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Abstract—Server consolidation using virtual machines (VMs)
makes it difficult to execute processes as the administrators
intend. A process scheduler in each VM is not aware of the
other VM and schedules only processes in one VM indepen-
dently. To solve this problem, process scheduling across VMs is
necessary. However, such system-wide scheduling is vulnerable
to denial-of-service (DoS) attacks from a compromised VM
against the other VMs. In this paper, we propose the Monarch
scheduler, which is a secure system-wide process scheduler
running in the virtual machine monitor (VMM). The Monarch
scheduler monitors the execution of processes and changes the
scheduling behavior in all VMs. To change process scheduling
from the VMM, it manipulates run queues and process states
consistently without modifying guest operating systems. Its
hybrid scheduling mitigates DoS attacks by leveraging perfor-
mance isolation among VMs. We confirmed that the Monarch
scheduler could achieve useful scheduling and the overheads
were small.

Keywords-virtual machines; server consolidation; DoS at-
tacks; process scheduling; performance isolation

I. INTRODUCTION

Server consolidation is widely applied to improve the
resource utilization of server machines. Particularly, the
virtual machine (VM) technology is promising for consol-
idating legacy systems. Multiple physical servers can be
easily migrated to multiple VMs using physical-to-virtual
conversion (P2V) tools. The administrators can continue to
use legacy systems including operating systems (OSes) as is
in VMs. One drawback is that using VMs makes it difficult
to execute processes as the administrators intend. Since VMs
share physical processors, the execution of processes in one
VM affects that in the other VMs. For example, consider
that a process was configured to run only at idle time [1].
After server consolidation, it can run when the VM for it
is idle, but the other VMs may not be idle at that time.
As a result, the process may prevent the execution of more
important processes in other VMs.

Under server consolidation using VMs, system-wide pro-
cess scheduling is necessary to schedule processes across
VMs. A global scheduler can monitor and control all the
processes in all VMs properly. However, there are two
issues for achieving system-wide process scheduling. First,
the virtual machine monitor (VMM) underlying VMs is a
possible place of implementing such a global scheduler, but
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its VM scheduler cannot perform process scheduling. The
VMM cannot recognize processes in guest OSes. Second,
system-wide scheduling is vulnerable to a new type of
denial-of-service (DoS) attacks. If the attackers compromise
one of the VMs, they may be able to prevent the execution of
processes in other VMs only by running specific processes.
For example, a process that is executed only at idle time
cannot run forever.

In this paper, we propose a secure system-wide process
scheduler called the Monarch scheduler. Since the Monarch
scheduler runs in the VMM and the VMM is isolated
from VMs, the attackers in VMs cannot compromise the
Monarch scheduler itself. The Monarch scheduler monitors
the execution of all processes in the whole system and
changes the process scheduling in guest OSes. To change
the scheduling behavior of guest OSes from the VMM,
the Monarch scheduler directly manipulates run queues or
process states without modifying guest OSes. In addition,
the Monarch scheduler performs hybrid scheduling to mit-
igate DoS attacks introduced by system-wide scheduling.
The hybrid scheduling can take trade-off between system-
wide scheduling and performance isolation among VMs by
switching the controlled and autonomous modes frequently.

We have implemented the Monarch scheduler in Xen [2].
To access kernel data in guest OSes, the Monarch scheduler
uses type information obtained from OS kernels and trans-
lates virtual addresses used by them into machine addresses
used by the VMM. At this time, it guarantees that it can
consistently access the kernel data by checking locks for
mutual exclusion in guest OSes. To obtain the accurate
execution time of processes, the Monarch scheduler monitors
the switches of virtual address spaces corresponding to
processes. From our experimental results, it was shown that
the overheads due to the Monarch scheduler were small
enough. Also, the Monarch scheduler could achieve useful
scheduling policies, mitigating DoS attacks.

The rest of this paper is organized as follows. Section II
describes the necessity and issues of system-wide process
scheduling. Section III presents the Monarch scheduler.
Section IV describes the implementation details. Section V
shows experimental results using the Monarch scheduler.
Section VI explains related work and Section VII concludes
the paper.



