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Abstract
We propose a data-driven dynamic aspect-oriented system for profiling OS
kernels. A dynamic aspect-oriented system can change a running OS kernel
without recompiling and rebooting it. This improves efficiency of develop-
ment since the developers can avoid waiting until some problems occur again.
The ability to change the execution points and code is crucial. Developers
would first measure the execution time of a large code section and then they
would gradually narrow the range of that code section to find a performance
bottleneck. As the investigation continues, they will also change interesting
data for getting a log.

For profiling OS kernels, we added the access pointcut and the xflow point-
cut to a dynamic aspect orientation for the C language. Since the C language
does not have a language mechanism to make a module like a package or a
class in an object-oriented language, the access pointcut is important. It
selects a member access of a structure as a join point. We used a tech-
nique named source-based binary-level dynamic weaving for implementing
this feature. The technique collects richer symbol information at compile
time to use it at run time for getting a memory address of a member access.
The xflow pointcut ensures a profiling based on a data flow. Since an OS
kernel is a multi-thread application, profiling it by tracing a control flow is
difficult. Developers can specify start, propagate, and quit points of a data
flow in details. They can avoid logging unnecessary data by using the xflow
pointcut.

We implemented those pointcuts on Linux and Xen, and thereby showed
that our ideas can be implemented with acceptable performance. For the
access pointcut, we experimented with the UnixBench benchmark, and con-
firmed that the overheads are acceptable in most case. For the xflow pointcut,
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we did micro benchmarks on functions that are used for implementing the
pointcut, and confirmed that overheads of those functions are acceptable.
We also did some case studies, and it showed that those pointcuts are useful
for real profiling.
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Chapter

1
Introduction

Throughout the history of operating systems (OSes), performance improve-
ment of systems has been always one of the most important topics. The
first edition of Unix was developed because the performance of the Multics
(Multiplexed Information and Computing Service) mainframe timesharing
system was not scalable as its developers expected in 1969 [61, 44]. The fast
file system (FFS) was developed for improving performance and reliability
of the original 512-byte Unix file system in early 1980s [49].

Even now, performance improvement is an important topic. The technol-
ogy of OSes is still immature. The ULE scheduler was developed for FreeBSD
in 2002 [62], and a new version is currently being developed for using a new
lock feature. New optimization techniques of file systems, which is known as
soft updates [50], dirperf, vmiodir and dirhash, were also developed for im-
proving the FreeBSD’s FFS performance from late 1990s to early 2000s [23].
Soft updates were shown comparable to journaling in 2000 [66]. System call
implementations of NetBSD and FreeBSD were changed due to the results
of some benchmarks in 2003 [76]. Even in Linux, some schedulers have been
proposed [54, 78] so far, and the default scheduler of Linux was changed from
the O(1) scheduler to the Complete Fair Scheduler (CFS) in 2007 [39].

For improving OS performance, the developers first have to investigate
performance bottlenecks. Profiling is generating logs of measured elapsed
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time between a number of execution points. After profiling, the developers
read logs generated by profiling to investigate the performance bottlenecks.
Profiling is a research area that has a long history [31, 70, 24]. A naive
and most popular way of profiling is manually editing several statements
so that a timestamp will be printed when the thread of control reached
one of those statements. However, there are too many execution points for
developers to enumerate correctly. Moreover, editing statements by hand is
error-prone. Developers tend to edit incorrect statements, and sometimes
remove necessary codes by accident. The naive way needs recompiling and
rebooting the OS kernel. Rebooting the OS kernel clears memory, which
may contain trails of strange behavior that would take long time to happen
again.

To avoid the problem of the naive approach, the developers should use
a good profiling tool (aka. profiler). Since execution points for profiling
are automatically selected by the profiling tool, the developers can avoid
editing wrong statements by mistake. A famous profiling tool for userland
applications is gprof [31]. It counts the number of execution and measures
execution time of each function. For measurement, a program to be profiled
should be compiled with some special option such as -pg. For kernel profiling,
the developers should want to avoid recompiling and rebooting the OS kernel
since it will lose a large amount of time. Thus, most kernel profilers do not
require the developers to recompile and reboot the OS kernel for starting and
stopping profiling. The developers can activate and deactivate profiling at
run time. Moreover, some profilers allow the developers to choose what kind
of profiling is activated and deactivated.

1.1 Kernel profiling with flexibility and abstraction

Those profiling tools for kernels dramatically improve efficiency of perfor-
mance investigation. However, they still have a problem. They can provide
a log of timestamps and values of some variables at arbitrary execution points
related to what the developers want to investigate. Some profilers enable the
developers to write an arbitrary code for profiling. This feature is useful
for reducing memory space since the developers can avoid getting a log of
unnecessary information. For the purpose, we propose our two requirements
for a kernel profiler: flexibility and abstraction:

Flexibility A profiler should generate timestamps at arbitrary execution
points in an OS kernel. In addition, it should enable the developers
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to describe an arbitrary profiling code.

Abstraction A profiler should provide good view for selecting an execution
point to get timestamps. In addition, it should allow the developers to
write a profiling code in a high-level programming language.

