
Extending AspectJ for Separating Regions

Shumpei Akai Shigeru Chiba

Tokyo Institute of Technology

akai@csg.is.titech.ac.jp chiba@is.titech.ac.jp

Abstract

Synchronization is a good candidate for an aspect in aspect-
oriented programming (AOP) since programmers have to choose
the best granularity of synchronization for the underlying hard-
ware to obtain the best execution performance. If synchronization
is an aspect, programmers can change the synchronization code
independently of the rest of the program when the program runs
on different hardware. However, existing AOP languages such as
AspectJ have problems. They cannot select an arbitrary code re-
gion as a join point. Moreover, they cannot enforce weaving of a
synchronization aspect. Since it is an alternative feature in feature
modeling, at least one of available synchronization aspects must
be woven. Otherwise, the program would be thread-unsafe. Since
an aspect in AspectJ is inherently optional, programmers must be
responsible for weaving it. To solve these problems, this paper
proposes two new constructs for AspectJ, regioncut and assertions
for advice. Regioncut selects arbitrary code region as a join point
and assertion for advice enforces weaving a mandatory advice. We
implemented these constructs by extending the AspectBench com-
piler. We evaluated the design of our constructs by applying them
to two open-source software products, Javassist and Hadoop.

Categories and Subject Descriptors D.3.3 [Programming Lan-
guages]: Language Constructs and Features

General Terms Languages, Design

Keywords Aspect-Oriented Programming, Feature-Oriented Pro-
gramming, Region, Synchronization

1. Introduction

A synchronization concern is a candidate for being implemented
as a separate module. Since there are multiple synchronization
policies for performance reasons, the software should be distributed
with a set of the implementations of different policies and the
users should be able to select an appropriate implementation and
install it with the rest of the software. The users should not have to
modify the program of the rest of the software when they change
synchronization policies.

This style of software development leads us to feature-oriented
programming [5]. A synchronization concern is one of features
that will be incrementally included to compose large software. A
synchronization policy (or implementation) is a sub-feature of that

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

GPCE’09, October 4–5, 2009, Denver, Colorado, USA.
Copyright c© 2009 ACM 978-1-60558-494-2/09/10. . . $5.00

feature, or more precisely, an alternative feature in feature modeling
[13, 14] since at least one of those sub-features must be included.
Otherwise, the resulting software would not be thread-safe.

Aspect-oriented programming (AOP) languages such as As-
pectJ [15] are useful tools for implementing such a concern as a
separate module. For example, AspectJ allows programmers to im-
plement a synchronization policy in a separate module called as-
pect and combine it to the rest of the program without modifying
the program. This process is called weaving; the aspect is attached
at some execution points, called join points, to the rest of the pro-
gram. Since weaving does not require modifying the rest of the
program, AOP makes it easier to change synchronization policies
to fit the underlying system.

However, the implementation of a synchronization concern
in AspectJ has problems. First, AspectJ does not allow an arbi-
trary code region within a method body to be join points. It is
not possible to write an aspect that executes an arbitrary code
region within a synchronized statement. Programmers must per-
form refactoring on their programs so that a synchronization as-
pect can be written within the confines of AspectJ. If we use
java.util.concurrent.locks.Lock and before and after advices, we
can synchronize the execution of a region in most cases. However,
this approach will not release a lock when an exception is raised
within the region. Another problem is that AspectJ does not pro-
vide a mechanism for enforcing synchronization implemented as
an aspect. In AspectJ, weaving an aspect is optional at compile
time or load time. It is valid to run the program without a synchro-
nization aspect. However, a synchronization concern is mandatory
and a synchronization aspect is an alternative feature. At least one
of aspects must be woven.

To address these two problems, this paper proposes new lan-
guage constructs for AspectJ: regioncut and assertions for advice.
Regioncut is a new kind of pointcut designator for selecting an ar-
bitrary code region. To select a region, programmers specify the
first and last join point in the region by giving pointcuts to the re-
gioncut. The region is statically determined and, if it does not fit the
control/block structure of the program, the region is implicitly ex-
panded to fit. An assertion for advice tests at runtime whether or not
a specified advice is woven and it modifies the program behavior
of a specified method. It is useful to enforce that at least one aspect
is woven among several aspects that implement the same concern
but are woven at different join points.

In the rest of this paper, Section 2 shows our motivating exam-
ple, which is an aspect for customizing lock granularity for syn-
chronization. Then, Section 3 proposes regioncut. Section 4 pro-
poses assertions for advice. Section 5 shows case study. Section 6
describes related work. Section 7 concludes this paper.

2. Motivating Example

2.1 Synchronization

In 2006, we received a bug report for Javassist [1]. Javassist [7] is a
Java class library for modifying Java bytecode and it is widely used
in a number of Java products, mainly web application frameworks
such as Redhat JBoss application server and Hibernate. The bug
was that a method generating a proxy object was not thread-safe; to
fix this bug, we had to modify the method to contain synchronized
statements.

An interesting issue of this bug fix was lock granularity; which
code block should be put into a synchronized statement. Since lock
granularity affects concurrency, minimizing the granularity gen-
erally improves execution performance when multiple processor
cores are available. However, as we discussed in our previous paper
[17], excessive concurrency often have negative impact on perfor-
mance. In year 2006, low-end servers were still single-processor
machines and 4-way multi-processors machines were expensive
(Intel Core-MA Xeon “Woodcrest” was shipped in 2006). On a
single- or 2-way machine, small granularity may not improve exe-
cution performance under a heavy workload. Thus, for the users
who run their software on such a relatively slow machine, we
should have modified Javassist to make the lock granularity larger.