II. SYSTEM-WIDE PROCESS SCHEDULING FOR VMS

Under server consolidation using VMs, it is often difficult
to schedule processes as the administrators intend. All CPU
resources were used by one OS before server consolidation
while they become shared among VMs after that. For
example, antivirus software is often executed at a lower
priority [3], but higher-priority processes may be running
in other VMs even when such processes are not running
in the VM that is scanning viruses. As another example,
file indexing by search engines is often executed at idle
time [4], [5], but processes may be running in other VMs
even when the VM that attempts to index files is idle.
A process scheduler in each guest OS is not aware of
processes in the other VMs because it behaves as it manages
all processes in the whole system. As a result, such less
important processes in one VM prevent the execution of
more important processes in other VMs such as web servers
and databases.

To solve this problem, system-wide process scheduling
across VMs is necessary. If a global scheduler can know
the existence of more important processes among all VMs,
it can suppress the execution of less important ones. For
example, antivirus software is executed so that higher-
priority processes in all VMs are given more CPU time.
File indexing is executed only when all the VMs are idle.
To enable such scheduling, a global scheduler has to monitor
and control the execution of all processes in all VMs. In a
VM environment, the VMM underlying VMs is a possible
place of implementing such a global scheduler. The VMM
manages the whole system and schedules all VMs.

However, the VM scheduler of the VMM is not suitable
for system-wide process scheduling. The VMM cannot rec-
ognize the process because the process is an abstraction of
OSes. The VM scheduler can give priorities or reserve the
CPU resource only to VMs. For example, it can give a lower
priority to the VM that executes antivirus software. Virus
scans are thereby executed at a lower priority in the whole
system but higher-priority processes in the VM would not
be given sufficient priorities as well. To allow the VMM to
consider processes in guest OSes, new VM schedulers have
been proposed [6], [7], but they require the modification of
guest OSes to pass information on the priorities of processes
to the VMM. When legacy OSes are used in consolidated
servers, we cannot modify the OSes.

In addition, system-wide process scheduling has a security
issue to be considered. It is inherently vulnerable to a new
type of DoS attacks. Let us consider that the attackers
compromise one VM and intrude it. The attackers may be
able to perform DoS attacks against processes in other VMs
only by running specific processes. For example, they can
prevent the execution of file indexing by running one process
with a busy loop. A global scheduler stops file indexing due
to the process running in the compromised VM. Although
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Figure 1. The Monarch scheduler running in the VMM.

the administrators should elaborate scheduling policies that
can tolerate this type of DoS attacks, such policies become
complicated and error-prone. Traditionally, performance iso-
lation provided by VMs could prevent such attacks. If there
are processes to be ready to run in a VM, the VM can receive
a certain CPU time. System-wide process scheduling breaks
such performance isolation.

Our threat model is as follows. We assume that the
attackers intrude some of the VMs and perform DoS attacks
specific to system-wide scheduling. We do not assume
that the kernels of guest OSes and the VMM have been
compromised because the VMM and security hardware can
guarantee their integrity. [8]-[11]

III. MONARCH SCHEDULER
A. Process Scheduling by the VMM

The Monarch scheduler is a secure system-wide process
scheduler running in the VMM, as illustrated in Figure 1.
Since the VMM is isolated from VMs on top of it, the at-
tackers in VMs cannot compromise the Monarch scheduler.
The Monarch scheduler monitors the execution of processes
and changes the scheduling behavior for all VMs from the
VMM. Normally, the VMM cannot obtain information in
guest OSes or change the behavior because it is not aware
of the internals of guest OSes. To understand guest OSes,
the Monarch scheduler analyzes the memory of VMs using
information on kernel data. Modifying guest OSes is not
necessary so as to cooperate with the Monarch scheduler.
The Monarch scheduler exploits the existing process sched-
ulers in guest OSes as much as possible. Each process is
basically scheduled by a process scheduler in the VM that
it belongs to. The role of the Monarch scheduler is to watch
the whole system consisting of multiple VMs and change
the scheduling behavior in guest OSes so that a system-wide
scheduling policy is achieved.

