
Tool support for crosscutting concerns
of API documentation

Michihiro Horie
Tokyo Institute of Technology

2-12-1 Ohkayama, Meguro-ku,
Tokyo 152-8552, Japan

www.csg.is.titech.ac.jp/~horie

Shigeru Chiba
Tokyo Institute of Technology

2-12-1 Ohkayama, Meguro-ku,
Tokyo 152-8552, Japan

www.csg.is.titech.ac.jp/~chiba

ABSTRACT
Writing detailed API (Application Programming Interface)
documentation is a significant task for developing a good
class library or framework. However, existing documenta-
tion tools such as Javadoc provide only limited support and
thus the description written by programmers for API doc-
umentation often contains scattering text. Occasionally, it
also contains tangling text. This paper presents that this
problem is due to crosscutting concerns of API documen-
tation. Then it proposes our new tool named Comment-
Weaver, which provides several mechanisms for modularly
describing API documentation of class libraries or frame-
works written in Java or AspectJ. It is an extended Javadoc
tool and it provides several new tags for controlling how the
text manually written by the programmers is scattering and
appended to other entries or how it is moved from the orig-
inal entry to another entry to be tangling. Finally this pa-
per evaluates CommentWeaver by using three class libraries
and frameworks: Javassist, the Java standard library, and
Eclipse. It showed that CommentWeaver resolves the prob-
lems of scattering or tangling text and it adequately reduces
the amount of description written by programmers for API
documentation.

Categories and Subject Descriptors
D.3.3 [Programming Languages]: Language Constructs
and Features

General Terms
Languages

Keywords
Aspect-oriented programming, domain-specific language, API
documentation

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
AOSD’10 March 15–19, Rennes and St. Malo, France
Copyright 2010 ACM 978-1-60558-958-9/10/03 ...$10.00.

1. INTRODUCTION
Writing documents is a significant part of software devel-

opment [21, 29]. Software developers have to write various
documents such as the specifications of the software, bug
tracking reports, and users’ manual. A number of tools sup-
port these documentation activities.

Developers of class libraries and application frameworks
have to write API (Application Programming Interface) doc-
umentation, which describes classes, methods, and fields in
the library or framework. Good libraries or frameworks
should have good API documentation, which the users read
as a reference manual to learn how to use the software [7].
In Java, the Javadoc tool [24] helps to write API documen-
tation. It enables writing API documentation as comments
directly embedded in program source files. These comments
are called doc comments. Javadoc improves the maintain-
ability of API documentation because developers can easily
update the documentation together when they modify a pro-
gram.

API documentation, however, involves a non-negligible
number of crosscutting concerns. These concerns cut across
the structure of API documentation, or doc comments. Al-
though modern programming languages such as Java pro-
vide several language constructs for modularly describing
programming concerns, existing documentation tools such
as Javadoc do not provide sufficient support for the mod-
ularity. Thus, doc comments often contain scattering or
tangling text, which decreases their maintainability. This is
also true for the documentation of programs written in an
aspect-oriented programming (AOP) language such as As-
pectJ. AOP languages modularize several crosscutting con-
cerns of programming but not of the documentation. The
modularity of doc comments rather gets worse as a pro-
gramming language provides better constructs for modular-
ization.

To address this problem, this paper proposes our docu-
mentation tool named CommentWeaver. It is an extended
Javadoc tool and provides special tags for modularly de-
scribing doc comments for Java or AspectJ programs. When
the API documentation of the programs is generated, Com-
mentWeaver makes copies of the doc comments and appends
them to the documentation of multiple methods according to
the special tags. Thus, the text written by programmers for
one method can be automatically appended to the API doc-
umentation of other methods related to the original one with
respect to the program semantics. For example, a method
that will call another method can share the text with the

called method. If a method is advised by an aspect, it can
also share the text with that aspect. This eliminates scat-
tering text and improves the modularity of doc comments.

This paper also discusses the applicability of Comment-
Weaver. We investigate three publicly available class li-
braries written in Java and Javadoc: Javassist, the stan-
dard class library of Java, and Eclipse. We examine how
many crosscutting concerns are contained in those doc com-
ments. These concerns can be modularized by Comment-
Weaver. We also examine how many lines of doc comments
are eliminated after we rewrite the original doc comments
to be more modular by CommentWeaver. To evaluate the
support for aspects, we partly rewrite the Javassist library
in AspectJ and apply CommentWeaver to doc comments for
aspects.

Our contribution is the following:

• Presenting that API documentation contains crosscut-
ting concerns and existing tools such as Javadoc do
not enable modularly describing (i.e. implementing)
the API documentation.

• Proposing an aspect-oriented simple extension to Javadoc
for modular description of API documentation.

• Illustrating its applicability by using three widely used
Java class libraries and frameworks: Javassist, the Java
standard library, and Eclipse.

In the rest of this paper, Section 2 describes doc comments
and problems of existing documentation tools. Section 3
presents CommentWeaver. Section 4 evaluates Comment-
Weaver by using a few class libraries. Section 5 mentions
related work. Section 6 concludes this paper.

2. WRITING DOC COMMENTS
Although writing good API documentation for a library

or an application framework is essential to make it really
reusable for a wide range of users, current tool support for
the documentation is limited. The text of API documen-
tation often involves duplication and thus its source-level
representation (i.e. doc comments) is scattering or tangling.

2.1 API documentation
Writing API documentation in a program source file has

been known as good practice. In the Lisp family of lan-
guages, a function definition can include the description of
that function. The descriptions in function definitions are
collected by a programming tool/environment to be brows-
able as API documentation. This feature significantly im-
proves developers’ productivity when they are writing a pro-
gram by using a third-party library or application frame-
work. Libraries and application frameworks would be diffi-
cult to use without good API documentation.

In Java, the Javadoc tool is widely used for writing API
documentation. The descriptions of classes and their mem-
bers, such as fields and methods, are written as comments
surrounded between /** and */. Javadoc collects these com-
ments, which is called doc comments, and generates API
documentation of the class library or the framework in the
HTML format. Integrated development environments such
as Eclipse also recognize doc comments. They can show the
doc comment of the method selected by a mouse pointer on
a code editor, for example. Figure 1 shows three methods,

each of which has a doc comment. The @param tag included
in the doc comments is a special tag. It specifies that the
following text is the name of a method parameter and its
description. For example, the @param in the doc comment
of the toBytecode method is followed by the description of
the out parameter to the method.

