
Optimizing Dynamic Dispatch with Fine-grained State Tracking

Salikh S. Zakirov

Tokyo Institute of Technology,

Dept. of Mathematical and

Computing Sciences, Tokyo, Japan

salikh@csg.is.titech.ac.jp

Shigeru Chiba

Tokyo Institute of Technology,

Dept. of Mathematical and

Computing Sciences, Tokyo, Japan

chiba@is.titech.ac.jp

Etsuya Shibayama

University of Tokyo,

Information Technology Center,

Tokyo, Japan

etsuya@ecc.u-tokyo.ac.jp

Abstract

Dynamic mixin is a construct available in Ruby and other

dynamic languages. It can be used as a base to implement a

range of programming paradigms, such as dynamic aspect-

oriented programming and context-oriented programming.

However, the performance characteristics of current imple-

mentation of dynamic mixin in Ruby leaves much to be de-

sired: under condition of frequent dynamic mixin operations,

global method cache and inline cache misses incur signif-

icant overhead. In this work we implemented fine-grained

state tracking for CRuby 1.9 and were able to improve per-

formance by more than six times on the microbenchmark

exercising extreme case, owing 4 times to global method

cache clearing, 28% to fine-grained state tracking and further

12% to inline cache miss elimination by caching alternating

states. We demonstrated a small application using dynamic

mixins that gets 48% improvement in performance from our

techniques. We also implemented in C a more general del-

egation object model and proposed an algorithm of thread-

local caching, which allows to reduce inline cache misses

while permitting thread-local delegation changes.

Categories and Subject Descriptors D.3.4 [Programming

Languages]: Processors; D.3.3 [Programming Languages]:

Language Constructs and Features—classes and objects

General Terms Performance

Keywords Dynamic method dispatch, inline caching, poly-

morphic inline caching

1. Introduction

Many dynamic constructs available in popular scripting lan-

guages such as Ruby, Python and Perl are used in con-

strained ways. For example, definition of a new method at

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

DLS 2010, October 18, 2010, Reno/Tahoe, Nevada, USA.
Copyright c© 2010 ACM 978-1-4503-0405-4/10/10. . . $10.00

runtime is being used to adapt the programming system to

the environment and to create helper or convenience meth-

ods. Typically this is done during program or library initial-

ization stage. Although optimization of dynamic dispatch is

well-explored [22], the case of dynamically changing class

hierarchy has not been widely considered. The performance

of the current implementations in case dynamic method re-

definition occurs is not as good as we would like it to be.

For this reason current applications use dynamic techniques

at program run time sparingly. Together this forms a kind

of chicken-and-egg problem, because developers of inter-

preters and virtual machines do not expend much effort in

optimizing components that are not widely used by applica-

tions.

Ruby provides dynamic mixin as a technique to insert

mixed-in class at arbitrary place in class hierarchy. Dynamic

mixin technique can be used as a substrate for implemen-

tation of paradigms such as dynamic aspect-oriented pro-

gramming [18] and context-oriented programming [12], but

implementation of dynamic mixin in Ruby is not well-tuned

to these use cases. Dynamic mixin in Ruby is short of be-

ing useful in full measure for two reasons: the operation of

mixin removal is not provided, though it can be implemented

in straightforward way; second, global method cache and in-

line caches — the optimization of method dispatch — rely

on global state tracking, which can cause significant over-

head if dynamic mixin functionality is used with high fre-

quency. The particular issue with frequent changes is ineffi-

cient cache invalidation.

In this paper we propose fine-grained state tracking as a

solution for efficient cache invalidation in Ruby, which al-

lows to reduce the overhead of cache flushes on dynamic

mixin inclusion or other changes to classes. Our solution

associates state objects with method lookup paths, which

provides strong guarantees in case of unchanged state ob-

ject. We assume that an executed application dynamically

changes its behavior by mixin inclusion with high frequency,

and that the system is alternating between few states. This

happens, for example, when mixins are used to represent

advice application at cflow pointcut, by including mixin on

each entry to dynamic context of pointcut and excluding it

15

on exit. Switching layers in context-oriented programs can

be straightforwardly represented by dynamic mixin inclu-

sion and can happen arbitrarily often. Strong guarantees that

fine-grained state tracking provides allow us to improve per-

formance of alternating program behavior. We propose an al-

gorithm of caching alternating states, based on fine-grained

state tracking and polymorphic inline caching. We saw six-

fold performance improvement on a microbenchmark, and

48% improvement on a small dynamic-mixin heavy appli-

cation. We also consider generalization of the caching al-

gorithm to the delegation object model with thread-local

changes to class hierarchy [11], and develop an extension to

the caching algorithm — thread-local state caching, which

is important for efficient implementation of context-oriented

with-active-layer program construct.

The contribution of this work is as follows: we pro-

pose an algorithm of fine-grained state tracking to optimize

dynamic method lookup, and show how its application to

Ruby can reduce overhead of global method cache. Further,

we propose an algorithm of caching alternating states that

makes dynamic mixin inclusion and exclusion much more

amenable to performance optimization by preventing inline

cache misses. We also describe thread-local extension to

caching algorithm.

2. Ruby and dynamic mixins

Ruby is a dynamic pure object-oriented language, which has

got much attention recently. As Furr et al. found in [9], the

majority of applications in Ruby use dynamic features to

some extent, either directly or via standard libraries. The

purposes range from adapting to environment to reducing

amount of typing, while providing rich and convenient API.

However, in majority of cases use of dynamic features is

limited, and can be expressed without resorting to use of eval
construct.

When talking about dynamism of application written

in object-oriented language, one can classify the extent to

which dynamic features are used. The lowest level involves

creating a fixed class hierarchy and relying on dynamic

method dispatch and polymorphism to achieve desired pro-

gram behavior. This limited use of dynamic features is quite

common and is possible even in statically typed languages

like C++ or Java. Furthermore, the majority of research on

dynamic language performance concerns exactly this level

of dynamism. The next level of dynamism arises when the

program can modify its behavior by changing the relation-

ships between existing classes, but rarely creates code on the

fly. The main assumption is that changes in class hierarchy

and reuse of code happen much more often than creation

or loading of new code. This is exactly the scenario we are

targeting with our research. The highest level of dynamism

we can think of is complete and thorough inclusion of meta-

programming, a system that repeatedly generates substan-

tially new code and incorporates it into the running system,

constantly changing its state without much repetition or code

reuse. We consider that a subject of future research.