A degree of flexibility is high if a profiler enables the developers to execute
an arbitrary code snippet at an arbitrary execution point. This feature is
required since the code snippets for profiling and execution points to get logs
will change by going of profiling. The ability to change the execution points
is crucial. The developers would first measure the execution time of a large
code section and then they would gradually narrow the range of that code
section to find a performance bottleneck. Furthermore, the code snippets for
measuring the elapsed time must be given by the developers since they may
want to measure the elapsed time between the execution points in which a
certain variable holds a specific value. To do this, the measurement code
must check the runtime value of that variable but only the developers can
give such code depending on particular use case. In addition, they may want
to print a log message with the value of some interesting variables.

A degree of abstraction is high if a profiler enables the developers to
specify execution points and code snippets for profiling with source-code
level view. Here, we mean source-code level view as view that enables the
developers to easily select source level symbols to execute profiling codes.
This feature is required since the developers can easily specify code snippets
and execution points if higher abstraction is provided. It will improve ef-
fectiveness of profiling. Ease of specifying execution points for profiling is
important. If finding an execution point for inserting a code snippet is dif-
ficult, the developers will take a long time before insertion of profiling code
snippets. Moreover, code snippets inserted into the execution points for pro-
filing should have good abstraction since it will also improve effectiveness
of profiling. If abstraction for a code snippet is assembly-level abstraction,
they will also take too long time for writing a profiling code snippet before
profiling and will get tired.

However, existing profilers are not fulfilling all our requirements. There
are two kinds of profilers but neither of them fulfills both of our requirements.
One is an event-driven method. Profilers using the method will get a log when
a specified event occurs. Some this-type profilers can use arbitrary code for
getting a log. Although their degree of abstraction is high, their degree of
flexibility is quite low. The developers can execute profiling code only at
the execution points that are specified by creators of profilers before compile
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time. They are too little to do profiling effectively. More worse, this kind
of profilers have some overheads even if developers do not do some profiling
because pieces of code, which we call hooks, are inserted for calling an event
handler at compile time. SystemTAP [59] and DTrace [12] are examples of
this kind of profilers, and are known as useful profilers. They provide their
own language and enable the developers to write profiling code in higher
abstraction. However, execution points used for profiling are quite limited,
for example the beginning of functions.

The other is a dynamic code instrument method. Profilers using the
method can insert an arbitrary code snippet into an arbitrary execution
point. They can insert a code snippet into an execution point specified with
a memory address. Although their degree of flexibility is quite high, their
degree of abstraction is low. They only provide assembly-level abstraction
if we want to insert a code into an arbitrary execution point. Kerninst [71]
and GILK [57] are famous examples of this kind of profilers. They can insert
a code snippet into an arbitrary memory address of a running Linux kernel.
However, they provide assembly-level abstraction for inserting a code snippet,
and they are hard to use for daily profiling.

1.2 Approach by this thesis

To provide a profiler that fulfills both requirements for flexibility and abstrac-
tion, this thesis proposes using the idea of dynamic aspect-oriented program-
ming (DAOP) for profiling. For flexibility, DAOP enables the developers to
select various key execution points, such as function calls, function execu-
tions, and assignments of variables. For abstraction, it provides source-code
level view. The developers can write a code snippet and specify an execution
point to execute profiling code in higher abstraction. By DAOP, the develop-
ers can also change execution points and code snippets for profiling without
rebooting an OS kernel. They can start profiling when they need profiling.
Since code insertion can be done without rebooting the OS kernel, memory
will not be cleared after inserting a code snippet for profiling.

Aspect-oriented programming (AOP) is a way of modularization. An
aspect is composed of pointcuts and advices. Pointcuts select the execution
points to execute profiling code. With a pointcut, the developers can select
an execution of a function, a call of a function, an assignment of a variable,
and so on. Advices are code executed at an execution point specified by
a pointcut. Advices are usually written with a target language of an AOP
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system. Composition of an aspect to the original code is called weaving, and
decomposition is called unweaving. DAOP is a mechanism for dynamically
weaving or unweaving an aspect at run time. With the mechanism, the
developers can weave and unweave an aspect without rebooting an OS kernel.
DAOP also has an abstraction that AOP has.

However, existing DAOP systems are insufficient for profiling. They do
not have a pointcut to select a series of data. Since an OS kernel uses a
member access of a structure to provide higher-level abstraction, we need a
pointcut to select it. The pointcut will enable the developers to do efficient
profiling. Similar pointcuts such as set and get pointcut exist in a DAOP
system for Java. However, since most of commodity OS kernels are written
in the C language, the developers cannot use it. Moreover, since a modern
OS kernel is multi-threaded software, a pointcut that can select a data flow
is required for profiling an OS kernel. One data is manipulated by multiple
threads and modules for fast interrupt handling and delicate processing of
complex data. Existing DAOP systems for the C language do not have
appropriate pointcuts for selecting this kind of data. To solve the problems,
we have added the access pointcut [80, 81] and the xflow pointcut [79] to a
DAOP system for the C language.

