Aspect-Oriented Generation of the APl Documentation for
Aspectd

Michihiro Horie
Tokyo Institute of Technology
2-12-1 Ohkayama, Meguro-ku,
Tokyo 152-8552, Japan
www.csg.is.titech.ac.jp/ horie

ABSTRACT

Through the development of a framework or a class library,
writing the document on application programming interface
(API) is essential. The document on the API, which we call
the API documentation, is mainly read by programmers who
want to develop their applications on top of that framework
or library. In this paper, we present a tool named Com-
ment Weaver, which generates the API documentation of a
framework/library written in AspectJ. CommentWeaver ex-
tracts the descriptions for the API documentation from both
classes and aspects in the source files, and then it weaves
them for generating the API documentation in HTML. Al-
though ajdoc similarly generates the API documentation for
AspectJ, the generated API documentation does not directly
present the exact behavior of the API if it is affected by as-
pects.

Categories and Subject Descriptors

D.3.3 [Prgramming Languages|: Language Constructs
and Festures—domain spepcific aspect languages

General Terms

Languages

1. INTRODUCTION

Writing documents is a significant part of software devel-
opment. Such documents include the results of requirement
analysis and various levels of specifications of the software.
In object-oriented programming, class diagrams will be writ-
ten. Developers also have to write users’ manual of the soft-
ware. If the software is a framework or a class/function
library, then the developers have to write the document on
the application programming interface (API) of that frame-
work or library.

The document on the API, which we call the API docu-
mentation in this paper, is read by user programmers who

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

DSAL’09, March 3, 2009, Charlottesville, Virginia, USA.

Copyright 2009 ACM 978-1-60558-455-3/09/03 ...$5.00.

Shigeru Chiba
Tokyo Institute of Technology
2-12-1 Ohkayama, Meguro-ku,
Tokyo 152-8552, Japan
www.csg.is.titech.ac.jp/ chiba

want to develop their applications on top of that frame-
work or library. They read the API documentation to know
how to write a program using that framework or library;
the API documentation is its users’ manual. Note that the
API documentation is not comments or remarks for helping
programmers understand the internal implementation of the
framework or library. In the case of class libraries, thus, the
API documentation usually does not include private meth-
ods or fields because they are not visible from the outside.
It is the API documentation that describes what function is
provided by each method or field exposed to the user pro-
grammers.

Since writing the API documentation together with a source
program is known as a good practice, it is commonly seen
in a few languages such as Common Lisp and Emacs Lisp.
In Java, the API documentation is written as part of com-
ments, known as doc comments, in a source program and
then the javadoc tool [13] processes the source program and
generates the API documentation in HTML. The syntax for
writing the API documentation is standardized; the docu-
mentation must be surrounded with /** and */ and special
tags such as @param can be used.

An aspect-oriented programming (AOP) language AspectJ
[4] also follows this idea; it provides the ajdoc tool [15] similar
to javadoc, which generates the API documentation with the
same approach as javadoc. However, the generated API doc-
umentation is not satisfactory because the target language is
an AOP language. As javadoc does, ajdoc first extracts the
API documentation from the comments associated with lan-
guage constructs, including classes, methods, aspects, point-
cuts, and advices. Then ajdoc writes the extracted API
documentation out in HTML files. When it writes out com-
ments, it sorts out the descriptions and changes the format
for better readability but it does not change the structure of
the document. The structure of the document is the same
as the program structure; the API documentation consists
of class parts and aspects parts and these parts consist of
their methods, fields, and advices. This is not suitable for
representing detailed specifications of the API.

For example, if an advice affects the behavior of a method,
the aspect part describes the effects of the advice whereas
the class part separately describes the original behavior of
the method before the advice is applied. The method be-
havior after the advice is woven is not clear. While the
documentation pages include clickable links between meth-
ods and advices advising those methods, the users of the
framework or library cannot understand at a glance the ex-

act behavior of the methods that they are going to use. They
have to click the link and consider by themselves how the
advice modifies or extends the behavior of that method. Al-
though this link would be useful for the programmers who
are extending the framework or library and thus are inter-
esting in the internal implementation, it is not appropriate
for the users who just want to use the framework or library
through the well-documented API. Furthermore, clicking the
link may not reveal the exact behavior of the method if the
method internally calls another method that is also modified
by another advice.

