A New Kind of Advice for Advice Composition
without Interference

FHEDIZNT RINA ZDEXDIZHDH L WT R/NA X

by

Fuminobu Takeyama
Kl x5
08M37195

February 26, 2010

A Master’s Thesis Submitted to
Department of Mathematical and Computing Sciences
Graduate School of Information Science and Engineering

Tokyo Institute of Technology

In Partial Fulfillment of the Requirements
for the Degree of Master of Science.

Supervisor: Shigeru Chiba

Copyright (© 2010 by Fuminobu Takeyama. All Rights Reserverd.

Abstract

Aspect composition often involves aspect interference and this is a crucial
problem in aspect oriented programming. When multiple advices are woven
at the same join point, the advices often interfere with each other. In this
thesis, we handle this interference called advice interference.

Since advices are executed one by one in the order of precedence, giv-
ing appropriate precedence order among the conflicting advices is a typical
solution of advice interference. In AspectJ, declare precedence is provided
to control this. More powerful mechanisms that allow fine-grained control
have been proposed.

However some combinations of advices have no correct precedence order
with which the resulting behavior is acceptable. To resolve the interference
among them requires additional implementation of their composition but
there is no way to separate the implementation from them. In AspectJ, the
composition have to be implemented in each conflicting advices, although
they modularize their own concerns.

In this thesis, we propose a novel language extension of AspectJ named
Airia to address this problem. It provides a new kind of around advice
named a resolver for resolving interference. Since it is invoked only at the
join points when given advices conflict with each other, it overrides the
advices and performs merged behavior of them. The resolvers can call an
extended version of proceed, which takes as an argument the precedence
order among those conflicting advices for reuse; unnecessary advices can
be removed. Then not only in the higher precedence than the conflicting
advices, an advice for the composition can be invoked by resolver at inter-
mediate precedence. This advice is called a helper advice. Furthermore, the
resolvers are composable. They can be used to resolve interference among
other resolvers and advices; so we can implement composition of advices
in hierarchical manner. We have implemented Airia extending the Aspect-
Bench compiler with JastAdd.

Acknowledgments

I would like to express my gratitude to my supervisor, Shigeru Chiba. He
took a lot of time to discuss with me every week. The discussion greatly
improved this work. He helped me write papers although he was very busy.

I also thank all the members of Chiba Shigeru Group. In particular,
Michihiro Horie suggested me what should I do when I started my re-
searches on aspect oriented programming. Shumpei Akai, Takeshi Asumi,
and Satoshi Morita have told me about various things including our group,
our campus, and our area of research since I came to Tokyo Institute of
Technology.

Contents

(1 _Introductionl

1.1 A problem with advice compostion|
[1.2 A Solution for advice composition without interterence|

(1.4 The structure of this thesis
|2 Background|
..............................
2.2 Related works|.o
[2.2.1 Statetul aspect|o
[2.2.2 Meta programming for advice composition|.
[2.2.3 Context-Aware Composition Rules|
P24 Reflex] o oo
[2.2.5 Aspect refinement|
[2.2.6 Interference in object-oriented programming|.
3 A Motivating Example|
3.1 A simple interpreter|
|3.2 An incomplete solution in Aspectd|
4 Resolving interference in Airia)

4.1 A Resolverl
4.2 A Proceed call with precedence|
4.3 Composability of resolvers|
4.4 A helperadvice]
4.5 Discussion| e

|4.5.1 Needs of our language constructs|

|4.5.2 Join points when a resolver is executed|

10
10
13

CONTENTS

6 Other examples|
6.1 A figure editor|
6.2 Combination of two authorization aspects|

|7 Implementation of Airial
7.1 The tront end of the compiler|

8 Conclusion|
[8.1 Summary|

Improvement of Airial
[8.2.2 Application to other languages|

ii

27
27
28
29

33
33
39

42
42
43

List of Figures

4.1 The syntax of helper advice declaration| 22
[5.1 A graph representing the precedence declared by the resolver|
............................. 30
5.2 Adding edges specified in the resolver T| 31
.3 Adding edges specified in the resolver Rl 32

iii

List of Tables

[>.1 Summary of precedence declared by constructs in Airia) . . . 27

iv

List of Listings

[3.1 Classes representing the AST| 11
3.2 An aspect for integer values|o 12
|3.3 An aspect for character strings| 12
[3.4 A composable version of the conflicting advices| 14
4.1 'The aspect for combining IntegerAspect and StringAspect|. . . 16
4.2 'The aspects written in our language| 17
4.3 The EvaluationCacheAspect| 20
4.4 A resolver resolving conflicts between a normal advice and|
lanother resolverl o oo 20
4.5 Two aspects for logging] 22
4.6 A resolver for synchronizing two aspects| 23
[4.7 Another incomplete solution in Aspectd| 24
6.1 The Shape class for the shape editor] 34
[6.2 The DoubleCoordinate aspect| 36
6.3 The ReallyChanged and the ObserverProtocol aspect|. 37
6.4 The aspect for combining DoubleCoordinate and ReallyChanged| 38
6.5 The classes of our web application| 39
6.6 T'wo authorization aspects| 40
6.7 'The resolver the two aspects with an or operator| 41
7.1 The reinement of existing aspect| 43

Chapter 1

Introduction

Software is composed with various units. A code is generally modularized
into some sort of units. One of the purposes of modularization is code reuse,
which is a key issues in software engineering. It increases quality of soft-
ware and decrease cost of development. Programmers reuse the code by
the unit. Since bugs of units are removed if they are repeatedly reused,
code reuse leads to improvements in quality of applications which use them.
Traditionally a unit is a set of functions, which is exported as a library,
such as a shared object in UNIX-like operating systems, and large number
of modularization techniques including aspect-oriented programming have
been proposed. Nowadays object-oriented programming is widely used prac-
tically and a code is modularized into classes.

Ideally an application should be composed only by gathering the units
without the knowledge about the detailed implementation about the units.
However, it is currently infeasible because composition causes conflict and
interference. In order to compose an application reusing the units, current
approach provides ability to combine units manually to users of the units.
For example, in traits inheritance [I§], a conflict of methods provided from
different traits is manually resolved by users of them. In this thesis, we
contribute the improvement of reusability of units in aspect-oriented pro-
gramming.

1.1 A problem with advice compostion

In aspect-oriented programming, crosscutting concerns are modularized into
aspects and an application is composed with classes and aspects. Since pro-
grammers can extend an application only by implementing new aspects, it

CHAPTER 1. INTRODUCTION 2

allows to reuse the whole system of it. For example, we assume an inter-
preter and extend it by adding new aspects. If problems of the original
interpreter is fixed, the modification can be applied to extended intepreter.
We can also implement a new interpreter with a combination of features by
selecting existing aspects which implemets them.

Composing a new aspect by combining existing aspects is not easy. The
aspects often conflict with each other and cause undesirable interference.
This problem is called aspect interference. In particular, resolving interfer-
ence that is caused when multiple advices are woven at the same join point
is a serious issue and it has been investigated in the research community.
This paper addresses this issue called advice interference.

A typical solution is to allow programmers to control the precedence
order among conflicting advices and linearize them; the advices are executed
one by one in the precedence order. For example, Aspect] [13] provides
declare precedence to control this statically. Other approaches for more fine-
grained control such as depending on dynamic context have been proposed.

However, for some combinations of advices, there is no correct prece-
dence order with which the composed behavior is acceptable. Such com-
bination needs modifying the bodies of the conflicting advices to explicitly
implement the merged behavior. This is not desirable since the program-
mers have to be aware of the composition when they write an individual
advice. Furthermore, the composition itself is a crosscutting concern. The
implementation of the composition should be described separately from the
conflicting advices.

1.2 A Solution for advice composition without in-
terference

In this thesis, we address this problem by extending AspectJ. This novel
language extension is named Airia. In this language, a new kind of around
advices called resolvers are available. A resolver is used to implement the
composition of conflicting advices. It is invoked at only the join points when
the given set of advices conflicts with each other. Since a resolver has higher
precedence than those conflicting advices, it overrides the implementation
of those advices.

In the body of the resolver, a proceed call takes as an argument the
precedence order among those conflicting advices. The unnecessary advices
in conflicting advices can be removed at that call. It can thereby control the
execution order of the remaining advices. In our language Airia, therefore,

CHAPTER 1. INTRODUCTION 3

declare precedence is not available. Then not only in the higher precedence
than the conflicting advices, an advice for the composition can be invoked
by resolver at intermediate precedence. This advice is called a helper advice.

Furthermore, a resolver is composable. It can implement the composition
among other resolvers and advices; advices can be combined in a hierarchical
manner with existing composition reused. This can be achieved because a
resolver is a special around advice and still a base language construct. The
total execution order is determined statically and the precedence specified
by resolvers are examined by our compiler.

