systems that
promote programmers to write a program and its documentation in the same
file. However, the problem is that writing documentation with OOP or other
paradigms is open issues. Concretely, there is no specific notion in literate
programming to construct class component with documentation. Creating
inheritance relation is also not mentioned. Besides, to realize these object
components only with documentation seems to be difficult.

1.2 Approach by this thesis

To enable modular description of documentation at the implementation and
design phase, we propose documentation tools for each purpose: AspectScope
for viewing modularized document through Eclipse IDE, CommentWeaver for
generating API documentation, and Universal AOP for obtaining less fragile
documentation through refactorings. Our tools can be used along with proce-
dural languages, Object Oriented Programming languages, and even Aspect
Oriented programming languages. By using our tools, documents written in
the natural languages can be separated into each module along the program-
ming modules. To compose modularized documents, our tools basically need
hints that users have to give. As the clues, we provide several kinds of tags
that can be put within documents. Since modularized documents can be not
only append just before/after other documents but also inserted into others,
we will call this process as weaving of documentation from this chapters.

Our three tools are developed for two criteria: the amount of tagging
and the accuracy of woven documentation. When accurate documentation is
needed, developers have to put lots of tagging to correctly weave documents.
On the other hand, when developers do not want to put so much tagging,
the accuracy of woven documentation will become lower. It depends on each
development phase whether developers always need lots of tagging or not.
When developers are implementing programs, the main task is program-
ming, and so, putting users’ hints (that is, tagging) for weaving modularized
documents is the additional issue. At the same time, however, documenta-

INTRODUCTION 4

Approach by this thesis

tion will help developers to understand the behavior of programs as long as
they write documents on each programming modules. Therefore, our tool
automatically weaves documents and does not require any additional tags.
Instead, woven result is not so accurate. When software such as a library
and framework is published, modularized documentation has to be precisely
released for explaining how to use the APIs. Since wrong woven results are
not acceptable at this time, developers have to put lots of tags to control
weaving of documents correctly. After software is released, the part of imple-
mentations will be refactored again and again through several versions of it.
In addition, some specifications might be also added, modified, or removed.
Thus, tagging at this time should be less than that when released not so
as to be affected by refactorings. The accuracy of woven result should be
also relatively high. Although the tags are different from the one that are
written when software is published, these two kinds of tags can be written
for the same documentation at the same time. The important thing is that
firstly written tags when software is released can be easily exchanged when
needed. This is because it is difficult to predict which programming module
might be refactored in advance. The only thing developers have to do is just
replace the tags. They do not need to change modularized documentation
themselves.

AspectScope

Aspect Oriented Programming enables to modularize concerns that crosscuts
classes in Object Oriented Programming. The pointcut and advice mecha-
nism that AOP languages such as AspectJ [48] provide allows developers to
combine a module to a special module, called an aspect, without explicit
method calls. This is useful to implement certain crosscutting concerns as a
separate module. An aspect is implicitly invoked when a thread of control
reaches some execution points in the other module. Those execution points
are selected from the predefined set of points by the language.

However, this property of AOP makes it difficult for developers to under-
stand the behavior of a module as long as they are looking at only the source
code of that module. When one module is executed in an AOP language,
other modules might be implicitly invoked from that module. The behavior
might be changed by the deployment of other modules (i.e. aspects). There-
fore, AOP languages require a whole-program analysis for understanding a
program. Although module interfaces in AOP are hard to see, it should be
possible to improve the visualization by a programming tool so that develop-

INTRODUCTION 5

Approach by this thesis

ers can more easily see the module interfaces under the current deployment
of aspects. This would hopefully give better impression of AOP to the de-
velopers, who want to reason about their programs at a module level.

Therefore, we provide AspectScope to improve the understanding of pro-
grams developed in AOP. This is the viewer plugin working in Eclipse IDE.
In its viewer, members such as methods and fields are shown which members
are extended by aspects in its outline viewer. To show the concrete behav-
iors of these members, AspectScope also provides document viewer. This
document viewer weaves documents of a method and advices that will be
woven when the method is invoked. The only thing developers have to do
is to write each document on methods and advices. The document viewer
also analyzes the pointcut definition of the advice that extends the behavior
of a method, and generates automatically the translated description on its
document viewer. Through this description about the pointcut, developers
can understand when the advices will be invoked. Note that the developers
who uses our document viewer do not need to understand aspect definitions
because the document viewer hides the constructs of aspects such as ad-
vices and pointcuts, which might be difficult to learn for OO programmers.
The developers that can define aspects should write documentation of these
advices and pointcuts.

CommentWeaver

Writing API documentation in a program source file has been known as good
practice. In the Lisp family of languages, a function definition can include
the description of that function. The descriptions in function definitions
are collected by a programming tool/environment to be browsable as API
documentation. This feature significantly improves developers’ productivity
when they are writing a program by using a third-party library or application
framework. Libraries and application frameworks would be difficult to use
without good API documentation.

In Java, the Javadoc tool is widely used for writing API documentation.
The descriptions of classes and their members, such as fields and methods,
are written as comments surrounded between /** and */. Javadoc collects
these comments, which is called doc comments, and generates API docu-
mentation of the class library or the framework in the HTML format. API
documentation, however, involves a non-negligible number of crosscutting
concerns. These concerns cut across the structure of API documentation,
or doc comments. Although modern programming languages such as Java

INTRODUCTION 6

Approach by this thesis

provide several language constructs for modularly describing programming
concerns, existing documentation tools such as Javadoc do not provide suffi-
cient support for the modularity. Thus, doc comments often contain scatter-
ing or tangling text, which decreases their maintainability. This is also true
for the documentation of programs written in an aspect-oriented program-
ming (AOP) language such as AspectJ. AOP languages modularize several
crosscutting concerns of programming but not of the documentation. The
modularity of doc comments rather gets worse as a programming language
provides better constructs for modularization.

To address this problem, we provide our documentation tool named Com-
mentWeaver. It is an extended Javadoc tool and provides special tags for
modularly describing doc comments for Java or AspectJ programs. When the
API documentation of the programs is generated, CommentWeaver makes
copies of the doc comments and appends them to the documentation of
multiple methods according to the special tags. Thus, the text written by
programmers for one method can be automatically appended to the API doc-
umentation of other methods related to the original one with respect to the
program semantics. For example, a method that will call another method can
share the text with the called method. If a method is advised by an aspect, it
can also share the text with that aspect. This eliminates scattering text and
improves the modularity of doc comments. CommentWeaver provides lots of
tags to control the weaving of modularized documents precisely. The woven
results can be viewed as the API documentation in HTML files. Developers
have to write these tags that specify concrete programming structures.

Universal AOP

Once software is released, it is ideal that rewriting documentation against
refactorings is not quite often. Although CommentWeaver provides tagging
system that specifies concrete programming structures such as names of super
class and caller methods to other methods, this syntactic-based weaving of
documents needs rewriting of documentation against refactorings.

To address this problem, we provide a documentation tool named Univer-
sal AOP, which enables the weaving of documents by using the grammar and
semantics of the natural language. As CommentWeaver does, Universal AOP
also provides the pointcut to weave modularized documents. However, the
pointcuts do not specify the concrete programming structures but the natu-
ral languages in documentation. The pointcut of Universal AOP is defined
with respect to the grammatical subject, verb, and object of the documen-

INTRODUCTION 7

Approach by this thesis

tation sentences. Thus, Universal AOP enables semantic-based weaving of
documents because this pointcut selects the semantics of programming spec-
ification. As another benefit of semantic-based weaving comes from that it
is free from concrete programming structure. This means that developers
can construct a view for modular understanding of programs through doc-
umentation whatever languages they use. The only thing developers have
to do is just to write documentation on each programming modules. One
of the reason why Universal AOP is free from concrete language constructs
is that OOP has been widely used in industry and there is lots of hoard
of using OOP languages even though new programming paradigms such as
AOP have been developed in academia. In addition, the transition of major
programming paradigm in industry will be very slow especially in the in-
dustrial environment that developers are familiar with OOP. Therefore, we
provide a new paradigm for programming understanding by not introducing
new programming constructs, that is, documentation.

Let us consider a software company wishing to benefit from a new pro-
gramming paradigm that requires the use of new language extensions. This
new paradigm will require new concepts and language constructs to be in-
troduced into the company’s business processes and code base. This can
pose both a significant risk and cost to the company due to the associated
learning costs but also due to the risk of failure and products not being de-
livered to specification nor to schedule. Furthermore, legacy software assets
of the company may have to be re-implemented using the new approach to
remain compatible. As a consequence of this, organisations are usually very
slow and unwilling to adopt new programming practices. However, what if
the new programming paradigm can be adopted without these risks? What
if the programming paradigm does not require new language constructs to
be introduced? What if the programming paradigm can be applied with-
out change to legacy code? We propose that the modular views offered by
these programming paradigms should be decoupled from the underlying im-
plementation so that the benefits of these advancements can be quickly and
safely applied. In order to demonstrate the advantages of our approach, we
take Aspect-Oriented Programming (AOP) as a case-study. AOP is ideally
placed to demonstrate our approach as it is a development technique that
is currently relevant in terms of its position on its “hype-curve”; industrial
organisations are interested in adopting it but are faced with the problems
described above.

Aspect-Oriented languages are specifically designed to modularise scat-
tered and tangled crosscutting concerns. A number of existing languages

INTRODUCTION 8

Position of this thesis

(most notably Java and C) have been extended with dedicated programming
constructs to achieve this. These extensions allow crosscutting concerns to
be represented within aspects and allow their composition via pointcut spec-
ifications. To take advantage of these concepts, developer’s have to learn a
new (or extended) programming language.

1.3 Position of this thesis

The position of this thesis is that modularization of documentation at the de-
sign and implementation phase has been considered because documentation is
often crosscutting along programming modules. The important thing is that
documentation cannot be necessarily written modularly even if source codes
are well modularized. Since this notion has not been much discussed ever,
we considered how to write documents that are suited with the modularity
given by programming languages. In history, programming languages have
been developed for better modularity such as the procedural programming,
the object orientation, and recently the aspect orientation. On the other
hand, the way of describing documents has not been changed, especially at
the design and implementation phase. In the other phases prior to the de-
sign and implementation phase, there are several researches about modularly
describing documents such as ARCADE [76] and RDL [24]. They enable to
construct modular documents for the requirement engineering. However, in
requirement engineering, there is no consideration about the relation between
programming languages and documentation because program has not been
implemented at this phase.

Another position of this thesis is that we provide the documentation tool
not only for documentation but also for programming. The main purpose of
modularizing implementations is to put source codes in order. As a result,
the modularized implementation brings in the maintainability and reusabil-
ity. We consider that this purpose need not be necessarily accomplished by
programming languages. Instead, documentation can undertake this role as
long as the classification of source codes can be perceived as concerns. Pro-
gramming languages provide an explanation of a method semantics through
its syntactic constructs. On the other hand, documentation also explains
the specification of the method. Thus, each of them potentially has the same
ability to make developers perceive concerns. To delegate the part of the role
to represent concerns, we developed a documentation tool that is available on
top of OOP. Our tool can be substitution of any AOP languages: documents

INTRODUCTION 9

Structure of this thesis

explain crosscutting concerns that cannot be separated in OOP. The under-
lying reason why AOP languages have to be replaced with our tool is that
AOP languages have not been widely used in industry ever since AOP was
first developed more than ten years ago. The difficulty to learn the paradigm
of AOP and its languages may be one of the reasons. However, the notion
that AOP brought about is still very significant. Separating crosscutting con-
cerns into aspects increases the modularity. Thus, we consider how the same
effects of AOP become available without introducing new paradigms and lan-
guage constructs. Documentation can provide modular views of crosscutting
concerns, and in addition, writing/reading documentation does not require
any additional knowledge.

1.4 Structure of this thesis

The next chapter declares the problems that we are tacking on. Then, the
later three chapters propose each tools for modularizing documentation at
each software development phase. The summary of this thesis is as follows.

Chapter 2: Documentation of Modularization

This chapter presents that there are several existing researches but they are
only partly tackling on our aims: modularization of documentation. Then,
the properties that should be achieved for our aims are considered, and our
ideal solution is also presented here.

Chapter 3: AspectScope

To support the understanding of the whole program behaviors that are writ-
ten in Aspect-Oriented Programming, we propose a viewer tool that are
useful at the implementation phase. It provides documentation generated
from classes and aspects that affect these classes. We implemented a tool as
an Eclipse plugin for AspectJ.

Chapter 4: CommentWeaver

To generate precise API documentation when software is released, we pro-
pose a documentation tool, which allows developers to write documentation

INTRODUCTION 10

Structure of this thesis

as a modular fashion. It provides several tags to compose modularized doc-
umentation. The woven result can be viewed in the HTML format.

Chapter 5: Universal AOP

To make modularized documentation robust through refactorings of several
versions of software, we propose another documentation tool that are less
fragile against refactorings. It provides semantic-based composition rule into
composing each documentation, and it is free from concrete programming
structures.

INTRODUCTION 11

Chapter

2
Modularization of Documentation

Through software development, writing documents is one of the significant
tasks although writing source codes is the main pillar to construct software.
At the requirement and specification phase, documentation is crucial to de-
fine how the software works. On the other hand, at the implementation
and design phase, documentation is not mandatory. However, documenta-
tion helps readers’ understanding of the software. For example, developers
themselves may need documentation that had been written by themselves
to understand the implementations. Developers of class libraries and appli-
cation frameworks have to write API (Application Programming Interface)
documentation, which describes classes, methods, and fields in the library or
framework. Good libraries or frameworks should have good API documen-
tation, which the users read as a reference manual to learn how to use the
software [15].

Even though writing documents is a burdensome task, a technique for
documentation has not been ever considered much about. However, the
quantity of describing documents is unexpectedly large, and the quality of
documentation is also required. For example, the size of the Javassist li-
brary (version 3.6) is 53,477 lines of code (LOC) and 9,512 of 53,477 lines
are doc comments for Javadoc (18 %). In case of Java 6, the code size is
2,038,855 LOC and 575,887 of them are doc comments (28 %). As another

MODULARIZATION OF DOCUMENTATION 12

Figure 2.1. The number of bug reports about documentation in Eclipse

example, misunderstandable documentation led a trouble. One of bug re-
ports to Javassist required to explain detailed behavior of an API method
[4], because insufficient description prevented user programmers to run his
software precisely.

In addition, we conducted a survey on the number of the document-
related bug reports found in the bug report site of Eclipse [3]. All the related
reports such as Help documents and Wiki documents were counted. As shown
in Figure 2.1, in most years, more than 1,000 bug reports about documents
were posted. The average number of these reports is 1,212 per year, roughly
3 % in all bug reports. This is an astonishing result to consider that Eclipse
is one of the widely-used software that have been maintained after published
as an open source software in 2004.

We also investigated the details of 500 bug reports that are related with
doc comments. As shown in Figure 2.2, bug reports were categorized by four
kinds. The major report was about insufficient documents. For example,
a bug report mentions to developers that they should add documentation
because users don’t seem to understand how to use the API correctly. The
ratio of such kind of reports was 70.6%. The second most report was about
incorrect documents. The reports that mentioned that documentation does
not precisely explain the specification of methods were counted. The ratio
of these reports was 18.7%. The next most report was about out-of-date
documents, which were not updated with updates of specifications. Since

MODULARIZATION OF DOCUMENTATION 13

Figure 2.2. The number of bug reports about documentation in Eclipse

these documents have not explain the current behavior of a program, they
should be revised. Although these kinds of reports have overlaps with the
insufficient documents and incorrect documents, we counted the number sep-
arately. The ratio was 10.5%. The reports that mentioned typo was only
0.2%.

We consider that one of the reason for these bugs comes from the diffi-
culties of maintenance of documentation as well as writing documentation.
Documentation for OOP programs becomes more difficult because call hier-
archies of methods tend to be deeper, and , all these methods basically need
documentation. Note that, since OOP provides a mechanism of encapsulat-
ing a function, the encapsulation hides the details of that function. Thus, an
explanation that tells what the encapsulation does is needed such as a long
method name and documentation. What is worse, the documentation of the
same call hierarchy have a lot of overlaps in their descriptions, which seem
to be too complicated to manage them for a change.

Programming paradigms have been invented for higher modularity to in-
crease maintainability and reusability. Also, lots of programming languages
for each paradigm have been considered and some of them still have been
widely used in academia and industry. On the other hand, the way of writ-
ing documentation have not been so much changed. In the implementation
and design phase, since documentation have to be written along with source
codes that are well modularized, more efficient way of writing documentation
should be necessary.

MODULARIZATION OF DOCUMENTATION 14

An ideal description for documentation

2.1 An ideal description for documentation

Then, what is the ideal description to write documentation? We consider that
one of the best solutions is to modularize documentation. Here, modularizing
documentation means writing a description on its programming module just
once. When a programming module is modified, it will become easy to modify
its description along with its programming modification. The second factor
for the ideal description is that the natural language is available in documen-
tation. This is because we consider that learning brandnew way of writing
must be another burden to construct software. The two main benefits deliv-
ered by modularity are improved software reuse and maintainability. Reuse
is achieved due to relative physical independence between modules, which
can be subsequently used without change in different systems. Maintainabil-
ity is achieved due to localisation of code, which can be viewed in one place,
and changed locally, thus reducing the scope of the change. While the reuse
property requires physical mobility of the code, maintainability can often be
satisfied via on-demand localisation of the relevant code, irrespective of its
physical location.

In lifetime of any system, the main development tends to be a one-off
event, whereby the initial system is delivered. For this initial system imple-
mentation the existence of a suitable programming language and its correct
choice is of paramount importance. However, in accordance with many stud-
ies [16] more than 80% of costs within the system life time will likely be
committed to its maintenance. Once delivered, the physical implementation
of the softer system cannot be chugged, but its maintainability can still be
facilitated. We advocate that this facilitation about writing documentation
will be achieved through modularized one. However, this natural way of writ-
ing cannot be permitted on the current documentation tools and systems.

If documentation cannot be modularized along with one concern, the de-
scriptions of the documentation might contain several descriptions for several
concerns. This situation can be said as the documentation is tangling. For
example, in Figure 2.1, the text starting with “Once this method is called” is
written in documentation of three methods writeFile(), writeFile(String), and
toBytecode. Since the basic behavior of two writeFiles is to convert a class
definition into a file, the documentation of writeFile is tangling because of
the text starting with “Once this method is called”. Note that the actual
implementation for this description is realized in the toBytecode method.
Therefore, the text starting with “Once this method is called” should be
only written in the documentation of toBytecode. Also, a description might

MODULARIZATION OF DOCUMENTATION 15

An ideal description for documentation

public abstract class CtClass {
:

/**
* Writes a class file represented by this <code>CtClass</code>
* object in the current directory. Once this method is called,
* further modifications are not possible any more.
*/
public void writeFile() throws .. {

writeFile(".");
}

/**
* Writes a class file represented by this <code>CtClass</code>
* object on a local disk. Once this method is called, further
* modifications are not possible any more.
* :
*/
public void writeFile(String directoryName) throws .. {

DataOutputStream out = ...;
toBytecode(out);

:
}

/**
* Converts this class to a class file. Once this method is
* called, further modifications are not possible any more.
* :
*/
public void toBytecode(DataOutputStream out) throws .. {

throw new CannotCompileException("not a class");
}}

Figure 2.3. Scattering and tangling documentation

MODULARIZATION OF DOCUMENTATION 16

Existing tools for modular documentation at the implementation phase

be written in several documentation. One of the example is the description
about the toBytecode method. The text starting with “Once this method is
called” is scattering among two writeFile methods.

Another factor for the ideal documentation writing is that the natural
languages are available to write documentation.

2.2 Existing tools for modular documentation at
the implementation phase

Unfortunately, existing tools are not sufficient for our purpose; to write doc-
umentation as a modular fashion along with the modularization techniques
for programming languages, and the description is realized with the natural
language.

Javadoc

Developers of class libraries and application frameworks have to write
API (Application Programming Interface) documentation, which describes
classes, methods, and fields in the library or framework. Good libraries
or frameworks should have good API documentation, which the users read
as a reference manual to learn how to use the software [15]. In Java, the
Javadoc tool [67] helps to write API documentation. Javadoc tool processes
documentation that are written in Java source codes into HTML files. It
enables writing API documentation as comments directly embedded in pro-
gram source files as shown in Figure 2.1. These comments are called doc
comments. Javadoc improves the maintainability of API documentation be-
cause developers can easily update the documentation together when they
modify a program. However Javadoc does not enable developers write doc
comments modularly. Javadoc tool provides its special tags to make specific
statements bold in the generated HTML file. For example, the @param tag
takes two arguments; one is a parameter name and another is its description
as shown below.

@param fileName A file name that are passed through ...

