
An Advice for Advice Composition in AspectJ

Fuminobu Takeyama and Shigeru Chiba

Tokyo Institute of Technology, Japan
http://www.csg.is.titech.ac.jp/~{f takeyama, chiba}

Abstract. Aspect composition often involves advice interference and
this is a crucial problem in aspect oriented programming. When multiple
advices are woven at the same join point, the advices often interfere with
each other. Giving appropriate precedence order is a typical solution
of this problem but it cannot resolve all kinds of advice interference.
To address this problem, we propose a novel language extension named
Airia, which provides a new kind of around advice for resolving advice
interference. This kind of advice named a resolver is invoked only at the
join points when given advices conflict with each other. The resolvers
can call an extended version of proceed, which takes as an argument
precedence order among remaining advices. Furthermore, the resolvers
are composable. They can be used to resolve interference among other
resolvers and advices.

1 Introduction

In aspect-oriented programming, crosscutting concerns are modularized into as-
pects. Composing a new aspect by combining existing aspects is not easy. The
aspects often conflict with each other and cause undesirable interference. This
problem is called aspect interference. In particular, resolving interference among
advices in the aspects is a serious issue that has been investigated in the research
community. This paper addresses this issue called advice interference.

A typical solution is to allow programmers to control the precedence order
among conflicting advices. For example, AspectJ [10] provides declare precedence
for this control. However, for some combinations of advices, there is no correct
precedence order with which the composed behavior is acceptable. Such combi-
nation needs modifying the bodies of the conflicting advices to explicitly imple-
ment the merged behavior. This is not desirable since the programmers have to
be aware of the composition when they write an individual advice. The imple-
mentation of the composition should be described separately from the conflicting
advices.

This paper proposes a novel extension of AspectJ, which is named Airia.
In this language, a new kind of around advice called resolvers are available. A
resolver is used to implement the composition of conflicting advices. It is invoked
at the join points when the given set of advices conflict with each other. Since
a resolver has higher precedence than those conflicting advices, it overrides the
implementation of those advices. In the body of the resolver, a proceed call takes



public class Expression extends ASTNode {...}

public class Plus extends Expression {
private Expression left;
private Expression right;

public Plus(Expression left, Expression right) {...}

public Expression getLeft() {...}
public Expression getRight() {...}
// :

}

public class Constant extends Expression {
Object value;
public Constant(Object value) {

this.value = value;
}}

aspect Evaluation {
public Object Expression.eval() {

return null;
}}

Listing 1. Classes representing the AST

as an argument the precedence order among those conflicting advices. It can
thereby control the execution order of the remaining advices. In our language
Airia, therefore, declare precedence is not available. Furthermore, a resolver is
composable. It can implement the composition of other resolvers and advices.
Our language Airia has been implemented by using the AspectBench compiler
[4] and JastAdd [8] 1. In summary, the contribution of this paper is to propose
a new language construct named a resolver. The advantages are two. (1) It
enables separation of the implementation of advice composition while keeping
sufficient expressive power. Also, (2) it is composable and thus we can implement
composition of several advices in a hierarchical manner.

In the rest of this paper, Section 2 shows a motivating example. Section 3
presents the design of a resolver. Section 4 describes implementation of Airia
compiler. Section 5 mentions related work and Section 6 concludes this paper.

2 A Motivating Example

We first show an example of aspect interference that is not resolved in existing
approaches.

2.1 A Simple Interpreter

We present a simple interpreter with a binary operator +, which is written
in AspectJ. Listing 1 shows classes representing AST (Abstract Syntax Tree)
1 The source code of Airia is available from:
http://www.csg.is.titech.ac.jp/



aspect IntegerAspect {
Object around(Plus t): target(t) && execution(Object Plus.eval()) {

return (Integer)t.getLeft().eval() + (Integer)t.getRight().eval();
}}

Listing 2. An aspect for integer values

aspect StringAspect {
Object around(Plus t): target(t) && execution(Object Plus.eval()) {

return t.getLeft().eval().toString() + t.getRight().eval().toString();
}}

Listing 3. An aspect for character strings

nodes. The Plus class expresses a binary operator +. It has two fields, left and
right, representing its operands and it extends the Expression class. We declare a
method for evaluating an AST in the EvaluationAspect aspect. Since our inter-
preter currently does not support any data types, this aspect appends an empty
eval method to the Expression class by an inter-type declaration.