The Monarch scheduler changes the process scheduling
in guest OSes by suspending and resuming processes. For
this adjustment, the Monarch scheduler directly manipulates



run queues of process schedulers or process states in guest
OSes. To suspend a process that is ready to run, the Monarch
scheduler removes it from a run queue. Since a guest OS
schedules only processes in run queues, any CPU time is not
allocated to the removed process. At this time, the Monarch
scheduler guarantees that a guest OS is not manipulating
its run queues to keep the consistency. For a process that
is blocked or currently running, the Monarch scheduler
rewrites its state so that a guest OS does not schedule it
later. To resume a suspended process, the Monarch scheduler
rewrites the process state if necessary and inserts it into a
run queue.

The Monarch scheduler records the execution time of pro-
cesses in the VMM. The VMM cannot understand processes
in guest OSes directly, but it can recognize them via their
virtual address spaces [12]. The Monarch scheduler monitors
the switches of virtual address spaces and measures the CPU
time used by processes. Although the process time is also
recorded by guest OSes, it may be inaccurate when processes
are running in VMs. As far as an OS kernel is not modified to
be aware of the VM, it cannot recognize the context switches
between VMs. As a result, it may incorrectly account the
CPU time to a process even while the VM for it is not
scheduled. The measurement by the VMM does not depend
on the accounting mechanisms in guest OSes.

B. Hybrid Scheduling

To mitigate inherent DoS attacks introduced by system-
wide process scheduling, the Monarch scheduler pro-
vides hybrid scheduling. The hybrid scheduling periodically
switches two modes: controlled and autonomous. In the
controlled mode, the Monarch scheduler performs system-
wide process scheduling. In the autonomous mode, it stops
its own scheduling and allows the VMM and guest OSes to
perform their own original scheduling. Even if the attackers
in compromised VMs run malicious processes so that victim
processes in other VMs are suspended by the Monarch
scheduler, such DoS attacks are mitigated thanks to the
autonomous mode. The victim processes can run for a
certain period at least.

The hybrid scheduling can achieve both system-wide
scheduling and performance isolation among VMs. The
controlled mode allows process execution that is not aware
of the isolation enforced by VMs. The autonomous mode
mitigates DoS attacks across VMs by the enforcement
of performance isolation. To take trade-off between two
modes, the Monarch scheduler allows the administrators to
adjust the ratio of scheduling between these two modes.
As scheduling time in the controlled mode becomes longer,
the Monarch scheduler can control process execution more
accurately. As that in the autonomous mode becomes longer,
performance isolation among VMs is left more largely.

IV. IMPLEMENTATION

We have implemented the Monarch scheduler in Xen
3.4.2 [2]. In Xen, a regular VM is called domain U. In the
current implementation, the Monarch scheduler supports the
Linux 2.6 guest OS for the x86-64 architecture.

A. Scheduler Overview

The Monarch scheduler is invoked by timer interrupts
in the VMM. The default interval is 10 ms in the current
implementation. First, the Monarch scheduler pauses all
virtual CPUs to stop the execution of all domain Us. This
prevents the conflicts of process scheduling between the
Monarch scheduler and guest OSes. During the controlled
mode in hybrid scheduling, the Monarch scheduler traverses
the process lists in guest OSes and finds target processes.
Based on the execution time of the processes, it changes
process scheduling in guest OSes by suspending or resuming
some of the processes. Finally, it continues all domain Us
again. During the autonomous mode, the Monarch scheduler
does nothing.

When the Monarch scheduler switches between the con-
trolled and autonomous modes, it largely changes process
scheduling in guest OSes. When it enters the autonomous
mode, it resumes all the processes that have been suspended
by it. All processes are scheduled by process schedulers in
guest OSes as if the Monarch scheduler is not used. When
the Monarch scheduler comes back to the controlled mode,
it re-schedules all processes again based on its scheduling
policy and suspends processes if necessary. The periods
allocated to these two modes can be configured by the
administrators. The default periods are 500 ms for the
controlled and autonomous modes, respectively.

B. Accessing Kernel Data

The Monarch scheduler obtains information on data types
from the debug information of OS kernels. An example
of such type information is the task_struct structure for
representing the process in Linux. The debug information is
generated by compiling the kernel with the debug option and
stored in the DWAREF [13] format. Such type information can
be obtained from the source code of the kernel, but it is more
complicated. The Linux kernel contains various macros for
configuration and enables specific fields in data structures
by defining macros.