The @param tag is processed through Javadoc tool to have emphasized note
in a html file. Javdoc tool also provides the @see tag that takes an argument
to append a hyper link to the argument in the generated html files. Suppose

MODULARIZATION OF DOCUMENTATION 17

Existing tools for modular documentation at the implementation phase

that the @see tag is used in the doc comment of the writeFile method as
follows:

@see CtClass#toBytecode(DataOutputStream)

In the generated html file for the CtClass class, the API documentation
of the writeFile includes the hyperlink to the API documentation of the to-
Bytecode method. The @see tag is useful to make user programmers notice
some relationship between two methods. Although to link two methods by
hyperlinks might be sufficient in some cases, this way of representation will
be problematic when user programmers want to know which statements in
a linked method are most relevant to a method. Note that what @see does
is just putting hyper links between two methods and API documentation of
these two methods might have lots of unrelated documentation about these
two methods. Therefore, developers have to read and find which statements
are important to understand the relation of two methods by themselves. This
is also a burdensome task.

Then, some developers may think that aspect-oriented programming
(AOP) [48, 62] makes programming modularity better and so using AOP
allows developers write modular documentation as well as modular program-
ming. AOP enables to separate crosscutting concerns that cannot be modu-
larized by OOP techniques. In addition, a documentation tool for AspectJ,
which is one of the most famous AOP languages, is available as the name of
Ajdoc tool [71],which is another Javadoc-like tool for AspectJ. It enables us
to attach a doc comment to an advice body in an aspect. However, Ajdoc is
still problematic. Suppose to reimplement the program shown in Figure 2.1
by using AspectJ. In Figure 2.2, an aspect named BytecodeDescribing is de-
fined and the method body of the toBytecode method is moved into an after
advice of it. In the pointcut of this after advice, execution of writeFile(String)
is specified so that the advice will be invoked implicitly when writeFile(String)
is invoked. Note that the whole behavior of this program does not change
at all. In the doc comment of the writeFile(String) method, the text starting
with “Once this method is called” is removed. Thus, now the doc comment
of the writeFile(String) method is only described just about this method and
tangling problem is addressed. However, there are a few problems remained.
Firstly, generated API documentation through Ajdoc tool does not provide
dedicated descriptions to user programmers. Ajdoc tool generates the API
documentation of aspects and the pages between the affected classes by as-
pects and these aspects are connected by using hyper links. Therefore, user
programmers step into a link to read the aspect behavior that will affect

MODULARIZATION OF DOCUMENTATION 18

Existing tools for modular documentation at the implementation phase

the class behavior. However, there is no guarantee that aspects should be
always defined as public; some aspects should be keep private. For example,
if a caching aspect that keeps class definitions for frequent access of them
is defined, this aspect should not be declared as public because user pro-
grammers do not need to know that this program is used a caching system.
Currently, Ajdoc tool cannot handle this problems. The second problem
is that the influence of an aspect to API documentation may be spreaded
though the call-graphs of the method that is selected by a pointcut. On the
other hand, Ajdoc tool cannot manage the propagation of the influence of
an aspect through caller-callee relations. In the example of Figure 2.2, the
doc comment of writeFile() still contains the text starting with “Once this
method is called” because it invokes the writeFile(String) method that will
be affected by the advice in the BytecodeDescribing aspect. Ideally, this text
should be also removed from the doc comment of the writeFile() method.

There is still one big problem; is it really the best solution to implement
always by AOP? Proliferation of AOP for the purpose of modularizing doc-
umentation must make programmers confused. While AOP languages such
as AspectJ are useful to separate crosscutting concerns, the concerns that
are once separated from a viewpoint are difficult to be reimplemented from
the other viewpoints. Note that lots of patterns for separating concerns can
be possible in one impementation. Thus, sometimes AOP languages will
make programs difficult to understand, and documentation as well. There-
fore, there is a certain number of programs that do not need to use AOP
languages. For example, although an aspect is introduced in Figure 2.2,
another implementation in Figure 2.1 is already well modularized and AOP-
version does not seem to be necessary in this case. OOP techniques for
encapsulating programs such as inheritances and methods may work well in
this example.

Literate programming

Although literate programming is not a documentation tool that promotes
modularization of documentation, it is the important programming style
when we consider the relation about programming and documentation. WEB
[53], CWEB [55], and FWEB [11] are languages based on the concept of lit-
erate programming [54], which promotes better documentation of programs.
WEB consists of two languages, TEX for writing documentation and Pas-
cal for programming. In WEB, source files contain a Pascal program and
the TEX text for improving the readability of that Pascal program. The

MODULARIZATION OF DOCUMENTATION 19

Existing tools for modular documentation at the implementation phase

public abstract class CtClass {
:

/**
* Writes a class file represented by this <code>CtClass</code>
* object in the current directory. Once this method is called,
* further modifications are not possible any more.
*/
public void writeFile() throws .. {

writeFile(".");
}

/**
* Writes a class file represented by this <code>CtClass</code>
* object on a local disk.
* :
*/
public void writeFile(String directoryName) throws .. {

DataOutputStream out = ...;
:

}}

public aspect BytecodeDescribing {
/**
* Converts this class to a class file. Once this method is
* called, further modifications are not possible any more.
* :
*/
after() : execution(void CtClass.writeFile(String)) {

:
}

}}

Figure 2.4. Revised documentation in AspectJ

MODULARIZATION OF DOCUMENTATION 20

Existing tools for modular documentation at the implementation phase

WEAVE operation generates a well-formatted document describing the pro-
gram. WEB is one of the early systems that promote programmers to write
a program and its documentation in the same file.

The important thing is that literate programming not only promotes to
putting documentation into source codes but also values to write documen-
tation as well as to write programs. Note that literate programming is not a
technique to modularize documentation, but its documentation-driven style
of programming may lead to the good style for writing well modularized
documentation. Documentation in literate programming contains concrete
fragments of the Pascal code that is divided into several procedures. Figure
2.2 is an example of literate programming. In this program, documentation
is mainly described and program named sample is divided into small pieces
of code. Since the description about loop procedure is mentioned in the next
paragraph, the procedure itself is also implemented in this paragraph. In
program sample in paragraph 1, the reference to the loop procedure is in
the third line. Another procedure named Printing is referenced in the fourth
line and instead the detailed description is written in the third paragraph
and concrete program fragment for printing is defined there. When devel-
opers want to create only descriptions of paragraph 1,2, and 3, they can
use the WEAVE processes to generate TEX sources of them. On the other
hand, when developers want to get only Pascal source codes, the TANGLE
processes to compose separated pieces of codes such as loop procedure and
printing procedure.

The problem of literate programming is that implementing by using OOP
is an open issue. Since documentation is mainly described and program
are divided into small pieces of codes along each description, and they are
putting into each paragraph, this style of documentation seems be difficult
to be introduced in OOP notion. For example, a class structure should be
needed as follows.

TSample = class(TObject);
Public
M: Integer;
N: Integer;

:

Thus, The challenging thing is whether documentation will be enough to
represent objects or not. Currently, no research has been proposed for this
purpose.

MODULARIZATION OF DOCUMENTATION 21

Other documentation-related systems

1. Introduction. This is a simple example to explain how to write
literate programming. Here is an outline of a sample code:

program sample;
begin

<Loop 2>
<Printing 3>

end

2. Loop procedure does something needed in a loop.
<Loop 2> ≡
i ← 0;
while i < 100 do
begin

{do something}
end;

3. Printing procedure just prints out some string characters.
<Printing 3> ≡
print(‘Loop is finished‘);

Figure 2.5. Literate programming

2.3 Other documentation-related systems

There are several tools and languages that are related to modularization of
documentation. In addition, even though documentation cannot be neces-
sarily modularized, there are alternative techniques that contribute to un-
derstand OOP programs as well as documentation does.

RDL

Requirements description language (RDL) is proposed for modularizing re-
quirements and their concerns in the requirement phase [24]. RDL has a
mechanism to select and compose documents by using semantic-based point-
cuts. A semantic-based pointcut selects verbs and nouns in the natural lan-
guages. Therefore, unlike other language constructs such as ARCADE [76],
the semantic-based pointcut is less fragile than other requirement languages
[23]. Figure 2.3 shows an example of describing a requirement in ARCADE.
The aspect tag modularizes the display updating concern from the base re-
quirements that are described from the Viewpoint tag. The Composition tag
defines the rule of composition of these two requirements. Note that the

MODULARIZATION OF DOCUMENTATION 22

Other documentation-related systems

<Viewpoint name="User">
<Requirement id="1">The user draws lines, triangle, and

rectangles on the figure editor.
</Requirement>
<Requirement id="2">The user can move figures on the

figure editor.
</Requirement>

:
</Viewpoint>

<aspect name="ObserverAspect">
<Requirement id="1">The system updates the display of

the figure editor.
:

</Requirement>
</aspect>

<Composition>
<Requirement aspect="ObserverAspect" id="all">
<Constraint action="provide" operator="for">

<Requirement viewpoint="User" id="1"/>
</Constraint>

</Requirement>
:

</Composition>

Figure 2.6. Composition with ARCADE

composition is defined by using syntactic constructs such as the id number
and the viewpoint name. On the other hand, Figure 2.3 is an example of
writing a composition definition in RDL. The important construct for the
semantic-based pointcut is the Base element. In this element, the relationship
is specified as write and the object as file to capture statements that have
the verb write and the noun file. For example, text starting with “Writes a
class file” will be captured in this pointcut. In addition to the relationship
and object, the subject is also available to specify a subject in sentences. On
the other hand, other languages such as ARCADE specify concrete tags and
attributes that are appended to each requirements and their concerns, and
these syntactic based pointcuts may be more fragile when a requirement is
changed through several versions of software.

RDL also allows to use synonyms of verbs to capture correctly semantic
of sentences. Moreover, when developers want to capture broader meaning
of a verb, they can use verb categories that means kind of verb meanings.

MODULARIZATION OF DOCUMENTATION 23

Other documentation-related systems

<Composition name="sample">
<Constraint operator="enable">... </Constraint>
<Base operator="metBy"> relationship="write" and object="file"</Base>
<Outcome operator="fulfilled"/>

</Composition>

Figure 2.7. Example of RDL descriptions

Figure 2.8. Verb categories in RDL

For example, the verb run and crawl will be categorized as one group of the
same meaning of verbs (Figure 2.8).

However, there are several differences of how to write documentation be-
tween at the implementation phase and requirement phase. One of such
differences is that there are many similar documentation at the implemen-
tation phase. Especially, libraries provide lots of similar APIs to increase
the usability of user programmers as shown in Figure 2.1. Documentation at
the implementation phase also has concrete name references. For example,
the @see tag is one of the Javadoc tags as mentioned before and it is often
used to refer to a concrete method name to put a hyper link in the API
documentation. RDL cannot be applied to such demands happened at the
implementation phase.

The documentation of the CLOS Metaobject Protocol

Kiczales et.al reported the significance and difficulty in writing good API
documentation of class libraries according to their experiences of the design
and implementation of the CLOS Metaobject Protocol [49]. Since a class

MODULARIZATION OF DOCUMENTATION 24

Other documentation-related systems

library is often extensible by subclassing, the documentation must mention
the internal structure of the library and hence writing the documentation
is complex. The modularity and maintainability is significant and advanced
tool support like one by CommentWeaver or Universal AOP is requisite. The
terminologies for categorizing classes are introduced as follows:

• Specified definition
Classes that are published as API of the library

• Implementation-specific definition
Classes that construct the library but do not appear as API

• Portable definition
Classes that are defined by user programmers of the library, and that
only depend on the specified definitions.

• System-defined definition
Classes that consist of either specified or implementation-specific defi-
nitions

• User-defined definition
Classes that are defined by user programmers of the library

There are mainly four concrete proposals to implement good frameworks.
Firstly, implementation-specific class should be allowed to be defined between
specified classes. For example, suppose that two specified classes are defined:
the Shape class is a super class, and one of its subclasses is the Rectangle
class. Even if the Rectangle-base class is defined as the subclass of the Shape
class and the super class of the Rectangle class, this design should be allowed
to user programmers. Secondly, framework user should be able to promote
methods that were once defined in a specified class into an interposed super
class. Note that this promotion of methods does not reflect directly to user
programs. For example, if framework developers want to promote a method
that is defined in the Rectangle class, the mehtod can be moved into the
Rectangle-base class. Next, There should be no portable classes that inherit
instance fields of specified super classes. If encapsulated is well conducted,
that is, instance fields cannot be accessed only though methods, framework
developers do not need to pay attention to this rule. Finally, user programs
should not redefine any specified classes and methods. This rule is natural
because frameworks each have their constraints how to use thier frameworks,
and user programers should not break these constraints.

MODULARIZATION OF DOCUMENTATION 25

Other documentation-related systems

JML

The Java Modeling Language (JML) [57, 58] is a language for the design
by contract. Although this is not a documentation tool that processes the
API documentation, JML commonly uses the comment-style description in
source codes. On the other hand, Eiffel [63, 64] and D language [19] have a
mechanism to manipulate the design by contract as the part of the languages.

As an example of JML description, following is a contract of the Person
class that defines the name field to represent its person’s name and the score
field to represent his/her score of a class. Since the name should not be null,
JML provides non null to satisfy the contract. One of the methods defined in
the Person class is the addScore method, which adds the number of argument
to the score. As shown in the comment of the addScore method, this method
ensures that the argument should be more than zero.

public abstract class Student {
private /*@ spec_public non_null @*/
String name;

private /*@ spec_public @*/
int score;

:

/*@ also
@ requires score >= 0;
@*/

public void addScore(int score);

/*@ also
@ requires n != null && !n.equals("");
@ ensures n.equals(name)
@ && score == 0; @*/

public Person(String n);
}

As an extension of JML, Clifton et.al. proposed aspect-oriented version of
JML [28, 29]. The most distinctive feature of their system is to manipulate
two types of aspects: assistants and spectators. The assistant means an
aspect that changes the semantics of the base classes, while the spectator
means an aspect that merely observes class behaviors. The role of spectators
resembles pure aspects [85]. For example, a non-functional aspect such as a
logging aspect is a spectator that does not change the semantics of any other
classes.

MODULARIZATION OF DOCUMENTATION 26

Other documentation-related systems

As an example of assistants, the Contract aspect below can be said as
an assistant. The before advice can change the specification by throwing
the IllegalArgumentException when the argument of the setter methods in the
Point class does not fulfill the given conditions. When developers do not want
to change the semantics of a class, they can declare that the class must not
be influenced by an aspect by using the accept clause, which takes the name
of an aspect in its argument. For example, Point class accepts the Contract
assistant by declaring accept Contract in the Point class.

aspect Contract {
before(int x):

call(void Point.setX(int)) && args(x) {
if (x < 0 || 100 < x)
throw new IllegalArgumentException();

}

before(int y) :
call(void Point.setY(int)) && args(y) {
if (y < 0 || 50 < y)
throw new IllegalArgumentException();

}
}

To reduce the burden of writing accept clauses in the base classes, accept
maps can be used. An accept map allows developers to write specifications
of acceptance in one place. This module can resolve not only tangling codes
between class codes and accept clauses, but also scattering of accept clauses.
An example aspect map is as follows.

package figures;
Point {

accept Contract;
}
Line {

accept Contract;
}
* {

accept DisplayUpdating;
}

The Line pattern in this example says that Line class accepts Contract assis-
tant. The next module starting with wildcard * indicates that every classes
accept the DisplayUpdating assistant. Therefore, the Line class accepts both
the Contract and the DisplayUpdating assistants.

MODULARIZATION OF DOCUMENTATION 27

Other documentation-related systems

Verifying the specifications

A good library/framework must have good documentation to avoid incorrect
use. However, good documentation is not a silver bullet. It is also impor-
tant to verify a program correctly uses the library/framework. We can see
this approach, for example in the design by contract [65, 59], the typestate
checking [32, 14], and the FUSION analysis [45]. The main difference from
typestates is that FUSION can abstract relationships that framework users
can manipulate. The FUSION analysis is useful for specifying framework
constraints such as the semantics constraints between multiple objects.

FUSION is constructed under careful observations in frameworks. The
constraints in the framework involve multiple classes and objects. This is
because, in OOP, a method usually invokes several other methods, which
are defined in different classes. Secondly, these constraints in frameworks
are often extrinsic. In their paper, the ASP.NET ListControl class is used
as an example. Framework users can define subclasses of the ListControl
class to extend the framework. The ListItem class is one of the framework
classes, and it has a constraint about the usage of its object. The problem is
that the user defined subclasses have to check the constraint of the ListItem
class. However, since these subclasses are defined by framework users, the
ListItem should not be responsible for enforcing the constraint. In this paper,
the difficulties of documentation are also written in case of describing such
framework constraints. In my opinion, these constraints should be described
in the super class, because when framework users define a subclass to extend
the framework, they may read the documentation of the super class to know
how they can extend the base behavior and what kinds of constraints exists.
Finally, the constraints in the framework have semantic properties. This
means that framework users have to pay attention to the specification of the
objects such as ordering of invocation of the objects.

To abstract relations between objects, framework developers can append
annotations to each method definitions. For example, when a developer need
to put a relation between the set object and the element object, they can
define the relation as follows:

@set({set, item}, ADD)

On the other hand, if they want to remove this relation, they can define as
follows:

MODULARIZATION OF DOCUMENTATION 28

Other documentation-related systems

@set({set, item}, REMOVE)

In the argument of the set relation, the wildcard * is available. The target
and the result are also available in the argument of relations. When an
annotation that uses the target in the argument is defined on a method, the
target represents an object that invokes the method. In case that result is
used, it represents the return value of the invocation of the method by the
object.

CodeBubbles

Code Bubbles [18] is the new IDE, which are developed based on the ideas
that large scale programs does not fit into display in nature, viewing over-
lapped editors needs manual interaction by users. Editing codes in Eclipse
IDE often needs large window display to show all the related codes in prac-
tice. If there is no large window display, developers have to duplicate several
editors, and this will result in thier time consuming development. On the
other hand, Code Bubbles will decrease the time developers have to spend
for browsing source codes, debugging codes, and reading documentation. To
help these users’ activities, Code Bubbles provide flexible editable fragments
on its IDE. Debugging is partly available as well as editing source codes. The
notion of the file does not exist in Code Bubbles IDE. Thus, developers use
only bubbles metaphor by implementing codes. There have been several ed-
itors that are based on non-file style programming. The most famous editor
is the one for Squeak [44], which does not show file structure to users unlike
Eclipse IDE. There are lots of editors that share similar notion of non-file
style programming [77, 46, 83].

In addition, this IDE enables to build heterogeneous working sets from
many kinds of resources: source codes, Javadoc, and other notes (Figure
2.9). Therefore, Javadoc comments are shown when required on its IDE,
and developers can understand the specification of methods before looking
into their implementations. Bug reports and notes can be append as bubbles
on the IDE. However, crosscutting concerns of Javadoc comments cannot be
resolved on this IDE, although Code Bubbles seem to make it easier to write
documentation than the typical file style editor such as Eclipse editor does.
Currently, Code Bubbles only enable language level support for AOP, and
so, there is no IDE support to separate crosscutting concerns in methods as
well as crosscutting concerns in documentation. However, modularization of
documentation can be still introduced in Code Bubbles: a Javadoc bubble

MODULARIZATION OF DOCUMENTATION 29

Summary

Figure 2.9. Bubbles related with documentation in Code Bubbles

of an aspect will be merged into the other Javadoc bubbles of the target
methods, or our tagging system can be append into methods in bubbles to
modularize documentation. In Code Bubbles, editing the methods in a call-
hierarchy will be easy by showing all methods as bubbles that show these
methods have caller-callee relations. Thus, editing documentation in one call
chain will be easy. This might be efficient to reduce bugs of insufficient doc-
umentation shown in Figure 2.2, because one of the main reason of this bug
may come from the complexities of method hierarchies, and Code Bubbles
will ease this problem.

2.4 Summary

In this chapter, we discussed the requirements for modularizing documents.
Ideally, documents should be separately written with its programming mod-

MODULARIZATION OF DOCUMENTATION 30

Summary

Modularization of documents Written as comments
Javadoc Yes
Literate programming Yes/No

Table 2.1. Comparison of existing tools

ule as comments n source codes. However, as shown in Table 2.1, neither
of them fulfill our requirements. Documentation tools such as Javadoc do
not provide a solution to write documents in modular fashion although doc-
uments can be written in source codes as comments. On the other hand,
literate programming can provide a way of modular description of docu-
ments. However, it does not allow to write documents as comments. This
hinders applicability into other programming paradigms such as OOP.

MODULARIZATION OF DOCUMENTATION 31

Chapter

3
AspectScope

The pointcut and advice mechanism of Aspect-Oriented Programming
(AOP) languages such as AspectJ [48] allows developers to combine a module
to a special module, called an aspect, without explicit method calls. This is
useful to implement certain crosscutting concerns as a separate module. An
aspect is implicitly invoked when a thread of control reaches some execution
points in the other module. Those execution points are selected from the
predefined set of points by the language.

However, this property of AOP makes it difficult for developers to under-
stand the behavior of a module as long as they are looking at only the source
code of that module. When one module is executed in an AOP language,
other modules might be implicitly invoked from that module. The behavior
might be changed by the deployment of other modules (i.e. aspects). There-
fore, AOP languages require a whole-program analysis for understanding a
program.

