
Region Pointcut for AspectJ

Shumpei Akai
Tokyo Institute of Technology

akai@csg.is.titech.ac.jp

Shigeru Chiba
Tokyo Institute of Technology

chiba@is.titech.ac.jp

Muga Nishizawa
Rakuten, Inc.

muga.nishizawa@mail.rakuten.co.jp

ABSTRACT

This paper proposes a new pointcut called region pointcut,
which has the ability to pick out regions as join points. This
pointcut allows programmers to modularize synchronization,
exception handling and parallelization. Although these are
typical crosscutting concerns, the join point that we need
to advise for such a concern is not a point but a region.
The existing aspect-oriented programming language, includ-
ing AspectJ, provide only the means to pick out points. We
modified the AspectBench compiler and implemented region
pointcuts as an extension to the AspectJ language.

Categories and Subject Descriptors

D.3.3 [Programming Languages]: Language Constructs
and Features

General Terms

Languages, Design

1. INTRODUCTION
Aspect-oriented programming (AOP) helps programmers

separate and modularize crosscutting concerns such as log-
ging and Observer pattern. Although synchronization, ex-
ception handling, and parallelization should be also cross-
cutting concerns that AOP could help to modularize, doing
so is difficult in existing AOP languages including AspectJ
[5]. These AspectJ-like languages provide pointcut primi-
tives that pick out a point in execution time, for example,
when a method is called. Advices are invoked at that “join”
point. However, synchronization, exception-handling, and
parallelization concerns need advices that are invoked when
an arbitrary code region specified by the programmer is ex-
ecuted. The existing languages do not allow programmers
to pick out the period in time while an arbitrary code region
is executed.

To address this limitation, this paper proposes a new kind
of pointcut, which we call region pointcut. Its argument

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ACP4IS’09, March 2, 2009, Charlottesville, Virginia, USA.
Copyright 2009 ACM 978-1-60558-450-8/09/03 ...$5.00.

is a region-match pattern, which is used to select an arbi-
trary code region. For example, a region-match pattern can
match the code region between one method call and an-
other method call. A region-match pattern is conscious of
the block structure of the target program. If it matches
a region that intersects the existing block hierarchy of the
program, the region is extended to fit the block hierarchy.

The region pointcut picks out a join point that is the code
region selected by the region-match pattern. An around ad-
vice for this join point is executed instead of the original
code region. Thus it can implement, for example, a syn-
chronization concern; it can lock an object by a synchronized
statement and proceed. Since the join points that the region
pointcut picks out are not really points but regions, the re-
gion pointcut extends the join point model of the language.
To capture the runtime contexts necessary for implement-
ing a synchronization concern, the region pointcut can also
obtain the value of a local variable available at the begin-
ning of the region selected by the region pointcut. The re-
gion pointcut is implemented as an extension to the Aspect
Bench Compiler (abc) [8]. This paper also mentions a few
issues of this implementation and the results of experiments
using this implementation.

In the rest of this paper, Section 2 shows our motivating
example, which is an aspect for customizing lock granularity
for synchronization. Then, Section 3 proposes the region
pointcuts. Section 4 mentions our implementation of the
region pointcut. Section 5 describes related work. Section 6
concludes this paper.

2. MOTIVATING EXAMPLE
Synchronization and exception handling as well as trans-

action and security enforcement are typical non-functional
concerns known as good candidates of aspects. For mod-
ularizing an exception-handling concern, AspectJ provides
an after-throwing advice, which is executed when the corre-
sponding join point (such as a method call) abruptly termi-
nates and throws an exception. It also provides a handler
pointcut, which selects a join point when an exception of
the specified type is caught by a catch clause of a try state-
ment. However, AspectJ programmers cannot write an ad-
vice that is executed when an exception is thrown within the
code region specified by the programmers, for example, from
a method call to beginTransaction until a call to endTrans-
action. A handler pointcut deals with an exception thrown
only within an existing try block. An after-throwing advice
is executed when an exception is thrown anywhere within
the whole body of the specified method. If the code region

43

that a programmer wants to advise is not either a try block
or a whole method body, they cannot write an aspect for
the exception handling.