To access data in a guest OS from the VMM, the Monarch
scheduler have to translate their virtual addresses in domain
U into machine addresses. In Xen, the VMM uses the
machine address to access the entire memory. Domain U is
given pseudo-physical memory for the illusion of its own
physical memory. First, the Monarch scheduler looks up
the page table in domain U and translates a virtual address
into a pseudo-physical address in the domain U. Next, it
looks up the P2M table in the VMM and translates the
pseudo-physical address to a machine address. The Monarch



scheduler maintains the result of this translation as a cache.
When it accesses virtual addresses in the same page, it can
obtain machine addresses from the cache directly. The cache
is invalidated before the Monarch scheduler continues the
domain U because the page table and the P2M table can be
changed while the domain U is running.

When the Monarch scheduler examines processes in a
guest OS, it traverses a circular list including all the pro-
cesses. The staring point of the process list is the init_task
symbol, which is invariant in each kernel image. The virtual
address of this symbol is also obtained from the symbol table
in the debug information of the kernel. On the other hand,
it is not so straightforward to find all the run queues in a
guest OS. In Linux, a run queue is created for each virtual
CPU. Since the number of virtual CPUs is not determined
until a VM is created, the address of each run queue changes
according to the number. Therefore, the Monarch scheduler
obtains the address of a run queue by starting from the GS
base register of a virtual CPU. The register points to per-
CPU specific data structure named x8664_pda. This data
structure contains a pointer to a run queue.

The Monarch scheduler guarantees to consistently access
kernel data in guest OSes. If it inspects a run queue while
a guest OS is modifying it at the same time, it and/or the
guest OS may crash. To prevent this situation, the Monarch
scheduler checks locks for kernel data. Linux uses spinlocks
for mutual exclusion of accessing run queues and the process
list, respectively. Before the Monarch scheduler access such
kernel data, it checks whether the corresponding spinlock is
acquired by a guest OS or not. If the spinlock is not acquired,
the Monarch scheduler can safely manipulate kernel data. It
does not need acquire the spinlock because it pauses the
domain U in which the guest OS runs. If the spinlock is
already acquired by a guest OS, the Monarch scheduler skips
scheduling at that time. Since a guest OS should release
such spinlocks in a short period, the Monarch scheduler can
perform scheduling shortly.

C. Suspending/Resuming Processes

The Monarch scheduler uses several techniques for sus-
pending processes according to their state. In Linux, a
process has three main states: ready, running, and blocked.
For a process in the ready state, the Monarch scheduler
manipulates a run queue to suspend it. A process in this
state is waiting for being scheduled in a run queue. In
Linux, a run queue is an array of lists, each of which
accommodates runnable processes with the same priority,
as shown in Figure 2. To suspend a process in this state,
the Monarch scheduler removes the process from one of the
lists in a run queue. Together with this manipulation, it also
updates the counter that maintains the number of processes
in a run queue. Since the processes in run queues do not
hold any locks in the kernels, suspending them does not
cause deadlocks.
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Figure 2. Suspending processes in various states.
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For a process in the running or blocked state, the
Monarch scheduler rewrites the process state to suspend
it. A process in the running state is the currently running
process and a process in the blocked state is waiting for I/O
completion or lock acquisition. To suspend a process in the
running state, the Monarch scheduler changes the process
state to blocked. When a process scheduler in a guest OS is
invoked for a context switch, the current process is removed
from a run queue. If the state is not running, the process
is not inserted into the run queue again. At this time, the
process does not hold any locks in the kernel. Although the
current process is also in a run queue in Linux, the Monarch
scheduler cannot suspend it by directly removing it from
the run queue. Even if the Monarch scheduler does so, the
process scheduler in a guest OS inserts the current process
into the end of the run queue and schedules it again.

On the other hand, the Monarch scheduler changes the
process state to stopped for a process in the blocked
state. The state of stopped is identical to that of a process
suspended by the SIGSTOP signal. Even when a process is
woken up by an event such as I/O completion, the wake-up
function does not insert the process into a run queue if the
process state is stopped. When such a process is stopped
by a guest OS, it is guaranteed that it does not hold any
locks in the kernel. Although the process can be resumed
by sending the SIGCONT signal, the Monarch scheduler
suspends the process again immediately. Since a process
in this state is not in a run queue, the Monarch scheduler
cannot remove the process from a run queue. Conversely,
this process rewriting is ineffective for a process in the ready
state. Even if the Monarch scheduler rewrites the process
state, a process scheduler in a guest OS schedules the process
without checking its state.