To address this problem, several programming tools for AOP have been
developed. One of the most popular tools is AJDT, AspectJ Development
Tools of Eclipse IDE [1]. It automatically performs a whole-program anal-
ysis and visualizes the crosscutting structures in the program according to
the result of the analysis. The developers do not have to manually perform a
whole-program analysis any more. However, AJDT does not seem to satisfy

ASPECTSCOPE 32

Modular Reasoning

developers. Their claim is that they want to see static module interfaces
for understanding their programs. Here, the module interfaces include the
specifications of the behavior of the modules. Although AJDT automatically
performs a whole-program analysis while a developer is editing a program,
the visualization by AJDT does not much help the developer see the mod-
ule interfaces. It does nothing except simply showing the join points where
modules are combined with aspects. Even worse, module interfaces in AOP
languages are never static or stable. It changes according to the deploy-
ment of aspects. In this sense, the module interfaces in AOP are essentially
different from traditional ones.

Although module interfaces in AOP are hard to see, it should be possible
to improve the visualization by a programming tool so that developers can
more easily see the module interfaces under the current deployment of as-
pects. This would hopefully give better impression of AOP to the developers,
who want to reason about their programs at a module level.

This chapter presents AspectScope, which is our programming tool for
AspectJ. We have developed it for realizing our idea above. Like AJDT,
it automatically performs a whole-program analysis and visualizes the re-
sult. However, it shows how aspects affect module interfaces in the program.
It interprets an aspect as an extension to other classes and it displays the
extended module interfaces of the classes under the deployment of the as-
pects. It thereby helps developers understand crosscutting structures in the
program.

3.1 Modular Reasoning

The standard AspectJ support of Eclipse IDE, named AJDT [1], visualizes
a crosscutting structure in an AspectJ program. This helps developers to
reason about the program with a modular fashion despite the obliviousness
property of AspectJ [38]. However, the help by this visualization is still lim-
ited and thus developers sometime feel that AOP makes modular reasoning
difficult.

To illustrate the limitation of AJDT, we below show a refactoring process
of a figure editor [50] as an example scenario. A figure editor is a simple
tool for editing drawings that are composed of points and lines. Since a
display of the tool must always reflect the current states of such shapes, any
method that is declared in Point or Line class must call the update method
in the Display class whenever that method changes the states of shapes. The

ASPECTSCOPE 33

Modular Reasoning

update method redraws a display so that the pictures of all the shapes such
as points and lines on the display will be updated. Figure 3.1 shows the
AspectJ program of this figure editor. The concern of updating a display is
implemented in an aspect.

public interface Shape { class Point implements Shape {
void moveBy(int dx, int dy); public int x, y; // intentionally

} public void setX(int nx) {x = nx;}
public void setY(int ny) {y = ny;}

class Line implements Shape { public int getX() {return x;}
private Point p1, p2; public int getY() {return y;}
public void setP1(Point np1) {p1 = np1;} public void moveBy(int dx, int dy) {
public void setP2(Point np2) {p2 = np2;} x += dx; y += dy;
public Point getP1() {return p1;} }
public Point getP2() {return p2;} }
public void moveBy(int dx, int dy) {

p1.x += dx; p1.y += dy; aspect UpdateSignaling {
p2.x += dx; p2.y += dy; pointcut change():

} call(void Point.setX(int))
} ‖ call(void Point.setY(int))

‖ call(void Shape+.moveBy(int,int));

after() returning: change() {
Display.update();

}
}

Figure 3.1. A figure editor implemented in AspectJ

We then perform simple refactoring. The x and y field in the Point class
are intentionally public. Since this fact is obviously a weakness in information
hiding, suppose that a developer changes these fields to being private. This
change causes another change in the moveBy method in the Line class. The
fields x and y on p1 and p2 are not accessible any more. The developer must
change the moveBy method. Figure 3.2 shows the new revision of moveBy
method.

Unfortunately, the refactoring has not finished yet. If the moveBy method
is invoked, the developer will see that the display flickers. To understand this
problem, the developer will have to investigate the whole program including
aspects and find which join points are advised. Local investigation within the
moveBy method or the Line class does not reveal the problem to the developer
because of the obliviousness property of AspectJ. The lexical representation
of the moveBy method does not contain any sign or symptom of being advised.

ASPECTSCOPE 34

Modular Reasoning

public void moveBy(int dx, int dy) {
p1.setX(p1.getX() + dx);
p1.setY(p1.getY() + dy);
p2.setX(p2.getX() + dx);
p2.setY(p2.getY() + dy);

}

Figure 3.2. The new revision of moveBy method

Figure 3.3. AJDT indicates advised
join points

class Line {

 :

 void moveBy(int dx, ..) {

 :

 }

}

Callee (or target)

 :

Line obj = getTarget();

obj.moveBy(dx, dy);

 :
Caller

Figure 3.4. The caller side and the
callee side

AJDT helps the investigation. It automatically performs a whole-
program analysis and visualizes which join points are advised by an aspect.
See four arrow icons at the left side of the source editor in Figure 3.3. The de-
veloper can notice that the four calls to setX and setY in the body of moveBy
are advised by the UpdateSignaling aspect, which invokes the update method
in the Display class to repaint the display and cause a flicker.

However, the help by AJDT is not sufficient. The developer, who saw
Figure 3.3, would change the moveBy method so that only the first call to
setX would be advised. Suppose that she changes the moveBy method to the
following:

public void moveBy(int dx, int dy) {
p1.setX(p1.getX() + dx);

p1.incY(dy);

p2.incX(dx); // incX() and incY() are not advised

p2.incY(dy);

}

She also adds new methods incX and incY for incrementing the value of x or y.
We assume that calls to these new methods are not advised. Unfortunately,
this change does not stop a flicker. Although now only one join point (i.e.

ASPECTSCOPE 35

AspectScope

a call to setX) in the body of the moveBy is advised, a call to the moveBy
method itself is also advised. Therefore, each call to the moveBy method
causes two successive invocations of the update method and they cause a
flicker.

The problem here is that the developer cannot notice that a call to moveBy
is also advised as long as she is looking at the source code of the moveBy
method. AJDT does not tell her the fact unless she opens a client class of Line
and then looks at a caller-side method of moveBy (Figure 3.4). If a pointcut is
call, AJDT puts an arrow icon only at a method-call expression that calls the
advised method. It does not show any indications at the callee-side. Note
that a call pointcut selects join points at which method-calls are executed
in a client class, while an execution pointcut selects join points at which
method bodies are executed. Thus, to reach a right solution, the developer
must manually perform a whole-program analysis to a certain degree and
understand the crosscutting structure in the program. Then she must edit
the aspect program so that the update method will be invoked only once for
each top-level change of the state of the shape. The revised UpdateSignaling
aspect is the following:

after() returning: change() && !cflowbelow(change()) {
Display.update();

}

Now the update method is invoked only when either setX, setY, or moveBy is
called as a top-level call. Since a cflowbelow pointcut selects join points below
the control flow of the specified join points, update is invoked only once for
each call to the moveBy method. The developer does not have to add incX
or incY to the Point class.

3.2 AspectScope

Although AJDT visualizes crosscutting structures in a program, it only indi-
cates where a crosscutting structure joins other structures, that is, it only in-
dicates join points in the source code. As we have seen in the previous section,
this visualization is not sufficient to help developers understand crosscutting
structures in their programs.

For better help, we have developed another programming tool for As-
pectJ. It is an Eclipse plugin named AspectScope. This tool visualizes cross-

ASPECTSCOPE 36

AspectScope

Figure 3.5. AspectScope

cutting structures by showing how aspects affect the module interfaces in the
program. Like AJDT, the tool performs a global analysis of the deployment
configuration of aspects but it presents the result of the analysis from the
viewpoint of how the module interfaces of classes are extended by aspects.
In other words, our tool projects AOP structure onto normal OOP (Object-
Oriented Programming) structure so that developers can see crosscutting
structures through their familiar OOP view. For example, the tool does not
distinguish the call pointcut and the execution pointcut because the influence
of these pointcuts on module interfaces is equivalent. It abstracts away from
language-level differences between call and execution.

AspectScope consists of two panes: one for showing an outline view of
a given class and the other for presenting javadoc comments describing the
behavior of a selected method or field. These two panes reflect the extensions
by woven aspects. See Figure 3.5.

3.2.1 Outline view

The outline view by AspectScope lists methods and fields declared in a given
class. It also shows whether or not the behavior of each method or field is
extended by an aspect.

ASPECTSCOPE 37

AspectScope

Figure 3.6. The outline view presents
the effect of the execution pointcut.

Figure 3.7. The outline view presents
the effect of the call pointcut.

The execution and call pointcuts:

If an UpdateSignaling aspect includes an after advice associated with a point-
cut execution(void Point.setX(int)), then the outline view indicates that the
setX method in the Point class is extended by the after advice in the UpdateS-
ignaling aspect (Figure 3.6).

Note that even if the pointcut that the after advice is associated with
is not execution but call, for example, call(void Point.setX(int)), then the
outline view shown does not change except the description of the pointcut
(Figure 3.7). AspectScope abstracts away from differences between call and
execution because module interfaces affected by aspects are interesting con-
cerns. AspectScope considers that the advice associated with either pointcut
extends the behavior of the callee-side method. In AspectJ, both pointcuts
select method calls. However, the join points (or join point shadow [42]) se-
lected by a call pointcut are method-call expressions at the caller side while
the join points selected by an execution pointcut are the bodies of the spec-
ified methods at the callee (or target) side. Hence, for example, the advice
associated with a call pointcut can obtain a reference to not only the target
object but also the caller object. On the other hand, the advice associated
with an execution pointcut cannot obtain such a reference.

Despite this difference, AspectScope uses the outline view of the callee
side to indicate the extension by the call pointcut. Since the goal is to
display the module interfaces affected by aspects, AspectScope must project
the extension to a module interface, which is the outline view of the callee
side in OOP. On the other hand, AJDT reflects this difference. Figure 3.8
illustrates AJDT’s visualization of the call pointcut shown above. An arrow
icon indicates that the call to setX within the moveBy method is one of the
selected join points. Note that the source code in this figure is of the caller-
side method moveBy. AJDT does not show any information in the source
code of the setX method, which is at the callee side.

ASPECTSCOPE 38

AspectScope

Figure 3.8. AJDT indicates the effect
of the call pointcut (the red underline
was drawn by the authors).

Figure 3.9. A conditional extension
by the within pointcut (the red un-
derline was drawn by the authors)

The within and cflow pointcuts:

The within, withincode, cflow, and cflowbelow pointcuts select join points
within a specified region. For example, the within pointcut selects only
the join points included in the specified class. call(void *.setX(int)) &&
within(Line) selects method calls from the Line class to setX declared in any
class. The selected join points are method-call expressions contained in the
body of a method in the Line class. The within pointcut restricts the caller
methods.

If the call pointcut is combined with the within pointcut, AspectScope
interprets that the associated advice conditionally extends the behavior of
the callee method. This is also true for the combination of call and cflow,
set and within, and so forth. For example, if an UpdateSignaling aspect in-
cludes an after advice associated with a pointcut call(void Point.setX(int))
&& within(Line), then the outline view indicates that the setX method in the
Point class is conditionally extended by the after advice (Figure 3.9). Since
the pointcut includes within(Line), the outline view shows that the behavior
of setX is conditionally “extended by advice only if the caller is Line”. The
developers can see that the behavior of setX remains original if it is called
from other classes than Line. If the combined pointcut is cflow, the outline
view will show something like “extended if the thread is in the control flow
of ...”

This visualization is different from AJDT. In AJDT, the influence of the
within pointcut is equal between call and execution pointcuts. The within
pointcut simply restricts the places indicated by arrow icons. In the case of
the above pointcut, AJDT displays arrow icons only at the setX method calls
that appear in the declaration of the Line class. AJDT does not show any
information in the source code of the callee-side method setX.

ASPECTSCOPE 39

AspectScope

Figure 3.10. There is a before advice associated with the get pointcut.

Figure 3.11. An intertype declaration
of the distance method

Figure 3.12. Two advices extend the
setX method.

Other features:

The presentation of the get and set pointcuts in the outline view is similar to
the call pointcut. In AspectJ, the join points selected by get and set point-
cuts are field-access expressions at the accessor side (i.e. the caller side).
Hence, AJDT shows an arrow icon at the line where the field is accessed.
However, AspectScope interprets that an advice associated with a get or set
pointcut extends the behavior of the target field. Figure 3.10 is an outline
view presented by AspectScope. It illustrates the influence of an UpdateSig-
naling aspect that contains a before advice associated with a pointcut get(int
Point.x). Note that an arrow icon is shown below the x field in the Point
class (i.e. at the target side) because the advice extends the behavior of the
x field.

An aspect may include an intertype declaration. The methods and the
fields appended by intertype declarations are also shown in the outline view.
For example, Figure 3.11 indicates that an intertype declaration appends the
distance method to the Point class.

If more than one advice extends a method or a field in an existing class,
the outline view lists all the advices. If precedence rules are given by declare
precedence, the multiple advice bodies extending the same method or field
are listed in the execution order satisfying the given precedence rules (Fig-
ure 3.12). On the other hand, AJDT does not show the execution order of
multiple advices.

ASPECTSCOPE 40

AspectScope

Limitation:

AspectScope does not support all the language constructs of AspectJ. For
example, AspectScope does not show any information of advice if the point-
cut associated with that advice is the handler pointcut. The handler pointcut
selects join points that represent the time when an exception is caught by
a catch clause. An advice associated with this pointcut cannot be regarded
as an extension to a method but it should be regarded as an extension to a
try-catch statement. It is a more fine-grained extension and thus the visual-
ization by AJDT would be more appropriate than AspectScope. Otherwise,
it might be regarded as an extension to the behavior of an exception class,
or a subclass of Throwable, because the advice modifies how instances of a
particular exception class is handled. This is an open question.

3.2.2 Refactoring revisited

In Section 3.1, we presented an example of the figure editor. See Figure 3.1.
When refactoring, the developer who uses AJDT could not see that a call to
the moveBy method in the Line class is also advised. To know this fact, she
has to see the source code of UpdateSignaling aspect or use the Call Hierarchy
view of Eclipse IDE to visit all the caller sites to moveBy, which is a manual
whole-program analysis.

AspectScope provides better help than AJDT in this scenario of refac-
toring. When an experienced developer does this refactoring, what does she
do first? Before she starts editing the program, she will first check the spec-
ifications of the moveBy method in Line, which she is going to modify for
refactoring. She will look at the outline view shown by AspectScope to con-
firm whether or not the specifications of it is extended. Then she will also
check the specifications of the setX and setY methods in Point because she will
use them when modifying the body of moveBy. Again, she will look at the
outline view shown by AspectScope. Note that AspectScope also shows the
javadoc-style description of the specifications of a selected method such as
setX (Figure 3.5). It also help the developer understand a crosscutting struc-
ture in the program. We will mention details of the javadoc-style description
in the next subsection.

Since the views shown by AspectScope tell her that the methods are ex-
tended by an aspect, she will soon understand that the naive implementation
causes redundant display updates (Figure 3.2). She will also understand that
a call to the moveBy method is advised and thus calling moveBy causes five

ASPECTSCOPE 41

AspectScope

display updates in total. Therefore, before editing the source code of the
moveBy method, she can know that she must also modify the change point-
cut in the UpdateSignaling aspect. Note that AJDT does not show her that
the setX and setY methods are advised until she actually edits the source
code of the moveBy method. After she writes a method-call expression to
setX in the body of moveBy, AJDT marks the expression with an arrow icon
that indicates the setX method is advised.

AspectScope displays the influence of an aspect in the outline view of
the callee-side classes even if the aspect selects caller-side join points by
the call pointcut and so on. This is a simple idea but it helps developer’s
modular reasoning. In typical OOP, the callee-side outline view corresponds
to a module interface. The visualization by AspectScope is to project AOP
structure onto module interfaces of OOP, which developers are familiar with.
This is why the influence of an aspect is displayed in the outline view of
callee-side classes.

Some readers might think that looking at the outline views of the setX
and setY methods in our refactoring scenario is a sort of manual whole-
program analysis. This is not true because the outline views are part of
module interfaces. If developers are looking at only the implementation of
a local module and the interfaces of other modules, then it can be said that
they are doing local reasoning.

3.2.3 Javadoc pane

AspectScope provides not only the outline view but also the javadoc pane.
The right pane of the AspectScope is the javadoc pane. It displays the
javadoc comments of a selected member, such as a method and a field, in the
outline view. The displayed javadoc comments are extracted not only from
the source code of the selected member but also from aspects extending the
member. Developers can read the comments to see details of the extension
by the aspect, in other words, how the aspect affects the module interface.

The contents:

Figure 3.13 is a screen snapshot of the javadoc pane. It is displaying the
javadoc comments of the setX method in the Point class. We assume that
the pointcut and advice listed in Figure 3.14 were woven with the Point class.
The displayed javadoc comments consist of four parts.

ASPECTSCOPE 42

AspectScope

Figure 3.13. The javadoc pane for
the setX method (the red dotted lines
and text were drawn by the authors)

/**
* The pointcut that captures the call of all
* setter methods and the call of
* 〈code〉moveBy(int, int)〈/code〉 methods
* in the subclasses of Shape.
*/

pointcut move(): call(void Shape+.set*(int))
‖ call(void Shape+.moveBy(..));

/**
* An after advice signals the
* 〈code〉Display〈/code〉 to update whenever
* a shape changes.
*/

after(): move() && within(Line) {
Display.update();

}

Figure 3.14. The definition of an ad-
vice and a pointcut

First, the text in (1) is constructed from the javadoc comments in the
source code of the setX method. They describe the original behavior of the
method. If any aspect is not deployed to extend the behavior of the setX
method, the javadoc pane of AspectScope displays only this text.

The text in (2) to (4) is constructed from the source code of the aspect.
If there are multiple aspects woven, the text is constructed for each aspect.
The text in (2) describes that the behavior of the setX method is extended by
an aspect. If the extension is conditional, the text in (2) also describes that
condition. It is an English translation of the pointcut associated with the
advice that extends the setX method. Note that it is not a naive translation
of the pointcut expression, which is move() && within(Line). AspectScope
expands a named pointcut such as move and removes unnecessary pointcuts.
For example, call(void Shape+.moveBy(..)) is unnecessary because we are now
interested only in the setX method; this pointcut never matches. call(void
Shape+.set*(int)) is also redundant for the same reason. Since the method is
setX in Point, AspectScope first expands wild-cards and displays an English
translation of call(void Point.setX(int)). According to AspectJ’s specification,
the call pointcut selects join points by using the apparent type of a target
object. Thus, AspectScope displays that the behavior of setX is extended

ASPECTSCOPE 43

AspectScope

only if the apparent type of the target is Point.
Recall that the execution pointcut uses the actual type of a target object.

Thus, if the call pointcuts in Figure 3.14 were replaced with the execution
pointcuts, then the text in (2) would not include the text related to the
execution pointcut. AspectScope would never display “if the actual type is
Point” because this phrase is redundant for describing when an advice extends
the behavior of the setX method. When the setX method in Point is executed,
the actual type of the target object must be Point! If there is no other
pointcut remaining after unnecessary pointcuts are removed, AspectScope
simply displays “Extended always” instead of “Extended if...” For example,
if the after advice in Figure 3.14 were the following:

after(): execution(void Shape+.set*(int)) {
Display.update();

}

then the text in (2) would be only “Extended always” because the behavior
of the setX method is unconditionally extended by the after advice.

The text in (3) is constructed from the javadoc comments of the named
pointcuts related to the setX method, such as the move pointcut. It is shown
here for giving additional information on the condition of the extension by
an aspect. Finally, the text in (4) is extracted from the source code of an
advice that extends the behavior of the setX method. It describes details of
that extension.

Wild cards:

When AspectScope shows a translation of pointcut in the javadoc view, it
expands wild cards. For example, the wild cards in call(void Shape+.set*(..))
are expanded when AspectScope shows the javadoc comments for the setX
method in Point. The result is call(void Point.setX(int)).

However, not expanding wild cards in a pointcut might be convenient, for
example, when an aspect is homogeneous and implements a non-functional
concern 1 such as access authentication. Developers might want to see the
original pointcut containing wild cards. AspectScope always expands wild
cards because it was designed for showing the module interface of each class

1A non-functional concern is a concern independent of the application logic. Thus it is
often commonly used among different applications.

ASPECTSCOPE 44

Examples

Figure 3.15. AJDT only shows that
moveBy is advised.

Figure 3.16. The arrow icon indicat-
ing a join point shadow of cflowbelow

under the deployment of aspects. It shows the javadoc comments for explain-
ing how the behavior of a selected method or field is extended. If an aspect
is homogeneous and a single advice body extends the behavior of multiple
classes, this fact should be written in javadoc comments of that advice or its
pointcut. Developers will be able to see the existence of the homogeneous
aspect when they read the javadoc comments of one of the target method of
that aspect through AspectScope.

3.3 Examples

In Section 3.2.2, we have already shown an example of AspectJ programming
with AspectScope. We below show a few other examples.

3.3.1 Using the execution pointcut

AspectScope still provides a different visualization from AJDT’s one even if
the change pointcut in UpdateSignaling shown in Figure 3.1 is replaced with
the following:

pointcut change():

execution(void Point.setX(int))

‖ execution(void Point.setY(int))

‖ execution(void Shape+.moveBy(int,int));

Here, the execution pointcut is substituted for the call pointcut.
Since AspectScope deals with call and execution alike except translations,

it shows the same outline view and the same javadoc comments as in the
previous Section 3.2.2. Developers can still do modular reasoning.

