An Advice for Advice Composition
In Aspect)

Fuminobu Takeyama
Shigeru Chiba

Tokyo Institute of Technology, Japan

2010/07/01 Fuminobu Takeyama, Shigeru Chiba, An Advice for Advice Composition in AspectJ, SC2010

AQOP: Aspect Oriented Programming

Application = Classes + Aspects
ex) JastAddJ [T. Ekman, et al, OOPSLA 07]
* Classes represents ASTs and aspects implement evaluation

Programmers can extend an application by reusing original one
* No need to modify existing code

Classes ASTNode | XXEvaluation Aspects
Object eval() ~

Object around():..
_«~ = T0bject around():..

Object eval().”
o

IntegerAspect
Object around() :..

b ,
y . StringAspect
Object eval() Object eval() -~

Object around() :..

2010/07/01 Fuminobu Takeyama, Shigeru Chiba, An Advice for Advice Composition in AspectJ, SC2010

An aspect-oriented development scenario

2 programmers extends the interpreter by aspects

IntegerAspect
Object around():..

¢

An aspect for supporting
integer values

.Z.
— -

StringAspect
Object around():..

ik

An aspect for supporting
character strings

How can we get an interpreter supporting integers and

strings?

Naive implementation of aspects above cause interference

2010/07/01

Fuminobu Takeyama, Shigeru Chiba, An Advice for Advice Composition in AspectJ, SC2010

Aspect interference: a crucial issue in AOP

Conflict may cause aspect interference

Aspects show unexpected behaviour
even if each aspects are correct

Conflict: multiple advices are woven into the same join point

“AOP is useless because aspects conflict”

m PP IntegerAspect
-
Ve Object around() :..

StringAspect
Weave Object around():..

Object eval()

2010/07/01 Fuminobu Takeyama, Shigeru Chiba, An Advice for Advice Composition in AspectJ, SC2010

Existing approaches

Precedence rule does not work

Considering composition when writing aspects

Programmers must design each advices so that they works with
other advices
proceed calls executes the advice that has next precedence

Other advices might be unknown
The author of IntegerAspect does not know StringAspect

2010/07/01 Fuminobu Takeyama, Shigeru Chiba, An Advice for Advice Composition in AspectJ, SC2010

Composition-aware code

Composition code scatters over aspects

IntegerAspect composition code!

aspect IntegerAspect { ¥
Object around(Plus t): target(t) && execution(Object Plus.eval()) {
Object left = t.getlLeft().eval(); [

Object right = t.getlLeft().eval();

if (left instanceof Integer && right instanceof Integer) {
return (Integer)left + (Integer)right;

} else {
return proceed(t);

11}

aspect StringAspect {
Object around(Plus t): target(t) && execution(Object Plus.eval()) {
Object left = t.getLeft().eval();
Object right = t.getlLeft().eval();

if (left instanceof String || right instanceof String) {
return -l.efttOStrlng() + rlghttOStrlng(), CompOS|t|0n Code!
} else {

return proceed(t);

139

2010/07/01 Fuminobu Takeyama, Shigeru Chiba, An Advice for Advice Composition in AspectJ, SC2010

Airia: an extension of Aspect)

Describe composed behaviour as a special case by a
resolver

A resolver is executed only when advices conflict
Manually implemented

IntegerAspect

2010/07/01 Fuminobu Takeyama, Shigeru Chiba, An Advice for Advice Composition in AspectJ, SC2010

Resolver

A resolver selects join points by and/or clause

and: when all the specified advices are woven
or: when one of specified advices is woven

method Advice name_] E method

|5 void resolver RaB ()
and(A, B) {

void around A()

}."

void

mergerd behavior

JP
void of A and B
volid around B():..{ -
- }
}
- return

2010/07/01 Fuminobu Takeyama, Shigeru Chiba, An Advice for Advice Composition in AspectJ, SC2010

Proceed call with precedence 1/2

Resolver can reuse existing advices by proceed call

The advice with the next highest precedence is invoked

Can change precedence depending on dynamic context
The advice invoked by proceed call changes

>
void around B():..{ void around A():..{ ! void resolver AB and(A, B)
proceed(); < > proceed(); { :
} } 1t () o
Lv) [A, B].proceed();
void around A():..{ void around B() :.{" ! [eBlseA]{ proceed();
proceed(); <€ > proceed(); | P '
} } J’a}}

<€

2010/07/01 Fuminobu Takeyama, Shigeru Chiba, An Advice for Advice Composition in AspectJ, SC2010

Proceed call with precedence 2/2

Can also remove advices from remaining advices

To overwrite existing advices

The advices given in and/or clause but not on proceed call are
removed

Removed! >
VOid resolver AB and(A, B)

void around A(I~ lf () {

. 5l " roceed() M [A].proceed();
}

2010/07/01 Fuminobu Takeyama, Shigeru Chiba, An Advice for Advice Composition in AspectJ, SC2010

Precedence relation is simple in Airia

Only 2 precedence declaration mechanisms in Airia

A resolver has higher precedence than advices in and/or
void resolver A(): and(B, C, D) {..}

—>A precedes B, C, and D

A proceed call with precedence
[B, C, D].proceed();

—>B precedes C and C precedes D

Airia does NOT support declare precedence etc.