Javadoc allows programmers to choose which entities are
included in the generated API documentation. Program-
mers may choose that only public and protected classes and
members are included. Normal API documentation describes
only those classes and members because the others are invis-
ible from the outside of the library or the framework. This
fact is one of the sources of crosscutting doc comments but
we discuss this issue later.

2.2 Scattering and tangling
Since Javadoc works as a language processor, doc com-

ments can be regarded as implementation of API documen-
tation. They are source code for generating API documen-
tation. However, their structure is not sufficiently modular.
According to our observation, doc comments tend to contain
scattering and tangling text. This problem is mainly due to
lack of modularization mechanisms for API documentation.
Since a modern programming language such as Java pro-
vides several constructs for modularization, public classes
and methods exposed to the library/framework users do not
directly implement all concerns. For example, some con-
cerns are implemented by separate methods invisible from
the users. The public methods related to such a concern
call the invisible method to achieve separation of concerns.
However, the doc comments on that concern cannot be put
at this invisible method since the doc comment of the invis-
ible method is not included in the API documentation. The
doc comment is redundantly put together with doc com-
ments about other concerns at all the public methods that
call the invisible method. This fact causes doc comments to
be scattering or tangling. This is another example of cross-
cutting concerns of aspect orientation [14] or the tyranny of
the dominant decomposition [27].

We below illustrate this crosscutting problem by showing
a few examples taken from the Javassist library [8]. Javas-
sist is a Java class library for bytecode transformation. It
was initially developed by one of the authors and it is cur-
rently maintained as open source software of JBoss/Redhat.
It has been widely used for a decade by a number of soft-
ware products including Web application frameworks com-
mercially supported by Redhat. The size of the library (ver-
sion 3.6) is 53,477 lines of code (LOC) and 9,512 of 53,477
lines are doc comments for Javadoc (18%).

Procedures
We first show an example of doc comments crosscutting
across procedure abstractions. A class library often pro-
vides multiple methods with the same name but different
types of parameters. Since they perform the same function
except input parameters, the descriptions of those methods
normally have some overlaps.

Figure 1 presents an example of such methods taken from
Javassist. The doc comments of the two writeFile methods
in the CtClass class share the same text starting with “Once
this method is called”. This text is also shared with the to-
Bytecode method. Note that the function of these methods,
which is converting a class definition into a class file (Java

public abstract class CtClass {
:

/**
* Writes a class file represented by this <code>CtClass</code>
* object in the current directory. Once this method is called,
* further modifications are not possible any more.
*/
public void writeFile() throws .. {

writeFile(".");
}

/**
* Writes a class file represented by this <code>CtClass</code>
* object on a local disk. Once this method is called, further
* modifications are not possible any more.
*
* @param directoryName it must end without a directory separator.
*/
public void writeFile(String directoryName) throws .. {

DataOutputStream out = ...;
toBytecode(out);

:
}

/**
* Converts this class to a class file. Once this method is
* called, further modifications are not possible any more.
*
* <p>This method dose not close the output stream in the end.
*
* @param out the output stream that a class file is written to.
*/
public void toBytecode(DataOutputStream out) throws .. {

throw new CannotCompileException("not a class");
}}

Figure 1: Scattering text in the doc comments

bytecode), is implemented by the toBytecode method (of
the subclass of CtClass because CtClass is an abstract root
class). The two writeFile methods directly or indirectly call
the toBytecode method and they are used as helper meth-
ods, which construct an appropriate DataOutputStream ob-
ject before calling toBytecode.

For avoiding the duplication of the text“Once this method...”,
there should be something like a common doc comment of
the three methods and the text “Once this method...” should
belong to that doc comment. However, Java does not pro-
vide a mechanism for grouping the three methods into a
single module or Javadoc does not allow writing a doc com-
ment shared among the three methods. Hence, we must
write the doc comments that contain scattering text to the
three methods. Note that some duplicated text may not be
scattering. For example, if some methods without caller-
callee relations share the same text in their doc comments,
we do not consider the text is scattering.

The three methods in Figure 1 potentially could be a
source of code scattering but they do not contain scattering
code because the programmer applied procedural abstrac-
tion. The implementation of the core function of the three
methods is separated into the toBytecode method and the
other two methods call toBytecode for reusing the implemen-
tation. However, this separation of a concern by procedural
abstraction is not applied to API documentation. The doc
comments remain scattering.

The text “Once this method...” must appear in the de-
scriptions of not only the toBytecode method but also the
caller methods writeFiles. This is because the users would
not read the description of toBytecode when they write a
user program that calls writeFile. They would not know

public abstract class CtClass {
:

/**
* Defrosts the class so that the class can be modified again.
*
* <p>To avoid changes that will be never reflected, the class
* is frozen to be unmodifiable if it is loaded or written out.
* This method should be called only in a case that the class
* will be reloaded or written out later again.
*
* <p>If <code>defrost()</code> will be called later, pruning
* must be disallowed in advance.
*
*/

public void defrost() {
throw new RuntimeException("cannot defrost " + getName());

}}

class CtClassType extends CtClass {
:

public void defrost() {
checkPruned("defrost");
wasFrozen = false;

}}

Figure 2: Tangling text in the doc comment

that writeFiles internally call toBytecode. This fact is an im-
plementation detail that should be hidden from the users
according to the information hiding principle [28]. Further-
more, if the toBytecode method were private, both descrip-
tions of the two writeFile methods would have to definitely
contain the text “Once this method...” because the descrip-
tion of the toBytecode method would not be included in the
API documentation.

Inheritance
Our second example is a doc comment crosscutting along an
inheritance hierarchy. A class library or a framework often
provides only a public interface (or abstract class) to access
some objects internally created. Their actual implementa-
tions are given by non-public classes implementing the inter-
face (or subclasses of the abstract class). If these non-public
classes show implementation-dependent behavior, which is
not mentioned in the specification of that public interface,
the API description of the public interface must cover that
implementation-dependent behavior.

Figure 2 is another part of the declaration of the CtClass
class. This abstract class is used as an interface to objects
representing types (or class files). It is extended by sev-
eral subclasses, which represent primitive types, class types,
or array types. A CtClass object is made unmodifiable for
avoiding accidental changes after it is converted into a class
file. The defrost method in CtClass makes the object modi-
fiable back.