1.3 Contribution

In summary, the contribution of this paper is as the following:

e We find advices that cannot be combined by giving precedence order.
To combine correctly, these advices require composition code.

e We propose a new kind of advice named a resolver for advice compo-
sition.

e A resolver enables separation of the implementation of advice compo-
sition while keeping sufficient expressive power.

e A resolver is composable and thus we can implement composition of
several advices in a hierarchical manner.

o We restrict the semantics of resolver so that the execution order of
conflicting advices can be determined statically. The precedence order
is examined at compile time.

e Our language Airia has been implemented as an extension of the As-
pectBench compiler [5]. Its frontend is developed with JastAdd [9].

1.4 The structure of this thesis

The rest of this theses is organized as follows. In Chapter 2] we mention
AspectJ and related works. Chapter Bl shows an example of advice inter-
ference in a simple interpreter. The interference is not resolved by giving
precedence order. Then we mention a problem of implementing composi-
tion in AspectJ. Chapter [presents the design of our language Airia. We
also resolve the interference shown in Chapter B in Airia. In Chapter [B] we

CHAPTER 1. INTRODUCTION 4

describe how the total execution order of advice is caluculated. Chapter
shows other examples of interference and its resolution. Chapter [[l mentions
an overview of implementation of Airia and Chapter Bl concludes this paper.

Chapter 2

Background

2.1 Aspectd

AspectJ is one of aspect oriented language based on Java. In aspect-
oriented programming, crosscutting concerns are separated from base code,
i.e. methods in classes, into aspects. An application consists of classes and
aspects.

In AspectJ, this is achieved by advices and pointcuts. An advice imple-
ments the behavior of the concerns. It is a construct like a method but it is
not invoked explicitly. Each advice has a pointcut. A pointcut selects points
in the execution of program, which is called join points. When execution
of the application reaches the join point, the advice is invoked implicitly.
Advices which implement the same concern compose an aspect. In this way,
the base code is not aware of the separated concern.

Some pointcuts selects join points with dynamic context. For example,
the if pointcut selects join points when its condition is true. The this pointcut
checks the actual type of this object. It selects when the type is a subtype
of specified one.

An around advice is one kind of advice in AspectdJ. It overrides the com-
putation at the join point which its pointcut selects. In its body, a special
method proceed can be called. It takes same parameters as the advice and
executes the original computation overridden by the advice. It returns a
value that the original computation returns.

In this thesis, we explain our approach mainly with around advice. Other
kinds of advice, such as before and after, can be considered in the same
manner as around advices because they are regarded as syntax sugars of
around advices. For example, the next before advice:

CHAPTER 2. BACKGROUND 6

before(): execution(String C.m(String)) {
System.out.println("Executing C.m.");
}

can be rewritten as the following:

Object around(): execution(String C.m(String)) {
System.out.println("Executing C.m.");
return proceed();

}

2.2 Related works

Resolving aspect interference for aspect composition is a classic research
topic and hence there have been a number of proposals.

2.2.1 Stateful aspect

Douence et al. proposed an approach for detecting and resolving conflicts
between aspects on their formal framework, Stateful Aspect [7, §]. In the
frame work, aspects are combined with a parallel operator. Their approach
is making the operator extensible so that the operator will generate cor-
rectly merged behavior when the operands are conflicting with each other.
Although this approach is similar to ours, we provide a single composition
operator (i.e. a resolver) but we do not make the semantics of operator ex-
tensible. We also propose an extension of AspectJ based on our approach.

2.2.2 Meta programming for advice composition

Most previous approaches are categorized into meta programming.
POPART [6] provides a meta-aspect protocol. Advice composition can be
dynamically customized by an instance of MetaAspectManager. Program-
mers can define an appropriate MetaAspectManager to implement a custom
composition policy for resolving conflicts among particular advices. The
conflicting advices at a join point is contained in objects that implements
the Collection interface and programmers can order them with its methods
such as sort. JAsCo [19] also provides a mechanism like this.

Meta programming is often complicated and difficult from its power.
Our approach does not need meta programming. Since a resolver is a special
around advice, it is still a base-level language construct.

CHAPTER 2. BACKGROUND 7

The meta programming provided by the languages above concentrates
in changing precedence order but in OARTA [16], the ability for meta pro-
gramming is restricted to modifying only the pointcut of another advice.
It is common to our approach to separate composition into an aspect. For
resolving aspect interference, OARTA provides declare pcdisjunct/pcconjunct
which replace the pointcut of an advice with the disjunct/conjunct of the
original pointcut and specified one. It also allows to extend an existing ad-
vice by its extended adviceexecution pointcut which selects execution of the
specified advice.

However, declare pcdisjunct/pcconjunct lacks composability. Since it is
permanent and can not be removed by some constructs, when composition
codes interfere with each other, programmers must remove whole the aspect
containing it. For advice interference, only when advices are conflict, the
behavior of the advices should be changed. Our resolver is composable;
interference of resolvers can be resolved by another resolver. A resolver is
executed at the join point when specified advices conflict.

2.2.3 Context-Aware Composition Rules

Context-Aware Composition Rules [14, [15] allows programmers to control
precedence order among advices for every join point with a new pointcut
advices, which selects join points when advices conflict like our resolver.
Since dynamic pointcut is supported, it can control precedence dynamically.
It also allows removing an existing advice at the join points. Programmers
write only declarative rules such as Prec, First, and Ignore, in a construct
similar to an advice named rule. Statements of Java can not be described
there. The next code specifies that A has higher precedence than B and
removes C when advice A, B, and C conflict:

aspect Composition {
declare rule precedence: advices(A, B, C) {
Prec(A, B);
Ignore(C);

}

However, as we mentioned in Section [3 some kinds of advice interference
cannot be resolved by only reordering advices. On the other hand, our
language Airia also provides the ability for adding a new advice when advices
conflict.

CHAPTER 2. BACKGROUND 8

2.2.4 Reflex

Reflex [20] is an infrastructure for building an aspect system. It provides an
application-programming interface (API) for implementing a new policy for
advice composition. Programmers can exploit this API for customizing the
aspect system to resolve conflicts among particular advices. For example,
it supports an implicit cut to share pointcut of the specified advice and the
CompositionOperator class for ordering.

Our language Airia provides a base-level language construct for resolving
conflicts. The users of Airia do not have to consider the implementation of
the language.

2.2.5 Aspect refinement

Aspect refinement and mixin-based aspect inheritance [3| 4] enable program-
mers to incrementally extend the behavior of an existing advice. JastAdd
also supports refinement.

Aspect refinement does not take into consideration extending multiple
advices at once. If programmers refine each conflicting advice for compo-
sition, composition can be separated but they have to design a protocol to
work well with another advice through a proceed call. This is mentioned in
Section On the other hand, our language Airia enables extending the
behavior of a combination of multiple advices.

2.2.6 Interference in object-oriented programming

Interference is common issue in object oriented programming. The relation-
ship between an around advice and the original computation at the join
point is similar to the relationship between a mixin and a class. A proceed
call corresponds to a super call. The former executes the next advice or the
original computation while the latter executes the method in the next mixin
or class. While advice interference is a problem, interference among mixins
given to the same class is also a problem.

Traits [18] is a solution for mixin interference. For example, two traits
provide methods named equals. When a class uses these traits, the two
methods conflict. If the composed equals method returns true when both
of the conflicting methods return true, then programmers rename the con-
flicting methods equalsl and equals2 and a value of evaluating equals1() &&
equals2() is returned. Note that a construct for renaming is provided.

Our approach can be regarded as an application of the idea of traits to
aspects. Both approaches allow programmers to define a new advice/method

CHAPTER 2. BACKGROUND

for overriding advices/methods and resolving their conflicts.

Chapter 3

A Motivating Example

We first show an example of aspect interference that is not resolved in ex-
isting approaches.

3.1 A simple interpreter

We present a simple interpreter with a binary operator +, which is written
in AspectJ. Listings B.1] shows classes representing AST (Abstract Syntax
Tree) nodes. The Plus class expresses a binary operator +. It has two
fields, left and right, representing its operands and it extends the Expression
class. We declare a method for evaluating an AST in the EvaluationAspect
aspect. Since our interpreter currently does not support any data types,
this aspect appends an empty eval method to the Expression class by an
inter-type declaration.

We then extend the interpreter to support integer values. We do not have
to modify the existing classes. We have only to write a new aspect shown
in Listing The around advice in the IntegerAspect aspect is invoked
when the Plus.eval method is executed; it returns a summation of the two
operand. The following code makes an AST representing 1 + 2. When
e.eval is executed on this tree, it returns 3.