This limitation is not only for exception handling. As-
pectJ does not provide pointcut primitives for selecting an
arbitrary region as a join point. The reason for this is that
because the design principle of AspectJ is that a join point
is a point in time ; it is not a region in time [7]. Although
an exception caught by a handler pointcut comes from the
code region of the try block, that pointcut selects the point
in time when the exception is thrown. It never selects the
region in time while the try block is being executed. This
is also true for an after-throwing advice, which selects the
point in time when the method completes by throwing an
exception.

To overcome this limitation, there have been a few propos-
als. For synchronization, Xi et al. proposed a synchronized
block join point for AspectJ [10], which corresponds to the
code block of a synchronized statement. Programmers can
select that join point and write an around advice for it. For
a loop statement, Harbulot and Gurd proposed a join point
representing a loop body [4]. It also corresponds to a code
region. However, these proposals do not allow programmers
to directly specify a code region that they want to write an
aspect for. They have to choose the block of a synchronized
statement or the loop body of a for (or while) statement.

Synchronization aspect

To illustrate the need of directly specifying a code region for
aspects, we below show an example. In 2006, we received
a bug report for Javassist [1]. Javassist [3] is a Java class
library for modifying Java bytecode and it is widely used in
a number of Java products, mainly web application frame-
works such as Redhat JBoss application server and Hiber-
nate. The bug was that a method generating a proxy object
was not thread-safe; to fix this bug, we had to modify the
method to contain synchronized statements.

An interesting issue of this bug fix was lock granularity;
which code block should be put into a synchronized state-
ment. Since lock granularity affects concurrency, minimizing
the granularity generally improves execution performance
when multiple processor cores are available. Figure 1 shows
the method after we modified it to fix the bug. It is part
of the javassist.util.proxy.ProxyFactory class. We inserted two
synchronized statements into the method (line 4 and 25).

Although the two synchronized statements fixed the bug,
it was not clear that this solution is the best with respect
to execution performance. As we discussed in our previous
paper [6], excessive concurrency often has negative impact
on performance. In year 2006, low-end servers were still
single-processor machines and 4-way multi-processor ma-
chines were expensive (Intel Core-MA Xeon “Woodcrest”
was shipped in 2006). On a single- or 2-way machine, small
granularity may not improve execution performance under a
heavy work load. Thus, for the users who run their software
on such a relatively slow machine, we should have modified
Javassist to make the lock granularity larger, for example,
by putting the whole method body of createClass2 into a syn-
chronized statement that locks the lock of proxyCache, which
is a static field of the ProxyFactory class.

If we could implement this synchronization as an aspect,
we could avoid this dilemma of lock granularity. We could
write two aspects, one for small granularity and the other

for large, and let the users choose either one of the two
aspects to fit their execution environment. Javassist could
be distributed as synchronization aspects (and maybe other
performance tuning aspects) and the jar (Java archive) file
containing the rest of the code. The users do not have to
directly modify the source code of Javassist to improve the
performance, or we do not have to maintain two versions of
Javassist, each of which is customized for a different type of
machines. However, writing such an aspect is difficult, for
example, in AspectJ because we cannot select an arbitrary
code region as a join point to write a synchronization advice
for that.

