Toward a profiling tool for visualizing implicit behavior in X10

Seisei Itahashi

The University of Tokyo
seisei@csg.ci.i.u-tokyo.ac.jp

Abstract

This paper presents a design sketch of the profiler that we are
currently developing for X10. To modify an X10 program for
improving the execution performance, a profiler should visualize
implicit data transfer among places and synchronization among
activities. Since X10 is a PGAS language and its programming
is not a SIMD-style, visualizing those kinds of behavior of X10
programs is significant in practice. This paper shows how those
kinds of behavior are visualized.

Categories and Subject Descriptors D.2.5 [SOFTWARE ENGI-
NEERINGT: Testing and Debugging

Keywords Performance profiling, visualization, parallel comput-
ing.

1. Introduction

X10 provides high productivity for large-scale computing with
high-level language abstraction on parallel and distributed opera-
tions. However, since they involve various implicit operations, de-
velopers often see difficulties in understanding the behavior of their
programs with respect to synchronization and data transfer. To ad-
dress these difficulties, we are currently developing a profiler and
a visualizer for X10 programs. For example, unlike a typical MPI
program, some data transfers in X10 are implicit. When an activity
is moved among places, data transfers are implicitly executed but
they are not explicitly described in the source code. Which activ-
ities are synchronized by the finish operator is not explicitly de-
scribed or it is often not statically determined. These difficulties
are serious since typical X10 programs are not SIMD-style code
but they create a number of activities that behave differently; their
program structures are often more complicated than typical SIMD-
style programs using MPI.

To illustrate such implicit behavior of X10 programs, our pro-
filer and visualizer perform source-to-source translation of X10
programs. The profiler inserts probe code into an X10 program and
logs its behavior during runtime. Then, our plan is that the visual-
izer presents the logged information of the implicit behavior along
with the logs of explicit events, which are explicitly described in
the X10 source program such as method calls and the execution
of finish. The activities involved in synchronization are identified
by showing relevant explicit events such as where the activities
are created in the source code. We also plan to provide a scop-
ing mechanism based on aspect orientation. Narrowing the profiled
explicit/implicit events and data would be useful to ease the under-
standing of the behavior of complex programs. These features are
currently being implemented by modifying an existing X10 com-
piler. In this paper, we first present the functionalities demanded
when debugging X10 programs. Then we present our design of the
profiler and visualizer for providing these functionalities. We also
show the current status of our implementation in progress.

Yoshiki Sato

The University of Tokyo
yoshiki@ci.i.u-tokyo.ac.jp

Shigeru Chiba

The University of Tokyo
chiba@acm.org

public static def main(Rail[Stringl) {
val BigD = Dist.makeBlock...;
val D = BigD | ((1..N)*(1..N));
val A = DistArray.make...;
val Temp = DistArray.make...;
val D_Base = Dist.makeUnique...;
var delta: Double;

do {
finish for (z in D_Base.places()) at (z) {
// kermel computation
delta = A.map(...).reduce(...);
}
finish for (place in D.places()) at (place){
for (p in D) {
// copy the array in parallel
A(p) = Temp(p);
}
}
} while (delta >= epsilon);
}

Listing 1. An X10 program for computing heat spreading

2. Requirements for X10 profilers

Since X10 is a PGAS language and provides different features from
non-PGAS parallel programming languages, a profiler for X10 pro-
grams has to show not only typical kinds of profiles but also ones
unique to X10. Such unique kinds of profiles have to help develop-
ers understand two aspects of the behavior of X10 programs: im-
plicit data transfer and activities involved in synchronization. X10
programs are not SIMD-style code and hence a large number of ac-
tivities may act differently. Understanding those aspects is signifi-
cant when developers are debugging their programs and improving
their execution performance.