Expression e =
new Plus(new Constant(1l), new Constant(2));

Next, we extend the original interpreter to support character strings.
Again, we do not have to modify the existing classes. We implement this
extension by the StringAspect in Listing Since the operator + now
represents concatenation of character strings, the around advice implements

10

CHAPTER 3. A MOTIVATING EXAMPLE

public class Expression extends ASTNode { /*...x/ }

public class Plus extends Expression {
private Expression left;
private Expression right;

public Plus(Expression left, Expression right) {
this.left = left;
this.right = right;

}

public Expression getLeft() {
return left;

}

public Expression getRight() {
return right;
}
/7
}

public class Constant extends Expression {
Object value;

public Constant(Object value) {
this.value = value;
}
}

aspect Evaluation {
public Object Expression.eval() {
return null;

}

public Object Constant.eval() {
return value;

}

Listing 3.1: Classes representing the AST

11

CHAPTER 3. A MOTIVATING EXAMPLE 12

aspect IntegerAspect {
Object around(Plus t):
target (t) && execution(Object Plus.eval()) {
return (Integer)t.getLeft().eval() +
(Integer)t.getRight () .eval();

Listing 3.2: An aspect for integer values

aspect StringAspect {
Object around(Plus t):
target (t) && execution(Object Plus.eval()) {
return t.getLeft().eval().toString() +
t.getRight () .eval() .toString();

Listing 3.3: An aspect for character strings

the behavior of the eval method. If we compile the classes and the aspects
in Listing B.J] and B3] then the resulting interpreter will correctly handle
character strings.

The last step is to build an interpreter supporting both integers and
character strings. Some readers might expect that we could easily obtain
the interpreter if the two aspects IntegerAspect and StringAspect are compiled
and woven together. However, these two aspects conflict with each other,
1.e. multiple advices are woven at the same join point. The resulting behavior
of the eval method is different from our naive expectation. This paper deals
with this unexpected behavior of the combined advices, which we call advice
interference. It is one kind of aspect interference; other kinds of aspect
interference such as [12] are out of the scope of this paper.

If the two advices are combined, the resulting eval method cannot process
all acceptable ASTs. In AspectJ, when the eval method is called, the advice
with the highest precedence is executed. Suppose that IntegerAspect has the
highest. Then the eval method does not process the AST e constructed by
the following code:

Expression e = new Plus(
new Constant("Hello "), new Constant("world!"));

It will throw ClassCastException since the operands are character strings but

CHAPTER 3. A MOTIVATING EXAMPLE 13

the around advice in IntegerAspect assumes that the operands are integer
values. Changing the precedence order does not solve this problem. In
AspectJ, we can explicitly specify precedence. For example,

declare precedence: StringAspect, IntegerAspect;

this declaration specifies that StringAspect has higher precedence than In-
tegerAspect. The eval method now returns an unexpected value when the
AST e2 shown below is evaluated:

Expression e2 =
new Plus(new Constant(l), new Constant(2));

The returned value will be a character string "12" although both operands
are integer values.

3.2 An incomplete solution in AspectJ

A partial solution of the problem above is to make advices composable by
linearization. Since AspectJ provides proceed calls, we can reimplement
advices and connect them by proceed to make a single chain. If proceed
is called in an advice body, it invokes the advice with the next highest
precedence in the chain. If there is no other advice, the original computation
at the join point is executed.

Listing [3.4l shows the result of the reimplementation for the linearization.
The resulting code can be regarded as an AspectJ version of the chain of
responsibility pattern. These advices are implemented as possible as they
can be combined the advices for other data-types. Now the two around
advices call proceed to invoke the next advice when they cannot deal with
the given operands. Although the combination of some advices require an
explicit declaration of the precedence order for linearization, the two aspects
in Listing B.4] do not require it; they correctly work under any precedence
order. The interpreter containing these two aspects can deal with the AST
constructed by this code:

Expression e =
new Plus(new Constant("Str"), new Constant("1"));

However, this solution is not satisfactory from the software engineering
viewpoint. The implementation of each advice body must be aware of the
composition with other (maybe unknown yet) advices by the linearization.
Programmers have to design a protocol for the advice chain before imple-
menting each advice body. The protocol design is not easy; the advices must

CHAPTER 3. A MOTIVATING EXAMPLE 14

aspect IntegerAspect {
Object around(Plus t):

target (t) && execution(Object Plus.eval()) {

Object lvalue = t.getLeft().eval();

Object rvalue = t.getRight().eval();

if (lvalue instanceof Integer && rvalue instanceof Integer) {
// not for composition
return (Integer)lvalue + (Integer)rvalue;

} else {
return proceed(t);

}
}

aspect StringAspect {
Object around(Plus t):

target (t) && execution(Object Plus.eval()) {

Object lvalue = t.getLeft().eval();

Object rvalue = t.getRight().eval();

if (lvalue instanceof String || rvalue instanceof String) {
// not for composition
return lvalue.toString() + rvalue.toString();

} else {
return proceed(t);

}

Listing 3.4: A composable version of the conflicting advices

be able to correctly work with and without other advices. Furthermore, the
composition itself is a cross-cutting concern. Note that most statements in
Listing [3.4] are for the composition by the linearization. Only the two return
statements marked by a comment implement the behavior of the eval method
in the Plus class. The composition code scatters over the two advices.

Chapter 4

Resolving interference in
Airia

To resolve the problem mentioned above, we propose a novel language exten-
sion of AspectJ. This new language named Airia allows programmers to sep-
arately describe how to resolve advice interference. Instead of the conflicting
advices themselves, the resolving code is described in a new kind of around
advice called a resolver. Hence the implementation of each conflicting ad-
vice is independent of the other conflicting advices and their composition
protocol.

Listing [£1] is an example of aspect including a resolver. It resolves the
advice interference presented in the previous section. Details of this resolver
are mentioned below. Since the resolving code is separated into this resolver,
the conflicting advices do not include the code for the composition or re-
solving the interference. See Listing[4.2] which presents the three conflicting
advices written in our language. They are simpler than the composable ver-
sion of the aspects shown in Listing [3.4l They are the same as the original
aspects in Listing and [3:3] except that every advice has a unique name.
These advice names are used by the resolver.

A resolver is composable. Programmers can write a resolver that re-
solves interference among other resolvers and normal advices. Suppose that
we write a new aspect EvaluationCacheAspect and its advice causes inter-
ference with the advices of IntegerAspect and StringAspect. For these three
conflicting advices, we can write a new resolver by reusing the existing re-
solver of IntegerStringAspect. Since the resolver of IntegerStringAspect deals
with the advice interference between IntegerAspect and StringAspect, the new
resolver will be declared to deal with the interference between the resolver

15

CHAPTER 4. RESOLVING INTERFERENCE IN AIRIA 16

aspect IntegerStringAspect {
Object resolver plusEvalIntStr(Plus t)
and(IntegerAspect.plusEvalInt(t),
StringAspect.plusEvalStr) {
Object lvalue = t.getleft().eval();
Object rvalue = t.getRight().eval();
if (lvalue instanceof String || rvalue instanceof String) {
return [StringAspect.plusEvalStr].proceed(t);
} else if (lvalue instanceof Integer &&
rvalue instanceof Integer) {
return [IntegerAspect.plusEvallnt].proceed(t);
} else {
throw new RuntimeException();

}

Listing 4.1: The aspect for combining IntegerAspect and StringAspect

of IntegerStringAspect and the new advice of EvaluationCacheAspect. The
implementation of that new resolver will call proceed to execute the resolver
of IntegerStringAspect.

4.1 A Resolver

A resolver is a special kind of around advice, which is declared with a key-
word resolver instead of around. The syntax of resolver declaration is the
following:

[Modifiers] RetrunType resolver
ResolverName(Argument Type ArgumentName, ...)
and | or (ConflictingAdviceName[(ArgumentName, ...)1, ...)
[uses HelperAdviceName, ...]
[throws ExceptionType, ...]
{ Body }

The resolver keyword is followed by a resolver name. A parameter list to the
resolver follows the resolver name if any. Unlike normal advices in AspectJ,
it does not take a pointcut but it takes an and/or clause, which specifies
a list of potentially conflicting advices. The resolver is expected to resolve
interference among these advices.

Except the resolver keyword, its name, and the and/or clause, a resolver
is the same as an around advice. The return type of a resolver is Object if

CHAPTER 4. RESOLVING INTERFERENCE IN AIRIA 17

aspect Evaluation {
public Object Expression.eval() {
return null;
}
}

aspect IntegerAspect {
Object around plusEvalInt(Plus t):
target (t) && execution(Object Plus.eval()) {
return (Integer)t.getLeft().eval() +
(Integer)t.getRight () .eval();

3

aspect StringAspect {
Object around plusEvalStr(Plus t):
target (t) && execution(Object Plus.eval()) {
return t.getLeft().eval().toString() +
t.getRight () .eval() .toString();

Listing 4.2: The aspects written in our language

the join points bound to the resolver have different return types. The body
of the resolver may include a proceed call.

In Listing [4.T], a resolver is named plusEvallntStr and takes an and clause,
which lists the names of the around advices in the two aspects IntegerAspect
and StringAspect. Note that an advice also has a unique name. See List-
ing [4.2l The IntegerAspect aspect has an advice named plusEvallnt and the
StringAspect has an advice named plusEvalStr. IntegerAspect.plusEvallnt and
StringAspect.plusEvalStr are their fully-qualified names.