1 private void createClass2(ClassLoader cl) {
2 CacheKey key = new CacheKey(
3 superClass, interfaces, methodFilter, handler);
4 synchronized (proxyCache) {
5 HashMap cacheForTheLoader =
6 (HashMap)proxyCache.get(cl);
7 if(cacheForTheLoader==null){
8 cacheForTheLoader = new HashMap();
9 proxyCache.put(cl, cacheForTheLoader);

10 cacheForTheLoader.put(key, key);
11 }else{
12 CacheKey found =
13 (CacheKey)cacheForTheLoader.get(key);
14 if(found == null){
15 cacheForTheLoader.put(key, key);
16 }else{
17 key = found;
18 Class c = isValidEntry(key);
19 if(c != null){
20 thisClass = c;
21 return;
22 } } }
23 }
24
25 synchronized (key) {
26 Class c = isValidEntry(key);
27 if(c == null){
28 createClass3(cl);
29 key.proxyClass = new WeakReference(thisClass);
30 }else{
31 thisClass = c;
32 } }
33 }

Figure 1: The modified method in javas-
sist.util.proxy.ProxyFactory class

Separating a synchronization concern into an aspect has
another benefit. It enables the programmers to easily overview
when objects are locked for synchronization. Choosing an
object that will be locked by synchronized statements (and
synchronized methods) is not a simple task because program-
mers must avoid deadlock. For example, another bug report
to Javassist was that two method calls were not surrounded
with a synchronized statement and thus the code was not
thread-safe. To fix this bug, before inserting a synchronized
statement, we had to make sure that the called methods do
not lock other objects, or, at the least, the objects they lock
do not form a cycle.

3. REGION POINTCUT
In this section, we propose a new pointcut primitive for

AspectJ. This pointcut named region pointcut addresses the
problem mentioned in the previous section.

3.1 Region Adjustment
The region pointcut picks out a join point that is not really

an execution point but a region — the period while a specific
code region is executed. The region that the region pointcut

44

picks out can be an arbitrary code block within a method
body. The region pointcut specifies the beginning and the
end of the code block, which are given by the region-match
patterns presented in Section 3.2. The beginning and the
end of the code block are (the shadow of [7]) simple join
points that represent an execution point, for example, ones
picked out by the call pointcut.

Region pointcuts support before, after, and around advices.
An around advice for the join point that the region pointcut
picks out substitutes for the original code block. It is exe-
cuted instead of that block, which is not executed unless the
advice explicitly invokes the original block by proceed.

Region pointcuts are conscious of the block structure of
the program. The selected region is implicitly extended to fit
the block hierarchy of the program if the originally selected
region intersects different levels of blocks. Otherwise, an
around advice for such a region would be difficult to use due
to its complicated semantics.

For example, in Figure 2, suppose that a region pointcut
specifies the call to beginCriticalSection as the beginning of
the region and the call to endCriticalSection as the end of it.
The beginning of the region is within the body of the for
statement while the end of the region is the next statement
to that for statement. If the region pointcut naively picked
out the region between the two method calls, how does an
around advice for that region change the behavior of the
method foo? The numbers of calls to beginCriticalSection
and endCriticalSection are different. It is difficult to define
the behavior of the method foo so that the programmers can
naturally expect and understand it.

1 public void foo() {
2 ...
3 for(int i=0;i<100;i++){
4 bar();
5 beginCriticalSection(); // begin
6 ...
7 }
8 endCriticalSection(); // end
9 ...

10 }

Figure 2: Intersecting the block structure of the pro-

gram

To avoid such confusion, our region pointcut implicitly
extend the region. In the case of Figure 2, the selected code
block is extended to include the entire for statement and the
method-call expression to endCriticalSection. It starts at the
variable declaration:

int i = 0;

and it ends just after the statement for calling the method
endCriticalSection.

A region pointcut selects the code block between the two
statements including the join point (shadow) representing
the beginning and the end of the region. If the two state-
ments are not at the same level of the block structure, they
(or one of them) are superseded by upper-level statements
that include those statement and are at the same level. In
the example of Figure 2, the statements at line 5 and 8 were
initially selected. Since the level of the two statements are
different, the statement at line 5 is superseded by the for
statement including that method-call statement. The for

statement and the other statement at line 8 are at the same
level. Thus, the region pointcut selects the code block from
line 3 to 8.