2.1 Implicit data transfer

When an activity moves to another place, all local variables and
arrays declared before the movement will be copied and transferred
to the destination place. For example, Listing 1 is a typical X10
program taken from [2]. Since the original program was written
in an old style, we rewrote the program to follow the current
specifications of X10. In this program, a number of activities are
created and moved to different places. Estimating how much data
is transferred and when it is transferred would be a complex task
for developers as the number of activities increases but they are
crucial information for improving the execution performance of the
program. An activity might more frequently move if the program
includes variables of type GlobalRef. The value of such a variable is
often fetched by a short expression surrounded by at, which might
be abused and cause a serious performance bottleneck due to data
transfer.

abstract Scheduler {

abstract def run(taskSet: Set[Task], num:long);

def doTask(taskSet: Set[Task], num:long) {
finish {
run (taskSet, num);
}
}
}

class Sequential extends Scheduler {
def run(taskSet :Set[Task], num:long){
for (task in taskSet) task.run();
}
}

class Parallel extends Scheduler {
def run(taskSet: Set[Task], num:long){
for (task in taskSet) async { task.run(); 1}
}
}

class OptimizedParallel extends Scheduler {
def run(taskSet: Set[Task], num:long){

for(var i:long=0; i<taskSet.length; i+=num) {

async {
for(int j = i; j < i + num; j++)
taskSet.get(j).run();
}
}
}
}

Listing 2. An X10 program in which the number of activities
created is not statically known

2.2 Activities synchronized together

If some methods are called within the body of finish, the methods
might create several new activities and the number of the created
activities could not be statically determined. The developer would
want to know how many activities are synchronized by finish and
how long the synchronization takes. They would want to know
whether or not there is an activity that runs longer than others and
thus becomes a bottleneck at the time of synchronization.

Listing 2 shows an example of such a case. This program in-
cludes three subclasses of the Scheduler class. The run method in
the Sequential class sequentially performs the given tasks. The run
method in the Parallel class performs each task by using a different
activity. The run method in the last class OptimizedParallel per-
forms the tasks in parallel by using a fixed number of activities. It
will avoid excessive parallelism. Letting developers select an ap-
propriate Scheduler object is natural but then the number of activ-
ities the doTask method will create and synchronize is not easily
estimated without considering the dynamic type of the object.

3. Ouwr profiler and visualizer for X10

To satisfy the requirements mentioned above, we are currently
developing a profiler for X10 programs and the visualizer of the
profiled data. Our profiler is a modified version of the X10 compiler
built with Polyglot [6]. It is a source-to-source translator that inserts
probe code into a target X10 program. When the translated program
is run, the probe code records various kinds of events such as the
creation of an activity, the move of an activity, and synchronization.
Here, the synchronization includes barrier synchronization and the
termination of an activity. Then our profiler reads the recorded
events and visualizes them. When the probe code records an event,

it also records information such as the current position in the source
code and the name of the method where the event occurs. We also
have the visualizer show the current position and the method name
for each event. The profiler/visualizer is a Java application using
JavaFX.

Listing 3 presents the X10 program after the translation by the
current version of our profiler. The original program was presented
in Listing 1. It inserts probe code around the language constructs
of X10 such as at, async, and finish. For example, in Listing 3, the
calls to the methods in CreateEvent and MoveEvent are the probe
code. The probe code records when certain language constructs are
executed. The call to activitiyCreated in CreateEvent is also the
probe code. It records when the main method starts.

3.1 The behavior of activities

The current version of our visualizer can read the event log
recorded by the probe code and then it can illustrate the behavior
of activities. Figure 1, 2, and 3 show the output by our visualizer.

Figure 1 illustrates the movement of activities. The vertical axis
represents which place an activity is located. The digits indicate
the place number. The horizontal axis represents the wall time. The
colored thick line denotes the trace of the move of each activity
till the activity terminates. Each activity is identified by a pair of
two digits such as 0-1. The first digit represents the place where
the activity is created and the second digit represents a uniquely-
assigned number among the activities created in the same place.
The yellow line 0-0 denotes the trace of the root activity. The figure
shows that it moved from place O to other places and created an
activity.