On the other hand, AJDT only tells developers that the moveBy method
is advised (Figure 3.15). They cannot see that the setX and setY are also

ASPECTSCOPE 45

Examples

advised. They must browse the source code of these methods. Some read-
ers might think that browsing the source code of the methods is natural if
the developers want to use them in the moveBy method. However, brows-
ing the source code is not equal to looking at the module interfaces of the
methods. It is rather looking at the internal implementation of a module
and hence it is breaking the principle of information hiding. Of course, if
appropriate javadoc comments are not provided by the developer, the users
of AspectScope might also have to browse the source code of setX and setY.
There is no serious difference between AJDT and AspectScope in that case.

3.3.2 Denotation of cflowbelow pointcut

To fix the problem of redundant display updates in Section 3.1, the after
advice in the UpdateSignaling aspect must be updated to be this:

after() returning: change() && !cflowbelow(change()) {
Display.update();

}

AspectScope presents better representation after this update than AJDT.
As illustrated in Figure 3.16, AJDT displays an arrow indicating a join

point shadow at the line where the moveBy method is called. However, this
arrow icon does not show any extra information. Developers must click this
icon to jump to the source code of the advice woven there. If they do not
click, they cannot see the join points are selected by cflowbelow. On the
other hand, AspectScope shows this fact within the javadoc comments of the
moveBy method (Figure 3.17). The javadoc pane mentions that the moveBy
method is extended “only if the apparent type is Line and not below the
control flow of the call to Line.moveBy(int, int)”. This fact is also shown in
the outline view. Developers will be able to naturally see the exact effects of
the UpdateSignaling aspect.

3.3.3 Defining a new class implementing Shape

The final example is to define a new class implementing Shape for the figure
editor. Let the name of the new class be Circle. The Shape interface is defined
in Figure 3.1.

A developer who will define the Circle class would want to know that the
moveBy method in Circle is extended by the UpdateSignaling aspect. However,

ASPECTSCOPE 46

Preliminary evaluation

Figure 3.17. The javadoc pane men-
tions cflowbelow.

Figure 3.18. The notification of
moveBy method

AJDT does not tell her this fact until she defines the Circle class and writes
client code. This is an example of undesirable obliviousness. She has to start
writing the Circle class without knowing the extension by the aspect.

If the developer is an experienced engineer, she would first think that she
should read the specifications of Shape. This is natural because she is going
to define a class implementing the Shape interface. AspectScope helps such
an experienced engineer. If she looks at the outline view that AspectScope
shows for the Shape interface, she will notice that the moveBy method will
be extended by the UpdateSignaling aspect (Figure 3.18). She can first know
the extension by the aspect and then start writing the Circle class.

3.4 Preliminary evaluation

To evaluate the usefulness of AspectScope, we used it for browsing the source
program of ActiveAspect [31], which is a programming tool for AspectJ writ-
ten by the third party. The program is written in AspectJ and it consists of
88 classes (10,683 lines) and 19 aspects (2,477 lines).2

2Since the original program has a few bugs, we did this study after fixing the bugs.

ASPECTSCOPE 47

Preliminary evaluation

Figure 3.19. The analysis of the source program of ActiveAspect

3.4.1 The frequency of simple execution pointcuts

For the execution pointcut, the outline view of AspectScope is almost equal
to the visualization by AJDT unless the execution pointcut is used with
other pointcuts like cflow. Thus, if most pointcuts used in typical AspectJ
programs are simple execution, the benefit of using AspectScope is relatively
small.

Figure 3.19 shows the number of each pointcut designator used in the
program of ActiveAspect. 67% of all the pointcuts are simple execution or
initialization, which are expressed in the same way between AspectScope and
AJDT. The join points selected by initialization are (part of) the execution
of a constructor. The rest of the pointcuts are visualized by AspectScope
in a different way from AJDT. They are pointcuts including call, within,
withincode, or cflow.

3.4.2 The callee-side extension

When AspectScope visualizes call pointcuts, it interprets them as callee-side
extensions although they select join points at the caller side (i.e. the client
side). This is because it displays the effects of the pointcuts as changes of
module interfaces, which are the outline view of the callee-side. We reviewed
the program of ActiveAspect to examine whether or not this interpretation
by AspectScope is acceptable for each pointcut.

A call pointcut combined with no other pointcut such as within selects
method calls from any client site. Thus, an advice executed at these join
points can be regarded as either a callee-side extension or a caller-side ex-
tension. There is no serious difference between the two interpretations; it is
a natural interpretation that the advice is a callee-side extension.

ASPECTSCOPE 48

Preliminary evaluation

Pointcut Comments by the authors

execution(* SelectionOperator.apply()) && target(selector) apply sets a flag of its target object except during
&& !cflow(execution(* MemberExpander.*(..))) the execution of a method in MemberExpander.

execution(* MemberEditPart.mousePressed(MouseEvent)) mousePressed performs an extra action depending
&& target(ePart) && args(me) on the state of the aspect instance. !cflow(..) is
&& !cflow(adviceexecution()) for avoiding infinite recursion.

call(ModelRelationship.new(..)) The constructor displays an error message if it is
&& !within(ModelRelationship) not called from a singleton factory method.

(call(* ModelElement.addSourceRelationship(..)) The methods add.. display a warning message if
‖ call(* ModelElement.addTargetRelationship(..))) they are called from classes except
&& !within(ModelRelationship) ModelRelationship.

(call(* ModelElement.getModelCopy(..)) getModelCopy and the constructor display a
‖ call(ModelElement.new(..))) && warning message if they are called from classes
!within(ProgramModel+) && !within(ModelElement+) except the specific classes.

call(* ModelRelationship.setHidden(boolean)) !within(StickyRels) avoids the infinite recursive
&& args(boolean) && target(ModelRelationship) execution of this advice in StickyRels.
&& !within(StickyRels)

call(* IDrawableEntity.setLocation(..)) setLocation performs an extra action if it is called
&& target(ModelElement) from the createFigure method in ClassifierEditPart.
&& withincode(* ClassifierEditPart.createFigure(..))

initialization(AggregateRelationship+.new(..)) The constructor sets a flag of the created object
&& target(ModelRelationship) if it is called during the execution of the apply
&& cflow(execution(void AbstractMembersRule.apply())) method.

initialization(AggregateRelationship+.new(..)) the same as above except apply is a method in not
&& target(ModelRelationship) AbstractMembersRule but AbstractRelationsRule.
&& cflow(execution(void AbstractRelationsRule.apply())) This pointcut is used by two advices, which set a

different flag.

Table 3.1. All pointcuts declared in the source code of ActiveAspect

A call pointcut combined with a target pointcut also selects method calls
from any client site. The target pointcut restricts the actual type of the
target object. An advice associated with such a call pointcut can be also
regarded as a callee-side extension. An example we found in the program of
ActiveAspect was the following:

after(Object modelObj, AbstractEditPart editPart):

call(void EditPart+.setModel(Object)) && args(modelObj)

&& target(editPart) {
((IDrawableEntity)modelObj).setEditPart(editPart);

}

This advice makes a reverse link from the argument to the target object when

ASPECTSCOPE 49

Summary

the setModel method is called on an AbstractEditPart object. AbstractEditPart
is a subclass of EditPart. It is natural interpretation that this advice extends
the callee-side setModel method.

Interesting pointcuts with respect to interpretation are call pointcuts com-
bined with within, withincode, or cflow. The execution and initialization point-
cuts with cflow are also interesting. Because within and cflow restrict caller-
side contexts, we thought that it might be less natural to interpret the advices
combined with such pointcuts as callee-side extensions. However, as we listed
in Table 3.1, we could not find any advices that must be interpreted as caller-
side extensions. For example, the following code is one of the advices that it
is least natural to interpret as callee-side extensions:

after(ModelElement elt):

call(* IDrawableEntity.setLocation(..)) && target(elt)

&& withincode(* ClassifierEditPart.createFigure(..)) {
setLocation(elt);

}

This advice changes the behavior of the setLocation method only when it is
called from the createFigure method. setLocation(elt) calls a method declared
in the aspect including the above advice. It performs the dedicated action
for playing the demo of the software. Since the behavior depends on the
caller site, it is somewhat inappropriate to interpret this advice as a pure
callee-side extension. However, this interpretation is still acceptable.

In summary, the interpretation by AspectScope was not a serious prob-
lem in our preliminary case study. However, the program of ActiveAspect
does not include non-functional homogeneous aspects, such as logging and
authentication, which may not fit the interpretation by AspectScope. Al-
though Apel et al. also reported that such aspects are not frequently used
[9]3, we need further study on this topic.

3.5 Summary

AspectScope performs a whole-program analysis of AspectJ programs and vi-
sualizes the result so that developers can understand their program behavior

3In [9], most aspects are implemented by mixins. They correspond to AspectJ’s advices
associated with the execution pointcut.

ASPECTSCOPE 50

Summary

with local reasoning. It displays the module interfaces extended by aspects
under current deployment.

A unique idea of AspectScope is to interpret an aspect as an extension
to the callee-side (target-side) class even if the aspect includes the call point-
cut. This enables expressing the effects of aspects through module interfaces.
Developers thereby do AOP by using their OOP experiences of modular pro-
gramming, in particular, modular extensions to classes by virtual classes [66],
mixin-layers [80], nested inheritance [68, 69], and so on.

On the other hand, AspectScope is inappropriate for aspects that this
interpretation does not fit although such aspects would be not many. For
such aspects, we should switch tools to AJDT. A tracing aspect for debugging
and a transaction aspect often fall into this category. Such aspects interpret
join points as events that triggers the execution of advice code [37, 26, 6]. For
example, they use a call pointcut for executing an advice in the middle of the
method body of the caller. Such an advice is independent of the callee side
and it is used only for extending the behavior of the caller-side (client-side)
method. It should be regarded as a caller-side extension. Although those
aspects are also significant applications of AOP, the influence of the aspects
on module interfaces is difficult to express.

ASPECTSCOPE 51

Chapter

4
CommentWeaver

To address problems that occur when API documentation is published, this
chapter proposes our documentation tool named CommentWeaver. It is an
extended Javadoc tool and provides special tags for modularly describing
doc comments for Java or AspectJ programs. When the API documenta-
tion of the programs is generated, CommentWeaver makes copies of the doc
comments and appends them to the documentation of multiple methods ac-
cording to the special tags. Thus, the text written by programmers for one
method can be automatically appended to the API documentation of other
methods related to the original one with respect to the program semantics.
For example, a method that will call another method can share the text with
the called method. If a method is advised by an aspect, it can also share
the text with that aspect. This eliminates scattering text and improves the
modularity of doc comments.

This chapter also discusses the applicability of CommentWeaver. We
investigate three publicly available class libraries written in Java and Javadoc:
Javassist, the standard class library of Java, and Eclipse. We examine how
many crosscutting concerns are contained in those doc comments. These
concerns can be modularized by CommentWeaver. We also examine how
many lines of doc comments are eliminated after we rewrite the original
doc comments to be more modular by CommentWeaver. To evaluate the

COMMENTWEAVER 52

Writing doc comments

support for aspects, we partly rewrite the Javassist library in AspectJ and
apply CommentWeaver to doc comments for aspects. Our contribution is
the following:

• Presenting that API documentation contains crosscutting concerns and
existing tools such as Javadoc do not enable modularly describing (i.e.
implementing) the API documentation.

• Proposing an aspect-oriented simple extension to Javadoc for modular
description of API documentation.

• Illustrating its applicability by using three widely used Java class li-
braries and frameworks: Javassist, the Java standard library, and
Eclipse.

4.1 Writing doc comments

Although writing good API documentation for a library or an application
framework is essential to make it really reusable for a wide range of users,
current tool support for the documentation is limited. The text of API docu-
mentation often involves duplication and thus its source-level representation
(i.e. doc comments) is scattering or tangling.

4.1.1 API documentation

Writing API documentation in a program source file has been known as good
practice. In the Lisp family of languages, a function definition can include
the description of that function. The descriptions in function definitions
are collected by a programming tool/environment to be browsable as API
documentation. This feature significantly improves developers’ productivity
when they are writing a program by using a third-party library or application
framework. Libraries and application frameworks would be difficult to use
without good API documentation.

In Java, the Javadoc tool is widely used for writing API documentation.
The descriptions of classes and their members, such as fields and methods, are
written as comments surrounded between /** and */. Javadoc collects these
comments, which is called doc comments, and generates API documentation
of the class library or the framework in the HTML format. Integrated de-
velopment environments such as Eclipse also recognize doc comments. They

COMMENTWEAVER 53

Writing doc comments

can show the doc comment of the method selected by a mouse pointer on a
code editor, for example. Figure 4.1 shows three methods, each of which has
a doc comment. The @param tag included in the doc comments is a special
tag. It specifies that the following text is the name of a method parameter
and its description. For example, the @param in the doc comment of the
toBytecode method is followed by the description of the out parameter to the
method.

Javadoc allows programmers to choose which entities are included in the
generated API documentation. Programmers may choose that only public
and protected classes and members are included. Normal API documentation
describes only those classes and members because the others are invisible
from the outside of the library or the framework. This fact is one of the
sources of crosscutting doc comments but we discuss this issue later.

4.1.2 Scattering and tangling

Since Javadoc works as a language processor, doc comments can be regarded
as implementation of API documentation. They are source code for generat-
ing API documentation. However, their structure is not sufficiently modular.
According to our observation, doc comments tend to contain scattering and
tangling text. This problem is mainly due to lack of modularization mecha-
nisms for API documentation. Since a modern programming language such
as Java provides several constructs for modularization, public classes and
methods exposed to the library/framework users do not directly implement
all concerns. For example, some concerns are implemented by separate meth-
ods invisible from the users. The public methods related to such a concern
call the invisible method to achieve separation of concerns. However, the doc
comments on that concern cannot be put at this invisible method since the
doc comment of the invisible method is not included in the API documen-
tation. The doc comment is redundantly put together with doc comments
about other concerns at all the public methods that call the invisible method.
This fact causes doc comments to be scattering or tangling. This is another
example of crosscutting concerns of aspect orientation [48] or the tyranny of
the dominant decomposition [72].

We below illustrate this crosscutting problem by showing a few examples
taken from the Javassist library [21]. Javassist is a Java class library for
bytecode transformation. It was initially developed by one of the authors
and it is currently maintained as open source software of JBoss/Redhat. It
has been widely used for a decade by a number of software products including

COMMENTWEAVER 54

Writing doc comments

Web application frameworks commercially supported by Redhat. The size
of the library (version 3.6) is 53,477 lines of code (LOC) and 9,512 of 53,477
lines are doc comments for Javadoc (18%).

Procedures

We first show an example of doc comments crosscutting across procedure
abstractions. A class library often provides multiple methods with the same
name but different types of parameters. Since they perform the same function
except input parameters, the descriptions of those methods normally have
some overlaps.

Figure 4.1 presents an example of such methods taken from Javassist. The
doc comments of the two writeFile methods in the CtClass class share the same
text starting with “Once this method is called”. This text is also shared with
the toBytecode method. Note that the function of these methods, which is
converting a class definition into a class file (Java bytecode), is implemented
by the toBytecode method (of the subclass of CtClass because CtClass is an
abstract root class). The two writeFile methods directly or indirectly call the
toBytecode method and they are used as helper methods, which construct an
appropriate DataOutputStream object before calling toBytecode.

For avoiding the duplication of the text “Once this method...”, there
should be something like a common doc comment of the three methods and
the text “Once this method...” should belong to that doc comment. However,
Java does not provide a mechanism for grouping the three methods into a sin-
gle module or Javadoc does not allow writing a doc comment shared among
the three methods. Hence, we must write the doc comments that contain
scattering text to the three methods. Note that some duplicated text may
not be scattering. For example, if some methods without caller-callee rela-
tions share the same text in their doc comments, we do not consider the text
is scattering.

The three methods in Figure 4.1 potentially could be a source of code
scattering but they do not contain scattering code because the programmer
applied procedural abstraction. The implementation of the core function of
the three methods is separated into the toBytecode method and the other
two methods call toBytecode for reusing the implementation. However, this
separation of a concern by procedural abstraction is not applied to API
documentation. The doc comments remain scattering.

The text “Once this method...” must appear in the descriptions of not
only the toBytecode method but also the caller methods writeFiles. This is

COMMENTWEAVER 55

Writing doc comments

public abstract class CtClass {
:

/**
* Writes a class file represented by this <code>CtClass</code>
* object in the current directory. Once this method is called,
* further modifications are not possible any more.
*/
public void writeFile() throws .. {

writeFile(".");
}

/**
* Writes a class file represented by this <code>CtClass</code>
* object on a local disk. Once this method is called, further
* modifications are not possible any more.
*
* @param directoryName it must end without a directory separator.
*/
public void writeFile(String directoryName) throws .. {

DataOutputStream out = ...;
toBytecode(out);

:
}

/**
* Converts this class to a class file. Once this method is
* called, further modifications are not possible any more.
*
* <p>This method dose not close the output stream in the end.
*
* @param out the output stream that a class file is written to.
*/
public void toBytecode(DataOutputStream out) throws .. {

throw new CannotCompileException("not a class");
}}

Figure 4.1. Scattering text in the doc comments

COMMENTWEAVER 56

Writing doc comments

public abstract class CtClass {
:

/**
* Defrosts the class so that the class can be modified again.
*
* <p>To avoid changes that will be never reflected, the class
* is frozen to be unmodifiable if it is loaded or written out.
* This method should be called only in a case that the class
* will be reloaded or written out later again.
*
* <p>If <code>defrost()</code> will be called later, pruning
* must be disallowed in advance.
*
*/
public void defrost() {

throw new RuntimeException("cannot defrost " + getName());
}}

class CtClassType extends CtClass {
:

public void defrost() {
checkPruned("defrost");
wasFrozen = false;

}}

Figure 4.2. Tangling text in the doc comment

because the users would not read the description of toBytecode when they
write a user program that calls writeFile. They would not know that writeFiles
internally call toBytecode. This fact is an implementation detail that should
be hidden from the users according to the information hiding principle [73].
Furthermore, if the toBytecode method were private, both descriptions of the
two writeFile methods would have to definitely contain the text “Once this
method...” because the description of the toBytecode method would not be
included in the API documentation.

Inheritance

Our second example is a doc comment crosscutting along an inheritance
hierarchy. A class library or a framework often provides only a public in-
terface (or abstract class) to access some objects internally created. Their

COMMENTWEAVER 57

Writing doc comments

actual implementations are given by non-public classes implementing the in-
terface (or subclasses of the abstract class). If these non-public classes show
implementation-dependent behavior, which is not mentioned in the specifica-
tion of that public interface, the API description of the public interface must
cover that implementation-dependent behavior.

Figure 4.2 is another part of the declaration of the CtClass class. This ab-
stract class is used as an interface to objects representing types (or class files).
It is extended by several subclasses, which represent primitive types, class
types, or array types. A CtClass object is made unmodifiable for avoiding
accidental changes after it is converted into a class file. The defrost method
in CtClass makes the object modifiable back.

After the first version of Javassist including the defrost method was re-
leased, Javassist was updated to have a pruning mechanism for reducing
memory consumption. However, if this pruning mechanism is on, the defrost
method does not work. To indicate this fact, the text “If defrost() will be
called...” had to be appended to the description of the defrost method. This
is an example of implementation-dependent doc comments. It might be re-
moved if a mechanism with higher compatibility with the defrost method is
invented and substituted for the pruning mechanism in future.

A problem in Figure 4.2 is that the text “If defrost() will be called...”
is about the implementation of CtClassType, a subclass of CtClass, but the
text is in the doc comment of CtClass. Since the subclass is not public, the
text cannot be attached to the subclass, which is not mentioned in the API
documentation. Thus, in the doc comment of CtClass, two documentation
concerns are tangling: one is the behavior of defrost in general and the other
is the implementation of defrost in the subclass CtClassType.

This tangling decreases the maintainability of the software. Suppose that
we invent a mechanism better than the pruning one. We will modify the
implementation of defrost in the subclass CtClassType so that Javassist will
use our new mechanism. However, we would not notice that we also have to
modify the doc comment of the super class CtClass since the source code of
CtClassType does not contain any indication of that fact.

Aspects

Our last example is a doc comment of an aspect. Aspect Orientation is
a new modularization scheme and aspect-oriented programming languages
such as AspectJ [2] provide language constructs for modularizing crosscutting
concerns. For example, AspectJ enables scattering implementation code in

COMMENTWEAVER 58

CommentWeaver

Java to be grouped and separated into a single module without duplication.
This module is called an aspect.

Figure 4.3 presents an example of aspects. This aspect FrozenChecking
modularizes the scattering code found in the original code of Javassist. Since
several methods in the original ClassPool class (and other classes) confirm
that the class is still modifiable before they actually modify the class. The
aspect moves all the confirmation code into its before advice.