To address this problem, this paper presents our javadoc-
like tool for generating the API documentation of a frame-
work or a library written in AspectJ. Our tool generates the
API documentation for framework/library users who write a
program using that framework /library as a black box. Thus,
our tool extracts the descriptions for the API documentation
from both classes and aspects in the source files and then it
weaves them before producing HTML pages. A pointcut lan-
guage for controlling this weaving is also provided. The API
descriptions are sorted out according to the corresponding
entry points in the programming interface and thereby the
document structure is different from the program structure.
Since the program structure in AOP reflects the concerns
of the framework/library implementers, we should choose
a different structure for the documentation, which will be
read by the users having different concerns. For example, if
an advice affects the behavior of a method exported outside
of the framework, the description of that advice is shown
together in the API documentation with the description of
the method. This is because, from the users’ viewpoint, the
method is an entry point in the framework API whereas the
advice is not; it is recognized from the outside only through
the behavior of that method. Furthermore, our tool does
not generate an HTML page collecting all the descriptions
related to one aspect unless the aspect is abstract and ex-
posed to be inherited by aspects written by framework users.

In the rest of this paper, we first discuss problems of the
existing AOP tools for generating API documentation in
Section 2. In Section 3, we propose our javadoc-like tool for
AspectJ. In Section 4, we present an example of the use of
our tool. Then we have discussions about related work in
Section 5. Section 6 concludes this paper.

2. PROBLEMS OF EXISTING TOOLS

Although AOP makes the implementation of libraries and
frameworks more modular, their API documentation gen-
erated by the existing tools such as ajdoc tends to be un-
satisfactory. This is due to the document structure that
follows the program structure and thus does not respect the
user programmers’ concerns. In the program, crosscutting
implementation concerns are separated but this separation
makes it difficult for the users to understand how to use the
framework or library.

2.1 Internally-used aspects

A library or framework implemented in AspectJ often
includes aspects that are internally used for implementing
crosscutting concerns such as transactions, exception han-
dling, and logging. Such an aspect is never exposed to the
users of the library or framework. The users should not
have to see the existence of that aspect because this is an
implementation detail.

public class Stack<E> extends Vector<E> {

/** Removes the object at the top of this stack and
* returns that object as the value of this function.

* Qreturn The object at the top of this stack
* (the last item of the <tt>Vector</tt> object).
*/
public synchronized E pop() {
E obj = peek();
removeElementAt (size() - 1);
return obj;

/** Looks at the object at the top of this stack
* without removing it from the stack.

* Qreturn the object at the top of this stack
* (the last item of the <tt>Vector</tt> object).
*/
public synchronized E peek() {
return elementAt(size() - 1);

3

aspect StackChecking {
/** Qexception EmptyStackExcpetion if this stack is empty. */
before(Stack s): execution(* Stack.peek()) && this(s) {
if (s.size() == 0) throw new EmptyStackException();
1}

Figure 1: A revised Stack class by using an aspect

For example, we reimplemented in AspectJ the java.util.Stack

class contained in the J2SE 5.0 library [12]. Figure 1 shows
the program. The java.util.Stack class has the peek method
that returns the top element of the stack but does not re-
move it. The peek method checks the pre-condition for the
stack, which is that the size of the stack is not zero. If the
size is zero, the method throws a runtime exception Emp-
tyStackException. We separately implemented this check of
the pre-condition by an aspect StackChecking.