The join points when a resolver is executed are specified by an and/or
clause. Since the resolver in Listing 1] has an and clause, it is executed
at the join points that all the given advices are bound to, that is, when
the eval method in the Plus class is executed. Note that those advices of
the two aspects IntegerAspect and StringAspect conflict at those join points.
A resolver has higher precedence than the advices specified by its and/or
clause. Hence, it overrides all the conflicting advices at the join points. In
our example, when the eval method in the Plus class is called, the body of
the resolver is executed first.

CHAPTER 4. RESOLVING INTERFERENCE IN AIRIA 18

The advices given to the and/or clause of a resolver work as pointcuts.
Thus, a resolver can take parameters and pass them to those advices. For
example, the resolver in Listing [£.1] takes a parameter t and passes it to the
advice in the IntegerAspect. The parameter t is bound to the value that this
advice binds its parameter to, that is, the target object of the call to the
eval method.

A resolver may have an or clause. This specifies that the resolver is
executed at the join points that at least one advice given to the or clause is
bound to. For example, the next resolver is executed at the join points that
only the two advices A and B are bound to but C is not:

Object resolver precedence() or(A, B, C) {
return [A, B, C].proceed();
}

The or clause can be used for specifying a precedence order among advices as
we do with declare precedence in AspectJ. The resolver shown above specifies
that the precedence order is A, B, and C. [A, B, C].proceed() executes
the three advices in that order (we below mention this proceed call again).

We introduced an or clause for reducing the number of necessary re-
solvers. If we could not use an or clause, we would have to define many
resolvers for all possible combinations of potentially conflicting advices. Sup-
pose that we have three advices A, B, and C. If we use only and clauses, we
must define resolvers for every combination: A and B, B and C, C and A,
and all the three, if they conflict at different join points. Since we expect
that most combinations share the same advice body, using an or clause will
reduce the number of necessary resolvers.

To be precise, the join points selected by an and/or clause are the inter-
section/union of the join point shadow [17] selected for the advices given to
that and/or clause, respectively. Dynamic pointcuts such as cflow and target
are ignored. Thus, a resolver may be executed at the join points that the
advices in its and/or clause are not bound to.

4.2 A Proceed call with precedence

Like a normal advice, a resolver can call proceed to invoke another advice
with the next highest precedence. The proceed call from a resolver explicitly
specifies the precedence order of the advices given to the and/or clause, which
will be invoked by the proceed call. Note that unlike AspectJ our language
Airia does not provide declare precedence. The precedence order is described
between brackets preceding .proceed.

CHAPTER 4. RESOLVING INTERFERENCE IN AIRIA 19

Suppose that there are two advices A and B, which conflict at the join
point selected by a pointcut pc(). We assume that there is no other advices.
Then a resolver AorB can call proceed twice with different precedence order:

void resolver AorB() or(A, B) {
[A, B].proceed();
[B, A]l.proceed();

}

pointcut pc(): ...;

void around AQ): pc() {
proceed();

}

void around B(): pc() {
proceed() ;
}

When [A, B].proceed() is called, the advice A is invoked. The advice B is
invoked by the proceed call in the advice A. The proceed call in the advice
B execute the original computation at the join point. On the other hand,
when [B, A].proceed() is called, the advice B is invoked. The advice A is the
next.

Note that [A, B].proceed() does not mean that the advice A and then
B is executed. It means that the advice A has higher precedence than B;
if there was the advice C shown below, it might be invoked by the proceed
calls in AorB:

void around C(): pc() {
proceed() ;
}

A or B may not be executed when their pointcuts do not match the current
join point.

The proceed call can remove advices from the set of the remaining
advices, which will be invoked by later proceed calls. If the advice list
between brackets does not include an advice given to the and/or clause,
the advice is removed. In Listing 4.1l both proceed calls remove one ad-
vice. The former removes IntegerAspect.plusEvallnt and the other removes
StringAspect.plusEvalStr. For example, [IntegerAspect.plusEvallnt].proceed()
invokes the plusEvallnt advice in IntegerAspect and then, if it calls pro-
ceed again, the original eval method is invoked. The plusEvalStr advice
in StringAspect is never invoked.

CHAPTER 4. RESOLVING INTERFERENCE IN AIRIA 20

aspect EvaluationCacheAspect {

Object Expression.cachedValue;

boolean Expression.isChanged = false;

void around plusEvalCache(Expression t):
execution(Object Plus.eval()) && args(t) {

if (t.isChanged) {

cachedValue = proceed(t);
isChanged = false;

}
return cachedValue;
¥
after changed(): ... {
isChanged = true;
}

Listing 4.3: The EvaluationCacheAspect

aspect IntegerStringCacheAspect {
Object resolver evallntStrCache():
and(IntegerStringAspect.evallntStr,
EvaluationCacheAspect.plusEvalCache)
return [EvaluationCacheAspect.plusEvalCache,
IntegerStringAspect.evallntStr] .proceed();

3

Listing 4.4: A resolver resolving conflicts between a normal advice and an-
other resolver

4.3 Composability of resolvers

A resolver, which is a special around advice, may also conflict with other
resolvers or normal advices. This conflict can be also resolved by another
resolver; a resolver is composable. An advice given to an and/or clause may
be a resolver. A proceed call with precedence specifies precedence order
among conflicting advices and/or resolvers.

Let us consider a new advice shown in Listing 4.3l The join point of this
advice is the execution of the eval method. Thus, this advice conflicts with
the two advices in IntegerAspect and StringAspect shown in Listing and
3.3l Since the conflict between these two advices has been already resolved
by the resolver in IntegerStringAspect, we reuse this resolver to resolve the

CHAPTER 4. RESOLVING INTERFERENCE IN AIRIA 21

conflicts among the new advice and these two advices. See Listing [4.4l This
resolver in IntegerStringCacheAspect has an and clause, which lists the new
advice in EvaluationCacheAspect and the resolver in IntegerStringAspect. It
resolves conflicts between the advice and the resolver.

The behavior of a resolver for another resolver is the same as normal
resolvers. When the eval method is called, this resolver in IntegerString-
CacheAspect is invoked first since it has higher precedence than the other
advices and resolver. When this resolver calls proceed with precedence, the
advice with the next highest precedence is executed, which is the advice
in EvaluationCacheAspect. After that if the advice calls proceed, the re-
solver in IntegerStringAspect is executed. Note that this resolver does not
explicitly describe how the conflicts between IntegerAspect and StringAspect
are resolved. It is encapsulated in the resolver of IntegerStringAspect. The
composition of IntegerStringCacheAspect is hierarchical.

A resolver for another resolver can remove not only an advice but also a
resolver given to its and /or clause. When the resolver in IntegerStringCacheA-
spect calls proceed, it could remove the resolver in IntegerStringAspect if
necessary. For example, if [EvaluationCacheAspect.plusEvalCache].proceed()
is called, then the remaining advices are only the normal advices in Eval-
uationCacheAspect, StringAspect, and IntegerAspect. The resolver in Inte-
gerStringAspect is not included any longer.

Unlike declare precedence in AspectJ, a resolver can flexibly modify prece-
dence order among conflicting advices even during runtime by a proceed call
with precedence. Thus, declare precedence is not available in our language
Airia. The precedence order must be explicitly specified; there is no default
precedence order unlike AspectJ.

4.4 A helper advice

A resolver can add a new advice for helping composition. Since a resolver
has higher precedence than conflicting advices, the added advice is normally
given intermediate precedence among those conflicting advices.

Suppose that we have two logging aspects shown in Listing The ad-
vice in the Tracelogging aspect records executed methods during program
execution. The ArgumentLogging aspect records the values of arguments
when a method is invoked. If the precedence order specifies that Tracel-
ogging is executed before ArgumentLogging, then a printed method name is
followed by argument values. However, if a program is multi-threaded, the
two advices must be synchronized. Otherwise, printed log messages will be

CHAPTER 4. RESOLVING INTERFERENCE IN AIRIA 22

aspect TraceLogging {
before log(): ... {
Logger.getInstance()
.debug(thisJoinPointStaticPart.toString());

}

aspect ArgumentLogging {
before log(): ... {

Object[] args = thisJoinPoint.getArgs();

StringBuilder msg = new StringBuilder("Arguments: ");

for (int i = 0; i < args.length; i++) {
msg.append (args[i] .toString());
if (i != args.length - 1) {

msg.append(’,’);

}

}

Logger.getInstance() .debug(msg.toString());

Listing 4.5: Two aspects for logging

interleaved as the following:

[DEBUG] execution(Object Main.run(String))
[DEBUG] execution(void Test.test())
[DEBUG] Argument:

[DEBUG] Argument: --debug

Here, the forth line shows the value of the arguemnt to the run method.
Listing shows a resolver for synchronizing the two logging advices.
This resolver uses two helper advices lock and unlock. Note that this resolver

[Modifiers] RetrunType around|beforelafter
AdviceName(Argument Type ArgumentName, ...)
[returning[(Type Name)]]

[throwing[(Type Name)]]
[throws ExceptionType, ...]
{ Body }

Figure 4.1: The syntax of helper advice declaration

CHAPTER 4. RESOLVING INTERFERENCE IN AIRIA 23

aspect LoggingWithSync {
before lock() {
Logger.getInstance() .lock(); //reentrant lock
}

before unlock() {
Logger.getInstance() .unlock();
}

void resolver logWithSync()
and(TracelLogging.log, ArgumentLogging.log)
uses lock, unlock {
[lock, TracelLogging.log,
ArgumentLogging.log, unlock].proceed();

Listing 4.6: A resolver for synchronizing two aspects

has a uses clause, which specifies the helper advices for that resolver. The
pointcut of a helper advice is not explicitly specified as its syntax shown
in Listing 4.1} a helper advice is bound to the same join points that the
resolver using that helper advice is bound to. The helper advices are in-
cluded in the precedence order of proceed. In Listing .6l the lock advice is
given the highest precedence while the the unlock advice is given the lowest
precedence among the four advices. Thus, the lock advice acquires a lock,
the logging advices print messages, and then the unlock releases before the
method logged by the aspects is executed.