1.2.1 The access pointcut

The access pointcut selects a member access of a structure. We made KLASY
(Kernel Level Aspect-oriented SYstem) for implementing the access pointcut.
Since a member access of a structure is used among related modules in an
OS kernel, selecting it with a pointcut will reduce difficulty of profiling. If
the developers do the same thing with execution pointcuts, which will select
a function call, they need much knowledge for the OS kernel. Moreover,
enumerating related functions need patience and it will take a long time
even if they can use wild cards. According to our case study in Chapter 6,
some functions cannot be selected with execution pointcut. That is because
it is defined as static inline function, and eliminated at compile time. If the
developers want to select those functions, they should disable optimization.
However, an OS kernel such as FreeBSD and Linux are usually compiled
with some optimization options, using an OS kernel without optimization
for profiling is unrealistic. Even if the developers do profiling with such
kernel, the results should be meaningless.

Our main contribution on the access pointcut is its implementation. We
used the technique named source-based binary-level dynamic weaving. The
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technique is that richer symbol information is collected at compile time, and
then it is used at run time for getting a memory address of a member access.
It is also used to get a register number or a memory address of local variables
and function arguments. With this technique, our DAOP system can select
various pointcuts that can be selected by a static AOP system. For collecting
richer symbol information, we modified the GNU C compiler (aka. gcc). The
modified compiler collects a line number and a file name of each member
access. The modified compiler also collects a memory address of each line
with enabling the debug option (-g). The information of a memory address
for each line is called the line information.

Since we need the multiple line information for a code generated by the
compiler, we modified the compiler and the GNU assembler (gas). A register
transfer language (RTL) generator and the sub systems following the RTL
generator, such as an RTL optimizer, of the compiler only remain the first
line information by default. They omit exceeded line information if multiple
line information is associated to a code. The assembler also remembers only
the first line information, and omits exceeded information by default.

Remaining the line information is important because it helps searching
a memory address of a line from the optimized OS kernel. Optimization
sometimes shrinks multiple lines to one, and line information for those lines
is associated to a code generated by optimization. To get a memory address
of those lines, line information should not be reduced to one. Moreover,
multiple line information is needed for ease of searching a memory address of
a code. Since line information is made per a .c file, we need to know which .c
file contains it when we get a memory address from a line number. However,
only line information for a line in a .h file is remained, and line information
for a line in a .c file is omitted at by default. It is difficult to find the memory
address without remaining multiple line information per a code.

For getting local contexts, KLASY generates a trampoline function. With
this feature, the developers can use a value of a local variable or a function
argument in an advice. When the developers weave an aspect, its advice is
compiled, and the compiled advice is loaded into the kernel memory. After
that, a hook code is inserted to an execution point specified by a pointcut for
calling the trampoline function. The trampoline function passes a reference
to a local variable or a function argument to the compiled advice. Note that
the hook code is executed instead of the original code when the thread of
control reaches a specified execution point. Also note that the hook code
pushes all registers to a stack before calling the trampoline function. For
generating the trampoline function, KLASY investigates debug information
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generated at compile time to know a register number or a memory address
where the variable or the argument exists. After investigation, KLASY gen-
erates a special function to pass a reference to the stored register value or
the memory address. The trampoline function is also compiled, and is loaded
into the kernel memory.

1.2.2 The xflow pointcut

The xflow pointcut is used to find a structure instance that has data of a spec-
ified data flow. We made XenLASY by extending KLASY for implementing
the xflow pointcut. Since a modern OS kernel is multi-thread software, a
mechanism to finding data related to a specified data flow is useful. The
developers can trace data from the beginning to the end. It is difficult to
do the same thing by tracing a control flow (aka. cflow) or simply tracing a
data flow. If the developers use a control flow, they cannot keep tracing after
a change of threads managing data to investigate. The change of threads
often caused in the OS kernel since data is always managed by two kinds
of threads, the top half and the bottom half, for keeping low latency and
achieving complex tasks. If the developers simply use a data flow, they can-
not trace copied data of data to investigate. For example, data is copied at
the TCP module in the OS kernel for retransmission processing of TCP.

The significant feature of the xflow pointcut is that the developers can
specify the definition of the xflow pointcut. They can specify execution points
to start tracing, change tracing data, and stop tracing. With this feature, the
developers can avoid storing unnecessary data, and they can save memory
space for storing logs. The developers can tell XenLASY how data is passed
among threads, and XenLASY traces the data flow according to the definition
given by the developers. Since the xflow pointcut is developed to work on the
Xen virtual machine monitor, the developers can keep on tracing even if data
is passed through one virtual machine (VM) to another. For this mechanism,
the developers can trace a data flow even after a VM that manipulating data
changes. Since each data flow has its own ID number, the developers can
distinguish one data flow from others. This helps the developers to how each
data is manipulated in detail.

XenLASY manages data flows by using a table. The table contains a
pair of a pointer to a structure instance and its own ID number. The pair
is stored in the table when tracing starts, and it is removed from the table
when tracing ends. The developers specify which structure instance to use,
and where to start or end tracing through the definition of the xflow pointcut.
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Since the ID number is got from the pointer to the structure instance, the ID
number can be got even after threads are changed. For keeping on tracing
after change of the structure instance, the mapping between the ID number
and the pointer is changed. The mapping between the ID number and the
pointer is removed, and the mapping between the ID number and the new
pointer is created according to the definition specified by the developers.