Ruby as a programming language supports all three levels

of dynamism. The lowest level of dynamism is implicit in the

semantics of the method call. Mix-in composition of mod-

ules provides a flexible way to handle and rearrange units

of behavior, representing the second level of dynamism. The

third and highest level of dynamism is achievable by con-

structing arbitrary source code strings and passing them to

eval function.

In recent research the delegation object model [16] has

been suggested as a universal substrate for implementation

of many programming paradigms. For example, substantial

part of aspect-oriented programming can be formalized and

implemented on top of delegation object model [11]. So is

context-oriented programming [20]. The fundamental oper-

ation, on which these implementations are based is dynamic

insertion of an object to a delegation chain or its removal.

We call that operation dynamic mixin inclusion (respectively

exclusion). Dynamic mixin inclusion can represent weaving

of the aspect, activation of the context layer, or even smaller

change in program state, as we describe below. Contrary to

the typical use of mixins as they were conceived by the in-

ventors [1], dynamic mixin composition happens not at the

application compile time, but at runtime. Moreover, dynamic

mixin inclusion cannot be treated as a solitary or infrequent

event. For example, programming in context-oriented style

may involve frequent change of layers. Recent trend in ap-

plication of dynamic aspect-oriented programming is self-

tuning aspect [21], which can dynamically install and re-

move other aspects or even reweave an optimized version

of itself. Representation of some constructs, such as cflow

and within pointcuts of AspectJ [13], is possible through re-

peated operations of mixin installation and removal for each

entry into and exit from the dynamic context of the specified

pointcut, which can happen with arbitrary frequency. For ex-

ample, the pointcut cflow(call(A.f())) && call(B.g()) can be

implemented as two mixins, one of which is permanently in-

serted to intercept the call to A.f(), and the other is inserted

and removed dynamically. Each time method A.f() is called,

the first mixin will (1) insert a mixin with advice implemen-

tation at B.g(), then (2) execute the original method A.f()
by a superclass call, and after it gets control back from a su-

perclass call, (3) remove the advice mixin. In this way, the

advice mixin inclusion and exclusion at B.g() happens for

each call of A.f(). The performance of programming sys-

tems that perform mixin inclusion operation with high fre-

quencies have not been studied much, and our research goal

is to try to fill the gap. We make dynamic mixin the main

target of our consideration.

Mix-in composition in Ruby is provided by modules —

a kind of class that can be dynamically inserted as a super-

class at arbitrary place in class hierarchy (we use the term

mixin to denote module that is used for dynamic inclusion).

16

1 class Server
2 def process() ... end

3 ...
4 end

5

6 class NetworkServer < Server
7 ...
8 end

9

10 module ServerMonitor
11 def process()
12 ... # monitor request

13 super # delegate to superclass

14 end

15 end

16

17 # this can be done during program execution

18 NetworkServer.class eval do

19 include ServerMonitor
20 end

Figure 1. Example of using mixin inclusion in Ruby

The inclusion can be done at program run time. Fig. 1 gives

an example of a server application. The mixin ServerMoni-
tor, after having been included to the class NetworkServer,
intercepts calls to the methods of the base class Server, and

provides monitoring functionality, while delegating the oper-

ation itself to an original implementation in Server. Within

an overriding method implementation, it is possible to call

the next overridden implementation in superclass chain by

using super keyword; the system automatically passes all the

arguments to a superclass method. The construct class eval
is equivalent to opening the class definition, but can be used

in an arbitrary context, even deep in the call chain, while reg-

ular class definition is only allowed in the top-level context

of the source file. The class hierarchy before and after mixin

inclusion is shown in Fig. 2.

Current Ruby implementation has a drawback concern-

ing dynamic use of mixins, as it allows dynamic inclusion

of a mixin, but does not provide a symmetric operation of

mixin removal. We think that there is no theoretical or prac-

tical barrier to provide such an operation. Mixin removal im-

plementation is straightforward and is very similar to mixin

inclusion. Operation of mixin removal greatly facilitates im-

plementation of context-oriented programming constructs

in Ruby, because it allows expressing the with-active-layer
construct with a bunch of mixin inclusion operations on en-

tering the dynamic scope of layer activation, and mixin ex-

clusion on exit. In the above example, it is useful to be able

to remove the monitoring mixin after monitoring is no longer

needed.

We implemented mixin removal operation in Ruby in the

same way as mixin inclusion, using a development snapshot

of CRuby 1.9.2 as a base. Let us consider the method lookup

�������

���	��
���	��

���	��

������

�����������

���������

�����������

���������

�������

���	��
���	��

Figure 2. Class hierarchy before and after mixin inclusion

algorithm first. Each object has an embedded class pointer.

When a method is called on an object, first the method name

is looked up in the method table of the class object. If the

method is not found, search continues in the superclass of the

class, and so on. The algorithm is common to many object-

oriented programming languages. If implemented naively,

it incurs significant overhead on each method call. That is

why Ruby employs several optimizations to reduce method

dispatch overhead.

Ruby uses method cache optimization [15]. Method

cache is a global hash table, indexed by a combination of

a method identifier and a class identifier, which is consulted

before doing regular method lookup. In Ruby, method cache

has 2048 entries by default. Since normal method lookup

typically involves multiple hash lookups, and hit in method

cache requires just one lookup, method cache usually bene-

fits the system performance.

To further improve method dispatch performance, Ruby

includes an implementation of inline caching, techniques pi-

oneered in Smalltalk [8]. Inline caching heavily relies on an

assumption that most call sites are monomorphic, i.e. they

mostly dispatch to a single target method during application

run, so cached in the call site prior lookup result can be used

in future instead of normal method lookup. In CRuby 1.9,

the program is compiled to a stream of interpreted instruc-

tions, which may have arguments embedded into the code

stream. To implement inline caching, a method call instruc-

tion (alternatively called ”message send” instruction) has an

additional argument, which holds pointer to the cache object,

allocated and associated with the method call instruction at

compile time. The cache object holds the class pointer and

a snapshot of a state counter (explained in next paragraph).

During first execution, the receiver class and current value

of the state counter are stored into the cache object. On sub-

sequent executions the inline caching code checks whether

the receiver is of the same class as in the first execution

and if the saved state value matches the current value of the

state counter. On successful check, it uses cached method

pointer without further search, otherwise, if class is different

or cache has been invalidated by change of the state value,

it does a full lookup and updates values stored in the cache

(Fig. 3).