After the first version of Javassist including the defrost
method was released, Javassist was updated to have a prun-
ing mechanism for reducing memory consumption. However,
if this pruning mechanism is on, the defrost method does
not work. To indicate this fact, the text “If defrost() will be
called...” had to be appended to the description of the defrost
method. This is an example of implementation-dependent
doc comments. It might be removed if a mechanism with
higher compatibility with the defrost method is invented and
substituted for the pruning mechanism in future.

A problem in Figure 2 is that the text “If defrost() will

public class ClassPool {
:

/**
* Creates a new public class. If there already exists a
* class/interface with the same name, the new class
* overwrites that previous class.
* :
* @throws RuntimeException if the existing class is frozen.
*/
public CtClass makeClass(String name, CtClass superclass)

throws RuntimeException {
CtClass clazz = ...;
return clazz;

}

/**
* Creates a new public interface. If there already exists a
* class/interface with the same name, the new interface
* overwrites that previous one.
* :
* @throws RuntimeException if the existing interface is frozen.
*/
public CtClass makeInterface(String name, CtClass superclass)

throws RuntimeException {
CtClass clazz = ...;
return clazz;

}}

aspect FrozenChecking {
:

before(ClassPool cp, String classname) :
(execution(* ClassPool.makeClass(String, CtClass))
|| execution(* ClassPool.makeInterface(String, CtClass)))
&& args(classname, ..) && this(cp) {

CtClass clazz = ... ;
if (clazz.isFrozen())

throw new RuntimeException(...);
}}

Figure 3: Text that should belong to the doc com-
ment in an aspect

be called...” is about the implementation of CtClassType, a
subclass of CtClass, but the text is in the doc comment of
CtClass. Since the subclass is not public, the text cannot be
attached to the subclass, which is not mentioned in the API
documentation. Thus, in the doc comment of CtClass, two
documentation concerns are tangling: one is the behavior
of defrost in general and the other is the implementation of
defrost in the subclass CtClassType.

This tangling decreases the maintainability of the soft-
ware. Suppose that we invent a mechanism better than the
pruning one. We will modify the implementation of defrost
in the subclass CtClassType so that Javassist will use our
new mechanism. However, we would not notice that we also
have to modify the doc comment of the super class CtClass
since the source code of CtClassType does not contain any
indication of that fact.

Aspects
Our last example is a doc comment of an aspect. Aspect
Orientation is a new modularization scheme and aspect-
oriented programming languages such as AspectJ [1] pro-
vide language constructs for modularizing crosscutting con-
cerns. For example, AspectJ enables scattering implementa-
tion code in Java to be grouped and separated into a single
module without duplication. This module is called an as-
pect.

Figure 3 presents an example of aspects. This aspect
FrozenChecking modularizes the scattering code found in the
original code of Javassist. Since several methods in the orig-

@quote ((class-name.)? member-name) (.export-name)?

In the doc comment of a method or an advice m,
member-name ∈ { directly called methods from m }

@export (: export-name)? { text }

text := @quote(..) text | 〈normal text〉 text | 〈javadoc tags〉 | φ

@weave (pc) { text }

pc := call (method-pattern) | exec (method-pattern) |
within (class- or method-pattern) |
pc && pc | pc ‖ pc | ! pc

In the doc comment of an advice, also
pc := JP | JP CALLER | JP CALLEE

@liftup { text }

Figure 4: Syntax of CommentWeaver tags

inal ClassPool class (and other classes) confirm that the class
is still modifiable before they actually modify the class. The
aspect moves all the confirmation code into its before advice.

Although the aspect improves the maintainability of the
confirmation code, it causes scattering text in doc com-
ments. The aspect improves the visibility of when the con-
firmation code is executed. It also makes the confirmation
code removable without modifying the rest of the code when
a better mechanism is invented in future. On the other hand,
the doc comments of the makeClass and makeInterface meth-
ods still contain the text about the confirmation code, which
is “@throws RuntimeException if the existing class/interface is
frozen.”. To modify the text, all the doc comments includ-
ing this text must be edited. For better modularity of doc
comments, this text should be put in the doc comment of
the before advice of the FrozenChecking aspect. However,
this approach is not acceptable because the aspect is not
public and hence the doc comment of the aspect is not in-
cluded in the API documentation. Even if the aspect were
public, the users of makeClass and makeInterface could not
notice the note about the confirmation because it is not in
the API documentation of these methods. The users would
have to see an aspect advises these methods and read the
API documentation of the aspect.

3. COMMENTWEAVER
To address the problems mentioned in the previous sec-

tion, we propose a new documentation system named Com-
mentWeaver. It is an extended Javadoc tool and it supports
describing API documentation of class libraries and frame-
works written in Java or AspectJ.

CommentWeaver allows programmers to modularize cross-
cutting concerns of API documentation. Javadoc users often
write doc comments that contain scattering or tangling text.
On the other hand, the users of CommentWeaver can write
doc comments in which every concern is described only once
at the most appropriate place, for example, the method di-
rectly implementing the behavior corresponding to that con-
cern.

When CommentWeaver generates the API documentation
from those doc comments, it makes copies of doc comments
and appends them to the API documentation of several
other methods, which are different from the methods that
the doc comments are originally attached to. The appended

Figure 5: @quote and @export tags in the CtClass class

doc comments are tangled with others and thereby provide
comprehensive description of the methods. This generation
of the API documentation by CommentWeaver is explicitly
controlled according to the special tags written by the pro-
grammers. CommentWeaver provides several tags for this
as well as the Javadoc tags. The syntax of the Comment-
Weaver tags is presented in Figure 4.

3.1 Scattering text by procedure abstraction
The crosscutting doc comments caused by procedural ab-

straction are addressed by the two tags @quote and @export
provided by CommentWeaver. These tags are mainly avail-
able in the doc comments of methods. The @quote tag is
used to refer to the doc comment of another method, which
must be called from the method with that @quote tag. When
the API documentation is generated, the @quote tag is re-
placed with the doc comment of the method that the @quote
tag refers to. If the doc comment of the method referred to
includes the @export tag, only the text following that @export
tag is substituted for the @quote tag.

The text is shared only among the methods in the call
chain obtained by static analysis. If the text is accidentally
equivalent to the text of another method out of a call chain,
it is prevented to replace the former text with the @quote
tag specifying the latter text. This restriction is for main-
tainability of doc comments. For example, when a method
with @export tag is modified, the text bracketed by @export
will be also modified. It will be appropriate that this modi-
fication of the text is only propagated along the call chain.
In addition, for increasing the maintainability, the argument
to the @quote tag must be a method directly called within
the method having the @quote tag.