We then extend the interpreter to support integer values. We do not have
to modify the existing classes. We have only to write a new aspect shown in
Listing 2. The around advice in the IntegerAspect aspect is invoked when the
Plus.eval method is executed; it returns a summation of the two operands. The
following code makes an AST representing 1 + 2. When e.eval is executed on
this tree, it returns 3.

Expression e = new Plus(new Constant(1), new Constant(2));

Next, we extend the original interpreter to support character strings. Again,
we do not have to modify the existing classes. We implement this extension by the
StringAspect in Listing 3. Since the operator + now represents concatenation of
character strings, the around advice implements the behavior of the eval method.
If we compile the classes and the aspects in Listing 1 and 3, then the resulting
interpreter will correctly handle character strings.

The last step is to build an interpreter supporting both integers and character
strings. Some readers might expect that we could easily obtain the interpreter if
the two aspects IntegerAspect and StringAspect are compiled and woven together.
However, these two aspects conflict with each other, i.e. multiple advices are
woven at the same join point. The resulting behavior of the eval method is
different from our naive expectation. This paper deals with this unexpected
behavior of the combined advices, which we call advice interference. It is one
kind of aspect interference; other kinds of aspect interference such as [9] are out
of the scope of this paper.

If the two advices are combined, the resulting eval method cannot process all
acceptable ASTs. In AspectJ, when the eval method is called, the advice with
the highest precedence is executed. Suppose that IntegerAspect has the highest.



aspect IntegerAspect {
Object around(Plus t): target(t) && execution(Object Plus.eval()) {

Object lvalue = t.getLeft().eval();
Object rvalue = t.getRight().eval();
if (lvalue instanceof Integer && rvalue instanceof Integer) {

return (Integer)lvalue + (Integer)rvalue; // not for composition
} else {

return proceed(t);
}}}

aspect StringAspect {
Object around(Plus t): target(t) && execution(Object Plus.eval()) {

Object lvalue = t.getLeft().eval();
Object rvalue = t.getRight().eval();
if (lvalue instanceof String || rvalue instanceof String) {

return lvalue.toString() + rvalue.toString(); // not for composition
} else {

return proceed(t);
}}}

Listing 4. A composable version of the conflicting advices

Then the eval method does not process the AST e constructed by the following
code:

Expression e = new Plus(

new Constant("Hello "), new Constant("world!"));

It will throw ClassCastException since the operands are character strings but the
around advice in IntegerAspect assumes that the operands are integer values.
Changing the precedence order does not solve this problem. In AspectJ, we can
explicitly specify precedence. For example,

declare precedence: StringAspect, IntegerAspect;

this declaration specifies that StringAspect has higher precedence than Inte-
gerAspect. The eval method now returns an unexpected value when the AST
e2 shown below is evaluated:

Expression e2 = new Plus(new Constant(1), new Constant(2));

The returned value will be a character string ”12” although both operands are
integer values.

2.2 An Incomplete Solution in AspectJ

A partial solution of the problem above is to make advices composable by lin-
earization. Since AspectJ provides proceed calls, we can reimplement advices and
connect them by proceed to make a single chain. If proceed is called in an advice
body, it invokes the advice with the next highest precedence in the chain. If
there is no other advice, the original computation at the join point is executed.

Listing 4 shows the result of the reimplementation to use the linearization.
The resulting code can be regarded as an AspectJ version of the chain of re-
sponsibility pattern. Now the two around advices call proceed to invoke the next



aspect IntegerStringAspect {
Object resolver plusEvalIntStr(Plus t)

and(IntegerAspect.plusEvalInt(t), StringAspect.plusEvalStr) {
Object lvalue = t.getLeft().eval();
Object rvalue = t.getRight().eval();
if (lvalue instanceof String || rvalue instanceof String) {

return [StringAspect.plusEvalStr].proceed(t);
} else if (lvalue instanceof Integer && rvalue instanceof Integer) {

return [IntegerAspect.plusEvalInt].proceed(t);
} else {

throw new RuntimeException();
}}}

Listing 5. The aspect for combining IntegerAspect and StringAspect

advice when they cannot deal with the given operands. Although the combina-
tion of some advices requires an explicit declaration of the precedence order for
linearization, the two aspects in Listing 4 do not require it; they correctly work
under any precedence order. The interpreter containing these two aspects can
deal with the AST constructed by this code:

Expression e = new Plus(new Constant("Str") + new Constant("1"));

However, this solution is not satisfactory from the software engineering view-
point. Programmers need global reasoning for combining advices; they must be
aware of other (maybe unknown yet) advices. Furthermore the implementation
of each advice body includes the composition code for linearization, which con-
nects it to other advices. Programmers have to design a composition protocol
for the advice chain before implementing each advice body. The protocol design
is not easy since the advices must be able to correctly work with and without
other advices.