One important detail not described in the pseudo-code in

Fig. 3 is the nature of the state. In current Ruby implemen-

tation, it is a global integer variable, which represents the

17

1 def send(name, args, cache)
2 receiver = args[0]
3 if cache.class == receiver.class and cache.state == state

4 method = cache.method
5 else

6 method = lookup(receiver.class, name)
7 cache.state = state

8 cache.class = receiver.class
9 cache.method = method

10 end

11 method(args)
12 end

Figure 3. Inline caching

Table 1. Profile of the application benchmark on baseline

ruby

item runtime share

method cache 27.8 %

hash lookup 13.8 %

interpreter loop 13.2 %

method call 4.0 %

other 41.2 %

state of the whole system. Global nature of the state counter

makes invalidation very coarse-grained: any action that po-

tentially can change dispatch of any method triggers incre-

ment of the global state counter, and thus invalidates all in-

line caches, as well as global method cache. Global method

cache further affects performance, because it does not save

a snapshot of global state counter to ensure validity, and

for this reason, on mixin inclusion or other modification of

global state, the whole method cache needs to be scanned

in order to invalidate affected entries. With the size of the

cache of 12 kb this may incur substantial overhead if the rate

of global state changes is high.

Our target application, similar to example of the Fig. 1,

exhibits very high overhead due to global state tracking.

During application run, a monitoring mixin is repeatedly in-

stalled on each request. As a result, the application has very

high rate of mixin inclusion and exclusion, each of which

causes bump of the global state counter, and subsequent

complete clearing of method cache. Flushing the method

cache may take more than one quarter of the execution time,

as can be seen in Table 1, the line method cache. The appli-

cation is described in more detail in Section 5.

3. Fine-grained state tracking

To overcome the inefficiencies of global state, we devised

a fine-grained state tracking technique. The goal is to fac-

tor the dependencies between inline and method caches and

classes, so that modification of class methods or class hi-

erarchy would require invalidation of fewer caches. Fine-

grained state tracking replaces single global state counter

������

���		

�����������

� � �

���������

�	
��

���	

�	
��

����	�	�
�
���

	�
�����		 	�
�����		 	�
�����		

Figure 4. State object association with method lookup path

with multiple state objects, each responsible only for the

part of method dispatch space of classes and method names.

Change in method definitions or class hierarchy propagate to

associated state objects, which in turn invalidate dependent

method cache entries and inline caches. Further, we propose

several techniques to realize the benefit from the fine-grained

state tracking.

3.1 Method lookup path-based state tracking

Our algorithm extends the standard method lookup proce-

dure with state handling. We associate a state object with the

method lookup path, which starts at the class provided as a

parameter of lookup function, and continues on to its super-

classes until the matching method implementation is found.

Association is implemented by adding a method table entry

to each class along the lookup path, and storing a pointer to

the state object there (Fig. 4). A state object is allocated on

the first lookup and reused on later lookups. A detailed def-

inition of the lookup procedure is given in Fig. 5. For each

method selector we add a method table entry to all classes

that are accessed during the method lookup, and allocate

a single state object. For some time, every distinct method

implementation will have its own state object, but after dy-

namic mixin insertion, lookup of overridden method will

find existing state object and reuse it for overriding method,

so that overriding and overridden methods will get associ-

ated with the same state object. The algorithm guarantees

that any set of methods that have been dispatched to with the

same method selector and with the same type of receiver ob-

ject will get the same state object. A special case when calls

to overriding and overridden methods have caused creation

of separate state objects and later turned out to be callable

with the same receiver class is discussed at the end of this

section. A property of reusing existing state objects gives us

a bound on the total number of allocated state objects: it can-

not be greater than total number of methods in a program.

State object is implemented as an integer counter. To

make use of the state information, we change the inline

caching code in the way shown in Fig. 6, and use the pstate
pointer, returned by the lookup procedure. We modified

method cache to store the last returned state object and a

snapshot of state object counter. On method cache lookup,

a validity check is performed, and if the check is success-

ful, the cached method pointer and state object pointer are

18

1 def lookup (klass, name, pstate)
2 cur = klass
3 while cur do

4 entry = cur.method table[name]
5 if !entry
6 cur.method table[name] = Entry.new
7 else

8 if entry.pstate
9 if pstate and pstate != entry.pstate

10 entry.pstate.add dependent(pstate)
11 end

12 pstate = entry.pstate
13 end

14 break if entry.method # method found

15 end

16 cur = cur.super

17 end

18 return nil if !cur
19 pstate = State.new if !pstate
20 cur = klass
21 while cur
22 entry = cur.method table[name]
23 entry.pstate = pstate
24 break if entry.method
25 cur = cur.super

26 end

27 return (entry.method, pstate)
28 end

Figure 5. lookup procedure with state tracking

1 def send(name, args, cache)
2 receiver = args[0]
3 if cache.class == receiver.class and

4 cache.state == cache.pstate.value
5 method = cache.method
6 else

7 method, pstate=lookup(receiver.class,name,cache.pstate)
8 cache.class = receiver.class
9 cache.method = method

10 cache.pstate = pstate
11 cache.state = pstate.value
12 end

13 method(args)
14 end

Figure 6. Inline caching with fine-grained state tracking

returned. In this way fine-grained state tracking is applied to

both method cache and inline caches.

Using information collected during method lookups, we

enforce an invariant: a state object must change its value

on any change in object method tables or class hierarchy

that might affect the outcome of lookup. To maintain an

invariant, it is sufficient to do the following:

1 # include lines 1–15 from Fig. 1

2 s = Server.new
3 s.process #1

4 NetworkServer.class eval do

5 include ServerMonitor
6 end

7 n = NetworkServer.new
8 n.process #2

9 NetworkServer.class eval do

10 exclude ServerMonitor
11 end

12 n.process #3

SNS

SNS
s1

SNS
s1

SM

SNS
s1

SM
s2

SNS
s1s2

SNS
s1

Figure 7. Example of situation when state objects need to

be merged

• On addition of a method to a method table we increase the

corresponding state object counter, if there is a matching

method entry.

• On mixin inclusion or exclusion, the method table of

modified class contains precisely the list of methods,

whose lookup may be affected by the change of delega-

tion pointer. So we loop over method table and increase

the counter in each state object.

A rare case when we encounter more than one existing

state object during method lookup requires special handling.

An example code that illustrates how this can happen in the

setting of example of Fig. 1 is shown in Fig. 7. At the call

s.process in the line 3 a new state object s1 is allocated and

associated with lookup path (Server,process), where first el-

ement of pair denotes the starting class, and the second —

method selector. At later call in the line 8 another state ob-

ject s2 is allocated for path (NetworkServer,process), which

starts at class NetworkServer and ends in the mixin Server-
Monitor, where the method is found. The mixin ServerMon-
itor is removed in lines 9–11. The method lookup (Network-
Server,process) in the line 12 starts in the class Network-
Server, and ends in the class Server, finding both s2 and s1.