Without these helper advices, the resolver could not implement synchro-
nization. since it had to release a lock between the logging advices and
the logged method but the resolver automatically obtains higher precedence
than the logging advices. For example, the next code can not provide the
behavior of logWithSync in Listing

void resolver badLogWithSync()
and(TraceLogging.log, ArgumentLogging.log) {
Logger.getInstance() .lock();
[Tracelogging.log, ArgumentLogging.log].proceed();
Logger.getInstance() .unlock();

This is because the original computation at the join points is also syn-
cronized.

CHAPTER 4. RESOLVING INTERFERENCE IN AIRIA 24

aspect IntegerStringAspect {
Object around(Plus t):
execution(Object Plus.eval()) && target(t) {
Object lvalue = t.getLeft().eval();
Object rvalue = t.getRight().eval();
if (lvalue instanceof String && rvalue instanceof Integer ||
lvalue instanceof String && rvalue instanceof String) {
return lvalue.toString() + rvalue.toString();
} else if (lvalue instanceof Integer &&
rvalue instanceof Integer) {
return (Integer)lvalue + (Integer)rvalue;
} else {
throw new RuntimeException();
}
}

declare precedence:
IntegerStringAspect, IntegerAspect, StringAspect;

Listing 4.7: Another incomplete solution in AspectJ

Multiple resolvers may use the same helper advice. If those resolvers
are bound to the same join points, that helper advice is executed only once
at every join point (shadow). The following code adds the AnotherLogging
aspect with a resolver, which uses unlock again:

void resolver logWithSyncl()
and (LoggingWithSync.logWithSync,
AnotherLogging.log
ArgumentLogging.log)
uses (unlock) {
[LoggingWithSync.logWithSync, ArgumentlLogging.log,
AnotherLogging.log, unlock].proceed();
}

If a resolver removes another resolver using a helper advice, that helper
advice is not removed together. It must be explicitly removed.

CHAPTER 4. RESOLVING INTERFERENCE IN AIRIA 25

4.5 Discussion

4.5.1 Needs of our language constructs

A resolver does not take a normal pointcut but an and/or clause — a list of
conflicting advices. It can call proceed with precedence. These are unique
features of our language Airia. To clarify their benefits, we show another
aspect in Listing A7 Like the aspect written in Airia, this aspect does not
require us to modify the conflicting aspects in Listing and 3.3l We wrote
this aspect in AspectJ to be similar to the aspect written in Airia shown in
Listing[d.1l The aspect has a normal around advcie. We manually translated
the and clause of the resolver into a normal pointcut for this around advice.
In the body of this around advice, we also manually inlined the body of the
conflicting advices since a proceed call with precedence is not available.

This aspect has two drawbacks. First, the pointcut of the advice is frag-
ile. We will have to modify the pointcut of this advice when the pointcuts
of the conflicting advices are modified. Second, the body of this advice con-
tains code duplication since we manually inlined the body of the conflicting
advices. We will also have to modify the advice body when the bodies of
the conflicting advices are modified. The aspect written in Airia does not
have these problems.

4.5.2 Join points when a resolver is executed

A resolver is executed at the join point shadow where the specified advices
conflict. We adopted this language design since it is extremely difficult to
detect conflicts among advices even at runtime. This is because an advice
in AspectJ can change the dynamic contexts.

A trivial definition is that the pointcut of a resolver is conjunction/dis-
junction of all advices and resolvers specified in the and/or clause but it is
not satisfactory. For example, there are the following advices and resolvers:

CHAPTER 4. RESOLVING INTERFERENCE IN AIRIA 26

pointcut pc(): ...;
void around AQ): pc() && if(flag) {...}
void around B(): pc() && if(flag) {...}
void resolver AandB() and(A, B) {

[A, B].proceed(Q);

}
void around C(): pc() {
flag = true;
proceed();
}
void resolver AandBandC and(AandB, C, A) {
flag = false;
[AandB, C, A].proceed();
}

First, the resolver AandBandC is executed. The resolver is set flag to false.
The resolver with the next highest precedence is AandB. However since its
pointcut is pc() && if(flag) && pc() && if(flag) and does not match the
current context, it is not executed. Then the advice C is executed and it
change flag to true. Now the advice A and B is executable and conflict but
they have not been combined by AandB.

Another definition is evaluating pointcuts first at the join point shadow
and collecting executable advices. However, this prevent advices to change
context dynamically. In AspectJ, advices can change values of this object or
arguments bound to the this or the args pointcut by specifying new values as
arguments of proceed. This feature is an advantage of AspectJ but cannot
be provided in this definition.

Chapter 5

The execution order of
advices

Our compiler statically calculates execution order of advices from precedence
declared by resolvers. We restrict the semantics of a resolver to achieve this.
We show an operational definition of execution order.

5.1 Precedence order in Airia

Advices are executed in the order that fulfills all declared precedence rela-
tion. In our language Airia, constructs that affect precedence are only a
resolver and a proceed call with precedence as summarized in Table B.1l A
resolver has higher precedence than conflicting advices that are specified in
its and/or clause. Our proceed call declares precedence in the order written
between its brackets. This precedence is effective only in advices which is
executed through this proceed call until it returns. We use a binary relation
< here; a < b represents that a has higher precedence than b. This relation
is transitive, i.e., if a < b and b < ¢ then a < c.

If advices or resolvers conflict, they have to be explicitly combined by

Table 5.1: Summary of precedence declared by constructs in Airia

construct precedence
Type resolver R() and/or(A, B,C) R <A, R<B,R<C
[A, B, C].proceed() A<B,B=<C

27

CHAPTER 5. THE EXECUTION ORDER OF ADVICES 28

at least a resolver. Otherwise there is no precedence relation between these
advices. For example, the advice A and B conflict, there are two possi-
ble sequences A, B and B, A. Since the total execution order can not be
determined, a compile error is reported.

5.2 Static calculation of the execution order

In Airia the execution order of conflicting advices is determined statically
at every join point shadow. The errors of precedence declared by resolvers
are also checked. This is an advantage over other approaches using meta
programming, which cannot check consistency at compile time.

Like Aspectd, our definition of conflict is static; if the join point shadows
of two advices are the same, they conflict. For example, two advices conflict
if one’s pointcut is call(int C.m()) && if (C.f) and the other’s pointcut is
call(int C.m()) && if (!C.f). Dynamic pointcut if (C.f) and if (IC.f) are
ignored. At runtime, since C.f and !C.f do not become true at the same
time, the two advices are never executable at the same join point unless C.f
is changed.

The more complicated case is pointcuts that checks actual types of values
such as the this pointcut. They are not completely ignored. For example,
two advices have pointcuts call(int C.m()) && this(T) and call(int C.m()) &&
this(S) respectively. Only if apparent type of this which calling C.m() is a
super type of both T and S, these advices conflict. Note that resolvers never
have dynamic pointcuts. They are executed when specified advices conflicts.

We restrict semantics of Airia so that total execution order can be de-
termined statically without loosing composability. First, precedence from
resolver definition, which is shown in the first row in Table Bl is perma-
nent and cannot removed. If removing the next resolver using our proceed
call, since the resolver is not executed, precedence specified by the next
proceed is not take effect:

Object resolver R() and(A, B) {
[A, B].proceed();
}

However the precedence R < A and R < B still effective. This rule is intro-
duced to prohibits resolvers that combine resolvers circularly like this:

CHAPTER 5. THE EXECUTION ORDER OF ADVICES 29

void resolver R() and (S, ...) {
[].proceed();

}

void resolver S() and (R, ...) A
[].proceed();

}

Each resolver try to remove the other resolver. Without this rule, the re-
solver executed first can not be determined.

With the restriction above, the execution order of advices can be stat-
ically determined for every control path of proceed from the join point
(shadow) to the original computation. Our compiler of Airia performs ab-
stract computation at every occurrence of a join point shadow. If the body
of the executed advice contains proceed calls, it computes which advice will
be executed next. Since resolvers which combines the next advice has higher
precedence than it, relations that affect the calculation is declared by pro-
ceed calls and resolvers that is already executed. Therefore if the precedence
is specified correctly, it should be determined. While executing body of re-
solver, all control statements are ignored and all possible paths is executed.
If the compiler cannot determine the next advice, it reports compile error.

