
IPSJ Transactions on Programming Vol. 3 No. 2 1–8 (Mar. 2010)

Regular Paper

How to Select Superinstructions for Ruby

Salikh Zakirov,†1 Shigeru Chiba†1

and Etsuya Shibayama†2

Superinstruction is well-known techniques of improving performance of inter-
preters. Superinstructions eliminate jumps between VM operations (interpreter
dispatch) and enable more optimizations in merged code. In past, processors
with simple BTB-based branch predictors had high misprediction rate when ex-
ecuting interpreted code, resulting in high overhead of interpreter dispatch, so
superinstructions were used to reduce it. However, this assumption is incorrect
for Ruby on current hardware. Accordingly, using superinstructions for elimi-
nating jump instructions only marginally improves performance. In this paper,
we consider applying superinstructions differently to improve performance of
floating point computation. We note that high percentage of objects allocated
during numeric computation are boxed floating point values, meanwhile garbage
collection takes significant part of the execution time. Using superinstructions
composed from pairs of arithmetic operations we were able to reduce allocation
of boxed floats by up to 36%, and obtain improvement in performance of up to
22%.

1. Introduction

Ruby language is one of the dynamic programming languages that received
much attention recently. Dynamic languages in general and Ruby in particular
are convenient languages for prototyping software systems. However, perfor-
mance of Ruby is a subject of much concern. Speed of numeric benchmarks is
particularly often quoted, where Ruby version sometimes is 100 or more times
slower than implementation in C. Thus, improving Ruby performance is an im-
portant problem. Performance of interpreters has been thoroughly studied in the
past. Interpreter dispatch has been found to be a major factor contributing to
execution time. Many techniques have been proposed to improve interpreter per-

†1 Department of Mathematical and Computing Sciences, Tokyo Institute of Technology
†2 Information Technology Center, The University of Tokyo

formance. Among others, threaded interpreter and superinstructions are already
implemented in Ruby 1.9.

Superinstructions 8) have been proposed in past as a means to reduce the over-
head of interpreter dispatch — jumps between pieces of executed code. This
comes from the assumption that overhead of interpreter dispatch is high, based
on past research of some interpreter systems. However, as results of our measure-
ments show, this assumption is incorrect for Ruby interpreter on current hard-
ware. Misprediction rate is low at 5–17%, and overall overhead of interpreter
dispatch is 0.6–3%. So we propose a new way of using superinstructions to im-
prove performance of numeric workloads. According to our analysis, a majority
of object allocated in numerical workloads are boxed floating point numbers, and
a large part of execution time is spent in allocating and garbage collecting them.
That is where superinstructions can help to reduce the number of produced boxed
floats.

The contributions of this paper are:
• We explain why prior approach to superinstructions does not produce sub-

stantial benefits for Ruby, based on experimental data.
• We propose using superinstructions composed of pairs of arithmetic opera-

tions to reduce allocation of boxed floating point numbers and experimentally
show speedup of up to 22%.

2. Superinstructions

The Ruby programming language is implemented as a virtual machine inter-
preter since version 1.9. Interpreter performance was a topic of close attention
of much research in the past. Among many approaches to interpreter perfor-
mance, superinstructions have got much attention. In this paper, we specifically
concentrate on studying the effects and benefits of superinstructions.

Superinstructions apply to virtual machine interpreters, which typically work
with bytecode representation of the program. Superinstruction is a sequence of
two or more VM instructions, which have their implementation merged together.
Superinstructions may affect the program performance for multiple reasons:
(1) Jumps between merged instructions are eliminated.
(2) Merged instructions have multiple copies (merged and unmerged) of their

1 c© 2010 Information Processing Society of Japan

2 How to Select Superinstructions for Ruby

Table 1 Branch misprediction in baseline version.

benchmark mandelbrot nbody partial sums spectral norm

total cycles 600 · 108 790 · 108 730 · 108 690 · 108

br. misp. stall cycles 16 · 108 13 · 108 10 · 108 4 · 108

hw. instructions 1,019 · 108 1,287 · 108 1,097 · 108 1,161 · 108

VM ops 9 · 108 10 · 108 8 · 108 18 · 108

indirect branches 17 · 108 21 · 108 18 · 108 23 · 108

mispredicted ind. br. 2.9 · 108 3.5 · 108 2.8 · 108 1.2 · 108

misprediction rate 17.0% 16.4% 15.5% 5.1%
misprediction overhead 2.6% 1.7% 1.4% 0.6%

implementation.
(3) Merging implementation of several instructions into single non-branching

block of code provides more opportunities for optimization compared to
separately compiled fragments of code.