To resume a process that has been removed from a run
queue, the Monarch scheduler inserts it into the run queue
from which it has been removed. The inserted list in the run
queue is selected according to its priority. For a process
whose state has been rewritten, the Monarch scheduler
rewrites its state to the ready state before inserting it into a



run queue.

D. Monitoring Accurate Process Time

To record the execution time of each process, the Monarch
scheduler measures the CPU time used for the execution in
the context of the corresponding virtual address space. A
virtual address space is uniquely identified by the machine
address of the page directory in a page table. When a guest
OS sets the address to the CR3 register in a virtual CPU for
the context switch between processes, the Monarch sched-
uler can check the address. The instruction for changing
CRS is privileged and trapped by the VMM. Similarly, the
Monarch scheduler can check the address when a context
switch occurs between VMs and the current virtual address
space is changed. The CPU time from when the specific
value is set to CR3 until the value of CR3 is changed is
accumulated as the corresponding process time.

The Monarch scheduler binds virtual address spaces to
real processes by using process information in guest OSes.
In Linux, the address of the page directory is stored in the
mm_struct structure, which is followed from task_struct.
By traversing the process lists in guest OSes, the Monarch
scheduler can bind the accurate execution time to each
process.

V. EXPERIMENTS

We performed experiments to examine the overheads and
the scheduling abilities of the Monarch scheduler. For a
server machine, we used a PC with one Intel Core 2 Duo
processor E6600, 6 GB of memory, and a Gigabit Ethernet
NIC. We ran Xen 3.4.2 for the x86-64 architecture on this
PC. For domain 0, we allocated two virtual CPUs and 1
GB of memory and we ran Linux 2.6.18. For domain U, we
allocated one virtual CPU and 1 GB of memory and we ran
Linux 2.6.18 as a guest OS. For a client machine, we used a
PC with one Intel Core 2 Quad processor Q95508S, 8 GB of
memory, and a Gigabit Ethernet NIC. These two machines
were connected with a Gigabit Ethernet switch.

A. Scheduling Overheads

To examine the overheads of running the Monarch sched-
uler, we measured the time needed for traversing the process
lists in guest OSes. Each VM is paused during this traversal.
In this experiment, the Monarch scheduler searched target
processes from the process lists by comparing process names
and did not suspend or resume any processes. On each guest
0OS, 36 processes were running originally. We performed the
traversal of the process lists 1000 times and obtained the
average time.

First, we changed the number of processes in one VM
between 36 and 6000 to examine the impact of the length of
the process list. Spawning more than 6000 processes caused
an out-of-memory error. To adjust the number of processes,
we ran dummy processes that always slept. As in Figure 3(a),
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Figure 3. The time for traversing process lists.

the traversal time is proportional to the number of processes
and 36 ns for one process. For traversing 6000 processes, it
takes 220 ps and the overhead is 2.2% when the scheduling
interval is 10 ms. However, running 6000 processes in one
VM is not realistic. For 400 processes, it takes 15 us and
the overhead is 0.15%.

Next, we changed the number of VMs between one
and five. The purpose of this experiment is to clarify the
overheads of inspecting multiple VMs. Therefore, we fixed
the total number of processes in the whole system to 300.
Figure 3(b) shows that the time for traversing 300 processes
depends on the number of VMs but increases only 0.88 us
per VM. This overhead comes from increasing the number
of pausing virtual CPUs and checking locks for kernel data.
From this result, the scheduling overheads mainly come from
the number of processes.

B. Monitoring Overheads

To examine the overheads of monitoring process exe-
cution in the VMM, we measured the time needed for
recording the execution time of processes with CR3 and the
number of context switches per second. We performed this
experiment at the VM start-up time and in a steady state. We
regarded 15 seconds after booting a VM as the VM start-up
time. While many processes were created at the VM start-up
time, only a few processes ran in a steady state. We used
between one and five VMs.