For example, these tags resolve the scattering problem
in Figure 1 of Section 2.2. Figure 5 illustrates the result
of rewriting the program in Figure 1 with the @quote and
@export tags. Note that the text “Once this method...” in
the doc comment of the toBytecode method is bracketed
by the @export tag. To include the text, the @quote tag
is used. See the writeFile(String), which includes it by the
@quote tag. The argument to @quote specifies the method to
include the doc comment of it. Due to this @quote tag, the
duplication of the text is eliminated. The writeFile() method
in Figure 5 also has the @quote tag but its argument is the
writeFile(String) method. The @quote tag of the writeFile()
method is replaced with the text bracketed by @export of the
toBytecode method as the @quote tag of the writeFile(String)
method is.

In some situations, nevertheless, some developers may

Figure 6: A doc comment moved into an aspect

want to refer to the text from a method without caller-called
relation. For the sake of their need, CommentWeaver pro-
vides another tag that is free from the restriction. The detail
is mentioned in the later sections.

Multiple @export tags
A doc comment can include multiple @export tags. Since an
@export tag can have a name, @quote tags may refer to the
names of @exports. For example, as shown below, the doc
comment of the toClass method has two @export tags. The
doc comment of a caller method, which calls this toClass
method could be the following.

/**
* @quote(toClass(CtClass, ClassLoader)).conversion
* This is only for backward compatibility.
* @quote(toClass(CtClass, ClassLoader)).warning
*/
public Class toClass(ClassLoader loader) {

classPool.toClass(this, loader);
}

/**
* @export : conversion {
* Converts the class to a <code>java.lang.Class</code> object.
* }
*
* Do not override this method any more at a subclass because
* <code>toClass(CtClass)</code> never calls this method.
*
* @export : warning {
* <p>Warning: A Class object returned by this method
* may not work with a security manager or a signed jar file
* because a protection domain is not specified.
* }
* :
*/
public Class toClass(CtClass ct, ClassLoader loader) { ... }

In this doc comment, the text “This is only...” is substituted
for the second sentence “Do not override...” of the doc com-
ment of the called method. The rest of the doc comment is
the same.

3.2 Scattering text by aspect
Although aspects modularize crosscutting concerns for pro-

gramming, they do not for doc comments as we mentioned
in Section 2.2. Scattering text is still included in multiple
doc comments. Furthermore, these doc comments are of
the target methods advised by the aspect. They should be
attached to the aspect directly implementing the behavior
described by that text.

The crosscutting doc comments caused by aspects is ad-
dressed by the @weave tag. It is available in the doc com-
ments of AspectJ’s advices. It is used to append the fol-
lowing text to methods selected by the argument. To se-
lect methods, the argument to @weave is the pointcut, such

Figure 7: A doc comment moved to a public super
class

as call and exec, which are borrowed from AspectJ. While
@quote pulls the text from another method, @weave pushes
the text to another. We illustrate the use of @weave by
rewriting the program that we presented in Figure 3. Fig-
ure 6 shows the result of the rewrite for CommentWeaver.
The difference between Figure 3 and 6 is that the text start-
ing with @throws is moved from the two methods make-
Class and makeInterface into the aspect and is bracketed by
@weave. In Figure 6, the text is included in the doc com-
ment of the code block directly implementing the behavior
described by that text. Duplication of the text is now elim-
inated.

As shown in Figure 6, developers may have to enumer-
ate method names as the arguments of @weave. To avoid
the repetition of the description of AspectJ pointcut, Com-
mentWeaver provides the special variables JP, JP CALLER,
and JP CALLEE. For example, the @weave tag in Figure 6
can be simplified as the following:

@weave(JP) { ... }

Since CommentWeaver is a compile-time tool, the variable
JP represents join point shadow [22] to determine the meth-
ods that doc comments of an advice is appended to. The
@weave with JP can append the doc comment to the meth-
ods containing the join point shadow selected by the point-
cut of that advice body. In Figure 6, the join point shadow
is the makeClass and makeInterface methods, which are se-
lected by the two execution pointcuts. Since the JP uses join
point shadow, only the so-called accessor pointcuts call, ex-
ecution, set, and get are considered. cflow and if pointcuts
are ignored.

Developers might think the description of RuntimeExcep-
tion should be included also in the API documentation of the
caller methods that call the makeClass and makeInterface in
the ClassPool class. If so, the doc comments of the before
advice could be modified into the following.

@weave(JP || JP CALLER) { ... }

The variable JP CALLER represents the caller methods.

3.3 Tangling text by inheritance
The @weave tag is also available in the doc comment of

a method. For better modularity, it enables separating doc
comments which would be otherwise crosscutting an inheri-
tance hierarchy. The text bracketed by this tag can be ap-
pended to the API documentation of the overridden method
in the super class or an implemented interface.

Figure 8: A doc comment moved to a factory
method

For example, Figure 7 is the result of rewriting the pro-
gram in Figure 2 with the @weave tag. The text “If defrost()
will be...” is moved from the CtClass class to the subclass
CtClassType. On the other hand, since the text is bracketed
by the @weave tag, when the API documentation is gener-
ated, it is appended by CommentWeaver to the API docu-
mentation of the defrost method in the CtClass class. This
rewriting improves the separation of concerns. The descrip-
tion about implementation-dependent behavior is attached
to the method directly implementing that behavior although
the method is not visible to the library/framework users.

For the tangling text by inheritance, since the target spec-
ified by the argument to @weave is apparent, Comment-
Weaver provides the @liftup tag that takes no argument.
Furthermore, while @weave expects developers to specify
which super class the target is defined in, @liftup itself tries
to find the target recursively through the hierarchy. The de-
scription in Figure 7 can be replaced with“@liftup { If defrost
will be ... }”.

3.4 Another example: weaving text at an ap-
propriate location

The example in Section 3.3 showed that a non-public sub-
class causes tangling text in its public super class and Com-
mentWeaver can address this problem. A non-public sub-
class also causes tangling text in a class declaring a factory
method for the non-public class.