2010/07/01 Fuminobu Takeyama, Shigeru Chiba, An Advice for Advice Composition in AspectJ, SC2010

Aspects are free from composition code

IntegerAspect and StringAspect in Airia
Advice name

aspect IntegerAspec «{
Object plusEvalInt around(Plus t):
target(t) && execution(Object Plus.eval()) {

return (Integer)t.getlLeft().eval() + (Integer)t.getRight().eval();

}
}

aspect StringAspect {
Object plusEvalStr around(Plus t):
target(t) && execution(Object Plus.eval()) {

return t.getlLeft().eval().toString() + t.getRight().eval().toString();

}
}

2010/07/01 Fuminobu Takeyama, Shigeru Chiba, An Advice for Advice Composition in AspectJ, SC2010

Complex composition code is here

The composition is defined in IntegerStringAspect

aspect IntegerStringAspect {
Object resolver plusEvalIntStr(Plus t)
and (IntegerAspect.plusEvalInt(t), StringAspect.plusEvalStr) {
Object lvalue = t.getLeft().eval();
Object rvalue = t.getRight().eval();
if (lvalue instanceof String && rvalue instanceof Integer ||
lvalue instanceof String && rvalue instanceof String) {
return [StringAspect.plusEvalStr].proceed(t);
} else if (lvalue instanceof Integer && rvalue instanceof Integer) {
return [IntegerAspect.plusEvallnt].proceed(t);
} else {
throw new RuntimeException();

11}

2010/07/01 Fuminobu Takeyama, Shigeru Chiba, An Advice for Advice Composition in AspectJ, SC2010

Resolvers are composable 1/2

A resolver can resolve a conflict among resolvers and
advices

Let’s consider new advice in CacheAspect
Conflicts with IntegerStringAspect

method
IntegerAspect

StringAspect

JP

= ConflictLI - 'ntegerStringAspect
o\

CacheAspect

2010/07/01 Fuminobu Takeyama, Shigeru Chiba, An Advice for Advice Composition in AspectJ, SC2010

Resolvers are composable 2/2

The existing resolver and advices can be reused
Using a proceed call with precedence

[Conflict of a normal
advice and a resolver

method
) . IntegerStringCacheAspect
| >
Resused! void resolver plusEISC()
ond (154 plusEvalIntstr,
. e £ CA.plusEvalCache) {

>
plusEvalIntStr
<P €1 [...].proceed();

}

StringAspect

i

2010/07/01 Fuminobu Takeyama, Shigeru Chiba, An Advice for Advice Composition in AspectJ, SC2010

Compile time check of conflict resolution 1/2

All conflict among advices must be resolved by resolvers

However there is some runtime factors

Limitation for enabling compile time check

Static conflict: overlap of shadow

Our checking algorithm is conservative
All control statements such as 1f are ignored
All possible control path

2010/07/01 Fuminobu Takeyama, Shigeru Chiba, An Advice for Advice Composition in AspectJ, SC2010

Compile time check of conflict resolution 2/2

OK Compile error
void resolver R() and(A, C, S) { volid resolver R() and(C, S) {
if (flag) { if (flag) {
[S, C, A].proceed(); [S, C].proceed();
} }
} }
void resolver S() and(A, B) { volid resolver S() and(A, B) {
[A, B].proceed(); [A, B].proceed();
} }
R becauseR<S R<S
S because S<C However there is no
C becauseC<A precedence order between
A because A<B Aand C
B

X <Y means X precedes Y

2010/07/01 Fuminobu Takeyama, Shigeru Chiba, An Advice for Advice Composition in AspectJ, SC2010

Ideas of Airia

Aspects are free from composition code

Separating composition code into a resolver

Resolvers are composable

Resolvers can be resolved in the same way with normal advices

Precedence relation is checked statically

2010/07/01 Fuminobu Takeyama, Shigeru Chiba, An Advice for Advice Composition in AspectJ, SC2010

Related work

Stateful aspect [R. Douence, et al, GPCE 02 & AOSD 04]
Programmers can define composition operator that explicitly
replace conflict with composed behaviour
Airia provides new language constructs into Aspect)

Context-Aware Composition Rules

[A. Marot, et al, DSAL 08 and SPLAT 08]
provides an advice-like construct for specifying precedence at
selected join points
Some composition of advices requires additional code

2010/07/01 Fuminobu Takeyama, Shigeru Chiba, An Advice for Advice Composition in AspectJ, SC2010

Related work

Existing meta programming approaches for composition

POPART [T. Dinkelaker, et al, AOSD 09],
JAsCo [D. Suvée, et al, AOSD 03]

Change precedence at runtime when conflict

OARTA [A. Marot, et al, AOSD 10]

Provides construct for modifying pointcuts of already defined advices
They does not support composition of composition code

Traits [N. Scharli, et al, ECOOP 03]

resolved similar problem of mixin inheritance in OOP
Method conflicts must be explicitly resolved by overriding the

methods
We are inspired by this idea

2010/07/01 Fuminobu Takeyama, Shigeru Chiba, An Advice for Advice Composition in AspectJ, SC2010

Conclusion

Resolvers
proceed calls with precedence

A resolver defines composed behaviour as a special case
Advices are free from composition code

The Airia compiler is available
http://www.csg.is.titech.ac.jp/projects/airia/

2010/07/01 Fuminobu Takeyama, Shigeru Chiba, An Advice for Advice Composition in AspectJ, SC2010