The composition is a crosscutting concern. Note that most statements in
Listing 4 are for the composition by the linearization. Only the two return state-
ments marked by a comment implement the behavior of the eval method in the
Plus class. The composition code scatters over the two advices.

3 A New Approach for Resolving Interference

To resolve the problem mentioned above, we propose a novel language extension
of AspectJ. This new language named Airia allows programmers to separately
describe how to resolve advice interference. Instead of the conflicting advices
themselves, the resolving code is described in a new kind of around advice called
a resolver. Hence the implementation of each conflicting advice is independent
of the other conflicting advices and their composition protocol.

Listing 5 is an example of an aspect including a resolver. It resolves the
advice interference presented in the previous section. Details of this resolver are
mentioned below. Since the resolving code is separated into this resolver, the
conflicting advices do not include the code for composition or resolution of the
interference. See Listing 6, which presents the three conflicting advices written



aspect Evaluation {
public Object Expression.eval() {

return null;
}}

aspect IntegerAspect {
Object around plusEvalInt(Plus t): target(t) && execution(Object Plus.eval()) {

return (Integer)t.getLeft().eval() + (Integer)t.getRight().eval();
}}

aspect StringAspect {
Object around plusEvalStr(Plus t): target(t) && execution(Object Plus.eval()) {

return t.getLeft().eval().toString() + t.getRight().eval().toString();
}}

Listing 6. The aspects written in our language

in our language. They are simpler than the composable version of the aspects
shown in Listing 4. They are the same as the original aspects in Listing 2 and
3 except that every advice has a unique name. These advice names are used by
the resolver.

A resolver is composable. Programmers can write a resolver that resolves
interference among other resolvers and normal advices. Suppose that we write
a new aspect EvaluationCacheAspect and its advice causes interference with the
advices of IntegerAspect and StringAspect. For these three conflicting advices, we
can write a new resolver by reusing the existing resolver of IntegerStringAspect.
Since the resolver of IntegerStringAspect deals with the advice interference be-
tween IntegerAspect and StringAspect, the new resolver will be declared to deal
with the interference between the resolver of IntegerStringAspect and the new
advice of EvaluationCacheAspect. The implementation of that new resolver will
call proceed to execute the resolver of IntegerStringAspect.

3.1 A Resolver

A resolver is a special around advice, which is declared with a keyword resolver
instead of around. The syntax of resolver declaration is the following:

RetrunType resolver ResolverName(ArgumentType ArgumentName, ...)

and|or(ConflictingAdviceName[(BoundArgumentName, ...)], ...)

[uses HelperAdviceName, ...] { Body }

The resolver keyword is followed by a resolver name. A parameter list to the
resolver follows the resolver name if any. Unlike normal advices in AspectJ, it
does not take a pointcut but it takes an and/or clause, which specifies a list of
potentially conflicting advices. The resolver is expected to resolve interference
among these advices. Except the resolver keyword, its name, and the and/or
clause, a resolver is the same as an around advice. The return type of a resolver
is Object if the join points bound to the resolver have different return types. The
body of the resolver may include a proceed call.



In Listing 5, a resolver is named plusEvalIntStr and takes an and clause,
which lists the names of the around advices in the two aspects IntegerAspect and
StringAspect. Note that an advice also has a unique name. See Listing 6. The
IntegerAspect aspect has an advice named plusEvalInt and the StringAspect has an
advice named plusEvalStr. IntegerAspect.plusEvalInt and StringAspect.plusEvalStr
are their fully-qualified names.

The join points when a resolver is executed are specified by an and/or clause.
Since the resolver in Listing 5 has an and clause, it is executed at the join points
that all the given advices are bound to, that is, when the eval method in the Plus
class is executed. Note that those advices of the two aspects IntegerAspect and
StringAspect conflict at those join points. A resolver has higher precedence than
the advices specified by its and/or clause. Hence, it overrides all the conflicting
advices at the join points. In our example, when the eval method in the Plus
class is called, the body of the resolver is executed first.

The advices given to the and/or clause of a resolver work as pointcuts. Thus,
a resolver can take parameters and pass them to those advices. For example,
the resolver in Listing 5 takes a parameter t and passes it to the advice in the
IntegerAspect. The parameter t is bound to the value that this advice binds its
parameter to, that is, the target object of the call to the eval method.