For keeping on tracing after VMs change, the ID number is passed to
a destination VM with data. For passing the ID number, XenLASY stores
it in the unused space of the header associated with the data. This is also
specified by the developers by the definition of the xflow pointcut.

1.3 Position of this thesis

The position of this thesis in the research history of programming language is
that it provides flexible profiling without ignoring abstraction. As illustrated
in Figure 1.1, profilers and existing DAOP systems are difficult to satisfy
the both requirements: flexibility and abstraction. That is because compiled
binaries of C programs usually do not have symbol information enough for
understanding source level view. Therefore, some systems focused on flexi-
bility. They allow the developers to insert an arbitrary code into an arbitrary
position. However, their abstraction is only the assembly level since those
systems can only use poor symbol information, such as global variables and
function names, because detailed information is eliminated at compile time.
The developers should calculate the position by hand. They sacrifice ab-
straction for flexibility. On the other hand, other systems, such as profilers,
provide good abstraction. The developers can select the position to print
a log message with higher abstraction, source-code level view. However, a
number of execution points that the developers can use for profiling is too
limited. Since profiling codes are mixed in an OS kernel source code before
it is compiled, the execution points that the developers can use for profiling
is decided at compile time. Moreover, since the developers of the profilers
cannot foresee all the possibility of profiling, this limitation sometimes limits
what the developers can do.

In our study, we solved this trade-off problem by using richer symbol
information, which is generated by a compiler extended by us. We proposed
using DAOP for profiling an OS kernel because AOP is known as a good
paradigm for logging. However, existing DAOP systems for the C language do
not satisfy the both requirements: flexibility and abstraction. That is because
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they can only use poor information. On the other hand, static AOP for the
C language satisfy the both requirements though rebooting the OS kernel
is required to change an aspect. The richer information narrows the gap
between dynamic AOP and static AOP for the C language since disadvantage
of existing dynamic AOP for the C language is that they cannot use source
level information. Because of using poor symbol information, existing DAOP
systems only provide limited pointcuts. They do not provide pointcuts to
select data and a data flow. Providing those pointcuts is important for
profiling the OS kernel because a member access of a structure is often used in
an OS kernel, and data in the OS kernel is manipulated by multiple threads.
Note that data manipulation by multiple threads cause tracing in naive ways,
such as simple control flow tracing and data flow tracing, difficult.

From the top down viewpoint, our study provides profiling based on a
data flow while existing profilers are based on a control flow (aka. cflow).
Our prototype system provides flexibility in selection of a code for profiling
and selection of execution points for profiling with good abstraction by AOP.
It also helps the developers to selecting various execution points related to
profiling that are difficult to select by hand.

From the bottom up viewpoint, our study provides good abstraction for
a dynamic code instrumentation tool. Although those tools have flexibility,
they only have assembly-level abstraction. Our study provides good abstrac-
tion for those tools by using richer symbol information.

1.4 The structure of this thesis

From the next chapter, this thesis presents technical background of this the-
sis, and details of the proposed mechanisms, including implementation to
case studies. The structure of the rest of this thesis is organized as follows:

Chapter 2: Kernel Profiling

This chapter discusses required features for kernel profilers. We first dis-
cuss about the actual condition of profiling. Then we will figure out the
requirements of profilers, and discuss for status of existing profilers.
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Figure 1.1. The position this thesis stands on

Chapter 3: Kernel Profiling by Dynamic AOP

To address the requirements shown in previous chapter, we propose using a
dynamic AOP for profiling. We first explain what AOP is, then figure out
existing AOP systems. Afterwards, we mention that existing DAOP systems
lack pointcuts for selecting data.

Chapter 4: The Access Pointcut and KLASY

To fulfill a need for efficient pointcuts for profiling an OS kernel, we propose
the access pointcut in this chapter. We explain design and implementation
of the access pointcut. The implementation technique is named source-based
binary-level dynamic weaving.

Chapter 5: The Xflow Pointcut and XenLASY

Then, to fulfill a need for efficient pointcuts for profiling an OS kernel, we
also propose the xflow pointcut in this chapter. The xflow pointcut select an
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execution point that data is in a specified data flow. We explain requirement,
design and implementation of the xflow pointcut.

Chapter 6: Experiments

We did performance benchmarks for those pointcuts. We show results of
those benchmarks. Then, to confirm availability on real applications, we also
did case studies.

Chapter 7: Conclusion

Finally, we conclude this thesis in Chapter 7. We present contributions and
future directions.
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Chapter

2
Kernel Profiling

Operating system (OS) kernels are still under development even in 21 cen-
tury. One of the big issues of development is performance improvement. For
example, FreeBSD and Linux developers are still actively developing new
schedulers [62, 51, 54, 78]. A new speed up idea proposed when new pro-
cessor architecture proposed, e.g. symmetric multi-processor (SMP), virtual
memory and so on. FreeBSD developers are implementing fine-grained lock
for SMP systems even recently [42]. They are still discussing and developing
technique to reduce system call overheads. Implementations of system calls
are changed by the NetBSD and FreeBSD developers that received bench-
mark reports [76]. A new prefetching algorithm was recently proposed [28].
RedHat, Inc. proposed a tuned-up web server named TUX, which achieves
its service inside a kernel module [60]. Thread implementation of Linux and
FreeBSD are changed to use the native POSIX threading library (NPTL)
and the kernel scheduler entities (KSE), respectively.