Although the aspect improves the maintainability of the confirmation
code, it causes scattering text in doc comments. The aspect improves the
visibility of when the confirmation code is executed. It also makes the confir-
mation code removable without modifying the rest of the code when a better
mechanism is invented in future. On the other hand, the doc comments of the
makeClass and makeInterface methods still contain the text about the confir-
mation code, which is “@throws RuntimeException if the existing class/interface
is frozen.”. To modify the text, all the doc comments including this text must
be edited. For better modularity of doc comments, this text should be put in
the doc comment of the before advice of the FrozenChecking aspect. However,
this approach is not acceptable because the aspect is not public and hence
the doc comment of the aspect is not included in the API documentation.
Even if the aspect were public, the users of makeClass and makeInterface could
not notice the note about the confirmation because it is not in the API doc-
umentation of these methods. The users would have to see an aspect advises
these methods and read the API documentation of the aspect.

4.2 CommentWeaver

To address the problems mentioned in the previous section, we propose a new
documentation system named CommentWeaver. It is an extended Javadoc
tool and it supports describing API documentation of class libraries and
frameworks written in Java or AspectJ.

CommentWeaver allows programmers to modularize crosscutting con-
cerns of API documentation. Javadoc users often write doc comments that
contain scattering or tangling text. On the other hand, the users of Com-
mentWeaver can write doc comments in which every concern is described
only once at the most appropriate place, for example, the method directly
implementing the behavior corresponding to that concern.

When CommentWeaver generates the API documentation from those doc
comments, it makes copies of doc comments and appends them to the API

COMMENTWEAVER 59

CommentWeaver

public class ClassPool {
:

/**
* Creates a new public class. If there already exists a
* class/interface with the same name, the new class
* overwrites that previous class.
* :
* @throws RuntimeException if the existing class is frozen.
*/
public CtClass makeClass(String name, CtClass superclass)

throws RuntimeException {
CtClass clazz = ...;
return clazz;

}

/**
* Creates a new public interface. If there already exists a
* class/interface with the same name, the new interface
* overwrites that previous one.
* :
* @throws RuntimeException if the existing interface is frozen.
*/
public CtClass makeInterface(String name, CtClass superclass)

throws RuntimeException {
CtClass clazz = ...;
return clazz;

}}

aspect FrozenChecking {
:

before(ClassPool cp, String classname) :
(execution(* ClassPool.makeClass(String, CtClass))
|| execution(* ClassPool.makeInterface(String, CtClass)))
&& args(classname, ..) && this(cp) {

CtClass clazz = ... ;
if (clazz.isFrozen())

throw new RuntimeException(...);
}}

Figure 4.3. Text that should belong to the doc comment in an aspect

COMMENTWEAVER 60

CommentWeaver

@quote ((class-name.)? member-name) (.export-name)?

In the doc comment of a method or an advice m,
member-name ∈ { directly called methods from m }

@export (: export-name)? { text }

text := @quote(..) text | 〈normal text〉 text | 〈javadoc tags〉 | φ

@weave (pc) { text }

pc := call (method-pattern) | exec (method-pattern) |
within (class- or method-pattern) |
pc && pc | pc ‖ pc | ! pc

In the doc comment of an advice, also
pc := JP | JP CALLER | JP CALLEE

@liftup { text }

Figure 4.4. Syntax of CommentWeaver tags

COMMENTWEAVER 61

CommentWeaver

Figure 4.5. @quote and @export tags in the CtClass class

documentation of several other methods, which are different from the meth-
ods that the doc comments are originally attached to. The appended doc
comments are tangled with others and thereby provide comprehensive de-
scription of the methods. This generation of the API documentation by
CommentWeaver is explicitly controlled according to the special tags writ-
ten by the programmers. CommentWeaver provides several tags for this as
well as the Javadoc tags. The syntax of the CommentWeaver tags is pre-
sented in Figure 4.4.

4.2.1 Scattering text by procedure abstraction

The crosscutting doc comments caused by procedural abstraction are ad-
dressed by the two tags @quote and @export provided by CommentWeaver.
These tags are mainly available in the doc comments of methods. The @quote
tag is used to refer to the doc comment of another method, which must be
called from the method with that @quote tag. When the API documenta-
tion is generated, the @quote tag is replaced with the doc comment of the
method that the @quote tag refers to. If the doc comment of the method
referred to includes the @export tag, only the text following that @export tag
is substituted for the @quote tag.

The text is shared only among the methods in the call chain obtained by
static analysis. If the text is accidentally equivalent to the text of another
method out of a call chain, it is prevented to replace the former text with the
@quote tag specifying the latter text. This restriction is for maintainability

COMMENTWEAVER 62

CommentWeaver

of doc comments. For example, when a method with @export tag is modified,
the text bracketed by @export will be also modified. It will be appropriate
that this modification of the text is only propagated along the call chain. In
addition, for increasing the maintainability, the argument to the @quote tag
must be a method directly called within the method having the @quote tag.

For example, these tags resolve the scattering problem in Figure 4.1 of
Section 4.1.2. Figure 4.5 illustrates the result of rewriting the program in
Figure 4.1 with the @quote and @export tags. Note that the text “Once this
method...” in the doc comment of the toBytecode method is bracketed by
the @export tag. To include the text, the @quote tag is used. See the write-
File(String), which includes it by the @quote tag. The argument to @quote
specifies the method to include the doc comment of it. Due to this @quote
tag, the duplication of the text is eliminated. The writeFile() method in
Figure 4.5 also has the @quote tag but its argument is the writeFile(String)
method. The @quote tag of the writeFile() method is replaced with the text
bracketed by @export of the toBytecode method as the @quote tag of the
writeFile(String) method is.

In some situations, nevertheless, some developers may want to refer to
the text from a method without caller-called relation. For the sake of their
need, CommentWeaver provides another tag that is free from the restriction.
The detail is mentioned in the later sections.

Multiple @export tags

A doc comment can include multiple @export tags. Since an @export tag can
have a name, @quote tags may refer to the names of @exports. For example,
as shown below, the doc comment of the toClass method has two @export
tags. The doc comment of a caller method, which calls this toClass method
could be the following.

/**
* @quote(toClass(CtClass, ClassLoader)).conversion
* This is only for backward compatibility.
* @quote(toClass(CtClass, ClassLoader)).warning
*/
public Class toClass(ClassLoader loader) {

classPool.toClass(this, loader);
}

/**
* @export : conversion {

COMMENTWEAVER 63

CommentWeaver

Figure 4.6. A doc comment moved into an aspect

* Converts the class to a <code>java.lang.Class</code> object.
* }
*
* Do not override this method any more at a subclass because
* <code>toClass(CtClass)</code> never calls this method.
*
* @export : warning {
* <p>Warning: A Class object returned by this method
* may not work with a security manager or a signed jar file
* because a protection domain is not specified.
* }
* :
*/
public Class toClass(CtClass ct, ClassLoader loader) { ... }

In this doc comment, the text “This is only...” is substituted for the second
sentence “Do not override...” of the doc comment of the called method. The
rest of the doc comment is the same.

4.2.2 Scattering text by aspect

Although aspects modularize crosscutting concerns for programming, they
do not for doc comments as we mentioned in Section 4.1.2. Scattering text is
still included in multiple doc comments. Furthermore, these doc comments
are of the target methods advised by the aspect. They should be attached
to the aspect directly implementing the behavior described by that text.

The crosscutting doc comments caused by aspects is addressed by the
@weave tag. It is available in the doc comments of AspectJ’s advices. It
is used to append the following text to methods selected by the argument.

COMMENTWEAVER 64

CommentWeaver

To select methods, the argument to @weave is the pointcut, such as call and
exec, which are borrowed from AspectJ. While @quote pulls the text from
another method, @weave pushes the text to another. We illustrate the use of
@weave by rewriting the program that we presented in Figure 4.3. Figure 4.6
shows the result of the rewrite for CommentWeaver. The difference between
Figure 4.3 and 4.6 is that the text starting with @throws is moved from the
two methods makeClass and makeInterface into the aspect and is bracketed by
@weave. In Figure 4.6, the text is included in the doc comment of the code
block directly implementing the behavior described by that text. Duplication
of the text is now eliminated.

As shown in Figure 4.6, developers may have to enumerate method names
as the arguments of @weave. To avoid the repetition of the description
of AspectJ pointcut, CommentWeaver provides the special variables JP,
JP CALLER, and JP CALLEE. For example, the @weave tag in Figure 4.6
can be simplified as the following:

@weave(JP) { ... }

Since CommentWeaver is a compile-time tool, the variable JP represents join
point shadow [42] to determine the methods that doc comments of an ad-
vice is appended to. The @weave with JP can append the doc comment to
the methods containing the join point shadow selected by the pointcut of
that advice body. In Figure 4.6, the join point shadow is the makeClass and
makeInterface methods, which are selected by the two execution pointcuts.
Since the JP uses join point shadow, only the so-called accessor pointcuts
call, execution, set, and get are considered. cflow and if pointcuts are ignored.

Developers might think the description of RuntimeException should be
included also in the API documentation of the caller methods that call the
makeClass and makeInterface in the ClassPool class. If so, the doc comments
of the before advice could be modified into the following.

@weave(JP ‖ JP CALLER) { ... }

The variable JP CALLER represents the caller methods.

4.2.3 Tangling text by inheritance

The @weave tag is also available in the doc comment of a method. For better
modularity, it enables separating doc comments which would be otherwise

COMMENTWEAVER 65

CommentWeaver

Figure 4.7. A doc comment moved to a public super class

crosscutting an inheritance hierarchy. The text bracketed by this tag can be
appended to the API documentation of the overridden method in the super
class or an implemented interface.

For example, Figure 4.7 is the result of rewriting the program in Fig-
ure 4.2 with the @weave tag. The text “If defrost() will be...” is moved from
the CtClass class to the subclass CtClassType. On the other hand, since the
text is bracketed by the @weave tag, when the API documentation is gener-
ated, it is appended by CommentWeaver to the API documentation of the
defrost method in the CtClass class. This rewriting improves the separation
of concerns. The description about implementation-dependent behavior is
attached to the method directly implementing that behavior although the
method is not visible to the library/framework users.

For the tangling text by inheritance, since the target specified by the
argument to @weave is apparent, CommentWeaver provides the @liftup tag
that takes no argument. Furthermore, while @weave expects developers to
specify which super class the target is defined in, @liftup itself tries to find
the target recursively through the hierarchy. The description in Figure 4.7
can be replaced with “@liftup { If defrost will be ... }”.

4.2.4 Another example: weaving text at an appropriate lo-

cation

The example in Section 3.3 showed that a non-public subclass causes tangling
text in its public super class and CommentWeaver can address this problem.
A non-public subclass also causes tangling text in a class declaring a factory
method for the non-public class.

COMMENTWEAVER 66

CommentWeaver

Figure 4.8. A doc comment moved to a factory method

The CtClass of Javassist is a public abstract class and a variable of the
CtClass type always refers to an instance of its concrete subclass such as Ct-
ClassType and CtNewClass. CtNewClass is another non-public subclass and
thus invisible from the users’ viewpoint. It is instantiated by a factory
method makeClass in the ClassPool class, which is public. The toBytecode
method declared in CtNewClass overrides its super’s method and it imple-
ments the common behavior of toBytecode described in the doc comment
in the super class CtClass. Although the description of the doc comment
in the super class was sufficiently general, a Javassist user queried detailed
behavior of toBytecode (implemented in CtNewClass) [4]. Thus, the Javassist
developers decided to add extra text to the API documentation and they
chose as an appropriate place the factory method declared in ClassPool since
only that factory method returns an instance of CtNewClass. Other factory
methods return instances of the other subclasses of CtClass. The added text
is not applicable to instances of the other subclasses.

This is another example of tangling text but CommentWeaver can address
this problem. As shown in Figure 8, the @weave tag enables us to include the
extra text in the doc comment of the toBytecode method in CtNewClass. The
text following @weave is copied to the factory method makeClass in ClassPool
from the toBytecode method, which implements the behavior described by
that text.

COMMENTWEAVER 67

CommentWeaver

4.2.5 Semantics

We show the semantics of the @quote, @weave, and @liftup. To simplify the
presentation, the @export is not taken into consideration. Let a method m
be the following form:

m = /** s1..shqm1 ..qmi
w1..wjl1..lk */T1 µ(T2 x){e}

where s is the normal text or javadoc tag, qm represents that an @quote tag
specifying a method m for its parameter, w is an @weave tag, and l is a
@liftup tag. For m, we define helper functions id and doc; id(m) = µ, and
doc(m) = s1..shqm1 ..qmi

w1..wjl1..lk. We then define helper functions for w.
Suppose that wj is the following:

wj = @weave(pc) { s
(j)
1 ..s

(j)
u q

m
(j)
1

..q
m

(j)
v

}

where the bracketed text consists of the normal text and javadoc tags (rep-

resented by s
(j)
u), and @quote tags such as q

m
(j)
v

, which takes m
(j)
v for its

parameter. Two functions are defined: pce(wj) = pc, and wbody(wj) =

s
(j)
1 ..s

(j)
u q

m
(j)
1

..q
m

(j)
v

. Similarly, let lk be

lk= @liftup { s
′(k)
1 ..s

′(k)
x q

m
′(k)
1

..q
m

′(k)
y

}

and define a helper function to get the bracketed text:
lbody(lk) = s

′(k)
1 ..s

′(k)
x q

m
′(k)
1

..q
m

′(k)
y

.

We next show the semantics of generating the API documentation. Gen-
erating the API documentation of m is to compute:

[[doc(m)]]m,Σ + advices(m)

The operator [[−]]m,Σ expands the tags in the given text to generate the API
documentation for a method m. Σ is a set of methods. Its initial value is
an empty set. First, since s is the text including no tags, [[s]]m,Σ → s. Thus,
[[−]]m,Σ is distributive.

[[s1..shqm1 ..qmi
w1..wjl1..lk]]m,Σ

→ s1..sh[[qm1 ..qmi
w1..wjl1..lk]]m,Σ

→ s1..sh[[qm1]]m,Σ .. [[qmi
]]m,Σ[[w1]]m,Σ .. [[wj]]m,Σ[[l1]]m,Σ .. [[lk]]m,Σ

COMMENTWEAVER 68

CommentWeaver

[[w]] and [[l]] are evaluated as follows:

[[w]]m,Σ → [[wbody(w)]]m,Σ

[[l]]m,Σ → [[lbody(l)]]m,Σ

The rules above means that CommentWeaver first evaluates @quote tags and
then @weave and @liftup tags. Suppose that @weave (or @liftup) appends the
text to a method m. This text is not quoted by @quote from the method m
to another method.

The evaluation rule for [[q]]m,Σ is this:

m calls m′

doc(m′) = s1..shqm1 ..qmi

m 6∈ Σ

[[qm′]]m,Σ → s1..sh[[qm1]]m′,Σ∪{m} .. [[qmi
]]m′,Σ∪{m}

where the first line represents that the method m and m′ are in the same call
chain, that is, m calls statically m′ in its method body. To avoid recursively
expanding @quote, a history of the expansion is recorded in Σ. If m is not
in Σ, qm′ is reduced to the doc comment of m′. Note that m is added to Σ
after that.

If m is already in Σ, [[qm′]]m,Σ is deleted as shown below. φ represents
empty.

m calls m′

m ∈ Σ

[[qm′]]m,Σ → φ

If m does not call m′, then a compile error is reported.
The function advices collects the text appended by @weave and @liftup.

[[wi]]nj ,φ ∈ woven(m) for i ∈ 1..a, j ∈ 1..b

advices(m) =
∑

i,j[[wi]]nj ,φ

Here, woven(w) is a helper function. It receives a method m and returns a
set of [[w]], where the pointcut of w matches the given m.

woven(m) = {[[w]]n,φ | ∃n : method, w ∈ doc(n),

COMMENTWEAVER 69

Case studies

Figure 4.9. The doc comments for Javassist

pce(w) matches m}

The pointcut pce(w) matches a method m if the pointcut selects a joinpoint
included in m. For example, if pce(w) is exec(m), it surely matches m. If
pce(w) is call(m′) and m calls m′, it will match m. The pce(w) may be
liftup(m) because @liftup is transformed into @weave(liftup(m)), where liftup
is a pointcut only internally available to select the methods in super classes
with the same signature as m. The liftup(m) matches a method m′ if m′ is
one of the methods in the super classes.

4.3 Case studies

As shown in the previous sections, CommentWeaver improves the modularity
of the description for API documentation. For example, we have already
presented that the examples shown in Section 4.1.2 can be rewritten to be
more modular by CommentWeaver. This section discusses the applicability
of CommentWeaver to existing class libraries.

COMMENTWEAVER 70

Case studies

4.3.1 Javassist

We first investigated how much scattering or tangling text appears in the
doc comments of the Javassist bytecode transformation library. We counted
the number of doc comments including such text by using a software tool
we developed for finding scattering text in Java source files. We investigated
3 packages among 12 public ones of Javassist 3.6. We selected the packages
containing more than 10 classes or interfaces: javassist, javassist.bytecode, and
javassist.bytecode.annotataion packages.

Figure 4.9 illustrates the result of our investigation. It shows that a
fair number of doc comments include scattering or tangling text1. The left
chart in the figure presents the number of the doc comments and the right
chart presents the lines of code (LOC) of the doc comments. The javassist
package contains 436 doc comments in total and 338 doc comments are for
public methods (the others are for classes and other entities). We found
that 40 of 338 doc comments for public methods are crosscutting and hence
they contain scattering or tangling text. The ratio is 12% (17% in LOC).
For the javassist.bytecode package, 4% of the doc comments (5% in LOC)
are crosscutting and, for the javassist.bytecode.annotation package, 10% of
the doc comments (4% in LOC) are crosscutting. The results reveal that
CommentWeaver contributes to improve the modularization of about one-
tenth of the doc comments.

We then investigated how many lines of doc comments can be reduced
by using the @quote and @export tags of CommentWeaver. The right chart
in Figure 4.9 presents the result. For the javassist package, the crosscut-
ting doc comments were reduced from 452 to 274 LOC. Thereby, the doc
comments for public methods were reduced from 2659 to 2481 LOC (7% re-
duction). For the javassist.bytecode package, the doc comments for public
methods were reduced from 2097 to 2023 LOC (4% reduction). However, for
the javassist.bytecode.annotation package, the doc comments for public meth-
ods were not reduced at all (0% reduction). This is because the size of all
the scattering text found in the crosscutting doc comments is only one line.
We substituted a @quote tag for such one-line text but the @quote tag also
occupies one line. The total number of lines did not change.

We finally present the number of doc comments including tangling text.
We found five doc comments included tangling text (73 LOC). This num-
ber indicates how frequently the @liftup tag is needed. This tag does not

1If two doc comments share the same scattering text, we counted one as a doc
comment including scattering text. We did not count the other.

COMMENTWEAVER 71

Case studies

contribute to the reduction of doc comments but it improves the maintain-
ability of them. All the doc comments we found were for the methods of the
CtClass class in the javassist package. The other packages did not contain
such doc comments. Note that the CtClass class is the only public class that
has non-public subclasses in the three packages. Since the doc comments
for the public methods of the CtClass class are 542 LOC, 13% of these doc
comments require the @liftup tag. We lists the details of these doc comments
in Table 4.1.

4.3.2 The standard library of Java 6

As a larger class library, we also investigated the standard class library of the
Java Platform, Standard Edition 6 (Java 6). We selected only the packages
that contain more than 100 public methods and more than 1000 LOC of doc
comments for the public methods.

Figure 4.10 illustrates the result. This shows the number of crosscutting
doc comments, which contain scattering or tangling text, in each package.
On average, 20% of the doc comments for public methods are crosscutting
ones. All the crosscutting concerns contained only scattering text. They did
not contain doc comments that contain tangling text and thus we could not
use @liftup for improving the maintainability.

Figure 4.11 presents the size of the crosscutting doc comments. It also
presents the size of these doc comments after we rewrote them by using
@quote and @export tags of CommentWeaver. After the rewrite, the size was
reduced by 3% on average.

COMMENTWEAVER 72

Case studies

F
ig

u
re

4.
10

.
T

h
e

cr
os

sc
u
tt

in
g

d
o
c

co
m

m
en

ts
in

Ja
va

6

COMMENTWEAVER 73

Case studies

F
ig

u
re

4.
11

.
T

h
e

cr
os

sc
u
tt

in
g

d
o
c

co
m

m
en

ts
in

Ja
va

6

COMMENTWEAVER 74

Case studies

Figure 4.12. The doc comments for Eclipse (on average per package)

4.3.3 Eclipse

We finally investigated the Eclipse Platform (Release 3.3). Since Eclipse is a
framework hosting various development tools implemented as a plugin, the
API documentation is a significant part of the products. The plugin devel-
opers read this documentation to understand how to connect their plugins
to the platform.

Eclipse consists of 204 packages. As Figure 4.12 presents, on average, each
package has 140 doc comments (992 LOC). Among them, 67 doc comments
(494 LOC) are for public methods in the package. They included 3 crosscut-
ting doc comments (27 LOC) per package. Thus, 4% of the doc comments
for public methods were crosscutting ones.

Almost all the crosscutting doc comments contained scattering text.
Hence, for most doc comments, the @quote and @export tags of Commen-
tWeaver were applicable. After we rewrote the doc comments by using those
tags, the size of the doc comments was reduced from 27 to 24 LOC on average
(10% reduction).

The crosscutting doc comments that the @liftup tag was applicable to were
not zero . In total, we found 107 crosscutting doc comments that contained
tangling text. The @liftup tag contributes to the API documentation of
Eclipse.