A resolver may have an or clause. This specifies that the resolver is executed
at the join points that at least one advice given to the or clause is bound to.
For example, the next resolver is executed at the join points that only the two
advices A and B are bound to but C is not:

Object resolver precedence() or(A, B, C) {

return [A, B, C].proceed();

}

The or clause can be used for specifying precedence order among advices as we
do with declare precedence in AspectJ. The resolver shown above specifies that
the precedence order is A, B, and C. [A, B, C].proceed() executes the three
advices in that order (we below mention this proceed call again).

We introduced an or clause for reducing the number of necessary resolvers.
If we could not use an or clause, we would have to define many resolvers for
all possible combinations of potentially conflicting advices. Suppose that we
have three advices A, B, and C. We would have to define resolvers for every
combination: A and B, B and C, C and A, and all the three, if they conflict at
different join points. Since we expect that those combinations would share the
same body, using an or clause would reduce the number of resolvers we must
describe.

To be precise, the join points selected by an and/or clause are the intersec-
tion/union of the join point shadow [14] selected for the advices given to that
and/or clause, respectively. Dynamic pointcuts such as cflow and target are ig-
nored. Thus, a resolver may be executed at the join points that the advices in
its and/or clause are not bound to.

We adopted this language design since it is extremely difficult to detect con-
flicts among advices even at runtime. Since an advice in AspectJ can change



the dynamic contexts, after its body is executed, an advice with a lower prece-
dence than that advice may be removed from the set of the executable advices at
that point. Suppose that the pointcut of an advice includes if(Expr.flag) and the
value of Expr.flag is true. If an advice with higher precedence than that advice
sets Expr.flag to false before calling proceed, the advice with if(Expr.flag) will not
be executed by the proceed call.

3.2 A Proceed Call with Precedence

Like a normal advice, a resolver can call proceed to invoke another advice with
the next highest precedence. The proceed call from a resolver explicitly specifies
the precedence order of the advices given to the and/or clause, which will be
invoked by the proceed call. Note that unlike AspectJ our language Airia does not
provide declare precedence. The precedence order is described between brackets
preceding .proceed.

Suppose that there are two advices A and B and they conflict at the join
point selected by a pointcut pc(). We assume that there is no other advices.
Then a resolver AorB can call proceed twice with different precedence order:

void resolver AorB() or(A, B) {

[A, B].proceed();

[B, A].proceed();

}

pointcut pc(): ...;

void around A(): pc() {

proceed();

}

void around B(): pc() {

proceed();

}

When [A, B].proceed() is called, A is invoked. B is invoked by the proceed call
in A. The proceed call in B executes the original computation at the join point.
On the other hand, when [B, A].proceed() is called, B is invoked. A is the next.
Note that [A, B].proceed() does not mean that A and then B. It means that A
has higher precedence than B; A or B may not be executed when their pointcuts
do not match the current join point.

The proceed call can remove advices from the set of the remaining advices,
which will be invoked by later proceed calls. If the advice list between brackets
does not include an advice given to the and/or clause, the advice is removed.
In Listing 5, both proceed calls remove one advice. The former removes Inte-
gerAspect.plusEvalInt and the other removes StringAspect.plusEvalStr. For exam-
ple, [IntegerAspect.plusEvalInt].proceed() invokes the plusEvalInt advice in Inte-
gerAspect and then, if it calls proceed again, the original eval method is invoked.
The plusEvalStr advice in StringAspect is never invoked.



aspect EvaluationCacheAspect {
Object Expression.cachedValue;
boolean Expression.isChanged = false;
void around plusEvalCache(Expression t): execution(Object Plus.eval()) && args(t) {

if (t.isChanged) {
cachedValue = proceed(t);
isChanged = false;

}
return cachedValue;

}
after changed(): ... {

isChanged = true;
}}

Listing 7. The EvaluationCacheAspect aspect

aspect IntegerStringCacheAspect {
Object resolver evalIntStrCache():

and(IntegerStringAspect.evalIntStr, EvaluationCacheAspect.plusEvalCache)
return [EvaluationCacheAspect.plusEvalCache,

IntegerStringAspect.evalIntStr].proceed();
}}

Listing 8. A resolver resolving conflicts between a normal advice and another
resolver

3.3 Composability of Resolvers

A resolver, which is a special around advice, may also conflict with other resolvers
or normal advices. This conflict can be also resolved by another resolver; a
resolver is composable. An advice given to an and/or clause may be a resolver. A
proceed call with precedence specifies precedence order among conflicting advices
and/or resolvers.