Figure 2 illustrates how activities are synchronized by finish and
so on. The vertical axis represents the identification of an activity.
The horizontal axis represents the wall time. Unlike Figure 1, the
colored thick line denotes when an activity blocks for synchroniza-
tion. For example, Figure 2 illustrates that the activities 0-1, 1-0,
2-0, and 3-0 stopped running till they are synchronized at time 600.
It also presents that the activities 0-1, 1-0, and 2-0 were waiting
for the activity 3-0. Figure 3 is a complementary chart to Figure 2.
It illustrates when an activity is not blocked but running. It also
illustrates when an activity is created and when it terminates.

Our visualizer also shows detailed information of events and
activities. Figure 4 and Figure 5 are the graphs made by our visu-
alizer by running KMeansDist.x10, that is bundled as sample code
with the X10 compiler source files. Figure 4 shows that when you
click one of the charts that illustrates the events of synchronization
behaviors, our visualizer displays the detailed information of the
clicked synchronization event. The detailed information includes
not only start time and end time but also the line number in the
source code that the event happened, and the names of class and
method that the event belongs to. Figure 5 shows the information
of the activity that is clicked in the graph, which illustrates the run-
ning time of activities. The displayed information includes the ac-
tivity number of the clicked activity, the place that the activity is
created at, the time that it started and ended, the names of the class
and method that the activity belongs to when it is created, and the
line number of the async that creates the activity.

3.2 Functionalities not implemented yet

Our profiler and visualizer has not been able to show implicit data
transfer during runtime but we plan to implement this functionality.
For this functionality, the probe code has to be inserted into not
only X10 source code but also the X10 runtime written in C++.
The probe code records the amount of the transferred data by the
X10 runtime along the wall time.

After this modification, the visualizer would be able to present a
chart like the one shown in Figure 6. The horizontal axis represents

public class MyHeatTransfer {
public static def main(Rail [Stringl) {
finish {
val trace0 = new EventTracer ();

val gtrace0 = GlobalRef [EventTracer](trace0);

// The root activity is created
CreateEvent.activityCreated (gtrace0O,
"MyHeatTransfer", "main", 9L);

{

val BigD = Dist.makeBlock...;

val D = BigD | ((1..N)*(1..N));

val A = DistArray.make...;

val Temp = DistArray.make...;

val D_Base = Dist.makeUnique...;

var delta: Double;

do {
SyncStartEvent.syncStart (gtraceO,
"MyHeatTransfer", "main", 18L);
finish {
for (z in D_Base.places()) {
at (z) {
MoveEvent.activityMoved (gtraceO,
"MyHeatTransfer", "main", 18L);
// kernel computation
delta = A.map(...).reduce(...);
}
MoveEvent.activityMoved (gtraceO,
"MyHeatTransfer", "main", 18L);
}
}
SyncEndEvent .syncEnd (gtraceO,
"MyHeatTransfer", "main", 18L);

SyncStartEvent.syncStart (gtraceO,
"MyHeatTransfer", "main", 23L);
finish {
for (place in D.places()) {
at (place) {
MoveEvent.activityMoved (gtraceO,
"MyHeatTransfer", "main", 23L);
for (p in D) {
// copy the array in parallel
A(p) = Temp(p);
}
}
MoveEvent.activityMoved (gtraceO,
"MyHeatTransfer", "main", 23L);
}
}
SyncEndEvent .syncEnd (gtraceO,
"MyHeatTransfer", "main", 23L);
} while (delta >= epsilon);
}
TerminateEvent.activityTerminated(gtraceO,
"MyHeatTransfer", "main", 9L);
}
// create a log file
EventTracer.printResultByPlace ();
}
}