Good performance profiling tools are required for improving performance
of OS kernels. Developers need appropriate tool sets for identifying perfor-
mance bottlenecks and eliminating them. To identify performance bottle-
necks, using a good performance profiling tool is mandatory. A naive way
of performance investigation is manually modifying a kernel source code to
insert measurement code. However, this approach needs recompiling and
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rebooting, which can clear a memory image that caused performance degra-
dation. This approach make the developers wait for a long time until some
performance problem that they want to investigate occur again. Moreover,
manually editing a source code is error-prone. The developers may forget
removing a few code fragments and thereby cause a serious trouble, such as
performance degradation and security information exposure. Even if they do
not forget removing, there is also a pitfall. When they remove measurement
code, they might wrongly remove statements irrelevant to the measurement.
This can cause strange behavior that the developers hardly find the problem
and the cause.

Moreover, virtualization technology improves importance of profilers.
Virtualization technology is becoming popular recently for reducing the cost
of equipment, the cost of electricity, the cost of machines and so on. It is
also used to reduce space for machines. At this time, profiling becomes more
and more difficult to do by hand because many subsystems are related to
performance degradation. Data is manipulated not only each OS kernels,
but also a virtual machine monitor. The Xen virtual machine monitor [8]
is one of the famous virtual machine monitors (VMMs) now. In Xen, there
are two kinds of virtual machines, Domain 0 and Domain U. Domain 0 is a
privileged virtual machine that can manipulate native devices through device
drivers. Domain U does not have a privilege. If Domain U should do some
I/O, it requests Domain 0 to do the I/O instead of Domain U. The request
will be send through pseudo-devices provided by Xen. Frankly, Domain 0
is proxy for Domain U. It is implemented with shared memory mechanism
of Xen. In case of network I/O on Xen, a data of network I/O sent from
Domain U is passed to Domain 0 through the Xen VMM, and is passed to
a network device. As you can understand, the flow of data manipulation of
network I/O is too long to understand it without support by tools.

2.1 Ideal profiling

The ideal way of profiling is inserting a profiling code snippet into arbitrary
execution points related to what the developers want to investigate at run
time without rebooting. For example, if developers want to investigate usage
of inode, a code snippet like Figure 2.2 should be inserted to a kernel code like
Figure 2.1 where the inode structure is used. This kind of insertion should
be done at run time. In this example, value of the i uid member of the inode
variable is printed with a time stamp at the time when the i uid member
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int inode_change_ok(struct inode *inode, struct iattr *attr)
{

int retval = -EPERM;
unsigned int ia_valid = attr->ia_valid;

... snip ...

/* Make sure a caller can chown. */
if ((ia_valid & ATTR_UID) &&

(current->fsuid != inode->i_uid ||
attr->ia_uid != inode->i_uid) && ...

goto error;

... omit the rest ...

Figure 2.1. Linux kernel source code (fs/attr.c)

struct timeval tv;
do_gettimeofday(&tv);
print_tv(tv);
printf("%ld", inode->i_uid);

Figure 2.2. An example of profiling code

of the inode variable is accessed. At this time, the execution points where
profiling code snippets are inserted should be automatically selected by the
name of some symbols of source-code level abstraction, such as a function
name or a structure name.

2.2 Requirements for kernel profilers

For profiling appropriately, there are two important features required for ker-
nel profilers. One is unlimited profiling points and code for profiling, and the
other is abstraction of selecting an execution points for logging and writ-
ing a code. Profiling code should be able to be inserted arbitrary execution
points where the developers want to insert code. If the developers want
to investigate some performance bottlenecks, they will roughly investigate
whole system first. They should measure the execution time of a large code
section. Then they would gradually narrow the range of that code section
for going into details to find accurate code snippets that cause performance
degradation. At this time, they will measure elapsed time between given two
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execution points. They must be able to give those execution points in ker-
nel at runtime and change them, if necessary, without rebooting the kernel.
Since rebooting the whole kernel is a time consuming task, frequent reboot-
ing significantly decreases our productivity. Rebooting also clears the whole
memory image and thus the internal data of the network module. After
rebooting, the behavior that the developers want to investigate might disap-
pear. Average time that the developers should wait for is T :

∫ T

0
p(t)dt ≥ 1

2
,

while p(t) is a function that represents possibility of occurrence of the prob-
lem. It will be a long time if p(t) is small for ∀t. Furthermore, the code
snippet for measuring the elapsed time must be given by the developers since
thy may want to measure the elapsed time between the execution points in
which a certain variable holds a specific value. To do this, the measurement
code must check the runtime value of that variable but only the users can
give such code depending on a particular use case. In addition, the users may
want to print a log message, for example, to record the value of an interesting
variable.