Note that the doc comment about the possibility of throw-
ing an EmptyStackException belongs to the before advice in
the StackChecking aspect. This means that the API doc-
umentation generated by the existing tools such as ajdoc
presents this description in the page of the StackChecking
aspect. The page of the Stack class does not mention the
possibility of throwing an EmptyStackException. This sepa-
ration enforces extra work on the library users, who cannot
understand the exact behavior of the peek method by look-
ing at only the page of the Stack class. The users have to
click the hyper-link on that page and also look at the page
of the StackChecking aspect. This is not acceptable because
the StackChecking aspect was written only for improving the
modularity of the implementation and thus it is part of im-
plementation details that should be invisible from the library
users.

Furthermore, the API documentation never tells the users
that the pop method may also throw an EmptyStackExcep-
tion because this method internally calls the peek method.
In this case, the users cannot see this fact without look-
ing at the source code of the Stack class. The API docu-
mentation does not provide a hyper-link representing that
the StackChecking aspect indirectly affects the pop method.
This is a serious problem; in fact, the original API documen-
tation of the J2SE 5.0 library mentions that the pop method
may throw an EmptyStackException.

2.2 A naive solution

A naive solution is giving up writing the API documenta-
tion for aspects in the source program of the aspects. When
we write the doc comments for classes, we could also write
the effects of aspects together within the doc comments for
the classes. In the case of the StackChecking aspect in Fig-
ure 1, we could rewrite the doc comments for the peek and
pop methods so that the doc comments directly present that
the two methods may throw an EmptyStackException. Recall
that, in Figure 1, this fact was written in the doc comments
for the StackChecking aspect.

This solution makes the API documentation acceptable
from the viewpoint of the framework/library users. On the
other hand, it is not acceptable from the implementers’ view-
point. Since the effects of aspects depend on the implemen-
tation of the aspects, the doc comments about those effects
should be in the source code of the aspects. This improves
the maintainability of the aspects. This dilemma between
the users and the implementers is due to the fact that they
prefer different ways of decomposition. The implementers
want to decompose according to implementation concerns
while the users want to decompose according to functional
concerns visible from the users.

Another drawback of the solution presented here is that
the doc comments are fragile. Since we must manually write
the doc comments about aspects in the source code of the
classes affected by those aspects, we must update the doc
comments whenever the pointcut definitions are modified.
Enumerating the affected classes and methods is not a sim-
ple task. Furthermore, if the pointcut includes a wild card,
the global analysis of the program is necessary for writing
correct doc comments.

3. ASPECTS FOR DOCUMENTATION

To address the problem mentioned in the previous section,
we proposes a new documentation system named Commen-
tWeaver for AspectJ. This generates the API documentation
mostly as ajdoc does. However, unlike ajdoc, it does weave
the doc comments from classes and aspects before it writes
out the HTML pages of the API documentation. It also
provides special tags for controlling the weaving. Commen-
tWeaver generates the APl documentation similar to what
we obtain by the naive solution proposed in Section 2.2 while
it allows the implementers to write doc comments in the
source code of the aspects. It weaves doc comments from
classes and aspects and puts them together in the page of
classes if needed. CommentWeaver does not generate a page
for internally-used aspects whereas it generates for public as-
pects. The doc comments of the internally-used aspects are
scatteringly shown in the pages of the public classes affected
by those aspects.

3.1 Join points for CommentWeaver

The document processing by CommentWeaver can be ex-
plained as the execution of programs written in AOP lan-
guages. For AOP languages, Masuhara et al. proposes the
ABX model [10, 9], which is represented by the formula A x
B — X, where A and B are programs and X is the execution
of the programs. In AspectJ, A is a set of classes and B is a
set of aspects. When an AspectJ program is run, at each ex-
ecution point in X, the language performs the computation
specified by an element in A or B.

CommentWeaver is an AOP system explained by the ABX
model. A is a set of doc comments written in classes and
B is a set of doc comments in aspects.® X is the generation
of the API documentation. At each execution point in X,
CommentWeaver writes out a document taken from A or B.
The execution points, i.e. join points, are:

e when the description of a class is written out,
e when the description of a field is written out, or

e when the description of a method is written out.