Interpreter dispatch, that is, branching between implementation of VM oper-
ations, was found to be major contributor to interpreter execution time due to
indirect branch misprediction. The indirect branch predictor widely used in the
past hardware consists of the branch target buffer (BTB), which is a cache of
indirect branch targets, keyed with branch site address. Such a structure has a
limit of one prediction per branch site, while in interpreters it is common for an
indirect branch site to have multiple targets. As Ertl, et al. 1) describe, branch
misprediction overhead can be as high as half of total execution time on a pro-
cessor with simple BTB.

Since the overhead of interpreter dispatch has been found high, it is natural that
most of the prior superinstruction research efforts were concentrated on study-
ing and exploiting points (1) and (2). However, Ruby interpreter on modern
hardware shows different performance characteristics.

The processor we used in experiments, Intel Core 2 Duo E8500, has an en-
hanced branch predictor, and is quite good at predicting indirect branches due
to threaded interpreter dispatch (see Table 1). Scarce information is available
on details of branch predictor that is used in current Intel processors, however, it
is hinted, that it uses two-level scheme with branch history, and observed branch
misprediction rates fully support that conjecture.

Moreover, interpreter dispatch does not constitute large proportion of execu-

Fig. 1 Effects of introducing naive superinstructions one by one.

tion time of Ruby on numeric benchmarks. Our experiments with straightfor-
ward static superinstructions implemented in Ruby 1.9 10) (referred to as “naive
superinstructions”) showed limited benefit in performance of about 4% (see Sec-
tion 4). Selection of superinstructions is based on simple heuristics, based on
frequency of occurrence of instruction pairs in benchmark execution trace.

Figure 1 shows graphs of execution time for the naive superinstructions, intro-
duced one by one. “Naive” denotes that no effort is made to optimize the merged
superinstruction beyond what C compiler can do. Numbers on the x axis denote
the number of superinstructions introduced. The instructions to merge into su-
perinstructions are chosen according to occurrence frequency in the execution
trace of the very same benchmark, so that the most frequently occurring com-
bination of 2 instructions is introduced in version “1”, the second most frequent
combination is added to version “2” and so on.

While general trend matches expectation of slightly improving performance
as more superinstructions are introduced, the graphs are not strictly monotone,
which allows us to observe, that some factors at play have more influence than
mere number of indirect branches. As Fig. 2 shows, the characteristic that is
closely related to the effect on performance is number of indirect branch mispre-
dictions.

Particularly noticeable change in performance occurs when superinstruction is

IPSJ Transactions on Programming Vol. 3 No. 2 1–8 (Mar. 2010) c© 2010 Information Processing Society of Japan

3 How to Select Superinstructions for Ruby

Fig. 2 Comparison of execution time with indirect branch mispredictions.

always followed by the same instruction during execution, which means that in-
direct branch instruction that transfers control to next operation becomes single-
target. In our experiments, hardware branch predictor did an excellent job of
flawlessly predicting the target of single-target indirect branches, resulting in a
small but visible change in overall performance.

Introducing superinstructions may both improve or worsen branch mispre-
diction rate. For example, because three consecutive VM operations can be
merged into dual-operation superinstruction and remaining single instruction in
two ways, the positive effect described above can happen or not depending on
which two instructions get merged. Our experiments also showed, that even seem-
ingly harmless changes like reordering operations in the source code of interpreter
can have visible effects on branch misprediction rate and thus on performance.

As a result, the effects of introducing superinstructions cannot be predicted
precisely without profiling, and so there is little hope of getting best possible
performance out of superinstructions using VM operation frequency profile alone.

3. Boxing Optimization in Superinstructions

We propose to use superinstructions in Ruby to reduce GC overhead due to
boxed floating point numbers. This is reasonable, as profiling of numeric bench-
marks shows that overwhelming majority of allocated objects are floating-point
numbers, and garbage collection has significant share in execution time (see Sec-
tion 4.4).