Abstraction is an important feature for kernel profilers. Abstraction im-
proves efficiency of kernel development. We mean higher abstraction for
providing a source-code level view. The developers can easily do profiling if
they can select an execution point to execute profiling code by a source-code
level view or a syntax level view; function names, variable names and so on.
Under this point of view, ability for selecting a member access of a structure
for a profiling point is important. Polymorphism-like structures are used so
many times in OS kernels. For implementing the polymorphism-like struc-
tures, a structure of the C language syntax is used. You can see this in file
systems, device drivers and so on in an OS kernel. Moreover, structures are
also often used to share a series of data in multiple modules instead of using
naive arrays and variables. If the developers should specify a position to in-
sert profiling code by memory address, profiling will become a hard work. A
naive way of pointing the position is pointing some address of the instruction
or code section that the developers want to investigate. However, pointing by
hand is error-prone, and the developers may point out the wrong position. It
is also annoying work to find the precise memory address by hand although
they can know the address from debug information made by a compiler. The
developers cannot effectively investigate bottlenecks without abstraction.

Abstraction also helps the developers to write code easily. Profiling code
should also be written with high-level language on source-code level abstrac-
tion, such as the C language. If they can write profiling code with their
favorite language, they can do profiling efficiently. Note that most of com-
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modity OS kernels are written in the C language, they should be familiar
with the C language. Obtaining a variable should be done with the C lan-
guage abstraction instead of assembly level or machine level abstraction. A
naive way of obtaining a variable is pointing some memory address or reg-
ister name where these data are stored. However, if the developers should
specify an instruction address to investigate, a memory address or a name
of the register that has a variable to investigate manually by assigning the
variable, profiling will become more difficult work to do. It is true that this
information can be got from debug information made by a compiler. How-
ever, getting this information manually and writing a code to get values of
some variables manually is too annoying to do.

2.3 Kernel profilers

The developers do not have to edit the source code of the kernel directly
only for performance profiling if they use kernel profilers. However, existing
kernel profilers are not sufficient to do ideal profiling shown above. There are
two kinds of existing profilers, event-driven type and dynamic code instru-
mentation type. Both kinds of them do not fulfill the requirements shown
above. We go into details why existing profilers are insufficient in following
sections.

2.3.1 Event-driven type profilers

A typical event-driven type profiler such as LKST [33] can produce a trace log
that records when a kernel event specified at compile time occurs. To use this
kind of profilers, the users should use a patch distributed by a creator of each
profiler. For applying the patch, a patch program automatically edits source
code to produce a trace log at some execution points. Logging code will be
executed at those execution points according to the users’ specification given
at run time.

Unfortunately, the flexibility of this approach is low; the users must stat-
ically determine the kernel events that can be recorded in a trace log when
they occur. They cannot measure the execution time of code sections that
were not modified before compile time. This is a serious problem because the
code sections that they want to measure will change during a session of per-
formance tuning. Moreover, since those profilers are not assumed to measure
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some code sections by their creators, it is difficult to use for measurement of
some code sections.

LKST

First we will take a look at LKST [33, 36]. LKST (Linux Kernel State
Tracer) is a kernel profiler developed by researchers in Hitachi, Ltd. and
Fujitsu, Ltd. LKST records trace logs at the execution points that is specified
by the users. It can record various kinds of events; context switches, signals,
memory allocation and so on. The users of LKST can dynamically change
events to record. The users can avoid obtaining information that is not
currently concerned by them. The users can reduce overheads of event tracing
because they can turn off event loggers for unnecessary information. It is also
possible for the users to change event handlers. They can use arbitrary code
for event handlers by writing a program with the C language. The event
handler created by the users is made as a kernel module, and registration of
an event handler is done by loading it to kernel. Note that the default event
handler for each event is just recording the events with some arguments. For
example, pointers to the previous and next task struct structures, process
status, a process ID are recorded for a log at context switch.

Each log is read from a kernel buffer to a file by following command:

% lkstbuf read -f logfile

and displayed with command:

% lkstbuf print -f logfile

Then, following description is printed:

event_type=context_switch

cpu=02, pid=00001008

time=Tue Mar 26 18:48:53.143274134 2002

arg1=0xd68a4000 0x00000000 : pointer to task_struct(prev)

arg2=0xf2dde000 0x00000000 : pointer to task_struct(next)

arg3=0x00000001 0x0000000a : process state/process count

event_type=mem_get_freepage

... snip ...
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Enabling and disabling of event handlers are configured with a set of bit
map masks, called maskset. If the users want to enable an event handler,
they should turn on the bit in the maskset. The users should first extract
maskset data to a file:

% lkstm read -m 0 -d | grep 0x > masksetfile

Here is an example of the masksetfile file:

: :

0x07f 0x01

0x080 0xff

: :

If the users want to record a log at the spin lock function, they should change
the bit of 0x080 to 0x01 (now it is 0xff). Note that the event number for
the spin lock function is 0x080. After the change of the bit, the maskset is
loaded into the kernel:

% lkstm write -m 0 -f masksetfile

Here the users can use multiple-maskset and -m option of the command
represents the ID number of the maskset. It is also possible to add an event
to LKST by editing lkst etypes.h file. Arbitrary execution points can be
selected for getting a log. However, recompiling and rebooting the OS kernel
is required for adding and removing the execution points for logging.