The CtClass of Javassist is a public abstract class and a
variable of the CtClass type always refers to an instance of
its concrete subclass such as CtClassType and CtNewClass.
CtNewClass is another non-public subclass and thus invisi-
ble from the users’ viewpoint. It is instantiated by a factory
method makeClass in the ClassPool class, which is public.
The toBytecode method declared in CtNewClass overrides
its super’s method and it implements the common behavior
of toBytecode described in the doc comment in the super
class CtClass. Although the description of the doc comment
in the super class was sufficiently general, a Javassist user
queried detailed behavior of toBytecode (implemented in Ct-
NewClass) [3]. Thus, the Javassist developers decided to add
extra text to the API documentation and they chose as an
appropriate place the factory method declared in ClassPool
since only that factory method returns an instance of CtNew-
Class. Other factory methods return instances of the other

subclasses of CtClass. The added text is not applicable to
instances of the other subclasses.

This is another example of tangling text but Comment-
Weaver can address this problem. As shown in Figure 8, the
@weave tag enables us to include the extra text in the doc
comment of the toBytecode method in CtNewClass. The text
following @weave is copied to the factory method makeClass
in ClassPool from the toBytecode method, which implements
the behavior described by that text.

3.5 Semantics
We show the semantics of the @quote, @weave, and @liftup.

To simplify the presentation, the @export is not taken into
consideration. Let a method m be the following form:

m = /** s1..shqm1 ..qmiw1..wj l1..lk */T1 µ(T2 x){e}

where s is the normal text or javadoc tag, qm represents
that an @quote tag specifying a method m for its param-
eter, w is an @weave tag, and l is a @liftup tag. For m,
we define helper functions id and doc; id(m) = µ, and
doc(m) = s1..shqm1 ..qmiw1..wj l1..lk. We then define helper
functions for w. Suppose that wj is the following:

wj = @weave(pc) { s
(j)
1 ..s

(j)
u q

m
(j)
1

..q
m

(j)
v

}

where the bracketed text consists of the normal text and
javadoc tags (represented by s

(j)
u), and @quote tags such as

q
m

(j)
v

, which takes m
(j)
v for its parameter. Two functions are

defined: pce(wj) = pc, and wbody(wj) = s
(j)
1 ..s

(j)
u q

m
(j)
1

..q
m

(j)
v

.

Similarly, let lk be

lk= @liftup { s
′(k)
1 ..s

′(k)
x q

m
′(k)
1

..q
m

′(k)
y

}

and define a helper function to get the bracketed text:

lbody(lk) = s
′(k)
1 ..s

′(k)
x q

m
′(k)
1

..q
m

′(k)
y

.

We next show the semantics of generating the API doc-
umentation. Generating the API documentation of m is to
compute:

[[doc(m)]]m,Σ + advices(m)

The operator [[−]]m,Σ expands the tags in the given text to
generate the API documentation for a method m. Σ is a set
of methods. Its initial value is an empty set. First, since s
is the text including no tags, [[s]]m,Σ → s. Thus, [[−]]m,Σ is
distributive.

[[s1..shqm1 ..qmiw1..wj l1..lk]]m,Σ

→ s1..sh[[qm1 ..qmiw1..wj l1..lk]]m,Σ

→ s1..sh[[qm1]]m,Σ .. [[qmi]]m,Σ[[w1]]m,Σ .. [[wj]]m,Σ[[l1]]m,Σ .. [[lk]]m,Σ

[[w]] and [[l]] are evaluated as follows:

[[w]]m,Σ → [[wbody(w)]]m,Σ

[[l]]m,Σ → [[lbody(l)]]m,Σ

The rules above means that CommentWeaver first evaluates
@quote tags and then @weave and @liftup tags. Suppose that
@weave (or @liftup) appends the text to a method m. This
text is not quoted by @quote from the method m to another
method.

The evaluation rule for [[q]]m,Σ is this:

m calls m′

doc(m′) = s1..shqm1 ..qmi

m 6∈ Σ

[[qm′]]m,Σ → s1..sh[[qm1]]m′,Σ∪{m} .. [[qmi]]m′,Σ∪{m}

where the first line represents that the method m and m′

are in the same call chain, that is, m calls statically m′ in
its method body. To avoid recursively expanding @quote, a
history of the expansion is recorded in Σ. If m is not in Σ,
qm′ is reduced to the doc comment of m′. Note that m is
added to Σ after that.

If m is already in Σ, [[qm′]]m,Σ is deleted as shown below.
φ represents empty.

m calls m′

m ∈ Σ

[[qm′]]m,Σ → φ

If m does not call m′, then a compile error is reported.
The function advices collects the text appended by @weave

and @liftup.

[[wi]]nj ,φ ∈ woven(m) for i ∈ 1..a, j ∈ 1..b

advices(m) =
P

i,j [[wi]]nj ,φ

Here, woven(w) is a helper function. It receives a method
m and returns a set of [[w]], where the pointcut of w matches
the given m.

woven(m) = {[[w]]n,φ | ∃n : method, w ∈ doc(n),
pce(w) matches m}

The pointcut pce(w) matches a method m if the pointcut
selects a joinpoint included in m. For example, if pce(w)
is exec(m), it surely matches m. If pce(w) is call(m′) and
m calls m′, it will match m. The pce(w) may be liftup(m)
because @liftup is transformed into @weave(liftup(m)), where
liftup is a pointcut only internally available to select the
methods in super classes with the same signature as m. The
liftup(m) matches a method m′ if m′ is one of the methods
in the super classes.

4. CASE STUDIES
As shown in the previous sections, CommentWeaver im-

proves the modularity of the description for API documen-
tation. For example, we have already presented that the
examples shown in Section 2.2 can be rewritten to be more
modular by CommentWeaver. This section discusses the
applicability of CommentWeaver to existing class libraries.

4.1 Javassist
We first investigated how much scattering or tangling text

appears in the doc comments of the Javassist bytecode trans-
formation library. We counted the number of doc com-
ments including such text by using a software tool we de-
veloped for finding scattering text in Java source files. We
investigated 3 packages among 12 public ones of Javassist
3.6. We selected the packages containing more than 10
classes or interfaces: javassist, javassist.bytecode, and javas-
sist.bytecode.annotataion packages.