At the VM start-up time, it took 0.26 us per context
switch and context switches occurred 1467 times per second
on average. From these results, the overhead of process
monitoring is 0.04%. In a steady state, on the other hand,
it took 0.20 us per context switch. Since context switches
occurred 129 times per second, the overhead of process
monitoring is 0.003%. The reason why it takes more time
at the start-up time is that newly created processes need to
allocate new recording area. In any cases, this overhead is
negligible.

C. Performance Degradation

To examine the performance degradation due to the above
scheduling and monitoring overheads, we measured the
throughput and response time of the lighttpd web server [14].
In this experiment, we created one VM and ran the lighttpd
process and dummy processes. The Monarch scheduler
traversed the process list to find target processes and did not
change the process scheduling. We used the ApacheBench
benchmarking tool [15] and sent ten requests concurrently.

We changed the scheduling interval at which the Monarch
scheduler was invoked between 0.1 and 100 ms. We mea-
sured the throughput and response time when the number of
processes was 36, 500, and 2000. We chose the maximum
number of processes so that the time for traversing the
process list was less than 0.1 ms. Figure 4 shows the results.
The performance was degraded largely when the interval was
0.1 ms and the number of processes was 2000. However,
this interval is too short realistically. When the interval
was 10 ms, which is the default in the Monarch scheduler,
the throughput was degraded by 1.5% and the response
time became 1.3% longer even for 2000 processes. For 500
processes, the performance was degraded by less than 0.3%.

D. System-wide Idle-time Scheduling

We examined the effectiveness of idle-time scheduling
achieved by the Monarch scheduler. We ran lighttpd in VM 1
and the file indexing in Hyper Estraier [16] in VM 2. Hyper
Estraier is a high-performance text search engine. First, we
monitored the activities of these two processes when we
did not use the Monarch scheduler. Figure 5(a) shows the
changes of the CPU utilization of these two processes. While
lighttpd was running in VM 1, the file indexing was also
running because it was only an active process in VM 2.
Therefore, the file indexing largely affected the execution of
lighttpd although it should stop. The throughput of lighttpd
was degraded by 24% and the response time was 32%
longer.

Second, we used the Monarch scheduler to execute the file
indexing only at idle time in the whole system. To examine
the accuracy of scheduling, we disabled hybrid scheduling in
this experiment. Figure 5(b) shows the results of this system-
wide process scheduling. When lighttpd started running in
VM 1, the file indexing stopped immediately in VM 2.
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Figure 4. The performance degradation of a web server.

The throughput of lighttpd was degraded by 2.4% and the
response time was 2.5% longer.

Third, we enabled hybrid scheduling of the Monarch
scheduler. Without hybrid scheduling, the attackers can
completely prevent the execution of the file indexing by
making lighttpd always busy. We changed the ratio of the
controlled and autonomous modes. Figure 6(a) shows the
CPU utilization of the file indexing for the various ratios
of the autonomous mode. As the ratio becomes large, the
file indexing runs more. Figure 6(b) shows the changes
of the CPU utilization of two processes when the ratio
is 50%. Strictly speaking, hybrid scheduling violates idle-
time scheduling but prevents DoS attacks from the VM that
executes lighttpd. When the ratio of the autonomous mode is
more than 80%, the CPU utilization increases steeply. This is
because the Monarch scheduler switches from the controlled
mode to the autonomous one before the manipulation of
guest OSes works effectively.

Hybrid scheduling degrades the performance of lighttpd
even when lighttpd runs normally. The performance degra-
dation is shown in Figure 7. As the ratio of the autonomous
mode is increasing, the throughput is decreasing and the
response time becomes longer. When the ratio is 50%, the
throughput degradation is 9.7% and the response time is
8.8% longer.
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Figure 5. System-wide idle-time scheduling for Hyper Estraier.

E. System-wide Priority Scheduling

We examined the effectiveness of priority scheduling
by the Monarch scheduler. We ran the power test of the
DBT-3 benchmark [17] in VM 1 and the virus scanner of
ClamAV [18] in VM 2. DBT-3 tested the performance of
PostgreSQL in a decision support system. Without system-
wide priority scheduling, the virus scanner interfered with
PostgreSQL across VMs as shown in Figure 8(a). When we
ran only DBT-3, the power test took 221 seconds. On the
other hand, it took 384 seconds when we ran the power test
with the virus scanner.