Let us consider a new advice shown in Listing 7. The join point of this ad-
vice is the execution of the eval method. Thus, this advice conflicts with the two
advices in IntegerAspect and StringAspect shown in Listing 2 and 3. Since the
conflict between these two advices has been already resolved by the resolver in
IntegerStringAspect, we reuse this resolver to resolve the conflicts among the new
advice and these two advices. See Listing 8. This resolver in IntegerStringCacheA-
spect has an and clause, which lists the new advice in EvaluationCacheAspect and
the resolver in IntegerStringAspect. It resolves conflicts between the advice and
the resolver.

The behavior of a resolver for another resolver is the same as normal resolvers.
When the eval method is called, this resolver in IntegerStringCacheAspect is in-
voked first since it has higher precedence than the other advices and resolver.
When this resolver calls proceed with precedence, the advice with the next high-
est precedence is executed, which is the advice in EvaluationCacheAspect. After
that if the advice calls proceed, the resolver in IntegerStringCacheAspect is ex-
ecuted. Note that this resolver does not explicitly describe how the conflicts
between IntegerAspect and StringAspect are resolved. It is encapsulated in the



Table 1. A summary of precedence relations declared by constructs in Airia

Construct Precedence relations

Type resolver R() and/or(A, B, C) R ≺ A, R ≺ B, R ≺ C
[A, B, C].proceed() A ≺ B, B ≺ C

resolver of IntegerStringAspect. The composition of IntegerStringCacheAspect is
hierarchical.

Existing resolvers can be overridden when it cannot be reused. To implement
a new resolver that changes the precedence order given by another resolver, pro-
grammers explicitly remove the other resolver. For example, if a new resolver
requires the resolver in IntegerStringAspect should have higher precedence
than the advice in EvaluationCache, the resolver in IntegerStringCacheAspect
is removed by the same way that a resolver removes a normal advice. The re-
moved resolver is not executed; the new resolver can define a new precedence
order among the advices that were resolved by the removed one.

Unlike declare precedence in AspectJ, a resolver can flexibly modify prece-
dence order among conflicting advices even during runtime by a proceed call
with precedence. Thus, declare precedence is not available in our language Airia.
The precedence order must be explicitly specified; there is no default precedence
order unlike AspectJ.

3.4 A Compile Time Check of Conflict Resolution

Our language Airia requires that all conflicts among advices should be explicitly
resolved by resolvers. Our compiler checks this requirement at compile time.
If programmers declare inconsistent precedence or forget to specify precedence
among advices, then our compiler will report errors.

To enable statically checking whether conflicts are resolved or not, our defi-
nition of conflict is conservative like AspectJ. If advices partly share their join
point shadow, they conflict. Due to our specification mentioned in Section 3.1,
a resolver cannot have dynamic residue. Thus our compiler can statically deter-
mine conflicting advices at every join point shadow and the resolvers executed
at that shadow.

Our compiler recognizes that a conflict has been resolved if the advice or
resolver with the next highest precedence is always determinable. Also the high-
est resolver executed first at the join point must be uniquely determined. Recall
that, in our language Airia, constructs that declare precedence order are a re-
solver and a proceed call with precedence as summarized in Table 1. The and/or
clause declares that the resolver has higher precedence than the advices or re-
solvers specified in it. Then the proceed call declares precedence order as specified
between its brackets. This declarations are effective only in the remaining chain
of advices. Here we use a binary relation; X ≺ Y represents that X has higher



precedence than Y. This relation is transitive, i.e., if X ≺ Y and Y ≺ Z then X
≺ Z. It must be total order; otherwise, it causes an error. Suppose three advices
A, B, C and the following resolvers:

void resolver R() and(A, C, S) {

[S, C, A].proceed();

}

void resolver S() and(A, B) {

[A, B].proceed();

}

They conflict at the same join point shadow and no other advices nor resolvers
exists. The first executed resolver is R because of R ≺ S given by the and clause
of R. After S is invoked by the proceed call in R, the proceed call in S invokes
C. This is because of S ≺ C and C ≺ A given by the proceed call in R. Thus
this conflict is resolved. On the other hand, if we rewrite R as follows, then the
conflict is not resolved:

void resolver R() and(C, S) {

[S, C].proceed();

}

The declared relations are only R ≺ S, S ≺ C, S ≺ A, and A ≺ B; there is no
precedence order between A and C.