Listing 3. The X10 program after the translation

Java - TestFX/src/applic
Edit Source Refg

Movement of Activities

T T T T T T T T
200 400 600 800 1,000 1,200 1,400 1,600 1,800 2,000
Time (second)

0-090-121-002-003-0

Figure 1. The move of activities

ation/MoveChartMaker.java - Eclipse

Synchronization of Activities

Om—0

@
=)

Y
S

-
IS}

o
Omm—0
Omm—C)
Ommm—C)

Activity Number

?
-

@
S

T T T T T T T T T 1
0 200 400 600 800 1,000 1,200 1,400 1,600 1,800 2,000
Wait Time (second)

Figure 2. Synchronization among activities

Running Time of Activities

3-0 o)
_20 OO O—C
1)
2
£
=)
Z10 Omm—
Z
2
5
2

0-1 Om—C

0-0

T T T T T T T 1
0 400 800 1,200 1,600 2,000

Running Time (second)

Figure 3. The busy periods of activities

the wall time. The vertical axis represents both the amount of data
transferred in total and the identification of activities. This chart
overlaps the amount of transferred data over the event logs of each
activity. It does not directly present which event at the level of X10
source code causes a large amount of data transfer but it would
help developers understand the communication behavior of the X10

Movement of Activities Synchronization of Activities

o @ 1 20 %0
Time (s

000040130

Event: synchronization by “finish”
Start Time: 190

End Time: 494

Class: KMeansDist

Method: main

Line: 61

vozo v
.

0w 0 20 %0 40 s
Running Tir

@0 70 a0 o0
ing Time (mill (

ond)

Figure 4. Detailed information of a synchronization event

Movement of Activities Synchronization of Activities

Activity Number

W
Running Time of Activities

Activity Number:
Generated Place:
Start Time: 769

End Time: 811

Class: KMeansDist
Method: main

Line: 115

coz0
.

N x
,\\\;? < I >
- RN > ' [2]
@ 60 | T s e g S
2 ST EIN L \ =
O 50 o ST e L 30 S
= [N Y VX, =z
© v S o c
T I) I 2 -
© ! & L o
o ! & & > @
! z ‘ S . ! H4
5 30t S0 2
o I N) x, 1 5
£ P & S 2
L] Lo
o 1 S | =
E ' & ! g
g W0 f e S oo £
)
Byte 5
=
T T T . \ g

50 100 150 200 250 300 350
Time (sec.)

Figure 6. Visualization of implicit data transfer

program and think about how the program should be modified to
improve the execution performance.

Another functionality we have not implemented yet is a scoping
mechanism to restrict the range of profiling. This mechanism is
significant to support development of real-scale software in X10.
Our current profiler and visualizer shows the behavior of all the
activities created while the program is executed but showing the
behavior of a large number of activities in the same chart is not
realistic. If the probe code is inserted at a large number of positions,
then the execution overheads due to the probe code would be not
negligible.

Our plan for the scoping mechanism is to exploit aspect-
orientation [3]. We plan to provide an aspect-oriented domain-

specific language (DSL) for describing which kinds of events are
to be recorded by the profiler. The profiler refers to the descrip-
tion in this DSL and inserts the probe code only at the necessary
positions. For example, the DSL will allow developers to specify
the activities created within specific contexts so that only those ac-
tivities will be investigated during the next run. The use of aspect
orientation for profilers is not a new idea but it is well known as a
killer application of aspect orientation. Several profilers based on
aspect orientation, including ours [9], have been proposed.

We also plan to improve the visualization of the behavior of ac-
tivities. Our current profiler cannot correctly record which activities
are synchronized together by the same finish. Like in Figure 2, if a
method is called within the body of finish and the method may cre-
ate an activity, the profiler cannot associate this activity with that
finish. Note that the called method cannot be statically determined
due to dynamic method dispatch. We must implement a mechanism
for recording a call chain as well as activity creation.