This experience shows that a synchronization concern is a good
candidate for an aspect. If multiple implementations of the syn-
chronization are supplied as a set of aspects, users can choose the
best implementation and weave the aspect for that implementation
when they install the software. They do not have to modify the rest
of the program when they change the implementation. On the other
hand, when we fixed the synchronization bug, we had to choose
one implementation and hard-wire it since the software was writ-
ten in pure Java, not AspectJ. The resulting software ran fast on
some kind of hardware but not on other kinds.

2.2 Limitations in AspectJ

AspectJ can modularize various concerns such as logging and Ob-
server pattern [15] by aspects but it has two problems for modular-
izing synchronization concerns. The first one is the granularity of
the join points in AspectJ. A join point selected by call, get, or set
pointcut corresponds to a single bytecode instruction (method invo-
cation or field accesses). It is too fine-grained for synchronization.
A join point selected by execution pointcut is a whole method body
and hence it is too coarse-grained. To implement a synchronization
concern, it should be possible to select an arbitrary code region as
a join point. For example, programmers should be able to select a
code region from some statement to another statement in a method
body as they insert a synchronized statement there.

Some programmers might think AspectJ has sufficient expres-
siveness for implementing a synchronization concern. Program-
mers can modify a method body and extract a new method for such
a code region. Then they can write an around advice with execu-
tion pointcut, which runs when that new method is attempted to
be invoked. This around advice can execute the new method by
proceed within a synchronized statement. However, our goal is to
provide several aspects each of which implements a different syn-
chronization policy. Each aspect needs to put a different code re-
gion of the method body into a synchronization statement. It is
not practical to modify an original method body to extract several
new methods for those code regions. The readability of the result-
ing method body might be decreased. If two code regions intersect
with each other, extracting a sub method for each code region is not
possible.

The second problem is how to guarantee that at least one syn-
chronization policy is applied. If no synchronization policy is ap-
plied, the program is thread-unsafe; this is a bug. However, if a

synchronization policy is implemented as an aspect in AspectJ, we
cannot confirm that the synchronization aspect is actually woven
and synchronization is performed at runtime. In particular, when
the base program is modified later, the existing synchronization as-
pect might be accidentally made not to work any more due to the
fragile-pointcut problem [19]. This is a general problem of using
an AspectJ aspect for implementing an alternative feature in feature
modeling [13, 14]. In our scenario, a synchronization concern is a
feature in the contexts of Feature Oriented Programming [5]. The
synchronization policies are alternative sub-features of that feature,
that is, a set of sub-features one of which must be included. Imple-
menting a feature by an aspect is good practice and it is not a new
idea. Since an aspect can be attached and detached at a flexible join
point to a base program without modifying the base program, i.e.
due to the obliviousness property of AOP [10], it is a useful tool
for implementing a feature [3]. This is definitely true for optional
features but not for alternative (or mandatory) features.

3. Regioncut

To solve the problems mentioned in the previous section, we first
propose a new construct named regioncut for AspectJ. A region-
cut behaves like pointcuts but it selects code regions, not execution
points. It statically determines the selected regions at compile-time.
A regioncut helps to separate various concerns such as synchroniza-
tion, exception handling, and transaction.

3.1 Overview

The syntax of a regioncut is simple. A regioncut takes an ordered
list of pointcut designators separated by a comma and then it selects
the code region including the join points selected by every pointcut
designator in that order. Only the call, get and set pointcut designa-
tors are available for a regioncut, which statically select a single ex-
pression. A regioncut selects a code region within a method body;
it does not select a code region stretching over multiple method
bodies.

The following code shows an example of regioncut.

1 pointcut rc1():
2 region[
3 call(Object List.get(int)),
4 get(int Foo.bar)
5];

The parameter to this regioncut is a list of two pointcut designators.
It selects a code region that starts with a method call to List.get(int)
and ends with a field access to Foo.bar.

A parameter to a regioncut can be a list of more than two
pointcut designators:

1 pointcut rc2():
2 region[
3 call(Object List.get(int)),
4 set(∗ Foo.foo),
5 get(int Foo.bar)
6];

Now the regioncut selects a code region in which the List.get(int)
method is first called, then the Foo.foo field is set, and finally the
Foo.bar field is read. The code region may contain other statements
and expressions between the call to the List.get method and the
access to the Foo.bar field. The access to the Foo.foo field is not
the only expression between them.

Specifying an intermediate join point like set(* Foo.foo) is
useful to distinguish similar code regions in the same method. For
example, the pointcut rc1 shown above matches two regions in the
method in Figure 1. If we want to select only the region from line

1 void methodWithSimilarRegions(List l,int i,Foo f){
2 int n;
3
4 Object o=l.get(i);
5 f.foo=o;
6 n= f.bar;
7
8 //do something
9
10 Object o=l.get(i+1);
11 System.out.println(o);
12 n= f.bar;
13 }

Figure 1. A method including two similar regions

4 to 6, we must use the pointcut rc2 instead. The region from line
10 to 12 is excluded.

A code region selected by a regioncut is a collection of consec-
utive statements. The boundary of the code region is never in the
middle of a statement. Suppose that a join point selected by an ar-
gument to the regioncut, for example, a method call is a term of
some long expression. In this case, the selected code region would
be expanded to include the whole statement for that long expres-
sion. If the selected join point is in the else block of an if statement,
as we below describe, the whole if statement may be included in
the selected code region.

3.2 Regioncut Matching

In this section, we describe how a regioncut matches on a code
region. The matching algorithm consists of two phases.

3.2.1 Identifying the first and the last bytecode of a region

In the first phase, the compiler finds the first and the last join point
(shadow) of a code region. It first constructs a sequence of all join
points from a method body. It is a sequence of consecutive join
points, in the lexical order, from the first to the last statement of the
method body. The compiler may constructs multiple sequences. If
the method body includes an if statement, a join-point sequence
splits into two; one goes to the then block and the other goes to
the else block. A while statement (and other loop statements) also
splits a sequence. Both first visit the conditional expression and
one goes into the loop body but the other skips the whole loop
body. Loop iteration is ignored. A try-finally statement is treated
as a normal sequence of statements; it goes into a try block first
and then a finally block. It never visits a catch clause included in
that try statement. The compiler constructs an independent join-
point sequence for that catch clause. It is separately tested to find
a matching region. A return statement is regarded as the end of a
sequence. The compiler constructs all possible combinations of the
multiple sequences made by these control statements.