COMMENTWEAVER 75

Case studies

a
n
ot

e
ab

ou
t

th
e

cu
rr

en
t

im
p
le

m
en

ta
ti

on
m

et
h
o
d

n
am

e
b
eh

av
io

r
m

en
ti

on
ed

in
th

e
ta

n
gl

in
g

te
x
t

pr
un

e
d
is

ca
rd

s
u
n
n
ec

es
sa

ry
at

tr
ib

u
te

s
a

p
er

fo
rm

an
ce

n
ot

e
de

fr
os

t
d
ef

ro
st

s
th

e
cl

as
s

so
th

at
it

ca
n

b
e

m
o
d
ifi

ed
ag

ai
n

a
co

n
fl
ic

t
w

it
h

an
ot

h
er

fu
n
ct

io
n

m
ak

eN
es

te
dC

la
ss

m
ak

es
a

n
ew

p
u
b
li
c

n
es

te
d

cl
as

s
a

fu
n
ct

io
n
al

li
m

it
at

io
n

ge
tM

o
di

fi
er

s
re

tu
rn

s
th

e
m

o
d
ifi

er
s

fo
r

th
e

cl
as

s
cl

ar
if
y
in

g
am

b
ig

u
it
y

ge
tC

la
ss

F
ile

2
re

tu
rn

s
a

cl
as

s
fi
le

fo
r

th
is

cl
as

s
in

co
n
si

st
en

cy
w

it
h

th
e

sp
ec

ifi
ca

ti
on

T
ab

le
4.

1.
T

h
e

ta
n
gl

in
g

te
xt

in
th

e
d
o
c

co
m

m
en

ts
fo

r
th

e
C
tC

la
ss

cl
as

s

#
of

ad
v
ic

es
n
ee

d
s

or
ig

in
al

A
sp

ec
tJ

ca
ll

as
p
ec

t
n
am

e
L
O

C
(#

of
ad

v
is

ed
m

et
h
o
d
s)

d
o
c

co
m

m
en

ts
(L

O
C

)
(L

O
C

)
&
&

w
it
hi

n

C
tC

la
ss

C
ac

hi
ng

30
8

16
(1

8)
0

0
2

F
ro

ze
nC

he
kc

in
g

11
1

3
(5

)
Y

es
3

1
2

M
o
di

fy
C
he

ck
in

g
20

6
14

(5
8)

Y
es

22
8

2
C
o
de

A
tt

ri
bu

te
C
op

y
57

2
(2

)
Y

es
3

3
E
xi

st
in

gT
es

t
74

1
(1

)
Y

es
2

2
In

se
rt

io
nH

an
dl

in
g

20
1

(2
)

Y
es

2
1

N
ot

F
ou

nd
E
xc

ep
ti
on

H
an

dl
in

g
32

2
(2

)
Y

es
2

2
P
ro

xy
F
ac

to
ry

S
yn

ch
ro

ni
za

ti
on

13
1

(1
)

0
0

1

T
ab

le
4.

2.
T

h
e

as
p
ec

ts
im

p
le

m
en

te
d

fo
r

Ja
va

ss
is
t

COMMENTWEAVER 76

Case studies

4.3.4 An AspectJ version of Javassist

CommentWeaver provides support for writing doc comments for aspects. To
investigate this support, we partly rewrote Javassist in AspectJ. During this
rewrite, we implemented eight aspects:

• CtClassCaching:
caches class objects

• FrozenChecking:
checks if the object is frozen

• ModifyChecking:
checks if the object has been already modified

• CodeAttributeCopy, InsertionHandling, NotFoundExceptionHandling :
catches a thrown exception, and then throws a different exception

• ExistingTest:
checks if the member object is duplicated

• ProxyFactorySynchronization:
manages synchronization

We also wrote doc comments for these aspects with CommentWeaver. Ta-
ble 4.2 lists details of the aspects. The column “LOC” indicates the number
of lines of the aspect. The column “# of advices” indicates the number of the
advice bodies contained in the aspect. The column “# of advised methods”
indicates the number of the methods advised by the aspect.

The column “needs doc comments” indicates whether or not the doc
comments of the aspect must be appended to the API documentation of
the advised methods. The number of “Yes” represents the usefulness of
the mechanism of CommentWeaver for automatically copying doc comments
from aspects to classes. As Table 4.2 presents, if an aspect implements a
functional concern, then that concern must be described in the API docu-
mentation of the advised classes. CommentWeaver is useful for writing doc
comments for that concern. On the other hand, if an aspect implements a
non-functional concern, then doc comments are unnecessary for that aspect.

The column “original” indicates the size of the doc comments in the origi-
nal Java version. These doc comments describe concerns that were separated
into aspects after the program was rewritten in AspectJ. The column “As-
pectJ” indicates the size of the doc comments for the aspect. For example,

COMMENTWEAVER 77

Summary

the ModifyChecking aspect modularized not only scattering code for check-
ing but also scattering text for doc comments (22 LOC) into one module
(8 LOC). Since duplicated text is eliminated, the size of the doc comments
was reduced in the AspectJ version. Some aspects were heterogeneous and
hence the doc comments did not contain duplicated text. The size of the
doc comments did not change between Java and AspectJ. In total, the size
of the doc comments was reduced by 50% after the program was rewritten
in AspectJ with CommentWeaver.

The column “call && within” indicates the number of the advice bodies
with the call and withincode pointcuts. The numbers at this column show the
number of the doc comments that require the variable JP CALLEE to append
the description to the callee-side method as well as the caller-side method.
Table 4.2 shows that the JP CALLEE was necessary for several cases.

4.4 Summary

This chapter presents our new documentation tool named CommentWeaver.
It provides a mechanism for modularly describing API documentation, which
includes a fair number of crosscutting concerns. According to our experi-
ments using three publicly-available class libraries, which are Javassist, the
standard Java library, and Eclipse, 4 to 20% of doc comments written for
Javadoc were crosscutting ones. CommentWeaver contributed to the mod-
ularity of those crosscutting doc comments. In fact, the size of those doc
comments was reduced by up to 10% after the rewrite for CommentWeaver.
CommentWeaver is also useful for programs written in AspectJ.

COMMENTWEAVER 78

Chapter

5
Universal Aspect Oriented

Programming

In order to demonstrate the feasibility of our argument, we present Universal
AOP - a tool that provides modular views to developers to understand cross-
cutting concerns in programs. Developers do not need to learn new program-
ming construct to understand crosscutting concerns in programs although the
same effects that language based modularity provides is achievable.

The desire for improved modularity is one of the main issues of software
development research and practice. Ever since the seminal work of Parnas
[73], a major effort in Software Engineering research has been directed to
develop various types of modularisation. In the area of programming lan-
guages design, this effort has resulted in a plethora of paradigms with their
languages, such as procedural, functional, object-oriented, and more recently,
aspect-oriented languages. However, as stated by Brooks [20], there is “no
silver bullet” to this modularity problem with each of these methodologies
having their own advantages and disadvantages, and each being suited to
different circumstances. In order to gain the modularity benefits of the se-
lected programming paradigm a representation has to be created using an
appropriate programming language from within that paradigm. This creates
an overhead with the subtleties and nuances of that language having to be
learnt before it can be efficiently applied.

UNIVERSAL ASPECT ORIENTED PROGRAMMING 79

The two main benefits delivered by modularity are improved software
reuse and maintainability. Reuse is achieved due to relative physical inde-
pendence between modules, which can be subsequently used without change
in different systems. Maintainability is achieved due to localisation of code,
which can be viewed in one place, and changed locally, thus reducing the
scope of the change. While the reuse property requires physical mobility
of the code, maintainability can often be satisfied via on-demand localisa-
tion of the relevant code, irrespective of its physical location. To achieve
these quality attributes, the selection of a suitable programming paradigm
and language to begin development is of paramount importance. However,
many studies such as [16] have found that maintenance activities incur the
most significant costs during a system’s life-time (up to 80%). Furthermore,
some maintenance activities may be hindered due to the initial programming
paradigm and language selected. For example, if a crosscutting concern needs
to be maintained and the initial representation does not allow an appropriate
view of this concern to be generated.

Our underlying idea is that documentation are necessary whether the de-
velopment is large scale or not, and always written using natural language
(NL), maintaining the same NL grammar and semantics, irrespective of what
implementation technique or language is used for code. Moreover, the seman-
tics of the code documentation is organically connected to the semantics and
structure of the code. Thus, if modularization (and composition) is achiev-
able in terms of natural language grammar and semantics, the actual struc-
ture of the implementation and its language are inconsequential. Universal
AOP enables natural language text-based composition for crosscutting con-
cerns in code documentation. Using this tool, we can define composition of
crosscutting concerns using the NL documentation inlined in the code, yet,
without direct reference to the code itself. Currently, documentation result
can be viewed through HTML files like the API documentation.

Our solution involves utilizing attributes of natural language comments
to generate alternative modularisation views to the one provided by the pro-
gramming paradigm used to implement the system for the purpose of software
maintenance. For example, a concern-oriented view can be generated from
a procedural implementation or an aspect-oriented view can be generated
from a purely object-oriented implementation. By using comments in this
way, problems associated with applying a new programming paradigm such
as: fragility, composition definition and composition comprehension can be
minimised. The cost of learning a new language, and its adoption risk are
also removed. In addition, a new type of modular view can be constructed

UNIVERSAL ASPECT ORIENTED PROGRAMMING 80

Fragile document composition against changes

using the existing implementation comments for existing software, delivering
the maintainability properties, irrespective of the underlying modularity of
the software.

5.1 Fragile document composition against changes

The weaving mechanism of CommentWeaver is syntax-based as well as cur-
rent AOP languages are. As a result, they come with the well documented
problems of pointcut fragility [56] and difficulty of composition definition and
comprehension although there are plenty of researches to avoid this fragility
problem [7, 34, 35, 36, 51, 75, 79, 8, 82, 41]. The issue of pointcut fragility
arises due to direct referring of the code structure and name used in the
pointcut specification. At any time when code structure or naming change,
the pointcut specification becomes invalid. Similarly, due to direct referenc-
ing to the code structure and naming used in the pointuct specification, the
developer is expected to be aware about all names and locations that are to
be included into the pointcut, making composition definition difficult.

5.1.1 Refactoring in Javassist

Software is often updated through several versions. Although a specification
might be added or changed in some versions, most frequent update will be
refactorings of its implementation. As mentioned in the previous chapter,
CommentWeaver will provide a way to compose documentation by specifying
concrete program structures to produce API documentation. It is reasonable
that CommentWeaver uses program structures because API documentation
is one of the final products of libraries or frameworks. For example, as shown
in Figure 5.1.1, five writeFile methods were defined in version 2.6. In version
3.1, refactorings were carried out and the signatures of the writeFiles and
caller-callee relations were also changed. The writeFile(String) method in
the ClassPool class in version 2.6 was moved into the CtClass class and the
String type parameter was removed in version 3.1. Also, the writeFile(Stirng,
String) method in the ClassPool class was moved into the CtClass class and
changed to have one String type parameter. Although three other writeFile
methods were defined and they invoked the toBytecode method in the CtClass
class (in)directly in version 2.6, all these methods were removed and the
writeFile(String) in the CtClass invoked the toBytecode(DataOutputStream)

UNIVERSAL ASPECT ORIENTED PROGRAMMING 81

Fragile document composition against changes

Figure 5.1. Refactoring in Javassist between version 2.6 to version 3.1

method directly in version 3.1. The toBytecode(DataOutputStream) method
was also changed as private to public.
Since the text starting with “Once this method is called” that is written
in the toBytecode method is necessary among the API documentation of
all the method shown in Figure 5.1.1, CommentWeaver tags are needed to
only modularize the text in the doc comment of the toBytecode method. In
CommentWeaver, the @quote is used to refer to text through caller-callee re-
lations. Therefore, the doc comment of the writeFile(String) method includes
the @quote that refers to the concrete method name of another callee write-
File method as shown below. The doc comment of the writeFile(String,String)
method also have to use @quote tag to further refer to the text.

/**
* Writes a class file specified with <tt>classname</tt>
* in the current directory.
* @quote(writeFile(String,String))
*/
public void writeFile(String classname) {

writeFile(classname, ".");
}

/**

UNIVERSAL ASPECT ORIENTED PROGRAMMING 82

Fragile document composition against changes

* Writes a class file specified with <code>classname</code>
* on a local disk.
* @export {
* @quote(writeFile(String,String,boolean))
* }
* :
*/
public void writeFile(String classname, String directoryName) { ... }

However, in version 3.1, the definitions of the @quote tags have to be changed
as follows along with the refactoring. This will a heavy task when all these
changes of CommentWeaver tags have to be done in each refactoring.

/**
* Writes a class file specified with <tt>classname</tt>
* in the current directory.
* @quote(writeFile(String))
*/
public void writeFile() {

writeFile(".");
}

/**
* Writes a class file specified with <code>classname</code>
* on a local disk.
* @export {
* @quote(toBytecode(DataOutputStream))
* }
* :
*/
public void writeFile(String directoryName) { ... }

A naive solution

One of the solution to avoid the fragility of pointcuts in CommentWeaver
is to use AspectJ. The @weave tag is available when text should be pushed
into other doc comments from a doc comment. Since AspectJ aspects are
implicitly invoked from classes and there is no description of invocation of
aspects in classes, the @weave tag is useful because it does not need to be
written anything in classes. As shown below, the argument of the @weave
tag can take the JP to specify correspondent methods that are selected by
an AspectJ pointcut. The JP CALLER is used to specify the caller methods
to the selected methods by an AspectJ pointcut. In this example, the JP
specifies the writeFile(String) method because the AspectJ pointcut selects it.

UNIVERSAL ASPECT ORIENTED PROGRAMMING 83

Modularization revisited

The JP CALLER specifies the writeFile method because it is a caller method
to the writeFile(String).

public abstract class CtClass {
/**
* Writes a class file specified with <tt>classname</tt>
* in the current directory.
*/
public void writeFile() {

writeFile(".");
}

/**
* Writes a class file specified with <code>classname</code>
* on a local disk.
* :
*/
public void writeFile(String directoryName) { ... }

}

aspect BytecodeDescribing {

/**
* @weave(JP || JP_CALLER) {
* Once this method is called, further modification is not
* possible any more.
* }
*/
after() : execution(void CtClass.writeFile(String)) { ... }

}

However, the problem is that the former implementation that uses only Java
are already well modularized and there might not be necessary to use As-
pectJ. Besides, to learn how to use AspectJ is not a simple task.

5.2 Modularization revisited

Two major benefits of good modularity are improved software reuse and
maintainability. Reuse1 is achieved through physical independence between

1The proposed approach does not directly support code reuse, as the generated views
do not provide physical relocation of contained code into new modules. Yet, these views
can inform the choice of other programming languages for potential code re-factoring and
subsequent reuse.

UNIVERSAL ASPECT ORIENTED PROGRAMMING 84

Modularization revisited

modules. Such modules should be subsequently usable in other systems with-
out change. Maintainability is achieved through localisation of code. Such
code can be viewed and changed in one place, thus reducing the scope of the
change. In this paper, we propose support for maintainability via views for
virtual localisation of code. Since maintenance accounts for up to 80% [16]
of system life-time costs, we consider supporting it a priority.

5.2.1 Programming Languages for Modularity

As described above, in programmes code modularity is achieved through
selection of a programming abstraction and language suited for a given prob-
lem. For example, OOP came about when abstractions that reflect the real,
object-based world were perceived necessary. More recently, AOP arose when
the need for the modular representation of crosscutting concerns was recog-
nised.

There have been a number of AOP languages so far but those languages
provide special language constructs. Developers have to pay a not-small
amount of costs to learn them. In fact, any AOP languages have not been
widely accepted in mainstream software industry. For example, one of the
most popular AOP languages, AspectJ, provides aspects, pointcut, and ad-
vice. These new language constructs are similar to classes and methods but
different enough for developers to spend a substantial amount of time to
learn. GluonJ is a language that provides AOP functionality by natural ex-
tension to OOP-based language constructs. Although GluonJ is similar to
OOP languages, which are well known, developers still have to learn new
language constructs. The Aspect-Aware Interface (AAI) is a new kind of in-
terface for understanding crosscutting structures in a AspectJ program [50].
When a program is written in AspectJ, to understand the whole behavior
of advised method will be difficult only looking at the implementation of
the method. This characteristics of AOP is known as obliviousness. AAI ad-
dresses this problem to represent which programming interfaces are extended
by aspects. However, AAI is a language construct that is based on the AOP
languages. Therefore, Developers need to learn a AOP language to use AAI.
Open Modules and XPIs (crosscutting programming interface) are language
constructs for addressing the obliviousness property. Their idea is to let pro-
grammers declare module interfaces for pointcuts. The programmers must
explicitly specify selectable join points from external clients. These inter-
faces for pointcuts help programmers take care of the selectable join points
when they modify the implementation of the module. The approach of Open

UNIVERSAL ASPECT ORIENTED PROGRAMMING 85

Modularization revisited

Modules and XPIs is to restrict possible crosscutting structures.
Classbox [13] are not AOP language constructs but are are modules that

can provide a custom interface to selected clients. Although Classboxes pro-
vide better information hiding and modularity, AOP languages provide better
expressiveness for describing conditional extensions (or custom interfaces in
the terminology of Classboxes). Another approach to address the drawbacks
of the obliviousness property is to introduce language constructs into AOP
languages. There have been several constructs proposed on this approach: for
example, open modules [6, 70] and XPIs (crosscut programming interfaces)
[40]. Their idea is to let developers declare a module interface for pointcuts.
They must explicitly specify selectable join points from external clients so
that the fragile pointcut problem [56] can be avoided. The developers can
take care of those selectable join points when they modify the implementa-
tion of the module. A disadvantage of this approach is that developers must
anticipate join points that will be selected by aspects deployed in future.
Anticipating all necessary join points in advance is difficult. Otherwise, de-
velopers must manually update module interface whenever new join points
must be selectable.

There are lots of other modularization techniques in programming lan-
guages. MultiJava [30] provides a mechanism to define methods of a class
from outside of the class. MultiJava shares the basic idea of the inter-type
declaration of AspectJ. HyperJ [27, 81] can separate concerns separately and
compose them freely according to a modular view that needs at that time.
GluonJ [22] is a language that provides AOP functionality by natural ex-
tension to OOP-based language constructs. Although GluonJ is similar to
OOP languages, which are well known, developers still have to learn new
language constructs. Feature Oriented Programming [12, 10] is another way
of modularizing concerns as features. Context Oriented Programming [78] is
another language paradigm to treat program concerns as contexts.

Thus, the desire to modularise a new type of concern or realise a new
type of abstraction often prompts the development of a new programming
language (or extensions). Each such language promises to improve modular-
ity, maintainability, and reusability in a particular way. Yet, with each new
language (extension) come a variety of risks, including: the cost of learning
the new constructs; risks of change in a company’s business processes (e.g.,
to use AOP, a new process for aspect development is needed); and costs of
refactoring previously developed systems.

It should also be noted, that the initially selected programming abstrac-
tions will have a significant effect on the modularity and subsequently the

UNIVERSAL ASPECT ORIENTED PROGRAMMING 86

Modularization revisited

maintenance, particularly for concerns which are not well suited to the se-
lected programming abstractions. For example, in OO class-based modulari-
sation does not allow localised representations and treatments of crosscutting
concerns. This in turn increases their maintenance costs.

5.2.2 Natural Languages for Modularity

There are a few pieces of work that use natural language text as basis for
modular representation of concerns. One such work is the CommentWeaver.
It reduces redundant repetition of text in an application API by physically
modularising the repeated text. The text modules are then composed into full
API specifications. Compositions use name or String-based pattern matching
and reference the concrete programming structures that own APIs where the
modularised text is to be composed. This work took an initial step of text
modularisation in code, but used the physical code structure for composition.

Other related work is that on RDL [24] with its supporting MRAT tool
[84]. This work resides in the domain of natural-language-based textual
requirements only. Here natural language-based queries are used to explore
requirements text, as well as to define composition for physically modularised
crosscutting requirements. Unlike our proposal, this work does not use text
as a proxy for the code semantics and structure.

Pegasus [52] is a new programming language that uses the help of the
natural language. Pegasus fills in the gaps between the intention developers
have at the first step and actual program structures they have to write then.
Therefore, it enables to write developers’ intention with the natural language
instead of writing concrete codes. Its compiler process a description with the
natural language into a concrete program. For example, a description “Write
ten times: ”pegasus”” will be processed into a concrete java program to print
out the string “pegasus” for ten times. It has the similar motivation with
the literate programming, but provides more concrete insight about the con-
junction in documentation and programming. Authors mention about the
applicability to OOP. For example, to realize the inheritance relation, the
sentence “A student is a person.” will be a clue to define it. Currently,
Pegasus supports only number, character string, array etc in German and
English. Lopes et.al also gave a discussion about documentation for pro-
gramming [61].