In this case the call site will use the state object s1 associ-

ated with (Server,process), because lookup algorithm gives

precedence to a state object found later, i.e. higher in the

class hierarchy (line 13 in Fig. 5). The state object s2, ear-

lier recorded at (NetworkServer,process) will be overwritten

by s1. Since existing call sites may still hold pointers to over-

written state object s2, we add a dependency link s1 → s2

between the two state objects (lines 10–11 in Fig. 5). Incre-

ment of a state object counter recursively triggers increment

in all dependent state objects, which guarantees cache inval-

idation in all affected call sites. To assure correctness it is

enough to do recursive invalidation only once, because sub-

sequent execution of a call will do a full lookup and cache a

pointer to the correct state object. One-time recursive invali-

dation is sufficient for correctness, however, it is not enough

19

1 def send(name, args, cache)
2 receiver = args[0]
3 if cache.class == receiver.class and

4 cache.state == cache.pstate.value
5 method = cache.method
6 else

7 if cache is polymorphic

8 for entry in cache.array
9 if entry.class == receiver.class and

10 entry.state == cache.pstate.value
11 method = entry.method
12 break

13 end

14 else

15 # convert cache to polymorphic

16 end

17 if method not found

18 # lookup method and store result in cache

19 end

20 method(args)
21 end

Figure 8. Polymorphic inline caching

to ensure convergence to a single state object per call site. In

this example, the link to the state object s2 remains recorded

in the mixin ServerMonitor and could reappear after next

mixin inclusion. It is possible to prevent further use of s2 by

flagging it as ”overridden” and recording a link to an ”over-

riding” state object s2 → s1. Similar treatment is necessary

to ensure that polymorphic call sites use a single state object.

We have not implemented this though.

3.2 Polymorphic inline caching

To meet our goal of optimizing alternating changes (mixin

inclusion and exclusion), it is necessary to cache informa-

tion about multiple method dispatch destinations, so we im-

plemented polymorphic inline caching [2]. We extend the

inline cache object to include array of inline cache entries

instead of a single method pointer and a state snapshot. Each

inline cache entry includes a class pointer, a state value and

a method pointer. The call site is associated with a single

state object, but existence of multiple entries allows to cache

multiple different methods, potentially belonging to differ-

ent classes, each with its own snapshot of state object. The

pseudo-code of method call operation using polymorphic in-

line caching (PIC) is shown in Fig. 8.

At the moment of allocation of a polymorphic inline

cache, we allocate only a single entry, and further entry

allocation happens as needed, after subsequent cache misses.

To record a new entry in filled up polymorphic inline cache,

we use random eviction policy, following the advice of the

original inventors of polymorphic inline caching [2], which

guarantees a constant overhead on cache miss independently

of number of entries in cache.

3.3 Caching alternating states

The guarantees of fine-grained state tracking allow us to

benefit from repeated behavior of our target application.

Unchanged value of state object guarantees that associated

method has not been changed or overridden by mixin. This

invariant allows to implement caching optimization for tem-

porary changes in class hierarchy. When installing a mixin

object, we snapshot the state of method table of the class,

where mixin is included. We record it in a snapshot cache of

the modified class. A snapshot includes values of state ob-

jects for each method in the method table, before (”old”) and

after (”new”) the superclass pointer change. Later on, when

the mixin is removed, the snapshot cache is looked up for

the corresponding snapshot, and the found snapshot is com-

pared against current method table. If the state object value

for a method matches the ”new” state value recorded in the

snapshot, it means that no other changes affected this method

lookup, and thus we can safely rewind state object value to

”old” value from the snapshot, instead of regular invalida-

tion by increasing the state object counter. A separate cache

is maintained for each class, and several alternating state

snapshots are stored in a cache with LIFO eviction policy. In

case several dynamic mixins override the same method, they

will use the same state object. Since the cache contains pairs

of state transitions, the caching technique is effective if the

scopes of mixin inclusion are properly nested with respect

to each other. Dynamic inclusions of mixins that are disjoint

with respect to set of methods does not interfere (except for

potential overflow of snapshot cache).

This technique relies on availability of polymorphic in-

line caching to realize the benefit. After mixin inclusion,

calls of the overridden methods will miss in the inline

caches, and so the new value of state object together with

the overridden method pointer will be recorded in cache.

However, there is high probability that a prior state and prior

method pointer will be retained. Thus, when the mixin is

later excluded, and the value of a state object is restored to

prior value, this prior value still is present in polymorphic

inline caches, and method lookup can be served from the

cache. If the mixin is included again at the same place in

class hierarchy, the system finds a matching snapshot in the

snapshot cache and updates the state object values for all

entries in the method table using the same algorithm as on

a mixin removal, but with reversed pairs of state values: on

mixin removal the state changes from ”new” value to ”old”,

and on mixin insertion from ”old” to ”new” (where ”old”

and ”new” refers to the first mixin inclusion). This liberal

reuse of state object values places some restriction on the

state object invalidation, because simple counter increment

by 1 does not guarantee that a new value has not been used

in some snapshot. To avoid this problem, on invalidation of

a state object we generate fresh values using global counter,

so that the new value of a state object never coincides with

earlier cached values.

20

4. Generalizations

4.1 Delegation object model

The techniques described in previous section can be gener-

alized and applied to much wider range of systems than just

Ruby. One particularly interesting model is delegation ob-

ject model, which is used in Javascript and other prototype-

based languages. Dynamic mixins in Ruby object model

can be seen directly as delegate objects, because class-based

method lookup algorithm conforms to that of delegation ob-

ject model, and superclass calls have the same semantics as

message resend. Of course, Ruby object model is limited by

restrictions it places on dynamic delegation changes: dele-

gation can be changed only by mixin inclusion or removal,

and only for classes, but not for instance objects.

Despite of differences, algorithm for fine-grained state

tracking remains valid for more general delegation object

model without significant changes. A minor change is nec-

essary in the algorithm of caching alternating states, because

operation of delegation pointer change does not provide in-

formation on whether it is used for mixin installation, re-

moval, or even entirely arbitrary change in delegation struc-

ture. We identify each change of delegation pointer as a

pair of pointer values (old,new) and attach this identifier to

the snapshot in the snapshot cache. On delegation pointer

change, we check whether the snapshot cache has a match-

ing pair on record, and apply it if found. The difference with

mixins is that the check for matching pairs in cache needs

to be done in both directions (old,new) and (new,old). If a

match is not found, a new state change snapshot is recorded

and inserted into the snapshot cache using LIFO eviction

policy. Cache of alternating states is maintained separately

for each delegating object, and is allocated only for objects,

for which delegation is in fact changed during program exe-

cution.