Then irrelevant join points, which are never selected by an
argument to the regioncut, are filtered out in all the constructed
sequences of join points. For example, the pointcut rc2 shown in
the previous subsection takes three arguments. Thus the compiler
eliminates all join points except a call to the List.get method, an
update of the Foo.foo field, and a read from the Foo.bar field.

Finally, the compiler searches all the constructed sequences for
a sub sequence that the regioncut exactly matches on. Each join
point in the subsequence must be selected in the same order by a
pointcut given as an argument to the regioncut. In the case of the
pointcut rc2, the compiler finds a subsequence consisting of three
join points, which are a call to List.get, an update of Foo.foo, and a
read from Foo.bar in this order. The join point selected by the first

1 pointcut rc1():
2 region[
3 call(∗ ∗.a()),
4 call(∗ ∗.b())
5];
6
7 void foo(){
8 //do something
9 if(cond){
10 a();
11 }
12 b();
13 //do something
14 }

Figure 2. The selected region in the first phase does not fit control
structure

argument to the regioncut is the beginning of the code region while
one selected by the last argument is the end of the code region.

3.2.2 Region Expansion

In the second phase, the compiler determines a set of statements
included in the selected region. The initial candidate of the set is the
statements including the join points (shadow) of the subsequence
found in the first phase.

However, this candidate might not fit control/block structures
of the method body. In Figure 2, a regioncut rc1 selects the region
from a() (line 9) to b() (line 11) after the first phase. Since the
method a is not called when cond is false, the selected region does
not fit the static block structure of the method body.

The compiler expands the initial region to avoid inconsistency
between the selected region and the static block structure of the
method. The region after the expansion is the smallest region that
contains the initial region and fits the static block structure. If we
surround the region by curry brackets, the resulting method body is
still syntactically valid. In Figure 2, the initial region is expanded
to contain the whole if statement. The resulting region contains the
if statement and a method-call statement to b (line 8 to 11).

To implement this expansion, the compiler constructs a tree
representing control structures within a method body. Each node
of the tree is either a block, if, while, do, for, switch, try or a
synchronized statement. The leaves of the tree are the other kinds
of statements. The children of a node are statements included in the
block(s) of the statement represented by that node. The compiler
first finds the smallest sub-tree t that includes the initial set of the
statements. Then, for each direct child node of the root of that sub-
tree t, the compiler tests whether or not the child includes (part
of) the initial set. If the child does not include, it is removed. The
remaining consecutive children are the code region finally selected
by the regioncut.

3.3 Context Exposure

In Java, a synchronized statement takes an object that will be
locked. To implement a synchronization concern by an aspect, the
object must be available within an advice body.

A regioncut can be used with other pointcut designators includ-
ing this, args, and target. If a locked object is stored in a field of
this object, the this pointcut can be used to obtain this object. If
a locked object is in an argument or a target object, the args or
target pointcut can be used to obtain it. If the value bound to the
parameter to args or target is from a local variable or a field and
the variable (or a field) is available at the beginning of the code re-
gion, the value of the variable (or a field) at the beginning of that

1 class Foo{
2 SomeObject obj;
3 void bar(){
4 int i=10;
5 a();
6 b(i);
7 obj.c;
8 }
9 }
10
11 void around(SomeObject o, int n):
12 region[
13 call(∗ ∗.a()),
14 call(∗ ∗.b(int)) && args(n),
15 get(∗ SomeObject.c) && target(o)
16]
17 {
18 proceed(o,n);
19 }

Figure 3. Context exposure by a regioncut

region is passed to an advice body as an argument. Otherwise, if the
variable is not available at that point, or if the argument to args or
target is a compound expression, then a compile error is reported.

Figure 3 is an example of context exposure. The regioncut for
the around advice selects a code region from line 5 to 7. The
argument to b at line 6 is taken from a local variable i, which is
initialized before the call to a at line 5, and the target object of the
field access at line 7 is directly taken from the obj field. Hence the
advice parameters o and n are bound to the values of i and obj at
line 5.

3.4 Implementation

We implemented regioncut for AspectJ as an extension to the As-
pectBench Compiler (abc) [4]. The intermediate language of abc is
Jimple [21]. We use Jimple for pattern matching for regioncut.

3.4.1 Analysis of blocks and statements

Jimple has no information about where blocks, statements, and con-
trol structures start and end. To perform the region expansion de-
scribed in Section 3.2.2, we extended Jimple to make this informa-
tion available.

We introduced a new Jimple instruction marker. A marker has
two properties. One is a kind of the structure, which is either
statement, block, if, while, or others. The other is whether the
marker represents beginning or ending. We modified the Java-to-
Jimple compiler so that a pair of marker will surround all the
instructions of each statement. Other structures such as a block are
also surrounded by a pair of markers. After the region expansion,
all the inserted markers are removed and then Jimple instructions
are converted into Java bytecode.

3.4.2 Around advice support

To implement proceed in an around advice, the abc compiler
extracts a new static method from the code corresponding to a join
point shadow [18], for example, one selected by execution and
initialization pointcuts. The values of method parameters and so
on at the join point shadow are passed as arguments to the static
method. We extend this implementation technique for supporting
an around advice with a regioncut.