3.1 Implementation
The boxing overhead comes from Ruby bytecode structure. In Ruby, everything

is an object. Operations like addition and subtraction are in fact method calls.
For example, the assignment x = x * 2.0 is equivalent to x = x.send(:*,2.0)

and produces the following bytecode:

0000 getdynamic x, 0 (1)
0003 putobject 2.0
0005 send :∗, 1, nil, 0, <ic>
0011 dup
0012 setdynamic x, 0

where :* is notation for the symbol of multiplication and dup bytecode is needed
because every statement in Ruby is also an expression, and have to leave a return
value on the stack.

To reduce overhead due to method call, calls generated from common arith-
metic operation are rewritten as separate bytecodes:

0000 getdynamic x, 0 (1)
0003 putobject 2.0
0005 opt mult
0006 dup
0007 setdynamic x, 0

The bytecodes for arithmetic operations must accept arguments of any type.
In order to discern between values of different types, integers are implemented
with tags, and floating point number are implemented with boxing.

Ruby has five instructions that deal with floating point numbers: opt plus,

IPSJ Transactions on Programming Vol. 3 No. 2 1–8 (Mar. 2010) c© 2010 Information Processing Society of Japan

4 How to Select Superinstructions for Ruby

Listing 1 Source code of opt plus implementation
1 DEFINE INSN opt plus
2 () /∗ immediate parameters ∗/
3 (VALUE a, VALUE b) /∗ stack inputs ∗/
4 (VALUE val) /∗ stack output ∗/
5 {
6 /∗ ... ∗/
7 if (HEAP CLASS OF(a) == rb cFloat && /∗ check types of arguments ∗/
8 HEAP CLASS OF(b) == rb cFloat &&
9 BASIC OP UNREDEFINED P(BOP PLUS)) { /∗ and validity of optimization ∗/

10 val = DBL2NUM(RFLOAT VALUE(a) + RFLOAT VALUE(b));
11 } else {
12 PUSH(a);
13 PUSH(b);
14 CALL SIMPLE METHOD(1, idPLUS, a);
15 }
16 }

opt minus, opt mult, opt div, and opt mod. Listing 1 shows somewhat simpli-
fied source code of opt plus instruction (code to deal with tagged implementation
of fixint is omitted). In line 10 macro DBL2NUM allocates new boxed floating
point object for storing results of arithmetic operation.

Superinstructions make it possible to reduce the number of boxed floating point
numbers. For example, in the superinstruction, which resulted from merging
opt mult with opt plus, the following code is used:

val = DBL2NUM(RFLOAT VALUE(a) + RFLOAT VALUE(b) ∗ RFLOAT VALUE(c));

In this way, superinstruction allocates only the final result of the two operations,
while the regular instruction allocate two numbers: the intermediate result of
multiplication, and the final result.

In our implementation, we implemented all 25 combinations of 5 arithmetic
instructions. These superinstructions are referred to as “opt-opt” superinstruc-
tions throughout this paper. Since C compiler is not capable of optimizing out
excessive allocation, we chose to manually implement superinstructions.

3.2 Limitations
The approach of using superinstructions for reducing garbage collector over-

head has some grave limitations. First of all, superinstructions can only be used
when arithmetic operations strictly follow one another. Intermission of other
instructions, such as stores to local variables, duplication, or loads restrict the
applicability of superinstructions approach.

Application of superinstructions to types other than boxed floats has limited
effectiveness. With fixed integers, which are implemented as tagged in-line values,
there is no boxing overhead in the first place, so superinstructions have little
effect. With strings and arbitrary precision integers (Bignum), boxed form is
essentially the only form of existence of objects, so unboxed representation is
impossible, and handling takes more time than that with floating point numbers,
so potential benefit of reduced allocation is much lower.

Superinstructions longer than 2 instructions do not seem practical if imple-
mented statically, as adding many superinstructions will noticeably increase code
size, while probability of a long superinstruction being applicable in a benchmark
is quite low. For this reason in this work we did not consider superinstructions
of length more than 2.