The fact that recompiling and rebooting the OS kernel are required for
adding or removing the execution points to get a log is not an acceptable
drawback. The users can hardly do ideal profiling shown in Section 2.1. If
they try to do profiling shown in Section 2.1, member accesses should be the
execution points. However, it is unrealistic. Generally, if the users want to
insert a profiling code into arbitrary execution points that is related to the
profiling, all the related execution points should be added before profiling.
It is usually impossible because execution points that the users want to in-
vestigate will usually change during investigation since they will narrow the
range of code section to measure an elapsed time. Approach adding execu-
tion points that supposed to be related to profiling do not work well. That is
because the approach will cause unacceptable performance overhead of both
kernel code size and execution time. Even if nop instruction is used at an
inactivated execution point to reduce overhead, we believe that rate of cache
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miss for the instruction cache will increase. Moreover good abstraction is
required for selecting the events if the number of events becomes large. If
LKST only provided abstraction as it is now with large number of events,
selecting events would be more and more hard work to do.

LTT

LTT (Linux Trace Toolkit) [77, 56] is a tool for tracing events occurring in
the Linux kernel. The users can examine event flow by per process basis
with a graphical interface. The users can also get a text-formatted data for
performing various calculations. With this tool, the users can know how
each processor utilized, and how each process is scheduled in an OS kernel.
LTT consists of a kernel patch, a kernel module, a trace daemon, and a data
decoder. It also has a real time Linux support. The kernel patch specifies
the execution points to get logs. The kernel module stores logs. The trace
daemon read logs from the kernel buffer of the kernel module. The data
decoder decodes logs into human readable format and performs analysis. To
use LTT, the users should first execute a patch program to modify a kernel
source code, and then recompile it and reboot the kernel. Then they should
load the kernel module and execute the trace daemon.

Although the interface the users can investigate performance bottlenecks
in per-process basis is useful, the execution points where the users can get
a trace log is too limited. The users can hardly do ideal profiling shown in
Section 2.1. Events they can know are entry and exit of system calls, traps,
interrupts, and so on. It should be useful for profiling a process, but the
users can hardly get a precise execution point of a performance bottleneck.
That is because a series of execution points related to some data structure
should be selected for doing this kind of profiling. However, this is difficult
to do with this system. Moreover, the kernel with LTT always has some
overheads because of its implementation. Logger cannot be disabled even
at the execution points that are not related to the profiling. Increasing the
execution points for profiling is impractical.

DTrace

DTrace [12] is an event tracer developed for the Solaris operating system. It
is ported to some other open source operating systems such as FreeBSD. It
is developed by researchers in Sun Microsystems, Inc. It is consist of DTrace
consumers and DTrace providers. In the Solaris kernel, there are more than
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30 thousands execution points available for executing profiling code. They are
called probes. A program that provides probes is called the DTrace provider.
The users can select some of them to get information from the program. A
program that gets information from the DTrace provider is called the DTrace
consumer. If a probe is activated by using the DTrace consumer, the DTrace
consumer will be called back from the DTrace provider when the CPU thread
reaches the probe. Plainly speaking, DTrace is a feature for tracing behavior
of a kernel and an application according to the command by the users. Note
that each probe is well structured and the users can easily specify which
probe to use.

The users of DTrace can execute an arbitrary code snippet at the probe.
That is called the D script. Figure 2.3 shows syntax of the D script. The first
line specifies a name of a probe. It is said as probe description in DTrace.
The users can write more than one names here. The users can use wild card
to specify the name. For example, if they want to select all system calls that
are started from open, the name will be:

syscall::open*:entry

All probes will be selected if they do not write anything. If the users want
to select all probes provided by the syscall provider, the name will be:

syscall:::

The second line represents a condition when the following script is executed.
It is said as predicate in DTrace. For example, the users want to execute
following script only when the thread of CPU 0 reaches to the probe, the
condition will be:

cpu == 0

A block surrounded by braces ({}) shows a code snippet executed at the
selected probe if the condition is fulfilled. It is said as action in DTrace. The
code snippet is looks like a Perl or C program. The users can use arrays,
functions, and variables in the action. Memory for arrays and variables are
automatically allocated by DTrace. The users do not have to think about
memory allocation. The users can enable the script with command:

# dtrace -s example.d

KERNEL PROFILING 20



Kernel profilers

probe name, probe name, · · ·
/condition/
{

A script to execute.
}

Figure 2.3. Syntax of DTrace code

syscall::read:entry
{
self->t = timestamp;

}

syscall::read:return
/self->t/
{
printf("%d%d spent %d nsecs in read\n",
pid, tid, timestamp - self->t);