We implemented general form of proposed techniques

in C, using an object model similar to id [17], with be-

havior kept in separate objects, and delegation being pos-

sible between behavior objects. Behavior objects in this ob-

ject model play the role similar to classes in Ruby object

model. This implementation is further referred to as ”C-

impl”. We implemented dynamic method dispatch function-

ality using macros, and inline cache is represented by local

static variables. The implementation structure is very close

to that Objective-C [6], and with some changes could be

used as runtime library for Objective-C with dynamic exten-

sions. We believe fine-grained state tracking can be applied

to Javascript systems too.

4.2 Thread-local state caching

Application of the dynamic mixin as a base for implement-

ing aspect-oriented or context-oriented constructs in a multi-

thread system requires thread-local delegation. For example,

layer activation in COP and thread-specific advice applica-

tion requires that a mixin be applied in one thread, and not

global view

class super
s

s
′

mixin

view from thread T1

class super
s
′

mixin

view from other thread

class super
s

Figure 9. Thread-local state tracking

applied in other. Representation of cflow construct of As-

pectJ [13] requires even more complicated structure, where

pointcut selection is represented by a mixin, which dynami-

cally installs or removes advice mixin on entering and leav-

ing pointcut shadow. The program execution state is differ-

ent on different threads, and so has to be advice applica-

tion. To resolve these issues, thread-specific delegation —

an extension to delegation object model — has been pro-

posed [11].

We noted that the scheme of caching alternating states

can be extended to cover thread-specific delegation as well,

by extending the state objects to hold thread-specific values.

The algorithm described in Section 3.3 is extended in the

following way

• State objects can have thread-local as well as global

value. Global value of a state object includes a flag to

indicate presence of thread-local values.

• Cache entries record the state value with cleared thread-

local flag. If state object has its thread-local flag set,

checks of global value against inline cache entries will

fail, leading to a separate ”thread-local” branch in inline

caching code.

• ”Thread-local” branch reloads the thread-local value of

the state object, which has the thread-local flag masked

out.

• Thread-local mixin inclusion changes the thread-local

value of affected state objects, either with a fresh value

to invalidate all dependent caches, or with a value used in

the past to switch to one of the cached states.

With this modifications in place, polymorphic inline caching

and caching alternating states works as is. Fig. 9 shows an

example of a mixin insertion in thread T1: the delegation

graph is different when viewed from thread T1 and other

threads, and so is thread-local value of the associated state

object. Accessing the thread-local value of state object is

more costly than load of global value. Using the global value

in the fast path and loading the thread-local value only after

21

initial check failure removes the overhead of thread-local

delegation in call sites where it is never used.

Thread-local delegation technique is not applicable to

current Ruby, because Ruby does not allow multiple inter-

preter threads to be running simultaneously due to so called

global interpreter lock arrangement [19]. As a result, mul-

tiprocessing in Ruby applications is typically implemented

using multiple separate processes, and the issue of thread-

local mixin installation does not occur.

5. Evaluation

It is hard to find a good application benchmark to eval-

uate the techniques proposed in this work, because dy-

namic mixin inclusion has not (yet) become a popular tech-

niques. For this reason, to evaluate the techniques we use

microbenchmarks, as well as a small application, which we

specifically created to exercise dynamic mixin inclusion. We

specifically look to establish the following:

• Proposed techniques in fact can reduce the inline cache

misses on target application.

• Proposed techniques provide performance advantage on

the target application, and reduce the overhead due to

global method cache described in section 2.

• What impact on dynamic mixin performance proposed

techniques make.

• What overhead proposed techniques have on regular

method calls, when no dynamic mixins are involved.

We cover these questions in the reverse order. All experi-

ments were performed on an Intel Core i7 860 running at

2.8 GHz with 8 Gb of memory, with Ubuntu Linux 9.10 in-

stalled with GNU libc 2.10.1 and gcc 4.4.1. Measurements

were repeated at least 7 times, and an average value and sam-

ple standard deviation is shown.

5.1 Overhead on a method call

To evaluate the overhead of fine-grained state tracking and

polymorphic inline caching can have on performance of a

single call, we used a simple microbenchmark. Since tech-

niques of caching alternating states only affects dynamic

mixin inclusion, it is not evaluated by this microbenchmark.

The microbenchmark executes a tight loop, and on each iter-

ation calls an instance method on an object, which incre-

ments a global variable. We determined the cost of loop

and counter increments by running the same loop without

a method call, and subtracted this time from times mea-

sured in other benchmark runs, so that the table includes

pure time for the method call and return. Measurements are

presented in Table 2. Method cache hit implies prior inline

cache miss, and the case of full lookup implies that method

lookup missed both in inline cache and in method cache.

The ratio column gives the ratio of measurements between

modified Ruby versions and baseline Ruby, for each of the

Table 2. Single call performance
Case single call time ratio

R
u
b
y

b
as

e inline cache hit 33.5 ± 0.9 ns 100 %

method cache hit 43.1 ± 0.9 ns 100 %

full lookup 52.7 ± 0.5 ns1 100 %

fg
st

inline cache hit 33.9 ± 0.8 ns 101 %

method cache hit 47 ± 1 ns 109 %

full lookup 61 ± 1.5 ns1 116 %

fg
st

+
P

IC

inline cache hit 49.8 ± 0.6 ns 149 %

PIC hit 59.6 ± 0.8 ns 178 %

method cache hit 78 ± 1 ns 181 %

full lookup 105 ± 1 ns1 199 %

C
-i

m
p
l

g
lo

b
al inline cache hit 3.1 ± 0.1 ns

PIC hit 6.0 ± 0.1 ns

full lookup 71 ± 1 ns

C static call < 2 ns

cases separately, with PIC hit ratio computed against base-

line inline cache hit. Versions are written in the leftmost col-

umn sideways, base meaning baseline Ruby version, fgst —

Ruby with fine-grained state tracking, fgst+PIC — version

with both fine-grained state tracking and polymorphic inline

caching, and C-impl — our implementation in C. C-impl

does not have method cache, and has unoptimized imple-

mentation of method lookup. On Ruby, fine-grained state

tracking overhead is barely visible in case of inline cache

hit, as the difference of 1% is below measurement noise

level. In case of lookup in method cache and full lookup, the

overhead is more pronounced due to increased bookkeep-

ing costs, 9% for the case of method cache hit and 16% for

the case of full method lookup. Polymorphic inline caching

incurs higher overhead, 49% for the case of monomorphic

inline cache hit. After conversion of inline cache to poly-

morphic, overhead changes to 78%. Overhead in cases of

method cache hit and full lookup is even higher, up to almost

2 times. Despite high overhead of PIC, it still can be bene-

ficial, as we show in further experiments. The inline cache

hit and PIC hit numbers for C-impl provide peek into what

level of method call performance would be possible without

overheads of method call, such as arguments marshaling or

boxing, which make method call in Ruby much more slow.