3.2 Region-match Patterns
We propose a new pointcut designator called region point-

cut to pick out regions as join points. The argument of the
region pointcut is a region-match pattern, which determines
the starting and ending join points by pattern matching.

A region-match pattern specifies a possible sequence of
events. Here, the events are join points that a simple point-
cut such as call can pick out. A region-match pattern speci-
fies the join point where the region starts and it also specifies
the last join point where the region ends. It can also specify
join points that must be included in the region. If the control
flow includes a branch by a statement such as if and while,
the pattern matches if there is at least one control path that
matches the event sequence specified by the pattern. For
example,

1 a();
2 if(flag)
3 b();
4 else
5 c();

the pattern may match the region that starts when the
method a is called and ends when the method b is called
(between line 1 and 3) although the region will be extended
to cover line 5 as we mentioned in Section 3.1. The value of
flag might be false at runtime but this fact is not considered
during the pattern matching. Note that this pattern match-
ing considers only the join point shadow and static types.
The control flow is also dealt with in the same approach;
the pattern matches if the program execution may cause a
specified sequence of join points.

For example, the following region pointcut:

1 pointcut p(): region[call(∗ ∗.a()); call(∗ ∗.c())];

matches the entire method body of foo:

1 void foo(){
2 a(); b(); c();
3 }

The semicolons delimiting events work as a wild card * be-
cause they match any join points such as the call to the
method b.

All pointcut

Region-match patterns can include a pseudo-pointcut: all. It
is a special pointcut designator available only with a region
pointcut.

The all pointcut takes event-sequence patterns as its ar-
gument. The argument can be multiple patterns separated
by comma. This pointcut matches the shortest join-point
sequence that includes at least one sub-sequence matched
by every pattern passed as the argument. For example, this
region pointcut:

1 pointcut p3(): region[all(call(∗ ∗.a()), call(∗ ∗.c()))];

matches the shortest code block that includes the method
call expressions to a and c in any order. Furthermore, the
code block may include multiple method-call expressions to
either a or c (it will include only one expression for calling the
other method because the block is the shortest). Hence, the

45

region pointcut above will match c();c();a();, which includes
two expressions for calling the method c.

The all pointcut makes a region pointcut less fragile. The
order of two method calls in a code block may change if the
code is refactored in the future. The all pointcut enables
the same code block to be selected even after the order of
method calls within that block changes.

Sequence modifier

An event sequence in the region-match pattern may have a
modifier @pointcut.

The @pointcut modifier is used to specify a join-point se-
quence surrounding the code block that we want to select.
See Figure 3. There are two region pointcuts pc1 and pc2.
@pointcut is included only in pc2. Although the code block
between line 9 and 11 in methodB are selected by pc1 and
pc2, the code block between line 2 and 4 in methodA is se-
lected only by pc1. The region pointcut pc2 selects the code
block that the pattern passed to @pointcut matches but that
code block must follow a method call to x. The join-point
sequence that the argument to @pointcut matches must be
a sub-sequence of the sequence that the entire region-match
pattern matches.

1 public void methodA() {
2 a();
3 ...
4 b();
5 }
6 public void methodB(){
7 x();
8 ...
9 a();

10 ...
11 b();
12 }
13
14 pointcut pc1():
15 region[
16 call(∗ ∗.a());
17 call(∗ ∗.b());
18];
19 pointcut pc2():
20 region[
21 call(∗ ∗.x());
22 @pointcut[call(∗ ∗.a()); call(∗ ∗.b());];
23];

Figure 3: The @pointcut modifier

Context Passing

In Java, a synchronized statement takes an object that will
be locked. To implement the synchronization aspect shown
in Figure 2, if an around advice executes a synchronized state-
ment, it must take a lock object as a parameter. The region
pointcuts provide several means to obtain a lock object.