Assignments to local variables Suppose that a static method is
extracted for a code region selected by a regioncut. If a new value is
assigned to a local variable within that code region and that variable

1 public void toBeAdvised(int x){
2 String s="initial string";
3 a();
4 s="string was replaced";
5 b();
6 System.out.println(s); // what is the value of s?
7 }
8
9 void around():
10 region[
11 call(∗ ∗.a()),
12 call(∗ ∗.b())
13]
14 {
15 proceed();
16 }

Figure 4. A local variable is updated within a code region

1 public void toBeAdvised(int x){
2 String s="initial string";
3 $localStorage = new LocalStorage$toBeAdvised();
4
5 $localStorage.s=s;
6 nop; //label for the beginning of the region
7 s=$localStorage.s;
8 a();
9 s="string was replaced";
10 b();
11 $localStorage.s=s;
12 nop; // label for the end of the region
13 s=$localStorage.s;
14
15 System.out.println(s);
16 }

Figure 5. A transformed version of the method in Figure 4

is declared out of the region, then the new value must be first stored
in another local variable in the extracted static method and then
reflected on the original local variable.

To implement this behavior, we make an object whose fields are
copies of the local variables accessed in the code region. It is passed
to the extracted static method and, if some fields of the object are
updated in the static method, then the updated values are copied
back to the original local variables.

For example, in Figure 4, the code region between the two
method calls to a and b is selected and hence a static method is
extracted from that region. The assignment to a local variable s
at line 4 must be transformed so that the value assigned at line
4 is reflected on the value of s at line 6. Before the aspect is
woven by the original weaver of abc, therefore, the toBeAdvised
method is transformed into the code shown in Figure 5. The class
LocalStorage$toBeAdvised is a helper class generated during this
transformation. The static method extracted for the region from line
6 to 12 receives the value of $localStorage as an argument.

A helper class such as LocalStorage$toBeAdvised is generated
per code region. Each field has the same type as the corresponding
local variable. We do not use a java.util.HashMap object or an
Object array for $localStorage. These are more generic but type
conversion or boxing/unboxing is needed when a value is stored
and obtained from them.

1 public void includeJump(){
2 labelOfFor:
3 for(;;){
4 while(true){
5 a();
6 if(innerBreak()){
7 break; //goto label0;
8 }else{
9 break labelOfFor; //goto label1;
10 }
11 b();
12 }
13 //label0:
14 }
15 //label1;
16 }
17
18 void around(): region[call(∗ ∗.a()),call(∗ ∗.b())] {
19 proceed();
20 }

Figure 6. A program including jumps to out of a selected code
region

Jumps to the outside of the region Jumps — break, continue,
and return statements — must be also transformed when a static
method is extracted from a code region selected by a regioncut. The
destination of these jumps may be out of that region. Figure 6 shows
a program including jumps to out of the selected region. Note that,
in Jimple and Java bytecode, break and continue statements are
represented by goto instructions.

For the transformation, each jump instruction from the inside
to the outside of the region is given a unique identification (id.)
number. Next, each jump instruction is replaced with the following
instructions:

1. Save the id. number into a local variable (jump id. variable).

2. Jump to the end of the region.

Furthermore, at the end of the region, a switch statement is inserted.
It branches to the destination specified by the jump id. variable. Fig-
ure 7 shows the resulting program after the transformation above.
Then our extended abc compiler extracts a static method from the
code region from line 5 to 16 in Figure 7. The abc compiler is
responsible to maintain the consistency of the value of the jump
id. variable $i between the extracted static method and the origi-
nal method includeJump. A return statement is transformed in a
similar way.

Current Limitation

Two regioncuts may select two code regions intersecting each other.
Our compiler cannot implement around advices for those two re-
gions. The compiler can implement them if one of the selected re-
gions is nestedly contained in the other region. We will define a
precedence rule for intersecting regions so that the compiler can al-
low around advices for such regions. For example, if a region with
higher precedence is expanded to contain the other intersecting re-
gions at the phase described in Section 3.2.2, the compiler can im-
plement around advices for those regions. However, the practicality
of this rule is not clear yet.

Regioncuts are more fragile than ordinary pointcuts when the
code is refactored. To make regioncuts more robust, we plan to
extend our compiler to perform inter-procedural analysis when
constructing a join-point sequence at the phase described in Section
3.2.1. This will make regioncuts less fragile for extract method

1 public void includeJump(){
2 labelOfFor:
3 for(;;){
4 while(true){
5 nop; //label for beginning of the shadow
6 a();
7 if(innerBreak()){
8 $i=0;
9 goto endLabel;
10 }else{
11 $i=1;
12 goto endLabel;
13 }
14 b();
15 endLabel:
16 nop; //label for end of the shadow
17 switch($i){
18 case 0: goto label0;
19 case 1: goto label1;
20 }
21 }
22 label0:;
23 }
24 label1:;
25 }

Figure 7. A transformed version of the method in Figure 6

refactoring. However, regincuts will be still fragile for other kinds
of refactoring. We believe that using the assertion shown in the next
section is more pragmatic for reducing the fragility of regioncuts.

4. An Assertion for Advice

To solve the problems mentioned in Section 2, we also propose a
new assertion mechanism for AspectJ. This enables programmers
to test an assumption that a certain advice is woven and it modifies
the program behavior at some execution point. This mechanism is
useful in particular for an advice with a regioncut, which tends to
be fragile. Even small changes of a base program may make the
regioncut not to match the code region where the advice must be
woven. The proposed mechanism would make programmers less
reluctant to use an aspect to implement an alternative feature such
as a synchronization concern.

4.1 Overview

We propose two kinds of annotations:@AssertAdvised and@SolveProb-
lem. The former annotates a method and the latter annotates an
advice. Figure 8 and Figure 9 show examples. @AssertAdvised de-
clares that the behavior of the annotated method, for example, the
foo method in Figure 8, must be modified for implementing some
concern by an advice annotated by @SolveProblem, for example,
the advice in Figure 9. The argument to @SolveProblem repre-
sents which problem in which class the advice is expected to solve.
For example, @SolveProblem(”A.name of problem”) solves the
problem of the method with@AssertAdvised(”name of problem”)
in class A.