To give a scale for absolute numbers, in the last table section

we show the typical cost of static function call in C on the

same hardware.

5.2 Microbenchmarking dynamic mixin

To evaluate performance of dynamic mixin inclusion and

exclusion, we use another microbenchmark. It is designed

to measure effects in the extreme case, when frequency of

mixin inclusion and exclusion is the same as frequency of

1 Cost of full method lookup obviously depends on class hierarchy. The

number shown is for a single method defined directly in the object class,

and so can be thought of as minimal cost of full lookup.

22

�

�

��

� �

�

�

�

�

� �

�

����	

�
�����
� ����
�

Figure 10. Three cases of a microbenchmark

method call. In this benchmark, two classes and a mixin ob-

ject are arranged in structure shown in Fig. 10, with class

A inheriting from class B. Even iteration of a microbench-

mark inserts and odd iteration removes the mixin M be-

tween classes A and B, which is graphically depicted as a

bold arrow between alternating values of superclass pointer

of class A. Besides mixin insertion or removal, each iter-

ation also calls an empty method f on an object of class

A. To analyze the contribution of method call and mixin

switch to microbenchmark run time, we separately report

time for the loop, which includes only mixin switch (column

switch only), and for the loop with both the method f call

and mixin switch (column switch+call). Three cases of the

benchmark exercise different dependencies of method dis-

patch on mixin.

• below — the method f is defined in class A, so that

mixin M inclusion does not have any effect on dispatch

of method A.f;

• non-affect — the method f is defined in class B, and

mixin M does not override it, so mixin inclusion does

not have effect on dispatch of method A.f, but it has the

potential;

• affect — the method f is defined both in class B and in

mixin M, so mixin inclusion overrides implementation

in class B and causes different outcome of dispatch of

method A.f.

Measurements of microbenchmark runs on Ruby are shown

in Table 3, in the upper half. Altern refers to Ruby with

all proposed techniques implemented, including fine-grained

state tracking, polymorphic inline caches and caching alter-

nating states, fgst denotes Ruby with just the fine-grained

state tracking. Base is the baseline Ruby version, and mc

is the baseline Ruby with method cache flush implemented

through check against saved value of global state, rather than

complete clearing of the hashtable. We included mc ver-

sion in comparison, because as we discovered in table 1, the

clearing of method cache constitutes large overhead, and it

makes sense to question ourselves, which part of improve-

ment is due to fixing this performance bug, and which part

is due to advantages of fine-grained state tracking. Version

with our techniques drastically outperforms baseline Ruby

version, for several reasons. First, the overhead of clearing

method cache on each mixin inclusion or exclusion has been

eliminated, as can be seen by reduction of switch+call time

from 3200 ns for baseline version to 750 ns for mc version.

Second, fine-grained tracking further improves performance

by 28% on average. The f method call is not the only call

in the microbenchmark loop, because insertion and removal

of the dynamic mixin is also performed by method calls, so

improvement over mc version in both switch and switch+call

times can be attributed to reduced inline cache misses. Be-

low case for fgst version is visibly faster than non-affect and

affect cases, because mixin inclusion does not flush inline

cache at method f call site in below case. Third, with all of

our techniques (altern line) method calls consistently hit in

PIC, and in this particular case the cost of PIC hit is less than

the cost of full method lookup in fgst version. This effect can

be seen by comparing times over 500 ns of fgst version with

times less than 500 ns in altern version: reduction by 12% on

average. So despite of high per-call overhead of PIC in com-

parison with monomorphic inline cache hit, it still delivers

benefit by reducing inline cache miss rate.

Measurements of the same microbenchmark on C-impl

are shown in the lower half of the Table 3, with global show-

ing results when object delegation is modified globally, and

thread — with delegation modified using thread-local del-

egation, as described in section 4.2. In all cases, our tech-

niques allow to run the microbenchmark with method calls

consistently resulting in inline cache hits, as can be seen

by low difference between measurements of loop with both

switch and method call, and just a mixin switch. Thread-

local caching support doubles the cost of mixin switch

(about 40 ns vs. 19 ns) and more than doubles the cost of

inline cache hit due to necessary use of PIC and thread-

specific state values (about 10 ns vs. 4 ns), as can be seen

from non-affect and affect cases of C-impl with thread-local

caching. Note, that below case does not incur that cost on

method call, because the method f dispatch is not affected

by mixin inclusion, and is served by regular global inline

caching mechanism.

5.3 Application benchmarking

To evaluate application-level impact of proposed techniques

we developed a small application. We tried to imitate style

typical for Ruby-on-Rails web application framework, us-

ing reflection for system configuration. Client resides in the

same Ruby application, and no network connectivity is in-

volved. The application structure is similar to the example

in Fig. 1. To exercise dynamic mixins, it installs a moni-

toring mixin on each client request and removes it after re-

quest is processed. Monitoring mixin overrides processing

method with another method that immediately calls super-

class method and does nothing else. For benchmarking pur-

poses, a client repeatedly executes a fixed scenario of re-

23

Table 3. Microbenchmark performance
Case switch + call switch only

R
u
b
y

b
as

e below 3200 ± 30 ns 3100 ± 30 ns

non-affect 3200 ± 30 ns 3100 ± 30 ns

affect 3200 ± 30 ns 3100 ± 30 ns

m
c

below 750 ± 10 ns 640 ± 10 ns

non-affect 750 ± 10 ns 640 ± 10 ns

affect 750 ± 5 ns 640 ± 10 ns

fg
st

below 500 ± 3 ns 413 ± 6 ns

non-affect 565 ± 6 ns 414 ± 5 ns

affect 562 ± 9 ns 416 ± 5 ns

al
te

rn

below 464 ± 5 ns 397 ± 4 ns

non-affect 479 ± 8 ns 400 ± 4 ns

affect 495 ± 4 ns 426 ± 3 ns

C
-i

m
p
l

g
lo

b
al below 23 ± 1 ns 19 ± 1 ns

non-affect 23 ± 1 ns 19 ± 1 ns

affect 23 ± 1 ns 19 ± 1 ns

th
re

ad

below 42 ± 1 ns 39 ± 1 ns

non-affect 49 ± 2 ns 40 ± 2 ns

affect 51 ± 4 ns 41 ± 3 ns

quests to the server. We measure execution time of a fixed

number of repetitions and report the average time per re-

quest.