Figure 9: The doc comments for Javassist

Figure 9 illustrates the result of our investigation. It shows
that a fair number of doc comments include scattering or
tangling text1. The left chart in the figure presents the
number of the doc comments and the right chart presents
the lines of code (LOC) of the doc comments. The javassist
package contains 436 doc comments in total and 338 doc
comments are for public methods (the others are for classes
and other entities). We found that 40 of 338 doc com-
ments for public methods are crosscutting and hence they
contain scattering or tangling text. The ratio is 12% (17%
in LOC). For the javassist.bytecode package, 4% of the doc
comments (5% in LOC) are crosscutting and, for the javas-
sist.bytecode.annotation package, 10% of the doc comments
(4% in LOC) are crosscutting. The results reveal that Com-
mentWeaver contributes to improve the modularization of
about one-tenth of the doc comments.

We then investigated how many lines of doc comments
can be reduced by using the @quote and @export tags of
CommentWeaver. The right chart in Figure 9 presents the
result. For the javassist package, the crosscutting doc com-
ments were reduced from 452 to 274 LOC. Thereby, the doc
comments for public methods were reduced from 2659 to
2481 LOC (7% reduction). For the javassist.bytecode pack-
age, the doc comments for public methods were reduced from
2097 to 2023 LOC (4% reduction). However, for the javas-
sist.bytecode.annotation package, the doc comments for pub-
lic methods were not reduced at all (0% reduction). This
is because the size of all the scattering text found in the
crosscutting doc comments is only one line. We substituted
a @quote tag for such one-line text but the @quote tag also
occupies one line. The total number of lines did not change.

We finally present the number of doc comments including
tangling text. We found five doc comments included tan-
gling text (73 LOC). This number indicates how frequently
the @liftup tag is needed. This tag does not contribute to
the reduction of doc comments but it improves the maintain-
ability of them. All the doc comments we found were for the
methods of the CtClass class in the javassist package. The
other packages did not contain such doc comments. Note
that the CtClass class is the only public class that has non-
public subclasses in the three packages. Since the doc com-

1If two doc comments share the same scattering text, we counted
one as a doc comment including scattering text. We did not count
the other.

Figure 11: The doc comments for Eclipse (on aver-
age per package)

ments for the public methods of the CtClass class are 542
LOC, 13% of these doc comments require the @liftup tag.
We lists the details of these doc comments in Table 1.

4.2 The standard library of Java 6
As a larger class library, we also investigated the stan-

dard class library of the Java Platform, Standard Edition 6
(Java 6). We selected only the packages that contain more
than 100 public methods and more than 1000 LOC of doc
comments for the public methods.

Figure 10 illustrates the result. This shows the number
of crosscutting doc comments, which contain scattering or
tangling text, in each package. On average, 20% of the doc
comments for public methods are crosscutting ones. All the
crosscutting concerns contained only scattering text. They
did not contain doc comments that contain tangling text
and thus we could not use @liftup for improving the main-
tainability.

Figure 10 also presents the size of the crosscutting doc
comments. It also presents the size of these doc comments
after we rewrote them by using @quote and @export tags of
CommentWeaver. After the rewrite, the size was reduced
by 3% on average.

4.3 Eclipse
We finally investigated the Eclipse Platform (Release 3.3).

Since Eclipse is a framework hosting various development
tools implemented as a plugin, the API documentation is
a significant part of the products. The plugin developers
read this documentation to understand how to connect their
plugins to the platform.

Eclipse consists of 204 packages. As Figure 11 presents,
on average, each package has 140 doc comments (992 LOC).
Among them, 67 doc comments (494 LOC) are for public
methods in the package. They included 3 crosscutting doc
comments (27 LOC) per package. Thus, 4% of the doc com-
ments for public methods were crosscutting ones.

Almost all the crosscutting doc comments contained scat-
tering text. Hence, for most doc comments, the @quote and
@export tags of CommentWeaver were applicable. After we
rewrote the doc comments by using those tags, the size of the
doc comments was reduced from 27 to 24 LOC on average
(10% reduction).

The crosscutting doc comments that the @liftup tag was
applicable to were not zero . In total, we found 107 crosscut-
ting doc comments that contained tangling text. The @liftup
tag contributes to the API documentation of Eclipse.

a note about the current implementation
method name behavior mentioned in the tangling text

prune discards unnecessary attributes a performance note
defrost defrosts the class so that it can be modified again a conflict with another function
makeNestedClass makes a new public nested class a functional limitation
getModifiers returns the modifiers for the class clarifying ambiguity
getClassFile2 returns a class file for this class inconsistency with the specification

Table 1: The tangling text in the doc comments for the CtClass class

Figure 10: The crosscutting doc comments in Java 6

of advices needs original AspectJ call
aspect name LOC (# of advised methods) doc comments (LOC) (LOC) && within

CtClassCaching 308 16 (18) 0 0 2
FrozenChekcing 111 3 (5) Yes 3 1 2
ModifyChecking 206 14 (58) Yes 22 8 2
CodeAttributeCopy 57 2 (2) Yes 3 3
ExistingTest 74 1 (1) Yes 2 2
InsertionHandling 20 1 (2) Yes 2 1
NotFoundExceptionHandling 32 2 (2) Yes 2 2
ProxyFactorySynchronization 13 1 (1) 0 0 1

Table 2: The aspects implemented for Javassist

4.4 An AspectJ version of Javassist
CommentWeaver provides support for writing doc com-

ments for aspects. To investigate this support, we partly
rewrote Javassist in AspectJ. During this rewrite, we imple-
mented eight aspects:

• CtClassCaching:
caches class objects

• FrozenChecking:
checks if the object is frozen

• ModifyChecking:
checks if the object has been already modified

• CodeAttributeCopy, InsertionHandling, NotFoundExceptionHan-
dling :
catches a thrown exception, and then throws a different
exception

• ExistingTest:
checks if the member object is duplicated

• ProxyFactorySynchronization:
manages synchronization

We also wrote doc comments for these aspects with Com-
mentWeaver. Table 2 lists details of the aspects. The col-
umn“LOC” indicates the number of lines of the aspect. The
column “# of advices” indicates the number of the advice
bodies contained in the aspect. The column “# of advised
methods” indicates the number of the methods advised by
the aspect.

The column “needs doc comments” indicates whether or
not the doc comments of the aspect must be appended to
the API documentation of the advised methods. The num-
ber of “Yes” represents the usefulness of the mechanism of
CommentWeaver for automatically copying doc comments
from aspects to classes. As Table 2 presents, if an aspect
implements a functional concern, then that concern must be
described in the API documentation of the advised classes.
CommentWeaver is useful for writing doc comments for that
concern. On the other hand, if an aspect implements a non-
functional concern, then doc comments are unnecessary for
that aspect.