During runtime, @AssertAdvised tests if the annotated method
satisfies the following assumption just before the method returns:

• the method is directly or indirectly invoked (through proceed)
from the @SolveProblem advice (i.e. the method is under the
control of the advice), or

• the method directly or indirectly invokes the @SolveProblem
advice while the method is being executed (i.e. the part of the
method body is under the control of the advice).

1 class A{
2 @AssertAdvised("name_of_problem")
3 void foo(){
4 bar();
5 }
6 }

Figure 8. An annotation for a method

1 @SolveProblem("A.name_of_problem")
2 void around(): call(∗ ∗.bar()) {
3 //do something
4 }

Figure 9. An annotation for an advice

Here the @SolveProblem advice is an advice with the@SolveProb-
lem annotation corresponding to the@AssertAdvised of the method.
If the test fails, then java.lang.AssertionError will be thrown.

We did not choose simpler design, in which @AssertAdvised
tests if a specific advice is woven at a specific join point. The rea-
son is to allow refactoring on the advice. For example, a synchro-
nization concern can be implemented with different policies. Thus,
programmers might replace an original synchronization aspect with
a new one they write. The new aspect might be woven at a differ-
ent join point. @AssertAdvised must consider such a new aspect is
woven at a different join point. Our design of @AssertAdvised pre-
sented in this paper uses a higher level abstraction and accept such
refactoring on aspects.

Note that an @AssertAdvised annotation is not inherited by a
subclass. Suppose that a class has a method annotated with@Asser-
tAdvised and its subclass overrides that method. The @AssertAd-
vised annotation is not added to the overriding method in the sub-
class unless another @AssertAdvised annotation is explicitly writ-
ten for the overriding method. This is because the implementation
of the overriding method might be different and thus the advice is
not needed any more or another kind of advice is needed.

4.2 Implementation

The assertions for advice are implemented by program transforma-
tion. First, the following three variables are declared for each pair
of @AssertAdvised and @SolveProblem:

• rm: the current depth of the nested calls to the annotated
method

• ra: the current depth of the nested invocations of the annotated
advice

• ca: true if the annotated advice has been executed since the
annotated method started running.

These variables are declared per thread. They are stored in a
java.lang.ThreadLocal object. Then the program is transformed
to test these variables and throw an exception if necessary. For ex-
ample, the program in Figure 8 and Figure 9 is transformed into
Figure 10.

The runtime test for the assertion is executed only when the
assertion mechanism is generally enabled (-ea option is given to
the java command). The variable $assertionsDisabled is a static
final field and it is made true if the assertion mechanism is disabled.
Hence, if it is disabled, we expect that the if statements we inserted
are eliminated by the runtime optimizer of the JVM.

1 class A{
2 void foo(){
3 if(!$assertionsDisabled){
4 rm++;
5 }
6 try{
7 bar();
8 }finally{
9 if(!$assertionsDisabled){
10 rm−−;
11 if(ra==0 && !ca)
12 throw new AssertionError();
13 if(rm==0)
14 ca=false;
15 }
16 }
17 }
18 }
19
20 void around(): call(∗ ∗.bar()) {
21 if(!$assertionsDisabled){
22 ra++;
23 }
24 try{
25 //do something
26 }finally{
27 if(!$assertionsDisabled){
28 ra−−;
29 if(rm>0)
30 ca=true;
31 else
32 ca=false;
33 }
34 }
35 }

Figure 10. The implementation of the annotations for advices

4.3 Limitation

The assertion for advice is declared for a method by adding @As-
sertAdvised; it is not directly for a join point. Thus, if a thread of
control only conditionally reaches the join point, the assertion may
throw false alert. To suppress this, an empty around advice must be
redundantly woven.

Figure 11 is an example. A synchronization advice is woven
for the code region from line 8 to 10. Its policy is to put the
object creation at line 9 into a synchronized statement. This is
a right policy and the implementation is correct. On the other
hand, @AssertAdvised declares that the whole body of the method
getInstance or part of it is advised by some synchronization advice.
Hence, if the getInstance method is invoked, @AssertAdvised tests
the assumption at the return statements. Since singletonEnabled
is false, the thread never reaches line 9 or the synchronization
advice. Although this is right behavior, @AssertAdvised throws an
exception since the advice was not executed.

To suppress this exception, another advice must be woven as
well on the object creation at line 13. It does not have to do
anything except invoking proceed but it must have the annotation
@SolveProblem(”Singleton.synchronizeCache”).

5. Preliminary Evaluation

We implemented regioncut and assertions for advices by extending
the AspectBench 1.3.0 compiler with the JastAdd frontend [12, 9]
running on Sun JVM 1.6. Then we evaluated the design of the

1 public class Singleton{
2 private static Singleton instance;
3 static final boolean singletonEnabled=false;
4
5 @AssertAdvised("synchronizeCache")
6 public static Singleton getInstance() {
7 if (singletonEnabled) {
8 if(instance==null){
9 instance=new Singleton();
10 }
11 return instance;
12 }else
13 return new Singleton();
14 }
15 }
16 /∗ an aspect for synchronization ∗/
17 aspect SynchornizeCache{
18 @SolveProblem("Singleton.synchronizeCache")
19 void around():
20 region[
21 get(static Singleton Singleton.instance),
22 set(static Singleton Singleton.instance)]
23 {
24 synchronized(Singleton.class){
25 proceed();
26 }
27 }
28 }

Figure 11. An example of false alert by @AssertAdvised

regioncut and the assertion for advice by applying them to two
open-source software products.