A region pointcut can be combined with the this or args
pointcut by &&. If it is combined with this, the argument
of this is bound to the value of the this variable available in
the region that the region pointcut picks out. If the region
pointcut is combined with args, the arguments of args are
bound to the values of the arguments passed to the method
containing the region that the region pointcut picks out.

The args and target pointcuts can be used within the
region-match pattern, i.e. the argument to the region point-
cut. Figure 4 shows an example. For example, the pointcut
expression at line 17 contains args. The argument to args is

bound to the value passed to the method add at line 3 in
bar. This behavior is the same as in AspectJ.

1 public void bar() {
2 List s = ... ;
3 s.add(Integer.valueOf(1));
4 if(cond()){
5 s.contains(Integer.valueOf(2));
6 }
7 for(int i = 0; i < 100; i++){
8 beginCriticalSection();
9 Object o=s.get(i);

10 endCriticalSection();
11 }
12 ...
13 }
14
15 pointcut pc1(Integer intObject) :
16 region[
17 call(∗ List+.add(∗)) && args(intObject);
18 @pointcut[
19 call(∗ ∗.beginCriticalSection());
20 call(∗ ∗.endCriticalSection());];
21];

Figure 4: Region pointcuts with args

4. IMPLEMENTATION ISSUES
We implemented region pointcuts in AspectJ as extension

to the AspectBench Compiler (abc) [8]. Abc uses Jimple [9]
as an intermediate language. We also use Jimple for pattern
matching.

4.1 Analysis of blocks and statements
Jimple has no information where blocks, statements and

control structures start and end. In order to achieve the
region adjustment described in Section 3.1, we should rec-
ognize this information.

We chose the approach that the information is embed-
ded in Jimple instruction sequences. We introduced a new
Jimple instruction marker. A marker has a type, such as
statement, block, if, while and so on, and it has information
about beginning or ending of the statement. We modified
the Java-to-Jimple compiler, to make pairs of markers sur-
rounding the instructions of statements.

After the join points representing the beginning and the
end of the region are determined by region matching, we
proceed to the region adjustment phase. In this phase, a tree
of the Jimple instructions for each method is constructed.
The nodes of the tree are block or control structures and
the leaves are statements. Then the inserted markers will
be removed before Jimple instructions are converted into
Java bytecode.

4.2 Around advice support
In abc, some join point shadows, such as execution and

initialization join point shadows, are separated and moved
into static methods, when weaving an around advice. Fig-
ure 5 shows a simplified weaving, where an around advice
is applied to an execution join point. Local variables avail-
able at join point shadows are passed as arguments to the
static methods. We use this mechanism for region pointcuts.
However, region pointcuts deal with an arbitrary code block
within a method body. This fact causes several issues when
around advices are woven into regions.

46

Before Weaving

1 public void toBeAdvised(int x){
2 System.out.println("before a()");
3 a(x);
4 System.out.println("after a()");}
5
6 void around():execution(∗ ∗.toBeAdvised()){
7 System.out.println("before proceed()");
8 proceed();
9 System.out.println("after proceed()");}

After Weaving

1 public void toBeAdvised(int x){
2 advice(x);}
3 public static void advice(int x){
4 System.out.println("before proceed()");
5 shadow(x); //corresponding to proceed();
6 System.out.println("after proceed()");}
7 public static shadow(int x){
8 System.out.println("before a()");
9 a(x);

10 System.out.println("after a()");}

Figure 5: Weaving an around advice into an execu-

tion join point

4.2.1 Assignments to local variables declared out of
the region

When a region (shadow) is separated into a static method,
assignments to local variables cause trouble. If there is an
assignment in the region to a local variable declared outside
the region, this assignment dose not correctly update the
values of the local variable. The variables outside and inside
the region are now different variables because they are in
different methods.

To solve this problem, we transform the code of the method.
We use an object that contains the values of local variables
in its fields. This object is shared between the region and
the original method by being passed as an argument between
them.