5.3 Operational definition of the execution order

The execution order of advices at a given static join point is determined as
the following. First, we collect all the (potentially) conflicting advices and
resolvers at the given static join point. During this collection, the dynamic
part of the pointcut (i.e. the pointcut residue) of an advice is ignored.
Then we make a directed graph D(V, E) where a vertex v € V represents
an advice or a resolver and an edge u < v € F represents that an advice u
has higher precedence than another advice v. If a resolver r has an and/or
clause including a, b, ..., then 7 < a, 7 < b, ... We also make an empty set
M, whose elements are edges v € V.

Now(*), we find a top advice t, where ¢t < v for any v € V' \ M. Here,
V'\ M represents a set of the elements contained in V' but not in M. Note
that < is transitive. If V'\ M is empty, there is no other advice. We execute
the original computation at the join point. If there is no unique t or if the
graph D has a cycle, an error is reported. Otherwise, we execute the body
of the top advice t.

During the execution of ¢, suppose that we execute proceed in the body
of t. Then we add t into M. If the proceed has precedence order [a, b, ¢, ...],

CHAPTER 5. THE EXECUTION ORDER OF ADVICES 30

we add t < a, a <b, b <c, ... to the graph D. If an advice a is included in
the and/or clause of ¢ and the precedence order does not include a, then a
is added to M. Finally, we go back to * to find a top advice t for D and M
again as we did above.

Recall that a top advice t is a potentially conflicting advice at the current
static join point. Hence ¢ might be unexecutable since the join point residue
of ¢ does not match the current runtime contexts. If it does not match, the
body of ¢ is not executed. ¢ is added into M and we find and execute a top
advice for D and the new M.

Now we show steps of this algorithm using an example. We assume that
normal advices A, B, C, and D conflicts at a join point and then combine
these advices with the next resolvers:

void R() and(4A, B) {
[A, B].proceed();

}

void S() and(R, C, B) {
[R, C, B].proceed();

}

void T() and(R, S, D, B, C) {
[D, R, B, C].proceed();

}

Figure 5.1: A graph representing the precedence declared by the resolver
definitions

First, we create a directed graph shown Figure [5.1] with edges that rep-
resents precedence relations declared by the resolver definitions. Since the
relation is transitive, some edges such as T < B are omitted.

CHAPTER 5. THE EXECUTION ORDER OF ADVICES 31

e: a top advice @: an advicein M

Figure 5.2: Adding edges specified in the resolver T

Next the current top resolver is T in Figure[5.21 The precedence relations
specified by the proceed call in T are added to the graph. Since the resolver
S is removed by the proceed call, we add S in M. The next top advice is
D, which has higher precedence than all advices and resolvers that are not
contained in M.

After the advice D calls a proceed, the resolver R is top in Figure £.3l
It appends the relation A < B specified by its proceed call to the graph.
Through calling the proceed, a top advice transits from A to C via B. There
is only the proceed path [D, R, B, C].proceed, [A, B].proceed(). The total
execution order of the advices for this path is T, R, A, B, C.

CHAPTER 5. THE EXECUTION ORDER OF ADVICES

@: a top advice @: an advice in M

Figure 5.3: Adding edges specified in the resolver R

32

Chapter 6

Other examples

We show two other examples here. The first is aspects applied to a shape
editor. The other is two authorization aspects. We permit to access our web
application only when either of the aspects permits.

6.1 A figure editor

We show a shape editor as an example. Listing shows the Shape
class, which represents a shape on this editor. Shape has methods,
setWidth /setHeight and getWidth/getHeight to set and get its width/height.
The scale method change its width and height to the specified scale.

We extend this shape editor to hold values of the width and the height
in double precision. This is implemented in the DoubleCoordinateAspect
shown in Listing Since the original scale method rounds values of the
width/height to integers, when the method is called repeatedly, the pre-
cision of the width/height is lost. DoubleCoordinateAspect addresses this
problem. Now we append double-typed fields, dblWidth and dblHeight into
Shape with inter-type declarations. To store values of the width/height in
dblWidth/dblHeight, a scale method is overridden by the scaleDbl advice. The
original fields of shape class are not used any more. The getWidth/getHeight
and the setWidth/setHeight method are also overridden. They get values
from and set values to new fields.

Next Listing shows the ReallyChanged aspect and the ObseverProto-
col aspect. When setWidth is called, if the values of width is not changed
after this call, ReallyChanged execute nothing. It also prevents execution
of ObserverProtocol. ObserverProtocol is an aspect that implement the ob-
server pattern [I1]. It updates a screen of the shape editor when a shape is

33

CHAPTER 6. OTHER EXAMPLES 34

public class Shape {
int width;
int height;

public void setWidth(int width) {
this.width = width;
}

public int getWidth() {
return width;

}

public void setHeight(int width) {
this.height = height;
}

public int getHeight() {
return height;

3

public void scale(double scale) {
width = (int) Math.round(width * scale);
height = (int) Math.round(height * scale);

Listing 6.1: The Shape class for the shape editor

changed. ObserverProtocol must have higher precedence than ReallyChanged,
otherwise ObserverProtocol is executed at every time.

These advices conflict at execution of Shape.setWidth, for instance. Sup-
pose that ReallyChanged has higher precedence than DoubleCoordinate. Now
there is a shape and its width is 4.2, that is to say, dbIWidth has 4.2. Then we
call setWidth(4), which should change its width to 4. When ReallyChanged is
executed, a new value 4 is compared to current value that getWidth returns.
Since getWidth round the value of dblWidth 4.2 to 4, the ReallyChanged as-
pect decides that the value is not to be changed. Thus the value of dbIWidth
remains 4.2 but this is undesirable behavior.

There is no precedence order among these advices. If DoubleCoordinate
has higher, ReallyChanged is not executed because DoubleCoordinate does
not call a proceed. Like our example in Chapter B this interference is not
resolved with declare precedence.

CHAPTER 6. OTHER EXAMPLES 35

We can resolve this interference by a resolver in Listing It is a new
implementation of ReallyChanged which is aware of DoubleCoordinate. When
setWidth is called, the resolver is executed first. Now its argument is casted
to the double type and compared to a value of dbIWidth. If it is changed, Ob-
serverProtocol and DoubleCoordinate are executed. ReallyChanged is removed
because it is reimplemeted in the resolver.

CHAPTER 6. OTHER EXAMPLES

aspect DoubleCoordinate {
double Shape.dblWidth;
double Shape.dblHeight;

void around setWidthDbl(double width, Shape shape):
execution(void Shape.setWidth(int)) &&
args(width) && target (shape) {
shape.dblWidth = width;
}

int around getWidthDbl(Shape shape):
execution(int Shape.getWidth()) && target (shape) {
return (int)Math.round(shape.dblWidth);
}

void around setHeightDbl(double height, Shape shape):
execution(void Shape.setHeight(int)) &&
args(height) && target (shape) {
shape.dblHeight = height;
}

int around getHeightDbl(Shape shape):
execution(int Shape.getWidth()) && target (shape) {
return (int)Math.round(shape.dblHeight);
}

void around scaleDbl(double scale, Shape shape):
execution(void Shape.scale(double)) &&
args(scale) && target (shape) {
shape.dblWidth *= scale;
shape.dblHeight *= scale;

Listing 6.2: The DoubleCoordinate aspect

36

CHAPTER 6. OTHER EXAMPLES 37

aspect ReallyChanged {
around setWithRC(int width, Shape shape):
execution(void Shape.setWidth(int)) &&
args(width) && target (shape) {
if (shape.getWidth() !'= width) {
proceed(width, shape);
}
}

around setHeightRC(int height, Shape shape):
execution(void Shape.setHeight(int)) &&
args(height) && target(shape) {
if (shape.getHeight() != height) {
proceed(height, shape);
}
}

around scaleRC(double scale):
execution(void Shape.scale(scale) && args(scale) {
if (scale != 1) {
proceed(scale);

}
}

aspect ObserverProtocol {
after onChanged():
execution(void Shape.setWidth(int)) || ... ||
execution(void Shape.scale(double)) {
//observer.notify();

Listing 6.3: The ReallyChanged and the ObserverProtocol aspect

CHAPTER 6. OTHER EXAMPLES 38

aspect DoublCoordinateReallyChanged {
void resolver setWidth(int w, Shape s)
and (DoubleCoordinate.setWidthDbl(w, s),
ReallyChanged.setWidthRC,
ObserverProtocol.onChanged) {
if (s.dblWidth != (double)w) {
[ObserverProtocol.onChanged,
DoubleCoordinate.setWidthDbl] .proceed(w, s);

}
//:
}

Listing 6.4: The aspect for combining DoubleCoordinate and ReallyChanged

CHAPTER 6. OTHER EXAMPLES 39

abstract class CGI {
void run() {
String content;
try {
content = generate();
} catch(RuntimeException e) {
content = generateErrorMessages(e);

}

System.out.println("Content-Type: text/html");
/1

System.out.println(content) ;

}

abstract String generate();
abstract String generateErrorMessages(RuntimeException e);
//

X

class Index extends CGI {
String generate() {
return /* a generated html string */;

}

String generateErrorMessages(RuntimeException e) {
return /* a generated html string */;

X

//

Listing 6.5: The classes of our web application

6.2 Combination of two authorization aspects

The next example is two authorization aspects applied to a web application
which is executed through CGI (common gateway interface). Listing
shows classes of the application. CGl is the base class of the application.
When index.cgi is accessed from a web browser, the Index.run method is
executed. It invokes generate method to generate content of this page. If an
error occurs during generating a page, an exception is thrown. The exception
is caught in the CGlrun method and the content of its error message is
generated. The content is output to the client through the standard output
stream.