CommentWeaver provides a pointcut language. It is used
for specifying the execution points at which doc comments
from B is written out. The pointcuts are described by using
special javadoc tags such as Q@caller in doc comments.

3.2 Pointcuts for doc comments

For simplicity, Comment Weaver provides two kinds of point-
cuts: one is implicit and the other is explicit.

3.2.1 Implicit pointcut

By default, all doc comments in aspects have implicit
pointcuts. Programmers do not have to write any other
pointcuts if they are satisfied with the implicit ones. The
implicit pointcuts select the execution point when Commen-
tWeaver writes out the description of the entity, such as a
method, that the corresponding advice affects. If a doc com-
ment is for a named pointcut, it is processed as if it is the
doc comment for the advice using that named pointcut.

For example, if the pointcut of an advice is execution, then
the doc comment for that advice is written out as part of the
description of the method selected by that execution point-
cut. If the execution pointcut contains a wild card as follow-

ing:

execution(void Figure.registerx(..))

then the doc comments for that advice is included in the
description of all the methods selected by that pointcut, i.e.
all the methods in Figure starting with register.

Since CommentWeaver runs before runtime, it uses only
the shadow [11] of the join points selected for advices. The
cflow and if pointcuts are ignored. Only so-called accessor
pointcuts call, execution, and set are considered (see Table 1).
An abstract named pointcut, whose body is not defined yet,
is also ignored.

3.2.2 Explicit pointcut

If the implicit pointcuts are not sufficient, programmers
can explicitly specify pointcuts for doc comments. An advice
of AspectJ affects not only the behavior of the selected join
point but also indirectly the behavior of other methods in
the call chain. For example, the advice in the StackChecking
shown in Figure 1 affects not only the peek method that
its execution pointcut selects. It also indirectly affects the
pop method because it calls the peek method. The advice
may affect the behavior of all the methods that directly or
indirectly call the peek method.

! Another explanation is that A and B are programs produc-
ing the API documentation according to the doc comments
in classes and aspects, respectively. The doc comment can
be regarded as a self-printing program or something like a
quoted expression in Lisp.

Table 1: The pointcuts of CommentWeaver

Selects the execution points when CommentWeaver writes out the description of

call the caller methods
implicit pointcut for get, set

the methods accessing the fields

execution | the methods selected by execution

Qcaller
Qcallerclass
Qcallee
Qcalleeclass

To reflect the effects of aspects on the description of those
methods in the call chain, CommentWeaver allows program-
mers to explicitly append execution points when doc com-
ments are written out. Table 1 lists the pointcut for ap-
pending execution points. The Qcaller tag is a pointcut for
including a doc comment in the description of the methods
in the call chain, which directly or indirectly call the target
method selected by the implicit pointcut. The @callerclass
tag includes a doc comment in the description of the classes
in the call chain. CommentWeaver uses the call chain ob-
tainable by global static analysis. For example, if the @caller
tag appears in a doc comment as following:

/** Qcaller()

* : */
before(Stack s) : execution(* Stack.peek()) && this(s) { ... }
Then the comment following @caller() is included in the de-
scription of the methods that directly or indirectly calls
the peek method. For example, the description of the pop
method includes the comment for this advice.

The @callee tag is usually used with the call pointcut of
AspectJ. Since the call pointcut of AspectJ selects the join
points when a method m is about to call another method n
specified by that call pointcut, the implicit pointcut of Com-
mentWeaver selects not the callee method n but the caller
method m. Thus, by default, the doc comment is appended
to the description of the caller method m. If programmers
want to append a document to the description of the callee
method n, they have to use the Q@callee tag. For example,

/%% Q@callee()

* : */
before(Stack s) : call(* Stack.peek()) && target(s) { ... }
the doc comment following @callee() is included in the de-
scription of the callee method peek. Note that, if the @callee
tag is not used, the doc comment for this advice is included
in the description of the methods directly calling the peek
method. The Qcallee tag can be used together with the
Qcaller tag. The doc comment following this:

Qcaller() && Qcallee()

is appended to the description of both the caller and the
callee methods.