4.2.2 Jumps to the outside of the region

Jumps — break or continue statements — are also ad-
versely affected by the separation of a region. If there are
jumps whose targets are outside of the region, their targets
will be in another method. Since JVM dose not support
such a inter-method jumps, these jumps will fail.

To solve this problem, we assign identification (id) num-
bers to each jump to the outside. Next, each jump is re-
placed by the following instructions:

1. Save the id into a local variable (jump id variable)

2. Jump to the tail of the region

After the execution of the region, the jump id variable is
checked, and then the thread jumps to the target specified
by the jump id variable. The jump id variable will be shared
between the region and the original method by the mecha-
nism mentioned in Section 4.2.1.

5. RELATED WORK
LoopsAJ [4] provides a pointcut for picking out a loop join

point, which corresponds to a loop body. It allows paralleliz-
ing the execution of the specified loop body. However, if the
loop has several successor nodes, LoopsAJ cannot apply an
around advice to that loop. Also, when there are multiple

loops in the body of a method, LoopsAJ dose not provide
a means to select only one loop among those loops. On
the other hand, our region pointcut enables programmers to
select it.

Tracematches [2] provides a history-based pointcut mech-
anism. For tracematches, regular patterns are used to de-
scribe the join points that programmers want to pick out.
An advice is invoked when the history of the runtime events
matches the given regular pattern. Although this approach
has a limited support for an around advice, our region point-
cut supports an around advice because it can statically de-
termines the region that it selects.

6. CONCLUSION
This paper proposed region pointcuts to provide a means

to deal with code regions as join points in AspectJ and
we implemented region pointcuts by modifying the Aspect-
Bench compiler. A region pointcut supports before, after and
around advices. This pointcut helps separating and modu-
larizing synchronization, parallelization, and exception han-
dling. A region selected by our region pointcut might be
appropriately extended to be consistent with the block hi-
erarchy of the program.

A drawback of our region pointcut is its fragility. Al-
though complex information is often necessary for picking
up a region, it increases the dependency of the pointcut on
the target program. This makes the pointcut fragile and
even simple refactoring of the target program may change
the semantics of the pointcut. Reducing this drawback is
our future work.

7. REFERENCES
[1] . [#jassist-28] javassist enhancement failed on

deserializing hibernate proxies - jboss.org jira.
http://jira.jboss.org/jira/browse/JASSIST-28.

[2] C. Allan et al. Adding trace matching with free
variables to aspectj. In OOPSLA ’05, pages 345–364.
ACM, 2005.

[3] S. Chiba. Load-time structural reflection in java. In
ECOOP ’00, pages 313–336. Springer-Verlag, 2000.

[4] B. Harbulot and J. R. Gurd. A join point for loops in
aspectj. In AOSD ’06, pages 63–74. ACM, 2006.

[5] G. Kiczales, E. Hilsdale, J. Hugunin, M. Kersten,
J. Palm, and W. G. Griswold. An overview of aspectj.
In ECOOP ’01, pages 327–353. Springer-Verlag, 2001.

[6] K. Kourai, H. Hibino, and S. Chiba. Aspect-oriented
application-level scheduling for j2ee servers. In AOSD

’07, pages 1–13. ACM, 2007.

[7] H. Masuhara, Y. Endoh, and A. Yonezawa. A
fine-grained join point model for more reusable
aspects. In APLAS, volume 4279 of Lecture Notes in

Computer Science, pages 131–147. Springer, 2006.

[8] P. Avgustinov et al. abc: an extensible aspectj
compiler. In AOSD ’05, pages 87–98. ACM, 2005.

[9] R. Vallée-Rai, P. Co, E. Gagnon, L. Hendren, P. Lam,
and V. Sundaresan. Soot - a java bytecode
optimization framework. In CASCON ’99, page 13.
IBM Press, 1999.

[10] C. Xi, B. Harbulot, and J. R. Gurd. A synchronized
block join point for aspectj. In FOAL ’08, page 39.
ACM, 2008.

47