To execute the virus scanner in a lower priority than
PostgreSQL, we configured the priorities of PostgreSQL
and the virus scanner so that their CPU shares were 2
and 1, respectively. Figure 8(b) shows the results. When
PostgreSQL needs much CPU time, for example, between
100 and 150 seconds and between 320 and 380 seconds,
the CPU utilization of PostgreSQL is approximately double
that of the virus scanner. When PostgreSQL is idle, the virus
scanner uses most of the CPU time. Under this scheduling,
the power test took 275 seconds, which was 28% faster than
when we did not use the Monarch scheduler.

Next, we performed other experiments to demonstrate
DoS attacks to ClamAV and show the effectiveness of hybrid
scheduling. We ran four processes for MEncoder [19] in VM
1 and the virus scanner of ClamAV [18] in VM 2. MEncoder
encoded MPEG-4 video data. We assigned a high priority to
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Figure 6. The effects of hybrid scheduling with idle-time scheduling.

MEncoder and a low priority to the virus scanner so that their
shares were 2 and 1, respectively. Figure 9(a) shows the total
CPU utilization of all MEncoder processes and that of the
virus scanner when we did not use the Monarch scheduler.
The virus scanner could use more than 50% of the CPU
time. However, when we used the Monarch scheduler, the
CPU utilization of the virus scanner was reduced to 12%,
as in Figure 9(b). As such, the attackers can perform DoS
attacks using system-wide scheduling.

Figure 10(a) shows the CPU utilization of these two
when we enabled hybrid scheduling. The virus scanner can
obtain more CPU time. Figure 10(b) shows the relationship
between the number of MEncoder processes and the CPU
utilization of the virus scanner. Without hybrid scheduling,
as the attackers ran more MEncoder processes in VM 1, the
CPU utilization of the virus scanner in VM 2 was decreasing.
When we configured the ratio of the autonomous mode to
50% in hybrid scheduling, the virus scanner can obtain more
than 16% of CPU time even for more than four MEncoder
processes.

F. Dependence on Guest OSes

The Monarch scheduler depends on the internal structures
of guest OSes because it directly monitors and manipulates
the kernel data. Even for the same OS, its internal structures
can change among different versions. Several data structures
are altered by refactoring, adding new features, changing the
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Figure 7. The performance degradation by hybrid scheduling.

scheduling algorithm. To examine how much the Monarch
scheduler has to be modified when the Linux kernel is
updated, we inspected 33 versions of the Linux kernel 2.6.

The kernel was largely modified between these versions,
but it was shown that the Monarch scheduler was not
affected by most of kernel updates because it depends only
on the scheduling and management of processes. When new
data structures are added to an OS, the Monarch scheduler
can ignore them if it does not refer to them. Even if data
structures that the Monarch scheduler refers to are changed,
the Monarch scheduler just obtains type information on them
from the debug information of the kernel again.

There were several small changes that we had to modify
manually. In 2.6.14, a field of the spinlock_t structure was
changed so that it was contained in another structure. In
2.6.18, the runqueue structure was simply renamed to rqQ.
In 2.6.30, the calculation of the address of a run queue was
changed so that a fixed offset was added to the value of the
GS base register. For these changes, we could easily modify
the Monarch scheduler.

On the other hand, the scheduling algorithm was changed
from the O(1) scheduler to the completely fair scheduler
(CFS) in 2.6.23. The O(1) scheduler uses doubly-linked lists
of processes as run queues while CFS uses a red-black tree.
Since the new scheduler changed both data structures and a
scheduling algorithm, we needed to modify the Monarch
scheduler largely. According to our deep inspection, we
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Figure 8. System-wide priority scheduling for DBT-3 and ClamAV.

could modify the Monarch scheduler so that it can change
the behavior of CFS.