The column “original” indicates the size of the doc com-
ments in the original Java version. These doc comments
describe concerns that were separated into aspects after the
program was rewritten in AspectJ. The column “AspectJ”
indicates the size of the doc comments for the aspect. For
example, the ModifyChecking aspect modularized not only
scattering code for checking but also scattering text for doc
comments (22 LOC) into one module (8 LOC). Since dupli-
cated text is eliminated, the size of the doc comments was

reduced in the AspectJ version. Some aspects were hetero-
geneous and hence the doc comments did not contain du-
plicated text. The size of the doc comments did not change
between Java and AspectJ. In total, the size of the doc com-
ments was reduced by 50% after the program was rewritten
in AspectJ with CommentWeaver.

The column “call && within” indicates the number of the
advice bodies with the call and withincode pointcuts. The
numbers at this column show the number of the doc com-
ments that require the variable JP CALLEE to append the
description to the callee-side method as well as the caller-side
method. Table 2 shows that the JP CALLEE was necessary
for several cases.

5. RELATED WORK

Javadoc and Ajdoc.
The work most related to CommentWeaver is Javadoc and

Ajdoc. We have already compared Javadoc and Comment-
Weaver in Section 2.2 and mentioned that Javadoc has a
problem of crosscutting concerns. Some people might say
that similar functionality can be achieved by the @see tag.
The @see tag adds hyperlinks to the API documentation of
a method, which library users can click to read the related
documentation. However, the @see tag does not make every
entry of the API documentation self-contained. The @see
tag does not clearly indicate whether or not it refers to an
important note the users must read. Furthermore, asking
the users to follow hyperlinks is not user-friendly. Accord-
ing to our experiences, library users are not always careful
to click @see before using a library method [2].

Ajdoc [26] is another Javadoc-like tool for AspectJ. It en-
ables us to attach a doc comment to an advice body in an
aspect. However, unlike CommentWeaver, Ajdoc includes
a doc comment only in the API documentation of that ad-
vice. It is never appended to the API documentation of the

Figure 12: A hyperlink in the API documentation
generated by Ajdoc

methods where the advice is woven. Instead, Ajdoc appends
hyperlinks to the API documentation of the method, which
library users can click to read the API documentation of the
advice. For example, Figure 12 shows part of the API docu-
mentation of the java.util.Stack class refactored in AspectJ.
The entry of the peek method has a hyperlink to a before
advice of the StackChecking aspect, which advises the peek
method. This hyperlink is another solution of the problem
mentioned in Section 2.2 but it exposes a detail of the imple-
mentation of the class library, that is, that the Stack class is
implemented by using an aspect. This fact is not an interest
of the library users and thus it should be hidden.

Another problem of Ajdoc is that it does not provide a
mechanism corresponding to the @weave tag of Comment-
Weaver. For example, the pop method in the Stack class in
Figure 12 calls the peek method. Hence, the behavior added
to peek by the StackChecking aspect is also added to pop in-
directly. However, the API documentation of pop does not
provide any clues to know this fact. The entry of the pop
method does not have a hyperlink or directly contain the
doc comment of the aspect.

The documentation of the CLOS Metaobject Protocol.
Kiczales et.al reported the significance and difficulty in

writing good API documentation of class libraries according
to their experiences of the design and implementation of the
CLOS Metaobject Protocol [15]. Since a class library is often
extensible by subclassing, the documentation must mention
the internal structure of the library and hence writing the
documentation is complex. The modularity and maintain-
ability is significant and advanced tool support like one by
CommentWeaver is requisite.

Verifying the specifications.
A good library/framework must have good documentation

to avoid incorrect use. However, good documentation is not
a silver bullet. It is also important to verify a program cor-
rectly uses the library/framework. We can see this approach,
for example in the design by contract [23, 20], the typestate
checking [10, 6], and the FUSION analysis [13]. The FU-
SION analysis is useful for specifying framework constraints
such as the semantics constraints between multiple objects.

Literate programming.
WEB [17], CWEB [19], and FWEB [5] are languages based

on the concept of literate programming [18], which promotes
better documentation of programs. WEB consists of two
languages, TEX for writing documentation and Pascal for
programming. In WEB, source files contain a Pascal pro-
gram and the TEX text for improving the readability of that
Pascal program. The WEAVE operation generates a well-
formatted document describing the program. WEB is one
of the early systems that promote programmers to write a
program and its documentation in the same file.

Approaches to understand crosscutting structures.
Understanding crosscutting structures in a program is not

a simple task. This is also true when a program is writ-
ten in an aspect-oriented programming language such as
AspectJ because of their obliviousness property [11]. Com-
mentWeaver addresses this problem by encouraging program-
mers to write good documentation in a modular way par-

allel to the program structure. On the other hand, there
have been also several language constructs proposed so far
to address this problem.

For example, the Aspect-Aware Interface (AAI) [16] is
a new kind of interface for addressing this problem. The
API documentation generated by CommentWeaver can be
regarded as concrete presentation of AAI since the docu-
mentation of methods directly mentions the influence of the
aspects advising those methods. A difference between AAI
and CommentWeaver is that AAI is a language construct or
a conceptual model while CommentWeaver is a documenta-
tion tool.

Open Modules [4, 25] and XPIs (crosscutting program-
ming interface) [12] are language constructs for addressing
the obliviousness property. Their idea is to let programmers
declare module interfaces for pointcuts. The programmers
must explicitly specify selectable join points from external
clients. These interfaces for pointcuts help programmers
take care of the selectable join points when they modify
the implementation of the module. The approach of Open
Modules and XPIs is to restrict possible crosscutting struc-
tures whereas the approach of CommentWeaver is to im-
prove the readability of the documentation so that they can
avoid problems due to the obliviousness property.

Active models [9] represent crosscutting structures of an
AspectJ program. ActiveAspect, which is the tool based
on the active models, presents a node-and-link diagram for
representing an interesting slice of the crosscutting struc-
ture in an AspectJ program. This tool helps programmers
understand the crosscutting structure of a program but the
presentation by ActiveAspect is different from the presenta-
tion by CommentWeaver.