4. Experiments

4.1 Choice of the Benchmarks
Since the goal of this research is to optimize handling of floating point num-

bers, the following numeric benchmarks from Ruby Benchmark Suite are used:
mandelbrot, nbody, partial sums, and spectral norm.

4.2 Methodology
For performance evaluation we used repeated measurements of wall clock ex-

ecution time of the benchmarks. The median of 31 individual measurements is
taken. Trace instruction is disabled in reported data to expose more opportuni-
ties for opt-opt superinstructions, though it had little influence in our experience.
The machine we used for experiments is Intel Core 2 Duo E8500 3.16 GHz with
3 Gb of memory and Gentoo Linux operating system. Ruby source code was
compiled using gcc compiler version 4.1.2, which produced 8087 instructions for
floating-point operations.

IPSJ Transactions on Programming Vol. 3 No. 2 1–8 (Mar. 2010) c© 2010 Information Processing Society of Japan

5 How to Select Superinstructions for Ruby

Fig. 3 Execution time of benchmarks, 32 bit mode (left) and 64 bit mode (right). The lower,
the better.

Fig. 4 Execution time of other benchmarks, 32 bit mode.

4.3 Results
Figure 3 shows performance measurements. The left column in each group is

normalized to 100% baseline measurement. The right column shows execution
time of our implementation.

In three cases out of four, the proposed optimization shows comparable or
better results than naive superinstructions. Note, that naive superinstructions
were chosen specifically for each benchmark, and opt-opt superinstructions were
the same for all benchmarks. As Fig. 4 shows, using opt-opt superinstructions
results in no changes of performance on other benchmarks.

The benchmark mandelbrot does not show any improvement, because no su-
perinstructions were applicable. To illustrate, we show the excerpt of hot code
from mandelbrot benchmark:

Table 2 Branch misprediction in naive superinstructions version.

benchmark mandelbrot nbody partial sums spectral norm

total cycles 580 · 108 770 · 108 700 · 108 650 · 108

br. misp. stall cycles 4.5 · 108 6.7 · 108 6.8 · 108 1.5 · 108

hw. instructions 1,000 · 108 1,300 · 108 1,100 · 108 1,100 · 108

VM ops 6 · 108 7 · 108 5 · 108 11 · 108

indirect branches 13 · 108 18 · 108 15 · 108 16 · 108

mispredicted ind. br. 1.8 · 108 1.9 · 108 1.8 · 108 0.13 · 108

misprediction rate 13.7% 10.7% 11.9% 0.8%
misprediction overhead 0.8% 0.9% 1.0% 0.2%

Table 3 Branch misprediction in opt-opt version.

benchmark mandelbrot nbody partial sums spectral norm

total cycles 640 · 108 64 · 108 64 · 108 650 · 108

br. misp. stall cycles 14 · 108 8.2 · 108 8.6 · 108 3 · 108

hw. instructions 1,057 · 108 997 · 108 922 · 108 1,114 · 108

VM ops 9 · 108 9 · 108 7 · 108 16 · 108

indirect branches 18 · 108 17 · 108 16 · 108 22 · 108

mispredicted ind. br. 3 · 108 2.3 · 108 2.6 · 108 1.2 · 108

misprediction rate 17.2% 13.3% 17.0% 5.4%
misprediction overhead 2.2% 1.3% 1.3% 0.5%

1 tr = zrzr − zizi + cr 1 getdynamic zrzr, 3
2 getdynamic zizi, 3
3 opt minus
4 getdynamic cr, 3
5 opt plus
6 setdynamic tr, 0

A simple rewrite as tr = cr + (zrzr - zizi) reorders the operations, putting
arithmetic operations together. Two small tweaks in mandelbrot benchmark can
improve performance of opt-opt version by 20%. A better approach to rewriting
the application would be to provide superinstructions of the form op-x-op, where
op is an arithmetic operation, and x can be access to local variable or load of
constant. We believe it will provide similar speed-up.

Table 2 and Table 3 give some profiling numbers on naive and opt-opt version

IPSJ Transactions on Programming Vol. 3 No. 2 1–8 (Mar. 2010) c© 2010 Information Processing Society of Japan

6 How to Select Superinstructions for Ruby

Fig. 5 Sampling profiling.