5.1 Javassist

We wrote synchronization aspects for Javassist by using the pro-
posed constructs along the scenario in Section 2. One aspect imple-
ments fine-grained synchronization. Figure 12 shows an equivalent
program in which fine-grained synchronization code is embedded
by hand. Two synchronized statements are embedded in the create-
Class2 method. Figure 13 shows an equivalent program written by
hand for coarse-grained synchronization. One synchronized state-
ment is embedded in the createClass method, which calls create-
Class2. We could successfully separate the synchronization code
into aspects by using regioncut. Figure 14 and Figure 15 show (the
advices in) the aspects.

The Javassist users can easily switch synchronization policies
by selecting either of the two aspects. Switching the policies caused
performance differences according to our experiment. We ran the
benchmark test posted with the bug report [1]. It is a client-server
program, in which Javassist is used for the client-side code running
20 threads. For our experiment, we used machines with Intel Xeon
(2.83 GHz), Linux 2.6.28 (x64), and Sun JVM 1.6.0. The client
machine had 8GB memory and the server one had 4GB memory.
They are connected through 1Gbps Ethernet. We disabled assertion
for advice while running this benchmark.

Table 5.1 lists the results. We used two kinds of client machine:
one with 4 cores and the other with 2 cores. The numbers are
the average of the execution time measured 500 times. The results
revealed that using a fine-grained synchronization aspect is better
on the 4 core machine while using a coarse-grained one is better
on the 2 core machine. The overheads due to using an aspect were
negligible.

We could add @AssertAdvised to the createClass method for
enforcing synchronization. However, to suppress false alert men-

1 private static WeakHashMap proxyCache;
2 private void createClass2(ClassLoader cl) {
3 CacheKey key = new CacheKey(...);
4 synchronized (proxyCache) {
5 HashMap cacheForTheLoader=proxyCache.get(cl);
6 if(cacheForTheLoader==null){
7 cacheForTheLoader = new HashMap();
8 proxyCache.put(cl, cacheForTheLoader);
9 cacheForTheLoader.put(key, key);
10 }else{
11 ...
12 }
13 }
14
15 synchronized (key) {
16 Class c = isValidEntry(key);
17 if(c == null){
18 createClass3(cl);
19 key.proxyClass= new WeakReference(thisClass);
20 }else{
21 thisClass = c;
22 }
23 }
24 }

Figure 12. Fine-grained Synchronization by hand

1 public Class createClass() {
2 if(thisClass == null){
3 ClassLoader cl = getClassLoader();
4 synchronized (proxyCache) {
5 if(useCache)
6 createClass2(cl);
7 else
8 createClass3(cl);
9 }
10 return thisClass;
11 }

Figure 13. Coarse-grained Synchronization by hand

Time (sec.) Std. Deviation

—quad core
fine-grain (by aspect) 5.70 0.13
fine-grain (by hand) 5.63 0.13
coarse-grain (by aspect) 7.77 0.26
coarse-grain (by hand) 7.87 0.33

—dual core
fine-grain (by aspect) 9.94 0.21
fine-grain (by hand) 9.94 0.21
coarse-grain (by aspect) 8.70 0.20
coarse-grain (by hand) 8.76 0.24

Table 1. The execution time of the Javassist benchmark

tioned in Section 4.3, we had to weave an empty advice on the call
to createClass3.

5.2 Hadoop

Hadoop [20] is an open-source framework for distributed comput-
ing; it provides a distributed file system and programming supports

1 void around():
2 region[
3 call(∗ WeakHashMap.get(..)),
4 call(∗ WeakHashMap.put(..))
5]
6 {
7 synchronized(ProxyFactory.class){
8 proceed();
9 }
10 }
11
12 void around(Object key): region[
13 call(∗ ∗.isValidEntry(∗)) && args(key),
14 set(∗ ∗.proxyClass)]
15 {
16 synchronized(key){
17 proceed(key);
18 }
19 }

Figure 14. The advices for fine-grained synchronization

1 void around():
2 region[
3 get(static boolean ∗.useCache),
4 call(∗ ∗.createClass2(..))
5]
6 {
7 synchronized(ProxyFactory.class){
8 proceed();
9 }
10 }

Figure 15. The advice for coarse-grained synchronization

for the MapReduce computing model [8]. We rewrote the program
of Hadoop 0.16.4 in AspectJ with our proposed constructs.

Separating Synchronization concerns by Regioncut First, we
separated synchronization concerns into aspects from the Task-
Tracker 1 class (2357 LOC) of Hadoop. Table 2 lists the result of
our experiment. The TaskTracker class contains 21 synchronized
statements. We separated all the statements into aspects. Among
them, 9 statements could be separated into aspects by using ordi-
nary pointcut designators such as call, get, set, or execution. We
needed the regioncut to separate the rest of the synchronized state-
ments into aspects. Note that we did not modify the original source
program of the TaskTracker class. If we performed refactoring to
extract a new method from the synchronized block, then we would
need less regioncuts for separating synchronized statements into
aspects.

We also evaluated the necessity of more than two arguments
to a regioncut. Recall that a regioncut can take more than two
pointcuts as arguments to distinguish similar code regions in the
same method body. Among 12 synchronization concerns in the
TaskTracker class, 5 concerns needed regioncuts that take more
than two pointcuts as arguments. Furthermore, 4 concerns needed
our proposed context exposure mechanism.

Assertion for Advices To evaluate the assertion for advice, we
added @AssertAdvised and @SolveProblem annotations for the

1 org.apache.hadoop.mapred.TaskTracker

synchronized statements 21
ones separated by ordinary pointcuts 9
ones separated by regioncuts 12

Table 2. The number of synchronization concerns in the Task-
Tracker class

the advices with regioncuts in the old version 12
ones correctly woven 6
ones detected by the assertion 2
ones not detected 4

Table 3. The number of synchronization advices with regioncuts
after the update to Hadoop 0.18.3

Time (ms) Std. Deviation

with assertion 24.7 0.1
without assertion 1321.4 34.8

Table 4. The performance comparison of assertion for advice

synchronization aspects separated by regioncuts from the Task-
Tracker class. We then updated the program from Hadoop version
0.16.4 to 0.18.3. Finally, we compiled the TaskTracker class with
the same aspects and ran unit tests, which are bundled with the
distribution of Hadoop, to find the aspects that were not correctly
woven any more.