6. CONCLUDING REMARKS
This paper presents our new documentation tool named

CommentWeaver. It provides a mechanism for modularly
describing API documentation, which includes a fair number
of crosscutting concerns. According to our experiments us-
ing three publicly-available class libraries, which are Javas-
sist, the standard Java library, and Eclipse, 4 to 20% of doc
comments written for Javadoc were crosscutting ones. Com-
mentWeaver contributed to the modularity of those cross-
cutting doc comments. In fact, the size of those doc com-
ments was reduced by up to 10% after the rewrite for Com-
mentWeaver. CommentWeaver is also useful for programs
written in AspectJ.

7. REFERENCES
[1] Aspectj project. http://www.eclipse.org.aspectj/.

[2] [#JASSIST-102] Bug report for CtNewMethod.copy -
JBoss issue Tracker.
https://jira.jboss.org/jira/browse/JASSIST-102.

[3] [#JASSIST-68] Remove limitation on public
constructors - jboss.org JIRA.
https://jira.jboss.org/jira/browse/JASSIST-68.

[4] Jonathan Aldrich. Open modules: Modular reasoning
about advice. In ECOOP ’05 : Proceedings of the 19th
European Conference on Object-Oriented
Programming, pages 144–168. Springer Berlin /
Heidelberg, 2005.

[5] A. Avenarius and S. Oppermann. Fweb: a literate
programming system for fortran8x. SIGPLAN Not.,

25(1):52–58, 1990.

[6] Kevin Bierhoff and Jonathan Aldrich. Modular
typestate checking of aliased objects. In OOPSLA ’07:
Proceedings of the 22nd annual ACM SIGPLAN
conference on Object-oriented programming systems
and applications, pages 301–320, New York, NY, USA,
2007. ACM.

[7] Joshua Bloch. How to design a good API and why it
matters. In OOPSLA ’06: Companion to the 21st
ACM SIGPLAN symposium on Object-oriented
programming systems, languages, and applications,
pages 506–507, New York, NY, USA, 2006. ACM.

[8] Shigeru Chiba. Load-time structural reflection in Java.
In ECOOP ’00: Proceedings of the 14th European
Conference on Object-Oriented Programming, pages
313–336, London, UK, 2000. Springer-Verlag.

[9] Wesley Coelho and Gail C. Murphy. Presenting
crosscutting structure with active models. In AOSD
’06: Proceedings of the 5th international conference on
Aspect-oriented software developmen t, pages 158–168,
New York, NY, USA, 2006. ACM.

[10] Robert DeLine and Manuel Fahndrich. Typestates for
objects. In ECOOP ’04: Proceedings of the 18th
European Conference on Object-Oriented
Programming, volume 3086 of Lecture Notes in
Computer Science, pages 465–490. Springer Berlin /
Heidelberg, 2004.

[11] Robert E. Filman and Daniel P. Friedman.
Aspect-Oriented Programming is Quantification and
Obliviousness. Technical report, 2000.

[12] William G. Griswold, Macneil Shonle, Kevin Sullivan,
Yuanyuan Song, Nishit Tewari, Y uanfang Cai, and
Hridesh Rajan. Modular Software Design With
Crosscutting Interfaces. In IEEE Software, vol.23,
pages 51–60, 2006.

[13] Ciera Jaspan and Jonathan Aldrich. Checking
framework interactions with relationships. In ECOOP
’09: Proceedings of the 23rd European Conference on
Object-Oriented Programming, pages 27–51, Berlin,
Heidelberg, 2009. Springer-Verlag.

[14] Gregor Kiczales, Erik Hilsdale, Jim Hugunin, Mik
Kersten, Jeffrey Palm, and William G. G riswold. An
overview of AspectJ. In ECOOP ’01 - Object-Oriented
Programming: 15th European Conference, LNCS 2072,
pages 327–353. Springer, 2001.

[15] Gregor Kiczales and John Lamping. Issues in the
design and specification of class libraries. In OOPSLA
’92: conference proceedings on Object-oriented
programming systems, languages, and applications,
pages 435–451, New York, NY, USA, 1992. ACM.

[16] Gregor Kiczales and Mira Mezini. Aspect-oriented
programming and modular reasoning. In ICSE ’05:
Proceedings of the 27th international conference on
Software engineering, pages 49–58, New York, NY,
USA, 2005. ACM Press.

[17] Donald E. Knuth. The web system of structured
documentation. Technical report, Stanford, CA, USA,
1983.

[18] Donald E. Knuth. ”Literate programming”. The
Computer Journal, 27(2):97–111, May 1984.

[19] Donald E. Knuth and Silvio Levy. The CWEB System
of Structured Documentation: Version 3.0.
Addison-Wesley Longman Publishing Co., Inc.,
Boston, MA, USA, 1994.

[20] Gary T. Leavens and Yoonsik Cheon. Design by
contract with JML, 2003.

[21] Barbara Liskov and John Guttag. Program
Development in Java: Abstraction, Specification, and
Object-Oriented Design. Addison-Wesley Longman
Publishing Co., Inc., Boston, MA, USA, 2000.

[22] Hidehiko Masuhara, Gregor Kiczales, and Chris
Dutchyn. Compilation semantics of aspect-oriented
programs. In FOAL 2002 Proceedings of Foundations
of Aspect-Oriented languages Workshop at
Aspect-oriented software development (AOSD 2002),
pages 17–26, 2002.

[23] Bertrand Meyer. Eiffel: the language. Prentice-Hall,
Inc., Upper Saddle River, NJ, USA, 1992.

[24] Sun Microsystems. Javadoc 5.0 tool.
http://java.sun.com/j2se/1.5.0/docs/guide/javadoc/.

[25] Neil Ongkingco, Pavel Avgustinov, Julian Tibble,
Laurie Hendren, Oege de Moor, and Ganesh
Sittampalam. Adding open modules to AspectJ. In
AOSD ’06: Proceedings of the 5th international
conference on Aspect-oriented software development,
pages 39–50, New York, NY, USA, 2006. ACM.

[26] AspectJ Organization. The AspectJ documentation
tool.
http://www.eclipse.org/aspectj/doc/next/devguide/ajdoc-
ref.html.

[27] Harold Ossher and Peri Tarr. Multi-demensional
separation of concerns in hyperspace. In Position
paper at the ECOOP’99 Workshop on Aspect-Oriented
Programming, June 1999.

[28] D. L. Parnas. On the criteria to be used in
decomposing systems into modules. Commun. ACM,
15(12):1053–1058, 1972.

[29] David Lorge Parnas. Document based rational
software development. Know.-Based Syst.,
22(3):132–141, 2009.