Table 4 Allocation data.

benchmark allocated objects allocated floats ratio of floats
mandelbrot 204119688 203253333 99.58%
nbody 29013440 29000433 99.96%
partial sums 87512302 87500027 99.99%
spectral norm 1216914 1200416 98.6%

Table 5 Applicability of opt-opt superinstructions in benchmarks.

Instructions in the inner loop Reduction
benchmark total arithmetic pairs merged after merge in allocation

mandelbrot 60 9 0 9 0%
nbody 103 26 9 17 36%
partial sums 124 29 9 20 26%
spectral norm 34 10 3 7 32%

for comparison with baseline version.
4.4 Profiling Data
Profiling data illustrates why benefit from opt-opt superinstructions is possible.

Garbage collection takes big share in execution time (Fig. 5). Second big con-
tributor to the execution time on Ruby is main interpreter loop (implementation
of bytecodes). The other categories shown in the figure are: hash lookups (due
to instance variable access, method lookup and direct use of hash maps), time
spent in instance variable access (besides hash lookup), and method calls.

Considering the share of time spent in garbage collection and the fact, that
overwhelming majority of allocation in numeric benchmarks is due to boxed
floating point numbers (see Table 4), it is quite reasonable that any reduction

in boxed values allocation will produce visible benefit in performance. The last
column in Table 4 shows how much the number of boxed floats was reduced by
using opt-opt superinstructions.

Table 5 provides data on how opt-opt superinstructions affected an inner com-
putation loop of the benchmarks. First column gives the total number of instruc-
tions in the inner computation loop, the second — the number of arithmetic in-
structions, in the third column number of consecutive arithmetic instruction pairs
is shown, and the forth column presents number of arithmetic instruction after
application of superinstructions. The last column shows reduction in floating
point object allocation resulting from use of superinstructions.

5. Related Work

An alternative approach to reducing overhead of boxing floating point numbers
in Ruby has been evaluated by Sasada 9). It works by stealing a few bits from
pointer binary representation, which normally are zero due to pointer alignment,
and using non-zero tag to trigger special handling of the remaining bits. Since
Ruby uses double precision for its floating point arithmetic, this approach is
limited to 64 bit architectures, while our approach provided similar benefits on
both 32 bit and 64 bit platforms. Tag bits do not allow to store complete double
precision value, so fall-through path for boxed representation is still required.
Since range of values represented in-line is chosen to include most commonly
occurring values, this approach allows eliminate most of overhead due to boxing
of floating point values at the expense of small overhead of checking tag bits. Also,
using tagged values incurs small overhead to programs that do not use floating
point values at all. Overall, tagging approach resulted in 28–35% improvement in
execution time, compared to 0–22% improvement of opt-opt superinstructions.

Kawai 4) studied possibilities of using limited form of garbage collection over
stack-allocated heap of floating-point registers and wide stack techniques. Their
approach produced 25%–50% improvements in numerically intensive programs, so
is a good alternative way to reduce boxing of intermediate floats. Stack allocation
of intermediate computation results was earlier discussed by Steele 11).

Owen, et al. 5) proposed lazy boxing optimization in context of compiler for
Java-like language with generics over value-types. Lazy boxing works by allo-

IPSJ Transactions on Programming Vol. 3 No. 2 1–8 (Mar. 2010) c© 2010 Information Processing Society of Japan

7 How to Select Superinstructions for Ruby

cating boxed objects in stack frame, and moving the object to heap only when
needed, thus reducing the number of heap allocations and associated overhead.
This techniques relies on static compiler analysis to detect paths where the stack
object may escape scope of its stack frame.

Superinstructions were proposed in past for improving performance of inter-
preted systems and reducing code size. Proebsting 8) used superinstructions to
optimize size and speed of interpreted execution of ANSI C programs. The opera-
tions of the virtual machine were chosen to closely match intermediate C compiler
representation.

Piumarta, et al. 6) achieved good performance improvements for the low-level
interpreter with RISC-like instruction set and somewhat smaller improvements
for Objective Caml interpreter. Interpreters they study are much more low-level
than Ruby interpreter, studied in this work, and have low average number of
native instructions per VM operation.