Table 3 lists the advices after the update. Among 12 advices
using a regioncut, 6 advices were not correctly woven for the new
version of the program. For 2 of these 6 advices, @AssertAdvised
threw an exception during the unit tests. Unfortunately, the rest
of the advices were not detected by the assertion for advices.
However, it turned out that the unit tests did not invoke the methods
annotated with @AssertAdvised for the remaining 4 advices.

5.3 Performance of Assertion for Advice

We measured the performance of assertion for advice. Figure 16 is
a micro benchmark program we used. This benchmark program in-
crements the counter field 100,000,000 times, and the advice also
increments the same field. For this benchmark, we used the ma-
chine with quad-core Intel Xeon (2.83 GHz), with 4 GB memory,
Linux 2.6.28 (x64), and Sun JVM 1.6.0.

We ran this micro benchmark parogram with and without as-
sertion for advice. Table 4 lists the result. This result shows that, in
this experiment, the execution performance of the program with the
assertion for advice is more than 50 times slower than one without
the assertion (by the -da option of java command, which disables
the assertion mechanism of Java).

6. Related Work

Declarative event patterns [22] and Tracematches [2] provide
history-based pointcuts. With these pointcuts, an advice can be
invoked when the given pattern matches on a dynamic execution
history. However, these history-based pointcuts are not appropri-
ate for implementing a synchronization concern. To synchronize
program execution, a lock must be acquired by a synchronized
statement or a java.util.concurrent.Lock at the beginning of the
execution history the pointcut matches on. It is extremely difficult
to do this at the time when the first event of the history just occurs
since the pointcut refers to future events (not occurring yet at that
time) as in GAMMA[16]. A drawback of the history-based point-

1 public class AATest{
2 public int counter=0;
3 void inc(){
4 counter++;
5 }
6 @AssertAdvised("needDoubleInc")
7 public void run(){
8 for(int i=0;i<100000000 ;i++){
9 inc();
10 }
11 }
12
13
14 public static void main(String[] args){
15 AATest aa=new AATest();
16 long start=System.nanoTime();
17 aa.run();
18 System.out.println(System.nanoTime()−start);
19 }
20 }
21
22 aspect DoubleInc{
23 @SolveProblem("AATest.needDoubleInc")
24 void around(AATest self):call(void AATest.inc())

&& target(self){
25 proceed(self);
26 self.counter++;
27 }
28 }

Figure 16. The benchmark program for assertion for advice

cuts is that they only support before and around advices invoked at
the last join point in the matching execution history. They do not
support before or around advices invoked at the first join point in
the execution history, which are necessary for synchronization.

LoopsAJ [11] provides a pointcut for selecting a loop join point,
which corresponds to a loop body. It allows parallelizing the execu-
tion of the specified loop body. If a method body contains multiple
loops, LoopsAJ cannot distinguish these loops. On the other hand,
our regioncuts can distinguish them.

Xi et al. proposed synchronized block join points [23, 24]. The
contribution of their work is to enable selecting synchronized state-
ments as join points. With their work, programmers can select exist-
ing synchronized statements, for example, to change synchroniza-
tion policies but they cannot change the granularity of synchroniza-
tion or add new synchronization code within a method body includ-
ing no synchronized statement. With regioncuts, programmers can
implement various kinds of granularity of synchronization.

Cacho et al. proposed EJFlow [6]. EJFlow provides AOP con-
structs for exception handling. It allows programmers to select the
flow of an exception. Since regioncuts enable programmers to se-
lect an arbitrary code region, they can also separate exception-
handling concerns as well as synchronization concerns.

FlexSync [25] is an aspect-oriented synchronization library. It
helps switching synchronization mechanisms: lock, block-level
atomicity, and software transactional memory, without modifying
the base program. FlexSync requires that a synchronization block
is a method body since it uses an ordinary pointcut language. If the
base program does not satisfy this requirement, the programmer
must transform the synchronization block into a method by using a
refactoring tool or by hand. On the other hand, our regioncut is an
extension to the pointcut language of AspectJ. It was designed to
be able to identify an arbitrary synchronization block, which may
not be a method body.

7. Conclusion

This paper proposed two language constructs to separate regions,
especially with synchronizations, as aspects in AspectJ. Regioncut
is a new pointcut designator, which helps selecting regions as join
points. An assertion for advice allows programmers to detect an
unwoven advice. Such absence of advice can be detected quickly
by running unit tests with this assertion. We implemented these two
constructs by modifying the AspectBench compiler.

We applied regioncut to Javassist and showed that our as-
pects help switching synchronization policies for improving perfor-
mance. We also wrote aspects for separating synchronization code
in Hadoop. We found that regioncut was necessary for separating
synchronization code and unwoven advices could be detected when
the program was updated as far as the target methods were called
during unit tests.

References

[1] . [#jassist-28] javassist enhancement failed on deserializing hibernate
proxies - jboss.org jira. http://jira.jboss.org/jira/browse/
JASSIST-28.

[2] C. Allan, P. Avgustinov, A. S. Christensen, L. Hendren, S. Kuzins,
O. Lhoták, O. de Moor, D. Sereni, G. Sittampalam, and J. Tibble.
Adding trace matching with free variables to aspectj. In OOPSLA

’05: Proceedings of the 20th annual ACM SIGPLAN conference on

Object-oriented programming, systems, languages, and applications,
pages 345–364, New York, NY, USA, 2005. ACM.

[3] S. Apel and D. Batory. When to use features and aspects?: a case
study. In GPCE ’06: Proceedings of the 5th international conference

on Generative programming and component engineering, pages 59–
68, New York, NY, USA, 2006. ACM.