Application benchmark is designed to stress the mix-in

inclusion and exclusion as much as possible, to the extent

that baseline ruby has 79% of inline cache misses on this

benchmark. Using cache of alternating states prevents inline

cache misses during steady state, as can be seen in bottom

graph in Fig. 11. The graphs depict the number of inline

cache hits, method cache hits and full lookups during the

first five iterations of the application benchmark. The x axis

represents the time measured in number of calls, and the y

axis represents the percentages of outcomes, aggregated by

50 calls. From 0 to about 200 on the x axis, the system

is in initialization phase. From that moment, the system

enters steady state. Baseline Ruby version has rate of full

lookups oscillating between 60 and 80% (the upper line in

the upper graph), but with our techniques implemented, the

majority of calls result in PIC hits (the upper line in the

below graph). We report (monomorphic) inline cache hits

and PIC hits separately, because in our implementation both

monomorphic caches and PICs can coexist, and the cost

of PIC hit is higher than the cost of hit in monomorphic

inline cache. The results shown were measured with with

the version of Ruby that unconditionally used polymorphic

inline caches everywhere, that is why PIC hits dominate the

lower graph in Fig. 11. We also tried a version where all

inline caches are initially monomorphic, and are converted

to polymorphic on first real inline cache miss with little

difference in results, only the overhead of PICs was less

visible.

���������	
��

	
�����
������������
����
�����
�
��

0
10
20
30
40
50
60
70
80
90

0 200 400 600 800 1000 1200 1400

m
e
th
o
d
 l
o
o
k
u
p
 o
u
tc
o
m
e
,
%

number of calls

inline cache hit
PIC hit

method cache hit
full lookup

0
10
20
30
40
50
60
70
80
90
100

0 200 400 600 800 1000 1200 1400

m
e
th
o
d
 l
o
o
k
u
p
 o
u
tc
o
m
e
,
%

number of calls

inline cache hit
PIC hit

method cache hit
full lookup

Figure 11. Method lookup outcome profile for the applica-

tion benchmark

Table 4. Application benchmark results
version time ratio

baseline 20.7 ± 0.3 ms 100%

mc 14.5 ± 0.1 ms 70%

fgst 12.1 ± 0.2 ms 58%

PIC + fgst 12.5 ± 0.1 ms 60%

altern + PIC + fgst 10.7 ± 0.2 ms 52%

Caching alternating states completely eliminates inline

cache misses in steady-state phase, however some low but

non-zero number of method cache hits and full lookups

remain. We investigated this in detail, and found out that

method cache hits and full lookups were caused by su-

perclass calls and use of Ruby reflection API method re-
spond to? (question mark is a part of method name), which

is used to find out if an object has an implementation of a

method. Both superclass method call and implementation

of respond to? starts the method lookup from the method

cache, which is occasionally invalidated by mixin inclusion

or exclusion operations. As our techniques of caching alter-

nating states is effective only for inline caches, it does not

eliminate method cache and full lookups originating from

places other than method call instruction. Application of our

inline caching techniques to superclass calls is straightfor-

ward, though we have not implemented it yet. We defer to

the future the question of whether it is worthy and how to

apply caching alternating states to reflection API methods.

We evaluate the impact of the proposed techniques by

measuring the request time on our application benchmark.

The results are shown in Table 4. Eliminating clearing of

method cache (by storing a state value in each cache line

24

Table 5. Profile of the benchmark on modified Ruby version
item runtime share

method cache 0.2 %

hash lookup 4.6 %

interpreter loop 21.1 %

method call 6.9 %

other 67.2 %

Table 6. Memory usage approximation
version number of minor page faults

baseline 12410 ± 10

fgst 12450 ± 10

PIC+fgst 12460 ± 10

altern+PIC+fgst 9830 ± 30

and checking it on cache lookup, so that individual lines can

be invalidated just by change of global state value) improves

the application performance by 30% (mc line). Fine-grained

state tracking further improves performance by 12 percent

points (fgst line). Introducing polymorphic inline caches, as

we have seen above, incurs overhead on method calls, and

this can be seen by 2 percent point increase in request time

(the line marked as PIC+fgst in the table). However, caching

of alternating states (line altern+PIC+fgst) improves appli-

cation performance by 8 percent points. To verify that the

overhead of flushing global method cache has been elimi-

nated, we conducted the same profiling as that of Table 1

with our version of Ruby. While method cache management

constituted about 27% of execution time in baseline Ruby

version due to excessive flushing (line method cache in Ta-

ble 1), our modifications reduced it to 0.2% (Table 5).

Regarding memory footprint of the proposed techniques,

we can obtain some upper bounds from the definition of

caching algorithm. The number of allocated state objects for

fine-grained state tracking is bounded by the total number

of methods in system. Number of polymorphic inline cache

objects is bounded by the total number of call sites in the

system. These bounds can be quite high in case of larger

systems, and some heuristics may be needed to limit alloca-

tion. We leave detailed evaluation of memory use with large

applications for the future work, however, to give a glimpse

of memory usage of our implementation in the Table 6 we

show the number of minor page faults during benchmark ap-

plication run, measured with Unix time utility. The page size

is 4 kb.

6. Related work

Fine-grained dependency tracking has been proposed and

evaluated in the context of dynamic compilation systems

with the main focus on reducing amount of recompilation.

Self system [2] maintains dependency graph between com-

piled methods and slots, on which the compiled method de-

pends, triggering recompilation of dependent methods on

slot changes. Java virtual machines such as HotSpot [14]

typically include some sort of the fine-grained state track-

ing functionality to minimize recompilation needed in case

of dynamic class loading, but it appears that not much detail

is available in published articles. Chambers et al. [3] pro-

posed an elaborated system for managing complex depen-

dency graphs, including several optimizations, such as in-

troduction of filter nodes and factoring nodes. They do not

consider a possibility of repeated change between alternating

states. Since the typical cost of invalidation in their system is

recompilation, they consider recomputing method lookup a

viable choice for preventing a potentially much more costly

method recompilation. On the other hand, we apply fine-

grained state tracking to a Ruby interpreter with the purpose

of preventing additional method lookups. Our system also

can prevent method lookups in the case of system alternat-

ing between several states by repeated mixin inclusion and

exclusion.