CHAPTER 6. OTHER EXAMPLES 40

aspect SessionAuth {
void around auth(CGI cgi):
execution(String Index.generate()) && target(cgi) {
if (!getSession().isLogined()) {
throw new AccessDeniedException();
}
return proceed();
}
/]
}

aspect HostAuth {
void around auth():
execution(String Index.generate()) && target(cgi) {
if (!isPermitted(cgi.getHost())) {
throw new AccessDeniedException();

}

return proceed();

Listing 6.6: Two authorization aspects

Two authorization aspects are shown in Listing First, the Sessio-
nAuth aspect permit to access this page only if a user have already logged
in with his or her password. The advice is executed before a page is gen-
erated. If the user have not logged in, it throw AccessDeniedException and
error messages are displayed to the user. Otherwise, it calls the proceed and
the content of the page is displayed. Then, the HostAuth aspect permit to
access only from specified hosts in the same way as SessionAuth.

It is easy to make the application so that users can access it only from
specified hosts after they have logged in. If we specify the next precedence
between the aspects, the expected behavior can be obtained:

String resolver auth()
and(SessionAuth.auth, HostAuth.auth) {
return [SessionAuth.auth, HostAuth.auth].proceed();

}

This composition can be also described with declare precedence. Since the
two advices are commutative, the other precedence order is also acceptable.
However, disjunction of the conditions of the two advices is difficult.

CHAPTER 6. OTHER EXAMPLES 41

aspect SessionOrHostAuth {
boolean isAllowed;
String resolver auth() and(SessionAuth.auth, HostAuth.auth) {
try {
return [SessionAuth.auth].proceed();
} catch(AccessDeniedException e) {
return [HostAuth.auth].proceed();
}
}
//

Listing 6.7: The resolver the two aspects with an or operator

Now we want to permit to access the application without passwords if the
user accesses it from specified host, such as a host on a local network. The
authorization like this can not be achieved by combining the advice with any
precedence order. This composition require additional composition code.

We can implement the composition code for the authorization with a
resolver. Listing[6.7lshows the resolver. Since the advices throw an exception
if access is denied, the resolver catches the exception and retries another
authorization. First, it invokes the advice in SessionAuth and if access is not
permitted, it invokes HostAuth in the catch clause.

Chapter 7

Implementation of Airia

Airia have been implemented as an extension of the AspectBench compiler
(abc) 1.3.0, which is an implementation of AspectJ compiler. It is designed
for extensibility; a language extension of AspectJ, such as Airia, can be
implemented as its extension (plugin). It is separated in two part: the
frontend, which is mentioned below, and the backend.

The backend receives ASTs of Java and information about aspects from
the frontend. The ASTs are translated to intermediate codes by Soot [21].
The code of the aspects are inserted into them by the weaver. The data
structures and the weaver is described in pure Java and they lacks extensi-
bility. In order to extend a part of weaver as a plugin, we need duplicating
some classes from original ones and modifying them.

7.1 The front end of the compiler

The front end have been extended without modification of the existing code
unlike the backend. The front end of this version of abc is implemented by
extending the JastAddJ [10] extensible compiler, which is an Java compiler
developed by JastAdd. JastAdd is Java-based compiler compiler system.
Since concerns such as type checking and code generation is crosscuts over
classes which represent ASTs, in JastAdd, they are separated into aspects.
Like our example in Chapter Bl the front end of Airia consist of aspects.
JastAddJ provides aspects for Java 1.4 and for Java 1.5. The aspects for
AspectJ are provided from abc. We have implemented aspects for Airia. The
classes for ASTs to which the aspects is woven is automatically generated
by the parser generator Beaver [I]. Only by describing the difference of the
syntax for the generator, we can extend the ASTs.

42

CHAPTER 7. IMPLEMENTATION OF AIRIA 43

refine ImplicitVariables public void AdviceSpec.nameCheck() {

if (adviceName == null) {
//error
} else {

AspectDecl aspectDecl = (AspectDecl)hostType();
SimpleSet decls = aspectDecl.lookupMemberAdvice(adviceName) ;

if (decls.iterator().next() != this.getParent()) {
error(
"An advice with name ‘" + adviceName +
"¢ have already defined in ‘" +
aspectDecl.getID() + "‘"
)
}

}
//invoke refined method
ImplicitVariables.AdviceSpec.nameCheck();

Listing 7.1: The refinement of existing aspect

In the aspects of Airia, only two methods that is declared with inter-type
declarations conflict with existing methods. The methods implement code
generation and name analysis of resolvers. The methods are extended by
the technique called advice refinement. See Listing [Tl This method imple-
ments the name analysis of the AdviceSpec node and refines the nameCheck
method declared in ImplicitVariables aspect. Like our resolver and method
override, the new method is executed first. The method invokes refined
method at the second line from the bottom. Note that our aspects are not
separated completely. If so, more methods might conflict.

Pointcuts of resolvers and helper advices is created implicitly. Thus, we
could make the best reuse of the matcher provided by abc. The matcher
searches join point shadows that a pointcut is bound to. A pointcut of a
resolver is conjunction of all pointcut that the advices specified in the and
clause of the resolver. It is translated in the backend so that a resolver is
executed at the shadow. A pointcut of a helper advice is created in the same
way.

7.2 The weaver for resolvers

Airia supports dynamic control of precedence but advices can be woven
into base code statically because execution order of advice is determined

CHAPTER 7. IMPLEMENTATION OF AIRIA 44

statically for each proceed path as mentioned in Section Bl We customized
weaving process of advices and resolvers. Now they are woven for each
proceed path.

Since a resolver is a new kind of around advice, weaving of a resolver is
similar to that of an around advice. An around advice is basically imple-
mented by a closure method. First, original computation overridden by a
advice is moved into the closure. Then, the code for the advice is generated
as a normal method, every invocation of super is replaced with invocation
of the closure. Finally, the invocation of the advices are inserted to where
the original computation was. If another advice is woven at the same join
point, the invocation of that advice is replaced with an invocation of this
advice.

In Airia, a closure is created for each proceed calls. Suppose that two
around advices, which call a proceed, and the following resolver is woven at
the same join point:

void resolver AandB() and(A, B) {
[A, B].proceed();
[B, A].proceed();

}

This code creates seven closures. For [A, B].proceed(), a closure containing
original computation, one containing invocation of the advice B, and one
containing invocation the advice A are created. For [B, A].proceed(), closures
are created in similar way but exchanged A for B. A closure which invoke
the resolver AandB is also created. Although the size of generated code can
be large, we expect that it would not be critical size in realistic programs.

Chapter 8

Conclusion

8.1 Summary

We presented a language extension of AspectJ to achieve advice composition
without interference. Some interference could not satisfactory resolved in
original AspectJ because the conflicting advices have no correct precedence
order. We need to modify the advices and implement resolving code in them.
Furthermore the composition code is also a crosscutting concern.

This language named Airia can resolve interference among conflicting
advices. Airia enables programmers to separate resolving code into an inde-
pendent resolver. A resolver is a new kind of advice executed at join point
when the specified advices conflict. In a resolver, we can execute conflicting
advice with our extended proceed call. At that call, programmers declare
precedence order among them and remove unnecessary advices. In our ex-
ample, the interference is resolved by invoking only the selected advice with
the proceed call depending on the dynamic context, concretely, actual types
of the operands.

A resolver is composable. It can resolve interference between another re-
solver and an advice. Thus we can implement composition of advices in a hi-
erarchical manner as IntegerAspect, StringAspect, and EvaluationCacheAspect
are resolved with IntegerStringAspect and IntegerStringCacheAspect shown in
Section (4.3l

A resolver is a special around advice and base-level construct in spite
of its expressive power. The precedence specified by resolvers is examined
and the total order of conflicting advices calculated statically. We have
implemented Airia in the JastAdd version of the AspectBench compiler

45

CHAPTER 8. CONCLUSION 46

8.2 Future work

8.2.1 Improvement of Airia

Our future work includes improving the expressive power of proceed calls.
There are some proposals such as [2], which are used to detect whether or
not advices are commutative, i.e. whether or not their combined behavior is
independent of their precedence order. Stateful Aspect and Reflex supports
to declare a combination of advices is commutative. In the current design of
Airia, programmers have to explicitly specify the precedence order among
advices even though they are commutative.