The precedence order declared by a and/or clause cannot be removed. Even if
S is removed by another resolver in the example above, S ≺ A and S ≺ B are still
effective. Without this rule, the check of conflict resolution would be extremely
complicated. The following resolvers would be valid:

void resolver T() and(U, D) {

[D].proceed(); //remove U

}

void resolver U() and(T, D) {

[D].proceed(); //remove T

}

They declare T ≺ U and U ≺ T and thus the precedence order seems to have a
cycle. However, if we first pick up T, since T removes U, the result would be only
T ≺ U and T ≺ D, which has no cycle. On the other hand, if we first pick up U,
since U removes T, the result would be different precedence order including no
cycle. We have introduced the rule to avoid this complication and ambiguity.

Some resolvers include multiple proceed calls declaring different precedence
order. The next advice invoked at a proceed call is determined dependently on
the chain of proceed calls executed so far at the current join point. Our compiler
checks conflict resolution along every conservatively possible control path. Please
refer to our companion paper [17] for more detail.



aspect TraceLogging {
before log(): ... {

Logger.getInstance().debug(thisJoinPointStaticPart.toString());
}}

aspect ArgumentLogging {
before log(): ... {

Object[] args = thisJoinPoint.getArgs();
Logger.getInstance().debug("Arguments: " + Arrays.toString(args));

}}

Listing 9. Two aspects for logging

aspect LoggingWithSync {
before lock() {

Logger.getInstance().lock(); //reentrant lock
}
before unlock() {

Logger.getInstance().unlock();
}

void resolver sync()
and(TraceLogging.log, ArgumentLogging.log) uses lock, unlock {

[lock, TraceLogging.log, ArgumentLogging.log, unlock].proceed();
}}

Listing 10. A resolver for synchronizing two aspects

3.5 A Helper Advice

A resolver can add a new advice for helping composition. Since a resolver has
higher precedence than conflicting advices, the added advice is normally given
intermediate precedence among those conflicting advices.

Suppose that we have two logging aspects shown in Listing 9. The advice in
the TraceLogging aspect records executed methods during program execution.
The ArgumentLogging aspect records the values of arguments when a method is
invoked. If the precedence order specifies that TraceLogging is executed before
ArgumentLogging, then a printed method name is followed by argument values.
However, if a program is multi-threaded, the two advices must be synchronized.
Otherwise, printed log messages will be interleaved as the following:

[DEBUG] execution(Object Main.run(String))

[DEBUG] execution(void Test.test())

[DEBUG] Argument: []

[DEBUG] Argument: [--debug]

Here, the fourth line shows the value of the argument to the run method.
Listing 10 shows a resolver for synchronizing the two logging advices. This

resolver uses two helper advices lock and unlock. Note that this resolver has a
uses clause, which specifies the helper advices for that resolver. The pointcut of
a helper advice is not explicitly specified; a helper advice is bound to the same
join points that the resolver using that helper advice is bound to. The helper
advices are included in the precedence order of proceed. In Listing 10, the lock



aspect IntegerStringAspect {
Object around(Plus t): execution(Object Plus.eval()) && target(t) {

Object lvalue = t.getLeft().eval();
Object rvalue = t.getRight().eval();
if (lvalue instanceof String || rvalue instanceof String) {

return lvalue.toString() + rvalue.toString();
} else if (lvalue instanceof Integer && rvalue instanceof Integer) {

return (Integer)lvalue + (Integer)rvalue;
} else {

throw new RuntimeException();
}}
declare precedence: IntegerStringAspect, IntegerAspect, StringAspect;

}

Listing 11. Another incomplete solution in AspectJ

advice is given the highest precedence while the unlock advice is given the lowest
precedence among the four advices. Thus, the lock advice acquires a lock, the
logging advices print messages, and then the unlock releases before the method
logged by the aspects is executed. Without these helper advices, the resolver
could not implement synchronization since it had to release a lock between the
logging advices and the logged method but the resolver automatically obtains
higher precedence than the logging advices.

Multiple resolvers may use the same helper advice. If those resolvers are
bound to the same join points, that helper advice is executed only once at every
join point (shadow). If a resolver removes another resolver using a helper advice,
that helper advice is not removed together. It must be explicitly removed.

3.6 Discussion

A resolver does not take a normal pointcut but an and/or clause — a list of
conflicting advices. It can call proceed with precedence. These are unique fea-
tures of our language Airia. To clarify their benefits, we show another aspect
in Listing 11. Like the aspect written in Airia, this aspect does not require us
to modify the conflicting aspects in Listing 2 and 3. We wrote this aspect in
AspectJ to be similar to the aspect written in Airia shown in Listing 5. The
aspect has a normal around advice. We manually translated the and clause of
the resolver into a normal pointcut for this around advice. In the body of this
around advice, we also manually inlined the body of the conflicting advices since
a proceed call with precedence is not available.