UNIVERSAL ASPECT ORIENTED PROGRAMMING 87

Modularization revisited

5.2.3 IDEs for Modularity

Another approach to generated alternative modularity views is via IDEs.
IDE visualisation tools are useful for understanding code concerns. For in-
stance, to help understand AspectJ programmes, a developer may rely on
AJDT as mentioned in chapter 3. Active Models [31] is another approach to
represent a crosscutting structure better than AJDT. ActiveAspect, which
is their tool based on the active models, presents a node-and-link diagram
representing an interesting slice of the crosscutting structure of an AspectJ
aspect. ActiveAspect’s approach is to visualize join points selected by as-
pects.

Visual separation of concerns (VSC) [25] IDE tool provides modular views
on crosscutting concerns to Java developers. Similarly, Code Bubbles [18]
can be used to address the problem of source code navigation which can
account to 35% of developers’ time. Code Bubbles are used by searching
across the source code and grouping the manually identified related code
into a localised bubble. This method requires a developer to have good
knowledge of the base code. Mylyn [47] attempts to eliminate this problem
by creating modularisation based on performed tasks. Mylyn monitors the
activities frequently performed by developers, and extracts the structural
relationships of program artefacts. Then it creates localised views of code
artefacts centred upon the developer’s activities. Thus, most current IDE
tool current tools either work by exploring the code directly, and/or are
implementation language-dependent. More specific to AOP, Fluid AOP [43]
allows the developer to switch to alternative crosscutting views to enable
specific editing or reasoning tasks. The code could appear to have different
crosscutting modularities simultaneously, as opposed to just having modules
that crosscut each other. All of these IDE-based tools are implementation
language-dependant, as well as developed for exploration of specific types
modular views - crosscutting concerns.

To sum up, there are different ways of achieving modularity, most still
using programming language constructs, or relying on such constructs for
rendering alternative modularity views. A few approaches, particularly in
requirements engineering, use NL, to achieve modularity based upon the
semantics and syntax of that text. Our proposal, involves combining these
two approaches: code structures (through IDE) and NL.

UNIVERSAL ASPECT ORIENTED PROGRAMMING 88

Towards Technology beyond AOP

5.3 Towards Technology beyond AOP

Once comment is separated into each programming module such as methods
and classes, a way of composing these separated comments is necessary. Es-
pecially, when precise composition results for generated documentation are
needed, a set of composition mechanisms will be crucial. That mechanism
should be written in the natural language and comprehensive against lots
of kinds of programming languages. In addition, software is often updated
through years and modified and changed. A requirement will be added, re-
moved, or modified in some cases. In another case, a refactoring of the soft-
ware might be just done. Writing documentation should be adopted these
demands.

For this purpose, we use semantic-based comment weaving in the gen-
eration of documentation, which is robust against refactorings of software.
To demonstrate the structure-independent nature of Universal AOP, we use
Javassist [21] - a class library for bytecode transformation. As per one of the
main functions of this library, several methods should be prepared for manip-
ulating class bytecode. Some of these methods will convert a class definition
to a class file, others will write out the class file into a local disk. One com-
mon concern of these methods is the fact that once each method manipulates
a class file, further modification of that class file is not allowed. Since this
common concern crosscuts all the methods related to class manipulation, it
should be modularised in one location in the Javassist documentation. How-
ever, when HTML files are generated for Javassist API, this crosscutting
concern should be documented in all the related method descriptions. Thus,
the challenge is compose the localised crosscutting concern specification into
the API documentation of several relevant methods.

We define this composition by using the grammar and semantics of the
natural language documentation. The pointcut is defined with respect to the
grammatical subject, verb, and object of the documentation sentences. For
example, the pointcut to capture the doc comments of writeFile methods can
be written as shown below. Two writeFile methods share a basic behaviour
that is described as “Writes a class file” in their doc comments. Therefore,
our pointcut specifies that “write” undertakes the role of verb (also termed
relationship) and “class file” or “file” takes the role of grammatical object.
Note that verb changes such as “writes”, “wrote”, and “writing” can be
captured with our pointcuts. The important thing is that their behaviours
of writing a file will not be changed through refactorings. Thus, once this
pointcut are defined, there is no need to refactor along with implementation

UNIVERSAL ASPECT ORIENTED PROGRAMMING 89

Towards Technology beyond AOP

Advice tags Position of inserted text
@before At the front of the sentences
@metBy At the beginning of the selected sentence that includes matched text
@meet At the end of the selected sentence that includes matched text
@after At the end of the sentences

Table 5.1. Advice tags in Universal AOP

refactorings.

/**
* @meet: relationship="write" and object="file" {
* Once this method is called, further modification of
* that class is not possible any more.
* }
*/
void toBytecode() { ... }

All the keywords used for the pointcut definition in Universal AOP are
shown in Table 5.2. While the subject, relationship (verb), and object refer
to normal grammatical roles in a sentence, the including keyword is used to
provide qualifying terms often used in a word phrase (e.g., “public method”
is a phrase where method is qualified by public adjective). The categoryOf
keyword allows reference to broad verb categories [33, 24], such as Move
category, which includes such verbs, as run, throw, and post.

The @meet tag is used to insert the bracket text just after the selected
text. In this example, the text starting “Once this method is called” is
inserted after the text described as “writes as a class file”. Currently provided
tags are shown in Table 5.3. Universal AOP provides three other tags for
inserting various points in sentences. The @metBy tag is used to insert the
bracketed text just before the selected text. On the other hand, the before
tag inserts text in the beginning of whole sentences in doc comments. Thus,
there will be no text before the inserted text after comment weaving. To the
contrary, the @after tag inserts text at the end of whole sentences.
As shown through an example above, the pointcut in our Universal AOP is
less fragile against refactorings at the implementation phase. Here, we call
a pointcut is fragile when the pointcut selects unintended doc comments or
does not select intended doc comments. In addition, Universal AOP provides
the other functions to make pointcuts less fragile.

UNIVERSAL ASPECT ORIENTED PROGRAMMING 90

Towards Technology beyond AOP

Synonyms

One of such functions is to capture synonyms of a specified relationship.
Thus, users of Universal AOP can specify widely the target word. For ex-
ample, the former example of toBytecode can be redefined by using relation-
ship=“compose” instead of “write”. In order to allow synonyms, we use the
WordNet[5], which is a large lexical database for English words.

Verb categories

When users of Universal AOP want to capture the broader meaning of verbs,
they can also use verb categories, which are originally made by Ruzanna et
al.[24]. This is a classification made from a set of verb classes and subclasses
that cover all English verbs. For example, a verb group mental action in-
cludes decide, discover, think etc. Therefore, this is useful to capture broader
meaning of verbs than synonyms do.

The other features

Universal AOP also enables user-defined dictionary to refer to the special
meaning of words. For example, the noun member often means the methods,
constructor, field etc. in the context of programming languages. In case that
specifying each words are burdensome, developers can define the domain
specific noun relationship in a dictionary file as follows.

member:=method,field,constructor,...

pointcut examples
subject subject=”class” matches ”This class provides..”
relationship relationship=”write” matches ”Writes a class file”

negative relationship=”prune” matches ”This method does not prune ...”
object object=”file” matches ”Writes a class file...”
including relationship=”create” and object=”method” and including=”public”

matches ”Creates a public method...”
categoryOf categoryOf=”sit down” matches ”... lie down ...”
(= categoryOf

relationship)

Table 5.2. The pointcuts available in Universal AOP

UNIVERSAL ASPECT ORIENTED PROGRAMMING 91

Towards Technology beyond AOP

As another function, generic terms are available in the bracketed text of
Universal AOP tags. They are transformed into a proper name when HTML
files are generated. For example, if the term thisMethodName is included in
the doc comment of the toBytecode method, the term is transformed into the
concrete methodname toBytecode in the generated HTML files of selected
documentation.

5.3.1 Structure and Language Independence

To illustrate the program structure and language independence of modular
views, let us consider two examples, shown in Figure 5.2 and 5.3, where file
contents are read. The purpose of this example is to demonstrate how to
extract a code slice related to a particular concern by using NL comments.
Let us call this slice (or alternative modular view) LineReading. We start
building this concern by issuing an NL query “read line”. Let us follow the
process of building LineReading view.

For the example in Figure 5.2, the query “read line” will initially result
in a NL comment in line 7 (Figure 5.2) identified as relevant. The view gen-
erator will then identify lines of code connected to this comment. Presently2

we consider code to be related if it is directly connected to the comment
(i.e., located immediately after the comment) or if it manipulates variables
used in the directly connected code. For instance, in Figure 5.2 the identi-
fied comment is directly connected to the System.out.println(dis.readLine())
statement. For this statement the “dis” variable declaration (line 2, Figure
5.2) and initialisation (line 4, Figure 5.2) are relevant. In turn, declaration
of “file” (line 1 Figure 5.2) is relevant to “dis” (line 4, Figure 5.2), and so is
relevant to the initially commented line. The relevant code is then presented
in the IDE as the LineReading view based on “read line” query. Statements
unrelated to this view will not be included (e.g., the statements related to
exception handling). All that the developer uses to construct the view, is a
NL language query for “read line”.

5.3 shows a Haskell functional program to again read the contents of a file.
Yet, to construct a modular view for the LineReading concern, we can use the
same NL “read line” query. It will identify the comment on line 4 in Figure
5.3 and the concern view will be constructed using the same rules of relevance
as above. In this case, the comment belongs to the “System.IO¿hGetLine
h”. Thus, declaration of h (line 2 Figure 5.3) is deemed relevant.

2These are initial relevance rules and they are subject to evaluation and further re-

UNIVERSAL ASPECT ORIENTED PROGRAMMING 92

Impact of Modular Views

File file= new File(filename);
DateInputStream dis=null;
try {

dis= new DataInputStream(new BufferedInputStream(new FileInputStream(file)));
//available() returns 0 if the file has no more lines.
while(dis.available()!=0){

//this statement reads the line from the file and prints it to the console.
System.out.println(dis.readLine());

}
//dispose all the resources after using them.
dis.close();

}catch(Exception e){
e.printStrackTrace();}

Figure 5.2. OO LineReading concern example.

--Returns a handle onto the file "A.hs"
System.IO> h <- openFile "A.hs" ReadMode
{handle: A.hs}
--Read a line from this handle
System.IO> hGetLine h
"main=do"
--Close a handle, and flush the buffer
hClose :: Handle-> IO()

Figure 5.3. Functional LineReading concern example.

5.4 Impact of Modular Views

Since modularizing documentation is free from concrete programming struc-
ture, developers can use their favorite programming languages as long as they
manage documentation with Universal AOP. They can achieve the same ef-
fect as AOP languages provide. Universal AOP has the three benefits that
AOP languages provide.

• Modular view
Generated HTML documentation contains hyper links to a concern
description. This will help developers to understand crosscutting
structures. For example, the text starting with “Once this method
is” is woven into the documentation of the writeFile method with
a hyper link. This hyper link jumps into the documentation of

search.

UNIVERSAL ASPECT ORIENTED PROGRAMMING 93

Case study

the toBytecode(DataOutputstream) method to inform that the con-
cern described by “Once this method is” is implemented in toByte-
code(DataOutputstream).

• Homogeneity
This property is achievable by the Universal AOP tags. The descrip-
tion about a concern can be written in one documentation in source
codes and it will be woven into the appropriate documentation when
the HTML documentation is generated. Even though each implemen-
tation about a concern is crosscutting in OOP, documentation about
the concern is still well modularized and developers can manage such
concerns.

• Obliviousness
This property is achievable with the different type of obliviousness on
documentation although extending program behavior is currently out
of our scope. A description about a concern is implicitly woven into the
generated HTML documentation. For example, there is no description
in the documentation of the writeFile method to indicate that further
modification about a class definition is not possible.

5.5 Case study

In order to evaluate the weaving mechanism, we executed a case study by
using Javassist library with version 2.6 and version 3.1. The metrics is shown
in table 5.3. To modularize documents within source codes, developers have
to put tags initially into these documents even if they choose to use either
CommentWeaver or Universal AOP. Figure 5.4 shows the number of tagging
that was needed initially in CommentWeaver. The @quote tag was needed
to refer to doc comments of other methods. Since the @quote tag is used
for a reference to a doc comment, tagging is needed more than the @export
and @weave tags. As a result, 37 tags of @quote were needed in version 2.6
in CommentWeaver. The @export tag is needed to decide which text should
be referred from the @quote tag. In other words, the number of tagging of
the @export tag is the number of modularized document by @export, and the
number of tagging of the @quote tag is the number of woven document. In this
case, 22 @export tags were needed. Another way of weaving document is to
use the @weave tag, which pushes document into several API documentation

UNIVERSAL ASPECT ORIENTED PROGRAMMING 94

Case study

Attribute Metric Description
Number of initial tagging - Measures how many tag elements

Description are introduced
of tagging Number of tagging - Measures How many compositions

added/changed/removed are altered during a maintenance
change

- The ratio between the number of
relevant doc comments selected

Description of pointcuts Precision by a pointcut and the total number
of doc comments selected by a
pointcut

Table 5.3. Metrics suite summary

of methods that are selected by the argument of the @weave tag. The number
of @weave used in version 2.6 was 21.

Total number of tagging in Universal AOP was 40, and it was less than
that of CommentWeaver. As shown in Figure 5.5, the @after tag was mostly
used because there were many cases that should weave the @throws tags into
the API documentation and the @after tags specified the verbs and objects
that are written in the first sentence in documents. If the @meet tag were
used in such a case, the @throws tag would be woven into just after the
selected sentence and generated API documentation would be murky. All
the tags in Universal AOP push documents into the API documentation,
and they correspond to the @weave tag in CommentWeaver. Universal AOP
does not have a mechanism to refer to other documents as the @quote tag
does. Instead, more precise weaving position can be specified in Universal
AOP by using four kinds of tags as mentioned in Table 5.3. Note that since
the tags in Universal AOP can decide which documents should be woven by
bracketing these documents, they also have roles of the @export tag. Since,
in CommentWeaver, the total number of tagging of the @quote and @weave
tags was 58, tagging in case of Universal AOP resulted in 32% reduction.

Figure 5.6 represents the numbers of tagging that had to be added, re-
moved, and modified by refactorings through version 2.6 to version 3.1. The
left chart in Figure 5.6 shows the tagging that had to be newly added in
version 3.1. The @quote tag was required in 6 documents and @export tag
was required in 5 documents, which means that modularized documents were
at least 5. Note that a reference by the @quote tag does not necessarily need
the @export tag when a whole doc comment is referred. On the other hand,
the @weave tag was necessary in one doc comment. The middle chart in
Figure 5.6 shows the number of tagging that had to be removed in version

UNIVERSAL ASPECT ORIENTED PROGRAMMING 95

Case study

Figure 5.4. The number of tags that need initially for CommentWeaver

Figure 5.5. The number of tags that need initially for Universal AOP

UNIVERSAL ASPECT ORIENTED PROGRAMMING 96

Case study

3.1. This means that 9 methods were removed in version 3.1. Although the
@weave tag was not removed, several target doc comments (and its methods)
that would be woven into from the @weave tag were removed. The right
chart in Figure 5.6 represents the number of tagging that had to be modified
in their declarations. Modification in this case means that the part of the
tag declaration need to be modified such as the parameters of @quote and
@weave tag. Thus, there is no overlapped counting among modified tagging
and added/removed tagging. The @export tag was not modified because once
modularized doc comments did not need to be changed.

Figure 5.6. The number of tags added/removed/modified through ver.2.6 to
ver.3.1 in CommentWeaver

Figure 5.7 represents the number of tagging that was added, removed,
and modified in Universal AOP. Compared to the case of CommentWeaver
in Figure 5.6, the total tagging was less needed (50% reduction). The left
chart in Figure 5.7 shows the number of tagging added in version 3.1 in
Universal AOP. In this case, the total tagging is the same number between
CommentWeaver and Universal AOP (0% reduction). The middle chart in
Figure 5.7 shows the number of tagging removed, and was less than Com-
mentWeaver (45% reduction). The left chart in Figure 5.7 shows the number
of tagging modified, and the result was 7 in total (53 % reduction). As men-
tioned above, modification does not have overlap with addition and remove
in terms of counting the number of tagging. Since four kinds of tags are
available in Universal AOP, a modification can be executed from a tag in
these four kinds of tags to another kind of tag. However, there was no such
a case in Javassist.

Table 5.4 shows the precision of comment weaving. In version 2.6, Uni-
versal AOP wrongly selected 5 documents (4 %). In version 3.1, it selected 4
documents unnecessarily (4 %). Although the precision was low in this case

UNIVERSAL ASPECT ORIENTED PROGRAMMING 97

Case study

Figure 5.7. The number of tags added/removed/modified through ver.2.6 to
ver.3.1 in Universal AOP

study, several reasons could be thought. Firstly, the documentation of Javas-
sist is well written, thus, specifying crosscutting concerns by semantic-based
pointcut is easier. Second reason would be the size of written documentation
of Javassist. The lines of codes of documentation of Javassist is approxi-
mately 10,000. If the size were larger than this, the accuracy of woven result
would be lower.

An example of defined pointcut in this case study is as follows. The
documentation about the RuntimeException is modularized, and this will be
woven into the specification that has set an exception.

@after: relationship="set" and object="exception" {
@throws RuntimeException if the declaring class is frozen

}
before(CtBehavior cb):

execution(void CtBehavior.setExceptionTypes(CtClass[]) {
checkModify(...);

}

As a result, an unintended sentence as shown below was selected by this
semantic-based pointcut. The first sentence was unintended but selected
one. Second sentence below was one of the intended specifications. The
semantics of these two sentences are different. However, current Universal
AOP cannot distinguish these two sentences with the definition of semantic-
based pointcut.

Sets the names of exceptions ...

UNIVERSAL ASPECT ORIENTED PROGRAMMING 98

Future research directions

Precision ver.2.6 ver.3.1
Number of precisely selected document 133 103
Number of selected document 138 107
Ratio 0.96 0.96

Table 5.4. The ratio of the precision in weaving documents in Universal AOP

Sets exceptions that this method ...

Currently, developers have to add including not to select the unintended sen-
tences by using the noun names as shown below.

@after: relationship="set" and object="exception" and !including="name"

5.6 Future research directions

In order to fully achieve our vision, various obstacles and additional work
still needs to be performed. One of the most significant obstacles surrounds
the effects the underlying modularity will have on the generated modularity
views. The underlying modularity technique will influence how the comments
are written. For example, in Java developers will typically write comments on
a per-method basis, with the comments summarising and describing the be-
haviour of the associated method. Even though it will be possible to generate
an alternative modularity view based on these comments, it may not be pos-
sible to more accurately ascertain which part of the method relates to which
part of the comment. As a result, it will be necessary to include all of the
code within that method within the newly generated modularity view. This
is obviously not an ideal solution as potentially more code will be included in
the view than necessary. Instead, it may be necessary to analyze comments
embedded within method bodies to more accurately determine which parts
of method should be included in new modularity view. This also leads to
research having to be performed on how comments should be written for the
modularity views to be accurately generated. In an ideal world no specific
strategies should have to be applied when writing comments for them to be
effective. However, this may not be the case. Studies will be performed that
involve pre-existing systems that have multiple modularity views (for exam-
ple, HealthWatcher [39] has an OO and AO implementation). Our approach

UNIVERSAL ASPECT ORIENTED PROGRAMMING 99

Summary

can be applied to each implementation and assessment can be performed
to determine whether the alternate modularity view can be accurately gen-
erated. Documentation-based modular views are a way of abstracting the
concerns contained in the code from the code structure. We have demon-
strated that NL documentations and comments can be used for extracting
these concerns without reference to their implementation code. There are a
number of open issues, such as: what is the best way of writing the com-
ments/documentation in order to maximize the usability of these comments
for modular concern views? A related work [23] shows that short sentences
with clear stated subject, verbs, objects are amenable for automated anno-
tation with good precision and recall. However, further evaluation of these
and guidelines for writing such comments are needed.

5.7 Summary

This chapter presents our new documentation tool named Universal AOP,
which is available with semantic-based comment weaving, that is, the natural
language such as subjects, verbs, or objects is used to weave doc comments.
Our documentation tool also provides the modular view of crosscutting con-
cerns that can exist in OOP programs. Therefore, AOP languages are not
necessary any more as long as Universal AOP are used instead. Developers
just need to write precise documentation, which is always necessary to let
user programmers (or developers themselves) use the software in practice.
Through our case study with Javassist, Universal AOP contributed to less
tagging into doc comments. The number of tagging resulted in half of tagging
in CommentWeaver.

UNIVERSAL ASPECT ORIENTED PROGRAMMING 100

Chapter

6
Conclusion

This thesis has discussed tools for modularizing documentation at the im-
plementation and design phase. When developers implement programs in
AOP, AspectScope shows how classes are extended by aspects through doc-
umentation view. Since programming is the main pillar when implementing,
AspectScope automatically generates woven documents. When software is
released as APIs, CommentWeaver is available to generate the precise API
documentation by using tags that specify concrete programming structures.
When a refactoring is necessary for maintenance, Universal AOP provides
semantic-based document weaving that does not require any concrete pro-
gramming structures.

Contributions

The contributions by this thesis are summarized as follows:

• This thesis presents that documentation contains non-negligible cross-
cutting concerns, and existing tools and languages such as Javadoc and
the literate programming do not enable modularly describing the doc-
umentation. It shows that this problem often occurs in object oriented

CONCLUSION 101

programming, and aspect oriented programming makes this problem
more complicated.