This is annoying and to make the matters worse, this might reduce com-
posability. For example, there are two commutative advices A and B at first.
After declaring the explicit precedence with the advices like [A, B].proceed()
in a resolver, we add a new advice C and a resolver. If C is not commutative
with A and C, they might require precedence like [B, C, A].proceed(). This
precedence causes interference between these resolvers and a compile error
is reported. In this case, we have to remove the former resolver.

A mechanism for directly accessing the instances of the aspects is an-
other future work. An instance of aspect keep values in its fields like a
normal class. Some interference might need to get and set the value from
a resolver. In OARTA, since the whole body of an advice is overridden by
around advice using the extended adviceexecution pointcut, the advice for
composition can access the instance of aspects to which overridden advices
belong through the this pointcut or the thisJoinPoint object. However in
Airia, we can modify the values only by conflicting advices through calling
a proceed.

8.2.2 Application to other languages

Not only to AspectJ, our idea of a proceed call with precedence can be ap-
plied to other languages. Our approach is more suitable to aspect-oriented
language in which hooks (where) and activations (when) is separated, such
as Reflex and JastAdd. JastAdd does not have advices but methods. The
semantics of resolver, in particular the join points when a resolver is exe-
cuted, is complicated but in those languages, the semantics might be more
simple.

Non aspect-oriented languages are also included in the languages. In
traits inheritance, in order to linearize methods of traits, programmers must
define a class for each trait. For example, for the traits T1, T2, programmers
need to define the class C1 which uses T1 and the class C2 which extends

CHAPTER 8. CONCLUSION 47

C1 and uses T2. Since precedence is declarative and composable, we expect
that this idea might achieve more flexible method composition.

Bibliography

1]

2]

: Beaver - a LALR Parser Generator, http://beaver.sourceforge.
net/.

Aksit, M., Rensink, A. and Staijen, T.: A graph-transformation-based
simulation approach for analysing aspect interference on shared join
points, AOSD ’09: Proceedings of the 8th ACM international conference
on Aspect-oriented software development, New York, NY, USA, ACM,
pp. 39-50 (2009).

Apel, S., Leich, T. and Saake, G.: Aspect Refinement and Bounding
Quantification in Incremental Designs, Asia-Pacific Software Engineer-
ing Conference, Vol. 0, pp. 796-804 (2005).

Apel, S., Leich, T. and Saake, G.: Mixin-Based Aspect Inheritance,
Technical Report Number 10, Germany, Department of Computer Sci-
ence, University of Magdeburg (2005).

Avgustinov, P., Christensen, A. S., Hendren, L., Kuzins, S., Lhoték,
J., Lhotdk, O., de Moor, O., Sereni, D., Sittampalam, G. and Tibble,
J.: abc: an extensible AspectJ compiler, AOSD ’05: Proceedings of the
4th international conference on Aspect-oriented software development,
New York, NY, USA, ACM, pp. 87-98 (2005).

Dinkelaker, T., Mezini, M. and Bockisch, C.: The art of the meta-
aspect protocol, AOSD ’09: Proceedings of the 8th ACM international
conference on Aspect-oriented software development, New York, NY,

USA, ACM, pp. 51-62 (2009).

Douence, R., Fradet, P. and Siidholt, M.: A Framework for the Detec-
tion and Resolution of Aspect Interactions, GPCE ’02: Proceedings of
the 1st ACM SIGPLAN/SIGSOFT conference on Generative Program-
ming and Component Engineering, London, UK, Springer-Verlag, pp.
173-188 (2002).

48

http://beaver.sourceforge.net/
http://beaver.sourceforge.net/

BIBLIOGRAPHY 49

8]

[9]

[10]

[11]

[12]

[14]

[15]

[16]

Douence, R., Fradet, P. and Siidholt, M.: Composition, reuse and in-
teraction analysis of stateful aspects, AOSD ’04: Proceedings of the 3rd
international conference on Aspect-oriented software development, New
York, NY, USA, ACM, pp. 141-150 (2004).

Ekman, T. and Hedin, G.: The JastAdd extensible Java compiler,
OOPSLA °07: Proceedings of the 22nd annual ACM SIGPLAN con-

ference on Object-oriented programming systems and applications, New

York, NY, USA, ACM, pp. 1-18 (2007).

Ekman, T. and Hedin, G.: The JastAdd extensible Java compiler,
OOPSLA °07: Companion to the 22nd ACM SIGPLAN conference on

Object-oriented programming systems and applications companion, New

York, NY, USA, ACM, pp. 773-774 (2007).

Hannemann, J. and Kiczales, G.: Design pattern implementation in
Java and Aspect, OOPSLA ’02: Proceedings of the 17th ACM SIG-
PLAN conference on Object-oriented programming, systems, languages,
and applications, New York, NY, USA, ACM, pp. 161-173 (2002).

Havinga, W., Nagy, 1., Bergmans, L. and Aksit, M.: A graph-based
approach to modeling and detecting composition conflicts related to in-
troductions, AOSD ’07: Proceedings of the 6th international conference
on Aspect-oriented software development, New York, NY, USA, ACM,
pp. 85-95 (2007).

Kiczales, G., Hilsdale, E., Hugunin, J., Kersten, M., Palm, J. and Gris-
wold, W. G.: An Overview of Aspect, ECOOP ’01: Proceedings of the

15th European Conference on Object-Oriented Programming, London,
UK, Springer-Verlag, pp. 327-353 (2001).

Marot, A. and Wuyts, R.: Composability of aspects, SPLAT ’08: Pro-
ceedings of the 2008 AOSD workshop on Software engineering properties
of languages and aspect technologies, New York, NY, USA, ACM, pp.
1-6 (2008).

Marot, A. and Wuyts, R.: A DSL to declare aspect execution order,
DSAL ’08: Proceedings of the 2008 AOSD workshop on Domain-specific
aspect languages, New York, NY, USA, ACM, pp. 1-5 (2008).

Marot, A. and Wuyts, R.: Composing Aspects in an Aspect, AOSD
"10: Proceedings of the 9th ACM international conference on Aspect-

BIBLIOGRAPHY 50

[20]

21]

oriented software development, New York, NY, USA, ACM (2010). To
appeared.

Masuhara, H., Kiczales, G. and Dutchyn, C.: Compilation Semantics
of Aspect-Oriented Programs, Proc. of Foundations of Aspect-Oriented
Languages Workshop, AOSD 2002, pp. 17-26 (2002).

Schrli, N., Ducasse, S., Nierstrasz, O. and Black, A. P.: Traits: Com-
posable Units of Behaviour, EFCOOP 2003 — Object-Oriented Program-
ming, pp. 327 — 339 (2003).

Suvée, D., Vanderperren, W. and Jonckers, V.: JAsCo: an aspect-
oriented approach tailored for component based software development,
AOSD ’03: Proceedings of the 2nd international conference on Aspect-
oriented software development, New York, NY, USA, ACM, pp. 21-29
(2003).

Tanter, E.: Aspects of Composition in the Reflex AOP Kernel, Software
Composition, Lecture Notes in Computer Science, Vol. 4089, Springer
Berlin / Heidelberg, pp. 98-113 (2006).

Vallée-Rai, R., Gagnon, E., Hendren, L. J., Lam, P., Pominville, P. and
Sundaresan, V.: Optimizing Java Bytecode Using the Soot Framework:

Is It Feasible?, Compiler Construction, 9th International Conference
(CC 2000), pp. 18-34 (2000).

	1 Introduction
	1.1 A problem with advice compostion
	1.2 A Solution for advice composition without interference
	1.3 Contribution
	1.4 The structure of this thesis

	2 Background
	2.1 AspectJ
	2.2 Related works
	2.2.1 Stateful aspect
	2.2.2 Meta programming for advice composition
	2.2.3 Context-Aware Composition Rules
	2.2.4 Reflex
	2.2.5 Aspect refinement
	2.2.6 Interference in object-oriented programming

	3 A Motivating Example
	3.1 A simple interpreter
	3.2 An incomplete solution in AspectJ

	4 Resolving interference in Airia
	4.1 A Resolver
	4.2 A Proceed call with precedence
	4.3 Composability of resolvers
	4.4 A helper advice
	4.5 Discussion
	4.5.1 Needs of our language constructs
	4.5.2 Join points when a resolver is executed

	5 The execution order of advices
	5.1 Precedence order in Airia
	5.2 Static calculation of the execution order
	5.3 Operational definition of the execution order

	6 Other examples
	6.1 A figure editor
	6.2 Combination of two authorization aspects

	7 Implementation of Airia
	7.1 The front end of the compiler
	7.2 The weaver for resolvers

	8 Conclusion
	8.1 Summary
	8.2 Future work
	8.2.1 Improvement of Airia
	8.2.2 Application to other languages