This aspect has two drawbacks. First, the pointcut of the advice is fragile.
We will have to modify the pointcut of this advice when the pointcuts of the
conflicting advices are modified. Second, the body of this advice contains code
duplication since we manually inlined the body of the conflicting advices. We will
also have to modify the advice body when the bodies of the conflicting advices
are modified. The aspect written in Airia does not have these problems.



4 Implementation

We have implemented an Airia compiler by extending an AspectJ compiler
named the AspectBench compiler (abc). Its front-end is implemented as an
extension of the JastAddJ extensible compiler. The extension to abc is imple-
mented by aspects like the example in Section 2.

The current implementation of our compiler does not support the same level
of optimization as abc. Unlike abc, our proceed call is implemented only by using
closure objects. The size of generated code could be large. A closure is created for
each proceed call of every path of advice chain because the selection of invoked
advice by the proceed call depends on which proceed calls have been executed at
the join point.

5 Related Work

Resolving aspect interference for aspect composition is a classic research topic
and hence there have been a number of proposals. For example, Douence et
al. proposed an approach for detecting and resolving conflicts between aspects
on their formal framework, Stateful Aspect [6, 7]. Their approach is making
a composition operator extensible so that the operator will generate correctly
merged behavior when the operands are conflicting with each other. Although
this approach is similar to ours, we provide a single composition operator (i.e. a
resolver) but we do not make the semantics of the operator extensible. We also
propose an extension of AspectJ based on our approach.

Most previous approaches are categorized into meta programming. POPART
[5] provides a meta-aspect protocol. Advice composition can be dynamically
customized by an instance of MetaAspectManager. Programmers can define an
appropriate MetaAspectManager to implement a custom composition policy for
resolving conflicts among particular advices. JAsCo [16] also provides a mech-
anism like this. However, meta programming is often complicated and difficult.
Thus, in OARTA [13], the ability for meta programming is restricted. For resolv-
ing aspect interference, OARTA allows an advice to modify only the pointcut of
another advice. On the other hand, our approach does not need meta program-
ming. A resolver is a special around advice but it is still a base-level language
construct.

Context-Aware Composition Rules [11, 12] allows programmers to control
precedence order among advices for every join point. It also allows removing an
existing advice at some join points. However, as we mentioned in Section 2, some
kinds of advice interference cannot be resolved by only reordering advices. On
the other hand, our language Airia also provides the ability for adding a new
advice only at the join points where advices are conflicting with each other.

Reflex [18] is an infrastructure for building an aspect system. It provides an
application-programming interface (API) for implementing a new policy for ad-
vice composition. Programmers can exploit this API for customizing the aspect
system to resolve conflicts among particular advices. On the other hand, our



language Airia provides a base-level language construct for resolving conflicts.
The users of Airia do not have to consider the implementation of the language.

Aspect refinement and mixin-based aspect inheritance [2, 3] enable program-
mers to incrementally extend the behavior of an existing advice. JastAdd also
supports refinement. On the other hand, our language Airia enables extending
the behavior of a combination of multiple advices.

The relationship between an around advice and the original computation
at the join point is similar to the relationship between a mixin and a class. A
proceed call corresponds to a super call. The former executes the next advice
or the original computation while the latter executes the method in the next
mixin or class. While advice interference is a problem, interference among mixins
given to the same class is also a problem. Traits [15] is a solution for mixin
interference. Our approach can be regarded as an application of the idea of traits
to aspects. Both approaches allow programmers to define a new advice/method
for overriding advices/methods and resolving their conflicts.

6 Conclusion

We presented a language extension of AspectJ. This language named Airia can
resolve interference among conflicting advices, which we could not satisfactorily
resolve in original AspectJ. Airia enables programmers to separate composition
code into an independent resolver, which is a new kind of advice. A resolver is
composable. It can resolve interference between another resolver and an advice.
We have implemented an Airia compiler by extending the AspectBench compiler
using JastAdd.

Our future work includes improving the expressive power of proceed calls.
There are some proposals such as [1], which are used to detect whether or not
advices are commutative, i.e. whether or not their combined behavior is inde-
pendent of their precedence order. In the current design of Airia, programmers
have to explicitly specify the precedence order among advices even though they
are commutative. This is annoying.