The @caller tag and the @callee tag can take a parameter,
which is either within or exec. These parameters restrict the
range of the selected execution points. For example,

Qcaller(within(java.util.*))

the methods directly/indirectly calling the method selected by the implicit pointcut
the classes directly/indirectly calling the method selected by the implicit pointcut
the methods called from the method selected by the implicit pointcut

the classes of the methods called from the method selected by the implicit pointcut

the doc comment following this tag is included in the de-
scription of the caller methods within only the java.util pack-
age. It is not included in the description of the methods in
the other packages even if those methods indirectly call the
method selected by the implicit pointcut. The meanings of
within is as following;:

e within(({Class Pattern))

This selects only the classes that the (Class Pattern)
matches and the methods declared in those classes.

e.g. @callee(within(Figure+))
This selects the callee methods in Figure or its sub-
classes.

If a method indirectly calls the method selected by the
implicit pointcut, within and exec require that the entire call
chain satisfies the condition. Suppose that a method m calls
another method my, then m; calls another method msa, ...,
finally m,, calls the method m.q, selected by the implicit
pointcut. If m is selected by @caller(within(R)), not only m
but also m1, ... m, must be within R.

3.3 Advices for doc comments

While the @caller and @callee tags correspond to point-
cuts, the text of the doc comments correspond to advices.
By default, the text is appended to the description of the
entity selected by the implicit or explicit pointcut. Com-
mentWeaver processes the standard javadoc tags such as
Qexception and @return as javadoc does.

3.3.1 around advices with an execution pointcut

An around advice applied to the join points selected by
an execution pointcut overrides the original computation by
the method. Hence, the doc comment for that around advice
is also substituted by CommentWeaver for the entire doc
comment for the overridden method.

If the around advice calls proceed to execute the overridden
method, the doc comment for that method should reflect
this fact. To do that, programmers can write @proceed in
the doc comment for the around advice. The @proceed tag is
replaced with the doc comments for the overridden method.
For example,

/** @proceed
* Qexception EmptyStackException if this stack is empty.
*/
Object around(Stack s) : execution(* Stack.peek()) && this(s) {
if (s.size == 0) throw new EmptyStackException();
return proceed(s);

}

since this around advice overrides the peek method in Stack,
the description of the peek method in the API documenta-
tion is taken from the doc comment for this around advice.

However, @proceed in the doc comment is replaced with the
original doc comment for the peek method.

4. EXAMPLES REVISITED

The problems presented in Section 2 can be solved by
CommentWeaver. In Section 2.1, we presented the StackCheck-
ing aspect and a problem of its API documentation, in which
the effects of the before advice are not reflected on the de-
scription of the pop method. This problem is solved if we
modify the doc comments on the before advice as the follow-
ing:

/** @caller() && Qcallee()
* Q@exception EmptyStackException if this stack is empty.

*/

before(Stack s) : execution(* Stack.peek()) && this(s) { ... }

The doc comment will be appended not only the description
of the callee method peek but also the descriptions of the
caller methods such as pop, which directly or indirectly calls
the peek method.

S. RELATED WORK

The languages such as WEB [6] and CWEB [8] are based
on the concept of literate programming [7], which promotes
better documentation of programs. WEB consists of two
languages, that is, TEX for writing documentation and Pas-
cal for programming. In the WEB source files, programmers
can write a Pascal program with the TEX text for improv-
ing the readability of the Pascal program. The operation of
WEAVE extracts the TEX text from the WEB source files
and then it generates the .tex files for the documentation.
CommentWeaver also promotes better API documentation
by improving the readability of a program with respect to
the crosscutting structures of aspects.

The Aspect-Aware Interface (AAI) [5] is a novel interface
for AOP to address the obliviousness [2] property in AOP
programs. The API documentation generated by Commen-
tWeaver can be regarded as one presentation of the AAI
although the AAI is a programming-language concept but
CommentWeaver is a tool for generating API documenta-
tion.