A similar scheme of tracking state and inline cache inval-

idation was implemented for Objective-C by Chisnall [5].

It proposes fixed association of state objects with methods.

Our scheme generalizes this notion by associating state ob-

ject with method lookup path, rather than with just the result

of method lookup, and as a result allows for caching of mul-

tiple method entries, for distinct receiver types and multiple

system states. The same author also proposed dynamic ex-

tensions to Objective-C in the form of mixins and traits [4],

to which our techniques can be applied.

Polymorphic inline caching has been first proposed in

Self [2], with the purpose of optimizing so-called polymor-

phic call sites, which dispatch on objects of several different

types. In Java world, polymorphic inline caching has been

successfully used for optimizing interface calls [10]. In our

work, polymorphic inline caching is extended to cover not

only distinct classes, but also distinct states of the same class,

potentially containing multiple entries for the same class of

receiver, but with different targets.

7. Conclusion

We proposed a specific way of fine-grained state tracking

for highly dynamic languages, that allow changing of class

hierarchy by using dynamic mixins, or even arbitrary dele-

gation. Using the polymorphic inline caches and caching of

alternating state, we have been able to significantly reduce

rate of inline cache misses when the application repeatedly

includes and excludes a dynamic mixin. On a small dynamic

mixin-heavy Ruby application, our techniques eliminated

the overhead of the global method cache (30%), and pro-

vided additional improvements in performance: fine-grained

state tracking (17%), caching alternating states (12%). Due

to high cost of method call in Ruby and low difference be-

tween performance of inline cache hit and miss, the benefits

of proposed techniques are limited to applications with high

25

rate of dynamic mixin inclusion, however, numbers for C-

impl suggest that benefit would be higher on systems with

more streamlined method call.

As inline caching has found use in compiled systems in

the form of speculative method inlining [7], we expect our

techniques to be applicable and beneficial with PIC objects

used to create multiversion compiled code in dynamic com-

pilation system, and we hope to show that in our future work.

References

[1] G. Bracha and W. Cook. Mixin-based inheritance. In Pro-

ceedings OOPSLA/ECOOP ’91, LNCS 512, pages 303–311.

ACM, 1990.

[2] C. Chambers, D. Ungar, and E. Lee. An efficient implemen-

tation of self, a dynamically-typed object-oriented language

based on prototypes. LISP and Symbolic Computation, 4(3):

243–281, 1991.

[3] C. Chambers, J. Dean, and D. Grove. A framework for selec-

tive recompilation in the presence of complex intermodule de-

pendencies. Software Engineering, International Conference

on, 0:221, 1995.

[4] D. Chisnall. Updating objective-c. Technical report, Swansea

University, 2008.

[5] D. Chisnall. A modern objective-c runtime. Journal of Object

Technology, 8(1):221–240, Jan 2009.

[6] B. Cox and A. Novobilski. Object-oriented programming: an

evolutionary approach. Addison-Wesley, 1986.

[7] D. Detlefs and O. Agesen. Inlining of virtual methods. In

Proceedings ECOOP ’99, LNCS 1628, pages 258–277, 1999.

[8] L. P. Deutsch and A. M. Schiffman. Efficient implementation

of the smalltalk-80 system. In POPL ’84: Proceedings of

the 11th ACM SIGACT-SIGPLAN symposium on Principles

of programming languages, pages 297–302, New York, NY,

USA, 1984.

[9] M. Furr, J.-h. D. An, and J. S. Foster. Profile-guided static

typing for dynamic scripting languages. In OOPSLA ’09:

Proceeding of the 24th ACM SIGPLAN conference on Object

oriented programming systems languages and applications,

pages 283–300, New York, NY, USA, 2009.

[10] N. Grcevski, A. Kielstra, K. Stoodley, M. Stoodley, and

V. Sundaresan. Java just-in-time compiler and virtual machine

improvements for server and middleware applications. In 3rd

Virtual Machine Research and Technology Symposium (VM),

2004.

[11] M. Haupt and H. Schippers. A machine model for aspect-

oriented programming. In Proceedings ECOOP ’09, LNCS

4609, pages 501–524, 2007.

[12] R. Hirschfeld, P. Costanza, and O. Nierstrasz. Context-

oriented programming. Journal of Object Technology, 7(3):

125–151, 2008.

[13] G. Kiczales, E. Hilsdale, J. Hugunin, M. Kersten, J. Palm,

and W. Griswold. An overview of AspectJ. In Proceedings

ECOOP ’01, LNCS 2072, pages 327–354, 2001.

[14] T. Kotzmann, C. Wimmer, H. Mössenböck, T. Rodriguez,

K. Russell, and D. Cox. Design of the java HotSpotTMclient

compiler for java 6. ACM Trans. Archit. Code Optim., 5(1):

1–32, 2008.

[15] G. Krasner, editor. Smalltalk-80: bits of history, words of ad-

vice. Addison-Wesley Longman Publishing Co., Inc., Boston,

MA, USA, 1983.

[16] H. Lieberman. Using prototypical objects to implement

shared behavior in object-oriented systems. ACM SIGPLAN

Notices, 21(11):214–223, 1986.

[17] I. Piumarta and A. Warth. Open, extensible object models.

Self-Sustaining Systems, 5146:1–30, 2008.

[18] A. Popovici, T. Gross, and G. Alonso. Dynamic weaving for

aspect-oriented programming. In AOSD ’02: Proceedings of

the 1st international conference on Aspect-oriented software

development, pages 141–147, New York, NY, USA, 2002.

[19] K. Sasada. Efficient implementation of Ruby virtual machine.

PhD thesis, The University of Tokyo, Graduate school of in-

formation science and technology, 2007. In japanese lan-

guage.

[20] H. Schippers, M. Haupt, and R. Hirschfeld. An implementa-

tion substrate for languages composing modularized crosscut-

ting concerns. In Proceedings of the 2009 ACM symposium on

Applied Computing, pages 1944–1951. ACM New York, NY,

USA, 2009.

[21] A. Villazón, W. Binder, D. Ansaloni, and P. Moret. Hot-

wave: creating adaptive tools with dynamic aspect-oriented

programming in java. In Proceedings GPCE ’09: Proceed-

ings of the eighth international conference on Generative pro-

gramming and component engineering, pages 95–98. ACM,

2009.

[22] J. Vitek and R. Horspool. Compact dispatch tables for dynam-

ically typed object oriented languages. In Compiler Construc-

tion ’96, LNCS 1060, pages 309–325. Springer, 1996.

26