VI. RELATED WORK

Researchers have proposed VM scheduling mechanisms
that can give global priorities to processes across VMs.
In guest-aware VM scheduling [6], each guest OS notifies
the VMM of the highest priority among processes. In
proportion to the notified priority, the VM scheduler adjusts
the priorities of VMs. Since the VM scheduler considers
only the highest priority in each VM, the other processes
in the same VM can take too much CPU time. In task-
grain scheduling [7], on the other hand, each guest OS
notifies the hypervisor, the L4-embedded microkernel, of
the priorities of all processes. Whenever a context switch
occurs, the hypervisor schedules the guest OS running the
process with the globally highest priority at that time. For
regular VMMs such as Xen, switching VMs so frequently
causes large overheads. Unlike the Monarch scheduler, these
scheduling mechanisms require the modification of guest
OSes.

In task-aware VM scheduling [20], on the other hand,
the VM scheduler preferentially schedules VMs that execute
I/O-bound processes without modifying guest OSes. The
scheduler detects I/O-bound processes in VMs by using
the same technique as Antfarm [12] and other gray-box
knowledge. When a network packet arrives to the VMM, the
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Figure 9. System-wide priority scheduling for MEncoder and ClamAV.

scheduler immediately schedules the VM where a process to
receive the packet exists. This mechanism is for better VM
scheduling, not for process scheduling.

A system-wide process scheduler can be also implemented
using a technique similar to coordinated scheduling, which
is used in distributed systems [21]. A local scheduler running
in each VM obtains information on processes in the whole
system by communicating with the other VMs. Then each lo-
cal scheduler controls the execution of processes in the same
VM. Since legacy OSes cannot be modified, local schedulers
are often implemented as processes, using techniques for
user-level scheduling [22], [23]. However, if the attackers
compromise a local scheduler, they may easily perform DoS
attacks by telling a lie to the other VMs. In addition, the
process time recorded inside VMs may be inaccurate, as
described in Section III-A.

Virtual machine introspection (VMI) is widely used for
inspecting guest OSes from the VMM. Livewire [8] enables
executing intrusion detection systems in the outside of a VM.
IntroVirt [24] enables obtaining more information such as
file contents from the VMM by executing kernel functions
in a guest OS. To prevent kernel data from being modified
by the execution of kernel functions, it uses checkpoint and
rollback. VMwatcher [25] detects malwares by comparing
information obtained from a guest OS with that obtained
from the VMM. Lares [26] executes security applications
in another VM by inserting hooks into the code of a guest
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Figure 10. The effects of hybrid scheduling with priority scheduling.

OS from the VMM. While these systems only inspect guest
OSes from the VMM, the Monarch scheduler modifies them
as well.

XenAccess [27] is a library for inspecting guest OSes
including Windows. The Monarch scheduler cannot use it
in two reasons. First, it is a library available only in domain
0 of Xen. In general, domain 0 is a reasonable place to
inspect domain Us. However, it is not suitable for a system-
wide process scheduler because of its overheads. Domain 0
has to map memory pages into its address space to access
the memory of domain Us. Second, XenAccess does not
support to modify guest OSes.

Direct kernel object manipulation (DKOM) [28] is a
technique that manipulates data in guest OSes by directly
modifying the kernel memory. This technique has been
often used for attacks. We use this technique for changing
the scheduling behavior of guest OSes from the VMM. It
was challenging to change the behavior of guest OSes by
using only the DKOM technique because this technique can
change it only indirectly through the modification of kernel
data.

VII. CONCLUSION

In this paper, we proposed the Monarch scheduler for
secure system-wide process scheduling across VMs. The
Monarch scheduler is running in the VMM and monitors the
execution of processes in all VMs, based on the switches of



their virtual address spaces. Then it changes the scheduling
behavior of guest OSes by consistently manipulating run
queues and process states without modifying guest OSes. To
mitigate DoS attacks, its hybrid scheduling takes trade-off
between system-wide scheduling and performance isolation
among VMs. We showed that the Monarch scheduler could
achieve useful scheduling policies and the overheads were
small. According to our inspection of the Linux kernels, the
Monarch scheduler is not affected by kernel updates in most
cases.

One of the future work is supporting Windows guest OSes
completely. In the current implementation, the Monarch
scheduler can manipulate Windows processes in the run
queues but cannot suspend ones in the running or blocked
state. We need different techniques from ones used for
Linux. Another direction is developing various system-wide
scheduling policies using the Monarch scheduler. Possible
scheduling policies also depends on scheduling algorithms
in guest OSes.
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