6. CONCLUDING REMARKS

This paper presents a novel documentation system named
Comment Weaver, which generates the API documentation
of a framework/library written in AspectJ. CommentWeaver
extracts the descriptions for the API documentation from
both classes and aspects in the source files, and then it
weaves them for generating the API documentation in HTML.

CommentWeaver is an AOP system that can be explained
by the ABX model. As other AOP languages, Commen-
tWeaver also provides a pointcut language, which specifies
the execution points at which doc comments is written out
as part of the API documentation. This pointcut language
is used for specifying the execution points that are indirectly
affected by aspects. To make it easy to write API documen-
tation, CommentWeaver provides implicit pointcuts and ex-
plicit pointcuts.

7. REFERENCES

[1] J. Aldrich. Open modules: Modular reasoning about
advice. In ECOOP 2005 - Object-Oriented

2]

[

L

[4]

[5]

[6]

[7]

8]

[9]

(10]

(11]

(12]

(13]

(14]

(15]

Programming, pages 144-168. Springer Berlin /
Heidelberg, 2005.

R. E. Filman and D. P. Friedman. Aspect-Oriented
Programming is Quantification and Obliviousness.
Technical report, 2000.

W. G. Griswold, M. Shonle, K. Sullivan, Y. Song,

N. Tewari, Y. Cai, and H. Rajan. Modular Software
Design With Crosscutting Interfaces. In IEEE
Software, vol.23, pages 51-60, 2006.

G. Kiczales, E. Hilsdale, J. Hugunin, M. Kersten,

J. Palm, and W. G. Griswold. An overview of aspect;j.
In ECOOP 2001 - Object-Oriented Programming: 15th
FEuropean Conference, LNCS 2072, pages 327-353.
Springer, 2001.

G. Kiczales and M. Mezini. Aspect-oriented
programming and modular reasoning. In ICSE "05:
Proceedings of the 27th international conference on
Software engineering, pages 49-58, New York, NY,
USA, 2005. ACM Press.

D. E. Knuth. The web system of structured
documentation. Technical report, Stanford, CA, USA,
1983.

D. E. Knuth. "Literate programming”. The Computer
Journal, 27(2):97-111, May 1984.

D. E. Knuth and S. Levy. The CWEB System of
Structured Documentation: Version 3.0.
Addison-Wesley Longman Publishing Co., Inc.,
Boston, MA, USA, 1994.

S. Kojarski and D. H. Lorenz. Modeling aspect
mechanisms: a top-down approach. In ICSE ’06:
Proceedings of the 28th international conference on
Software engineering, pages 212—-221, New York, NY,
USA, 2006. ACM.

H. Masuhara and G. Kiczales. Modeling crosscutting
in aspect-oriented mechanisms. In EFCOOP 2003 -
Object-Oriented Programming, pages 219-233.
Springer-Verlag, 2003.

H. masuhara, G. Kiczales, and C. Dutchyn.
Compilation semantics of aspect-oriented programs. In
FOAL 2002 Proceedings of Foundations of
Aspect-Oriented languages Workshop at
Aspect-oriented software development (AOSD 2002),
pages 17-26, 2002.

S. Microsystems. Java 2 platform stard edition 5.0 api
specification.
http://java.sun.com/j2se/1.5.0/docs/api/.

S. Microsystems. Javadoc 5.0 tool.
http://java.sun.com/j2se/1.5.0/docs/guide/javadoc/.
N. Ongkingco, P. Avgustinov, J. Tibble, L. Hendren,
O. de Moor, and G. Sittampalam. Adding open
modules to aspectj. In AOSD ’06: Proceedings of the
5th international conference on Aspect-oriented
software development, pages 39-50, New York, NY,
USA, 2006. ACM.

A. Organization. The aspectj documentation tool.
http://www.eclipse.org/aspectj/doc/next/devguide/ajdoc-
ref.html.