4. Concluding remarks

We have presented that a profiler for X10 needs new functionalities
and showed a sketch of the profiler we are currently implementing.
This profiler records various events during the execution of an X10
program and visualizes implicit data transfer and synchronization
among activities. We have already implemented part of the func-
tionality of the profiler and showed it in this paper.

Since a performance profiler is a key component of a tool set
for parallel computing, there have been a number of profilers de-
veloped. For example, Vampir [4] is a performance profiler for var-
ious styles of parallel programs such as MPI, CUDA, and PGAS.
For PGAS programs, it collects low-level memory operations such
as get, set, and lock of PGAS. Unlike these profilers, we are focus-
ing on X10 and profiler-functionalities uniquely required for tun-
ing X10 programs. The profiler presented in [8] was designed for
PGAS programs. However, its target abstraction is global arrays [5]
and thus their profiler is different from ours, which is for higher-
level language constructs of X10, such as async and finish. The
profiler presented in [7] is also different from ours since it focuses
on communication overheads due to the low-level operations of re-
mote memory accesses provided by their PGAS language, Titanium
[10]. XAnalyzer [1] is a profiling tool designed for X10. It detects
code patterns that will cause a performance problem. The code pat-
terns are predefined and XAnalyzer currently supports eight pat-
terns. Although XAnalyzer is a profiler for higher-level code anal-
ysis, our tool provides more basic-level performance data and visu-
alizes them. Combination of the two approaches will be beneficial
but this is our future work.

References

[1] P. Jeeva, O. Tardieu, and J. N. Amaral. Guiding x10 programmers
to improve runtime performance. In 7th International Conference on
PGAS Programming Models, 2013.

[2] K. Kawachiya. Programming language x10 (in japanese).
https://www.research.ibm.com/trl/people/kawatiya/
X10seminar.htm, 2011.

G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda, C. Lopes,
J. Loingtier, and J. Irwin. Aspect-oriented programming. In
ECOOP’97 — Object-Oriented Programming, LNCS 1241, pages
220-242. Springer, 1997.

[4] M. S. Miiller, A. Kniipfer, M. Jurenz, M. Lieber, H. Brunst, H. Mix,
and W. E. Nagel. Developing scalable applications with Vampir, Vam-

pirServer and VampirTrace. In Parallel Computing: Architectures, Al-
gorithms and Applications, pages 637-644. 10S Press, 2008.

J. Nieplocha, B. Palmer, V. Tipparaju, M. Krishnan, H. Trease, and
E. Apra. Advances, applications and performance of the global arrays

[3

[ty

[5

[ty

shared memory programming toolkit. Int’l Journal of High Perfor-
mance Computing Applications, 20(2):203-231, 2006.

[6] N. Nystrom, M. R. Clarkson, and A. C. Myers. Polyglot: An extensible
compiler framework for Java. In Proc. 12th Int’l Conf. on Compiler
Construction, LNCS 2622, pages 138-152, 2003.

[71 J. Su and K. A. Yelick. Automatic communication performance
debugging in pgas languages. In LCPC, LNCS 5234, pages 232-245.
Springer, 2007.

[8] N. Tallent and D. Kerbyson. Data-centric performance analysis of pgas
applications. In 2nd Int’l Workshop on High-performance Infrastruc-
ture for Scalable Tools (WHIST 2012), 2012.

[9] Y. Usui and S. Chiba. Bugdel: An aspect-oriented debugging system.
In Proc. of 1st Asian Workshop on AOSD, 12th Asia-Pacific Software
Engineering Conf. (APSEC 2005), pages 790-795, 2005.

[10] K. Yelick, L. Semenzato, G. Pike, C. Miyamoto, B. Liblit, A. Krishna-
murthy, P. Hilfinger, S. Graham, D. Gay, P. Colella, and A. Aiken. Ti-
tanium: A high-performance Java dialect. In ACM 1998 Workshop on
Java for High-Performance Network Computing. ACM Press, 1998.