Hoogerbrugge, et al. 3) built a hybrid compiler-interpreter system, in which
time-critical code is compiled, and infrequently executed code interpreted. The
system employs dictionary-based compression by means of superinstructions. In-
struction set of the interpreter is also based on the native instructions of the
processor used.

Recent study by Prokopski, et al. 7) predicted and verified limited effect of code
copying techniques (analog of naive superinstructions in our work) on Ruby VM.
Our results are in good accordance with theirs.

6. Conclusion

We proposed and evaluated a specific way of constructing superinstructions for
Ruby 1.9. Reduction in floating point number boxing shows promising improve-
ments, and suggests that even better improvements are possible with complete
elimination of boxing.

References

1) Ertl, M.A. and Gregg, D.: The Structure and Performance of Efficient Interpreters,
Journal of Instruction-Level Parallelism, Vol.5, pp.1–25 (2003).

2) Ertl, M.A. and Gregg, D.: Optimizing indirect branch prediction accuracy in vir-

tual machine interpreters, SIGPLAN ’03 Conference on Programming Language
Design and Implementation, pp.278–288 (2003).

3) Hoogerbrugge, J., Augusteijn, L., Trum, J. and van de Wiel, R.: A code compres-
sion system based on pipelined interpreters, Softw. Pract. Exper., Vol.29, No.11,
pp.1005–1023 (1999).

4) Kawai, S.: Efficient floating-point number handling for dynamically typed scripting
languages, Proc. Dynamic Languages Symposium (DLS’08) (2008).

5) Owen, T. and Watson, D.: Reducing the cost of object boxing, Compiler Con-
struction, Lecture Notes in Computer Science, Vol.2985, pp.202–216 (2004).

6) Piumarta, I. and Riccardi, F.: Optimizing direct threaded code by selective inlin-
ing, SIGPLAN Conference on Programming Language Design and Implementation,
pp.291–300, ACM Press (1998).

7) Prokopski, G. and Verbrugge, C.: Analyzing the performance of code-copying vir-
tual machines, SIGPLAN conference on object-oriented programming systems and
languages (OOPSLA’08), ACM SIGPLAN Notices, Vol.43, Issue 10, pp.403–422
(2008).

8) Proebsting, T.A.: Optimizing an ANSI C interpreter with superoperators, Proc.
Symp. on Principles of Programming Languages, pp.322–332, ACM Press (1995).

9) Sasada, K.: A lightweight representation of floating-point numbers on ruby in-
terpreter, Proc. workshop of programming and programming languages (PPL2008)
(2008).

10) Sasada, K.: Efficient implementation of Ruby virtual machine, PhD Thesis, The
University of Tokyo, Graduate school of information science and technology (2007).

11) Steele, G.L., Jr.: Fast arithmetic in MacLISP, MIT AI Memo 421 (1977).

(Received September 28, 2009)
(Accepted January 5, 2010)

Salikh Zakirov was born in 1980. He graduated from Moscow
State University in 2001, majoring in mathematics, and has been
working since in the fields of software engineering and develop-
ment related to Java Virtual Machine. He entered Ph.D. course
at Tokyo Institute of Technology in 2007. His current research in-
terests are the dynamic languages and implementation techniques
of virtual machines.

IPSJ Transactions on Programming Vol. 3 No. 2 1–8 (Mar. 2010) c© 2010 Information Processing Society of Japan

8 How to Select Superinstructions for Ruby

Shigeru Chiba received his M.Sc. and Ph.D. in computer sci-
ence from the University of Tokyo in 1993 and 1996 respectively.
He became an assistant professor at University of Tsukuba in 1997
and at Tokyo Institute of Technology in 2001. He is now a pro-
fessor since 2008. His research interests include aspect-oriented
programming, reflection and meta-object protocols.

Etsuya Shibayama received M.Sc. in mathematical sciences
from Kyoto University in 1983 and D.Sc. in information science
from the University of Tokyo in 1991. He became an associate
professor and a professor in Tokyo Institute of Technology in 1993
and 2000, respectively, and a professor in the University of Tokyo
in 2008. His recent interests include language-based software se-
curity and methodologies for building secure software.

IPSJ Transactions on Programming Vol. 3 No. 2 1–8 (Mar. 2010) c© 2010 Information Processing Society of Japan