[4] P. Avgustinov, A. S. Christensen, L. Hendren, S. Kuzins, J. Lhoták,
O. Lhoták, O. de Moor, D. Sereni, G. Sittampalam, and J. Tibble. abc:
an extensible aspectj compiler. In AOSD ’05: Proceedings of the 4th

international conference on Aspect-oriented software development,
pages 87–98, New York, NY, USA, 2005. ACM.

[5] D. Batory, J. N. Sarvela, and A. Rauschmayer. Scaling step-wise re-
finement. In ICSE ’03: Proceedings of the 25th International Con-

ference on Software Engineering, pages 187–197, Washington, DC,
USA, 2003. IEEE Computer Society.

[6] N. Cacho, F. C. Filho, A. Garcia, and E. Figueiredo. Ejflow: tam-
ing exceptional control flows in aspect-oriented programming. In
AOSD ’08: Proceedings of the 7th international conference on Aspect-

oriented software development, pages 72–83, New York, NY, USA,
2008. ACM.

[7] S. Chiba. Load-time structural reflection in java. In ECOOP ’00:

Proceedings of the 14th European Conference on Object-Oriented

Programming, pages 313–336, London, UK, 2000. Springer-Verlag.

[8] J. Dean and S. Ghemawat. Mapreduce: simplified data processing
on large clusters. In OSDI’04: Proceedings of the 6th conference on

Symposium on Opearting Systems Design & Implementation, pages
10–10, Berkeley, CA, USA, 2004. USENIX Association.

[9] T. Ekman and G. Hedin. The jastadd extensible java compiler. In
OOPSLA ’07: Companion to the 22nd ACM SIGPLAN conference on

Object-oriented programming systems and applications companion,
pages 884–885, New York, NY, USA, 2007. ACM.

[10] R. E. Filman and D. P. Friedman. Aspect-oriented programming is
quantification and obliviousness. In Aspect-Oriented Software Devel-

opment, pages 21–35. Addison-Wesley, 2005.

[11] B. Harbulot and J. R. Gurd. A join point for loops in aspectj. In
AOSD ’06: Proceedings of the 5th international conference on Aspect-

oriented software development, pages 63–74, New York, NY, USA,
2006. ACM.

[12] G. Hedin and E. Magnusson. Jastadd: an aspect-oriented compiler
construction system. Sci. Comput. Program., 47(1):37–58, 2003.

[13] K. C. Kang, S. G. Cohen, J. A. Hess, W. E. Novak, and A. S. Peterson.
Feature-oriented domain analysis (foda) feasibility study. Technical

report, Carnegie-Mellon University Software Engineering Institute,
November 1990.

[14] K. C. Kang, S. Kim, J. Lee, K. Kim, G. J. Kim, and E. Shin. Form:
A feature-oriented reuse method with domain-specific reference archi-
tectures. Annals of Software Engineering, 5:143–168, 1998.

[15] G. Kiczales, E. Hilsdale, J. Hugunin, M. Kersten, J. Palm, and W. G.
Griswold. An overview of aspectj. In ECOOP ’01: Proceedings of the

15th European Conference on Object-Oriented Programming, pages
327–353, London, UK, 2001. Springer-Verlag.

[16] K. Klose and K. Ostermann. Back to the future: Pointcuts as pred-
icates over traces. In FOAL 2005: Foundations of Aspect-Oriented

Languages 2005. ACM, 2005.

[17] K. Kourai, H. Hibino, and S. Chiba. Aspect-oriented application-level
scheduling for j2ee servers. In AOSD ’07: Proceedings of the 6th

international conference on Aspect-oriented software development,
pages 1–13, New York, NY, USA, 2007. ACM.

[18] H. Masuhara, G. Kiczales, and C. Dutchyn. Compilation semantics
of aspect-oriented programs. In FOAL 2002: Foundations Of Aspect-

Oriented Languages - Workshop at AOSD 2002 -. ACM, 2002.

[19] M. Stoerzer and J. Graf. Using pointcut delta analysis to support
evolution of aspect-oriented software. In ICSM ’05: Proceedings of the

21st IEEE International Conference on Software Maintenance, pages
653–656, Washington, DC, USA, 2005. IEEE Computer Society.

[20] The Apache Software Foundation. Welcome to apache hadoop! http:
//hadoop.apache.org/.

[21] R. Vallée-Rai, P. Co, E. Gagnon, L. Hendren, P. Lam, and V. Sundare-
san. Soot - a java bytecode optimization framework. In CASCON

’99: Proceedings of the 1999 conference of the Centre for Advanced

Studies on Collaborative research, page 13. IBM Press, 1999.

[22] R. J. Walker and K. Viggers. Implementing protocols via declarative
event patterns. In SIGSOFT ’04/FSE-12: Proceedings of the 12th ACM

SIGSOFT twelfth international symposium on Foundations of software

engineering, pages 159–169, New York, NY, USA, 2004. ACM.

[23] C. Xi, B. Harbulot, and J. R. Gurd. A synchronized block join
point for aspectj. In FOAL ’08: Proceedings of the 7th workshop on

Foundations of aspect-oriented languages, pages 39–39, New York,
NY, USA, 2008. ACM.

[24] C. Xi, B. Harbulot, and J. R. Gurd. Aspect-oriented support for
synchronization in parallel computing. In PLATE ’09: Proceedings of

the 1st workshop on Linking aspect technology and evolution, pages
1–5, New York, NY, USA, 2009. ACM.

[25] C. Zhang. Flexsync: An aspect-oriented approach to java synchro-
nization. In ICSE ’09: Proceedings of the 2009 IEEE 31st Interna-

tional Conference on Software Engineering, pages 375–385, Wash-
ington, DC, USA, 2009. IEEE Computer Society.