References

1. Aksit, M., Rensink, A., Staijen, T.: A graph-transformation-based simulation ap-
proach for analysing aspect interference on shared join points. In: AOSD ’09: Pro-
ceedings of the 8th ACM international conference on Aspect-oriented software
development. pp. 39–50. ACM, New York, NY, USA (2009)

2. Apel, S., Leich, T., Saake, G.: Aspect refinement and bounding quantification
in incremental designs. Asia-Pacific Software Engineering Conference 0, 796–804
(2005)

3. Apel, S., Leich, T., Saake, G.: Mixin-based aspect inheritance. In: Technical Report
Number 10. Department of Computer Science, University of Magdeburg, Germany
(2005)



4. Avgustinov, P., Christensen, A.S., Hendren, L., Kuzins, S., Lhoták, J., Lhoták, O.,
de Moor, O., Sereni, D., Sittampalam, G., Tibble, J.: abc: an extensible AspectJ
compiler. In: AOSD ’05: Proceedings of the 4th international conference on Aspect-
oriented software development. pp. 87–98. ACM, New York, NY, USA (2005)

5. Dinkelaker, T., Mezini, M., Bockisch, C.: The art of the meta-aspect protocol.
In: AOSD ’09: Proceedings of the 8th ACM international conference on Aspect-
oriented software development. pp. 51–62. ACM, New York, NY, USA (2009)

6. Douence, R., Fradet, P., Südholt, M.: A framework for the detection and resolution
of aspect interactions. In: GPCE ’02: Proceedings of the 1st ACM SIGPLAN/SIG-
SOFT conference on Generative Programming and Component Engineering. pp.
173–188. Springer-Verlag, London, UK (2002)

7. Douence, R., Fradet, P., Südholt, M.: Composition, reuse and interaction analysis
of stateful aspects. In: AOSD ’04: Proceedings of the 3rd international conference
on Aspect-oriented software development. pp. 141–150. ACM, New York, NY, USA
(2004)

8. Ekman, T., Hedin, G.: The JastAdd extensible Java compiler. In: OOPSLA ’07:
Proceedings of the 22nd annual ACM SIGPLAN conference on Object-oriented
programming systems and applications. pp. 1–18. ACM, New York, NY, USA
(2007)

9. Havinga, W., Nagy, I., Bergmans, L., Aksit, M.: A graph-based approach to mod-
eling and detecting composition conflicts related to introductions. In: AOSD ’07:
Proceedings of the 6th international conference on Aspect-oriented software devel-
opment. pp. 85–95. ACM, New York, NY, USA (2007)

10. Kiczales, G., Hilsdale, E., Hugunin, J., Kersten, M., Palm, J., Griswold, W.G.:
An overview of AspectJ. In: ECOOP ’01: Proceedings of the 15th European Con-
ference on Object-Oriented Programming. pp. 327–353. Springer-Verlag, London,
UK (2001)

11. Marot, A., Wuyts, R.: Composability of aspects. In: SPLAT ’08: Proceedings of the
2008 AOSD workshop on Software engineering properties of languages and aspect
technologies. pp. 1–6. ACM, New York, NY, USA (2008)

12. Marot, A., Wuyts, R.: A DSL to declare aspect execution order. In: DSAL ’08:
Proceedings of the 2008 AOSD workshop on Domain-specific aspect languages.
pp. 1–5. ACM, New York, NY, USA (2008)

13. Marot, A., Wuyts, R.: Composing aspects with aspects. In: AOSD ’10: Proceedings
of the 9th International Conference on Aspect-Oriented Software Development. pp.
157–168. ACM, New York, NY, USA (2010)

14. Masuhara, H., Kiczales, G., Dutchyn, C.: Compilation semantics of aspect-oriented
programs. In: Proc. of Foundations of Aspect-Oriented Languages Workshop. pp.
17–26. AOSD 2002 (2002)

15. Schärli, N., Ducasse, S., Nierstrasz, O., Black, A.P.: Traits: Composable units of
behaviour. In: ECOOP 2003 – Object-Oriented Programming. pp. 327 – 339 (2003)

16. Suvée, D., Vanderperren, W., Jonckers, V.: JAsCo: an aspect-oriented approach
tailored for component based software development. In: AOSD ’03: Proceedings
of the 2nd international conference on Aspect-oriented software development. pp.
21–29. ACM, New York, NY, USA (2003)

17. Takeyama, F.: A new kind of advice for advice composition without interference.
Master’s thesis, Tokyo Institute of Technology, Japan (2010)

18. Tanter, É.: Aspects of composition in the Reflex AOP kernel. In: Software Compo-
sition. Lecture Notes in Computer Science, vol. 4089, pp. 98–113. Springer Berlin
/ Heidelberg (2006)