• Then, this thesis proposes aspect-oriented documentation tools for
modular description of documents. We prepared three scenarios: im-
plementing programs, publishing the API documentation, and doing
maintenance for once released programs. Each tool are developed un-
der the criteria: the precision of woven documents and the amount of
tagging.

• This thesis also discusses another benefit of modularizing documenta-
tion. Our semantic-based document weaving provides modular views of
programming concerns as well as AOP languages do. This means that
our tool is alternatively available for separating crosscutting concerns
in programs as long as documentation are well written and managed.

• This thesis illustrates the applicability of our tools by using several
kinds of software. They are widely used libraries and frameworks such
as Java 6 library, Eclipse framework, and Javassist library.

Future Directions

Possible future directions of this thesis are as follows:

Constructing sophisticated modular views for semantic-based weaving Currently,
the woven results of documents by Universal AOP can be viewed through the
API documentation. The hyper link connects each concern on the HTML
format. Although this modular view make developers recognize crosscutting
concerns, more sophisticated views should be constructed by using Eclipse
IDE etc.

Conducting large-scale case studies for semantic-based weaving For the evalu-
ation of Universal AOP, we used the Javassist library. Although this case
study brought the result that semantic-based weaving is useful for modu-
larizing documentation, larger-scale case studies such as Java 6 library and
Eclipse framework should be conducted.

CONCLUSION 102

Eliminating an ad-hoc approach of the part of semantic-based weaving Universal
AOP uses several tags to refer to the specification of programs. One of these
tags such as the including tag is currently necessary to narrow down selected
documents because there are a lot of similar sentences in documents. How-
ever, if confirmation of the precise of woven documents is somehow possible,
this ad-hoc approach such as using the including tag should be avoided.

CONCLUSION 103

Bibliography
[1] AspectJ Development Tools(AJDT). http://www.eclipse.org/ajdt.

[2] AspectJ project. http://www.eclipse.org.aspectj/.

[3] Eclipse Bug Reports. https://bugs.eclipse.org/bugs/.

[4] [#JASSIST-68] Remove limitation on public constructors - jboss.org
JIRA. https://jira.jboss.org/jira/browse/JASSIST-68.

[5] WordNet, 2006. http://wordnet.princeton.edu.

[6] Jonathan Aldrich. Open modules: Modular reasoning about advice. In
ECOOP ’05: Proceedings of the 19th European Conference on Object-
Oriented Programming, pages 144–168. Springer, 2005.

[7] Chris Allan, Pavel Avgustinov, Aske Simon Christensen, Laurie Hen-
dren, Sascha Kuzins, Ondřej Lhoták, Oege de Moor, Damien Sereni,
Ganesh Sittampalam, and Julian Tibble. Adding trace matching with
free variables to AspectJ. In Proceedings of the 20th annual ACM SIG-
PLAN conference on Object-oriented programming, systems, languages,
and applications, OOPSLA ’05, pages 345–364, 2005.

[8] Kellens Andy, Mens Kim, Brichau Johan, and Gybels Kris. Managing
the Evolution of Aspect-Oriented Software with Model-Based Pointcuts.
In Proceedings of the 20th European Conference on Object-Oriented Pro-
gramming, pages 501–525, 2006.

[9] Sven Apel and Don Batory. When to use features and aspects?: a case
study. In Proceedings of the 5th international conference on Generative
programming and component engineering, GPCE ’06, pages 59–68, 2006.

BIBLIOGRAPHY 104

[10] Sven Apel and Don Batory. When to Use Features and Aspects?: A Case
Study. In Proceedings of the 5th international conference on Generative
programming and component engineering, GPCE ’06, pages 59–68, 2006.

[11] A. Avenarius and S. Oppermann. FWEB: A Literate Programming
System for Fortran8x. SIGPLAN Not., 25(1):52–58, 1990.

[12] Don Batory, Jacob Neal Sarvela, and Axel Rauschmayer. Scaling Step-
Wise Refinement. In Proceedings of the 25th International Conference
on Software Engineering, ICSE ’03, pages 187–197, Washington, DC,
USA, 2003. IEEE Computer Society.

[13] Alexandre Bergel, Stéphane Ducasse, and Oscar Nierstrasz. Classbox/j:
controlling the scope of change in java. In Proceedings of the 20th annual
ACM SIGPLAN conference on Object-oriented programming, systems,
languages, and applications, OOPSLA ’05, pages 177–189, 2005.

[14] Kevin Bierhoff and Jonathan Aldrich. Modular typestate checking of
aliased objects. In OOPSLA ’07: Proceedings of the 22nd annual ACM
SIGPLAN conference on Object-oriented programming systems and ap-
plications, pages 301–320, 2007.

[15] Joshua Bloch. How to design a good API and why it matters. In OOP-
SLA ’06: Companion to the 21st ACM SIGPLAN symposium on Object-
oriented programming systems, languages, and applications, pages 506–
507, 2006.

[16] B. W. Boehm. Software Engineering Economics, pages 641–686.
Springer-Verlag New York, Inc., 2002.

[17] Michael D. Bond and Kathryn S. McKinley. Probabilistic Calling Con-
text. In Proceedings of the 22nd annual ACM SIGPLAN conference on
Object-oriented programming systems and applications, OOPSLA ’07,
pages 97–112, 2007.

[18] Andrew Bragdon. Developing and Evaluating the Code Bubbles
Metaphor. In Proceedings of the 32nd ACM/IEEE International Con-
ference on Software Engineering - Volume 2, ICSE ’10, pages 525–526,
2010.

[19] Walter Bright. The D Programming Language. Dr. Dobb’s J., 27:36–40,
February 2002.

BIBLIOGRAPHY 105

[20] F. Brooks. No Silver Bullet Essence and Accidents of Software Engi-
neering. Computer, 20:10–19, April 1987.

[21] Shigeru Chiba. Load-time structural reflection in Java. In ECOOP
’00: Proceedings of the 14th European Conference on Object-Oriented
Programming, pages 313–336, London, UK, 2000. Springer-Verlag.

[22] Shigeru Chiba, Atsushi Igarashi, and Salikh Zakirov. Mostly modular
compilation of crosscutting concerns by contextual predicate dispatch.
In Proceedings of the ACM international conference on Object oriented
programming systems languages and applications, OOPSLA ’10, pages
539–554, 2010.

[23] Ruzanna Chitchyan, Phil Greenwood, Americo Sampaio, Awais Rashid,
Alessandro Garcia, and Lyrene Fernandes da Silva. Semantic vs. Syn-
tactic Compositions in Aspect-Oriented Requirements Engineering: An
Empirical Study. In Proceedings of the 8th ACM international confer-
ence on Aspect-oriented software development, AOSD ’09, pages 149–
160, 2009.

[24] Ruzanna Chitchyan, Awais Rashid, Paul Rayson, and Robert Waters.
Semantics-Based Composition for Aspect-Oriented Requirements Engi-
neering. In AOSD ’07: Proceedings of the 6th international conference
on Aspect-oriented software development, pages 36–48, 2007.

[25] Mark C. Chu-Carroll, James Wright, and Annie T. T. Ying. Visual
Separation of Concerns through Multidimensional Program Storage. In
Proceedings of the 2nd international conference on Aspect-oriented soft-
ware development, AOSD ’03, pages 188–197, 2003.

[26] Mariano Cilia, Michael Haupt, Mira Mezini, Alejandro Buchmann, and
Ro Buchmann. The Convergence of AOP and Active Databases: To-
wards Reactive Middleware. In In Proc. GPCE 2003, pages 169–188.
Springer, 2003.

[27] Siobhán Clarke, William Harrison, Harold Ossher, and Peri Tarr.
Subject-Oriented Design: Towards Improved Alignment of Require-
ments, Design, and Code. In Proceedings of the 14th ACM SIGPLAN
conference on Object-oriented programming, systems, languages, and ap-
plications, OOPSLA ’99, pages 325–339, 1999.

BIBLIOGRAPHY 106

[28] Curtis Clifton and Gary T. Leanvens. Spectators and Assistants: En-
abling Modular Aspect-Oriented Reasoning. Technical report, Iowa
State University, 2002.

[29] Curtis Clifton and Gary T. Leavens. Observers and Assistants: A Pro-
posal for Modular Aspect-Oriented Reasoning. In FOAL 2002, 2002.

[30] Curtis Clifton, Gary T. Leavens, Craig Chambers, and Todd Millstein.
MultiJava: Modular Open Classes and Symmetric Multiple Dispatch for
Java. In Proceedings of the 15th ACM SIGPLAN conference on Object-
oriented programming, systems, languages, and applications, OOPSLA
’00, pages 130–145, 2000.

[31] Wesley Coelho and Gail C. Murphy. Presenting crosscutting structure
with active models. In Proceedings of the 5th international conference on
Aspect-oriented software development, AOSD ’06, pages 158–168, 2006.

[32] Robert DeLine and Manuel Fahndrich. Typestates for objects. In
ECOOP ’04: Proceedings of the 18th European Conference on Object-
Oriented Programming, volume 3086 of Lecture Notes in Computer Sci-
ence, pages 465–490. Springer Berlin / Heidelberg, 2004.

[33] R. M. W. Dixon. A Semantic Approach to English Grammar. Oxford
Textbooks in Linguistics. Oxford University Press, New York, 2005.

[34] Rémi Douence, Pascal Fradet, and Mario Südholt. A Framework for the
Detection and Resolution of Aspect Interactions. In Proceedings of the
1st ACM SIGPLAN/SIGSOFT conference on Generative Programming
and Component Engineering, GPCE ’02, pages 173–188, London, UK,
2002. Springer-Verlag.

[35] Rémi Douence, Pascal Fradet, and Mario Südholt. Composition, Reuse
and Interaction Analysis of Stateful Aspects. In Proceedings of the
3rd international conference on Aspect-oriented software development,
AOSD ’04, pages 141–150, 2004.

[36] Rémi Douence, Thomas Fritz, Nicolas Loriant, Jean-Marc Menaud,
Marc Ségura-Devillechaise, and Mario Südholt. An Expressive Aspect
Language for System Applications with Arachne. In Proceedings of the
4th international conference on Aspect-oriented software development,
AOSD ’05, pages 27–38, 2005.

BIBLIOGRAPHY 107

[37] Rémi Douence and Mario Südholt. A Model and a Tool for Event-Based
Aspect-Oriented Programming (EAOP). Technical report, 2002.

[38] Robert E. Filman and Daniel P. Friedman. Aspect-oriented program-
ming is quantification and obliviousness. Technical report, 2000.

[39] Phil Greenwood, Thiago Bartolomei, Eduardo Figueiredo, Marcos
Dosea, Alessandro Garcia, Nelio Cacho, Cláudio Sant’Anna, Sergio
Soares, Paulo Borba, Uirá Kulesza, and Awais Rashid. On the impact
of aspectual decompositions on design stability: An empirical study. In
ECOOP ’07 : Proceedings of the 20th European Conference on Object-
Oriented Programming, pages 176–200. Springer-Verlag, 2007.

[40] William G. Griswold, Kevin Sullivan, Yuanyuan Song, Macneil Shonle,
Nishit Tewari, Yuanfang Cai, and Hridesh Rajan. Modular software de-
sign with crosscutting interfaces. volume 23, pages 51–60, Los Alamitos,
CA, USA, January 2006. IEEE Computer Society Press.

[41] Kris Gybels and Johan Brichau. Arranging language features for more
robust pattern-based crosscuts. In AOSD ’03: Proceedings of the 2nd
international conference on Aspect-oriented software development, pages
60–69, 2003.

[42] Crhis Dutchyn Hidehiko Masuhara, Gregor Kiczales. Compilation se-
mantics of aspect-oriented progrmas. In Proceedings of Foundation of
Aspect-Oriented Languages Workshop, AOSD’02, pages 17–26, 2002.

[43] Terry Hon and Gregor Kiczales. Fluid AOP Join Point Models. In
Companion to the 21st ACM SIGPLAN symposium on Object-oriented
programming systems, languages, and applications, OOPSLA ’06, pages
712–713, 2006.

[44] Dan Ingalls, Ted Kaehler, John Maloney, Scott Wallace, and Alan Kay.
Back to the Future: The Story of Squeak, A Practical Smalltalk Writ-
ten in Itself. In Proceedings of the 12th ACM SIGPLAN conference
on Object-oriented programming, systems, languages, and applications,
OOPSLA ’97, pages 318–326, 1997.

[45] Ciera Jaspan and Jonathan Aldrich. Checking framework interactions
with relationships. In ECOOP ’09: Proceedings of the 23rd European
Conference on Object-Oriented Programming, pages 27–51, Berlin, Hei-
delberg, 2009. Springer-Verlag.

BIBLIOGRAPHY 108

[46] Michael Karasick. The architecture of Montana: an open and extensible
programming environment with an incremental C++ compiler. In Pro-
ceedings of the 6th ACM SIGSOFT international symposium on Foun-
dations of software engineering, SIGSOFT ’98/FSE-6, pages 131–142,
1998.

[47] Mik Kersten and Gail C. Murphy. Mylar: A Degree-of-Interest Model
for IDEs. In Proceedings of the 4th international conference on Aspect-
oriented software development, AOSD ’05, pages 159–168, 2005.

[48] Gregor Kiczales, Erik Hilsdale, Jim Hugunin, Mik Kersten, Jeffrey Palm,
and William G. G riswold. An overview of AspectJ. In ECOOP ’01 -
Object-Oriented Programming: 15th European Conference, LNCS 2072,
pages 327–353. Springer, 2001.

[49] Gregor Kiczales and John Lamping. Issues in the design and specifica-
tion of class libraries. In OOPSLA ’92: conference proceedings on Object-
oriented programming systems, languages, and applications, pages 435–
451, 1992.

[50] Gregor Kiczales and Mira Mezini. Aspect-oriented programming and
modular reasoning. In Proceedings of the 27th international conference
on Software engineering, ICSE ’05, pages 49–58, 2005.

[51] Ostermann Klaus, Mezini Mira, and Christoph Bockisch. Expressive
Pointcuts for Increased Modularity. In Proceedings of the 19th European
Conference on Object-Oriented Programming, pages 214–240, 2005.

[52] Roman Knöll and Mira Mezini. Pegasus: First Steps Toward a Natu-
ralistic Programming Language. In Companion to the 21st ACM SIG-
PLAN symposium on Object-oriented programming systems, languages,
and applications, OOPSLA ’06, pages 542–559, 2006.

[53] Donald E. Knuth. The web system of structured documentation. Tech-
nical report, Stanford, CA, USA, 1983.

[54] Donald E. Knuth. ”Literate programming”. The Computer Journal,
27(2):97–111, May 1984.

[55] Donald E. Knuth and Silvio Levy. The CWEB System of Structured
Documentation: Version 3.0. Addison-Wesley Longman Publishing Co.,
Inc., Boston, MA, USA, 1994.

BIBLIOGRAPHY 109

[56] Christian Koppen and Maximilian Stoerzer. PCDiff: Attacking the
Fragile Pointcut Problem. In European Interactive Workshop on As-
pects in Software(EIWAS’04).

[57] Gary T. Leavens, Albert L. Baker, and Clyde Ruby. JML: A notation for
detailed design. In Haim Kilov, Bernhard Rumpe, and Ian Simmonds,
editors, Behavioral Specifications of Businesses and Systems, pages 175–
188. Kluwer Academic Publishers, 1999.

[58] Gary T. Leavens, Albert L. Baker, and Clyde Ruby. Preliminary De-
sign of JML: A Behavioral Interface Specification Language for Java.
SIGSOFT Softw. Eng. Notes, 31(3):1–38, 2006.

[59] Gary T. Leavens and Yoonsik Cheon. Design by contract with JML,
2003.

[60] Barbara Liskov and John Guttag. Program Development in Java: Ab-
straction, Specification, and Object-Oriented Design. Addison-Wesley
Longman Publishing Co., Inc., Boston, MA, USA, 2000.

[61] Cristina Videira Lopes, Paul Dourish, David H. Lorenz, and Karl Lieber-
herr. Beyond AOP: Toward Naturalistic Programming. In Companion
of the 18th annual ACM SIGPLAN conference on Object-oriented pro-
gramming, systems, languages, and applications, OOPSLA ’03, pages
198–207, 2003.

[62] H. Masuhara, G. Kiczales, and C. Dutchyn. Compilation semantics of
aspect-oriented programs, 2002.

[63] Bertrand Meyer. Object-Oriented Software Construction. Prentice-Hall,
Inc., Upper Saddle River, NJ, USA, 1st edition, 1988.

[64] Bertrand Meyer. Eiffel: The Language. Prentice-Hall, Inc., Upper Sad-
dle River, NJ, USA, 1992.

[65] Bertrand Meyer. Eiffel: the language. Prentice-Hall, Inc., Upper Saddle
River, NJ, USA, 1992.

[66] Mira Mezini and Klaus Ostermann. Integrating independent compo-
nents with on-demand remodularization. In Proceedings of the 17th
ACM SIGPLAN conference on Object-oriented programming, systems,
languages, and applications, OOPSLA ’02, pages 52–67, 2002.

BIBLIOGRAPHY 110

[67] Sun Microsystems. Javadoc 5.0 tool.
http://java.sun.com/j2se/1.5.0/docs/guide/javadoc/.

[68] Nathaniel Nystrom, Stephen Chong, and Andrew C. Myers. Scalable
extensibility via nested inheritance. In Proceedings of the 19th annual
ACM SIGPLAN conference on Object-oriented programming, systems,
languages, and applications, OOPSLA ’04, pages 99–115, 2004.

[69] Nathaniel Nystrom, Xin Qi, and Andrew C. Myers. J&: nested intersec-
tion for scalable software composition. In Proceedings of the 21st annual
ACM SIGPLAN conference on Object-oriented programming systems,
languages, and applications, OOPSLA ’06, pages 21–36, 2006.

[70] Neil Ongkingco, Pavel Avgustinov, Julian Tibble, Laurie Hendren, Oege
de Moor, and Ganesh Sittampalam. Adding open modules to aspectj.
In Proceedings of the 5th international conference on Aspect-oriented
software development, AOSD ’06, pages 39–50, 2006.

[71] AspectJ Organization. The AspectJ documentation tool.
http://www.eclipse.org/aspectj/doc/next/devguide/ajdoc-ref.html.

[72] Harold Ossher and Peri Tarr. Multi-demensional separation of concerns
in hyperspace. In Position paper at the ECOOP’99 Workshop on Aspect-
Oriented Programming, June 1999.

[73] D. L. Parnas. On the Criteria to Be Used in Decomposing Systems into
Modules. Commun. ACM, 15(12):1053–1058, 1972.

[74] David Lorge Parnas. Document based rational software development.
Know.-Based Syst., 22(3):132–141, 2009.

[75] Hridesh Rajan and Kevin Sullivan. Aspect Language Features for Con-
cern Coverage Profiling. In Proceedings of the 4th international confer-
ence on Aspect-oriented software development, AOSD ’05, pages 181–
191, 2005.

[76] Awais Rashid, Ana Moreira, and Joāo Araújo. Modularisation and Com-
position of Aspectual Requirements. In Proceedings of the 2nd interna-
tional conference on Aspect-oriented software development, AOSD ’03,
pages 11–20, 2003.

BIBLIOGRAPHY 111

BIBLIOGRAPHY

[77] Steven P. Reiss. Simplifying Data Integration: The Design of the Desert
Software Development Environment. In Proceedings of the 18th inter-
national conference on Software engineering, ICSE ’96, pages 398–407,
Washington, DC, USA, 1996. IEEE Computer Society.

[78] Hischfeld Robert, Costanza Pascal, and Nierstrsz Oscar. In Journal of
Object Technology.

[79] Kouhei Sakurai and Hidehiko Masuhara. Test-based pointcuts for ro-
bust and fine-grained join point specification. In AOSD ’08: Proceedings
of the 7th international conference on Aspect-oriented software develop-
ment, pages 96–107, 2008.

[80] Yannis Smaragdakis and Don Batory. Mixin layers: an object-oriented
implementation technique for refinements and collaboration-based de-
signs. ACM Trans. Softw. Eng. Methodol., 11:215–255, April 2002.

[81] Peri Tarr, Harold Ossher, William Harrison, and Stanley M. Sutton, Jr.
N Degrees of Separation: Multi-Dimensional Separation of Concerns. In
Proceedings of the 21st international conference on Software engineering,
ICSE ’99, pages 107–119, 1999.

[82] Cottenier Thomas, van den Berg Aswin, and Elrad Tzilla. Joinpoint
Inference from Behavioral Specification to Implementation. In Proceed-
ings of the 21st European Conference on Object-Oriented Programming,
pages 476–500, 2007.

[83] David Ungar and Randall B. Smith. Self: The power of simplicity. In
Conference proceedings on Object-oriented programming systems, lan-
guages and applications, OOPSLA ’87, pages 227–242, 1987.

[84] R. W. Waters. MRAT: A Multidimensional Requirements Analysis Tool.
MSc dissertation, Lancaster University, 2006.

[85] Elcin Recebli Wolfson. Pure aspects. Master’s thesis, Oxford University,
2005.

BIBLIOGRAPHY 112