}

Figure 2.4. An example of DTrace code

It should be executed by the root user.
Figure 2.4 is an example of DTrace code. This example shows the elapsed

time of the read system call of each process. In the example, current times-
tamp is stored to thread local storage (self->t) at the entry point of the read
system call (syscall::read:entry). At the exit point of the read system call, dif-
ference of current time stamp and the stored timestamp (self->t) is printed
with a process ID and a thread ID. To avoid executing the code of the exit
point before storing timestamp at the entry point,

/self->t/

is used. This is the same as:

/self->t != 0/

Since all undefined variable is initialized with 0, /self->t/ is false if the code
snippet for the entry point is not executed.
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Some readers might think that ideal profiling shown in Section 2.1 can be
done with similar way to Figure 2.4. However, it is not done with the straight
way. To measure the elapsed time among execution points that is related to
profiling target shown in the ideal profiling, the users should enumerate all
related probe names. However, the number of execution points that the users
should enumerate is too large to enumerate all the related execution points
precisely. Even enumeration of some parts of them will take a long time.
Moreover the users should have deep knowledge for the kernel for complete
enumeration of related execution points because they should know which
functions are related to the profiling target.

Another drawback of DTrace is that DTrace does not support Linux.
Although some people are trying to port DTrace to Linux, it cannot be
merged to Linux because of a license issue. Since DTrace is distributed
under CDDL (Common Development and Distribution License), its license
is not compatible with GPL (GNU General Public License) version 2, under
which Linux is distributed. Even if DTrace is distributed under GPL version
3 as Jonathan Schwartz suggested, GPL version 3 is not also compatible GPL
version 2.

SystemTAP

SystemTAP [59, 68] is tracer for Linux. It is first developed by researchers
of RedHat, Inc., IBM, Inc., and Intel, Inc. The users can gather information
about running Linux. The users can write some code snippets for profiling
in simple scripting language similar syntax to the C language and Perl. It
is called a tapset. They can insert the code snippets into the kernel from a
command line interface.

Syntax of SystemTAP code is shown in Figure 2.5. Probe points after
the probe key word represent execution points at which the following script
is executed. The users can specify events, functions, and so on. If the users
want to select the execution point when the sys open function is called, they
should write:

kernel.function(”sys open”)

They can also write:

timer.ms(200)

KERNEL PROFILING 22



Kernel profilers

probe probe point, probe point, · · ·
{

A script to execute.
}

Figure 2.5. Syntax of SystemTAP code

probe kernel.function ("vfs_writev")

{

mode = $file->f_mode

:

Figure 2.6. An example for getting a target variable

to execute the script in every 200 milliseconds. The users can use wild cards
instead of enumerating function names. For example, if the users want to
select all functions in the net/socket.c file, they will write:

kernel.function(”*@net/socket.c”)

The users can use special functions to get a current thread ID (tid()), a
current process ID (pid()), a current program name (execname()), and so on.
For accessing local context at the selected probe points, there is a mechanism
called target variables. Figure 2.6 is an example using the target variable. In
this program, a struct file * argument of the vfs writev function can be used
in the script. Note that the symbol for the variable should be remained to
use this function. Some optimization can make those values into unreachable
nonexistence.

The users can use variables, functions, arrays, and aggregates for writing
the code snippets. Similar to DTrace, memory for variables, arrays, and ag-
gregates are automatically allocated. Figure 2.7 is an example of a function.
It will calculate factorial. A function will get any number of string or numeric
arguments, and may return a single string or number. Note that types of
parameters are inferred.

Doing ideal profiling shown in Section 2.1 is difficult. If the users try to do
ideal profiling shown in Section 2.1, they will write code similar to Figure 2.8.
The code first initialize before time variable with -1. It is shown in probe
begin. The users should enumerate functions that are related to profiling
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function factorial (i)

{

if (i < 0)

return 0;

else if (i == 0)

return 1;

else

return i * factorial(i - 1);

}

Figure 2.7. An example of a function of SystemTAP code

target. The (A) line represents this. Then, following script prints elapsed
time between functions that are related to the profiling. Here, enumeration
of functions is difficult. Although the users can use wild cards for selecting
functions to reduce difficulty of selection, the number of functions related
to some processing is large. Moreover, the users should have precise and
deep knowledge for the Linux kernel to selecting functions correctly. It is not
realistic that the all users that profile the kernel have deep knowledge for it.

2.3.2 Dynamic code instrumentation type profilers

An on-line dynamic kernel instrumentation tool such as Kerninst [71] allows
the users to modify a running OS kernel so that a given function will be called
when the thread of control reaches the specified machine address. Since it
directly replaces several machine instructions of the running kernel, the users
do not have to reboot the kernel. This feature is significantly useful because
unexpected performance behavior that the users want to investigate often
occurs a long time after a kernel is booted. A reboot-less tool improves the
productivity of kernel development.

However, since dynamic code instrumentation tools were not dedicated to
kernel profiling, the abstraction provided by them is a quite low level. They
provide only limited capability for kernel profiling. Thus, using those tools
for performance profiling is a complicated task. Although the users can write
profiling code, they should write code in the assembler-level abstraction.
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global before_time

probe begin {

before_time = -1

}

probe kernel.function ("..."), kernel.function ("..."),.... (A)

{

after_time = gettimeofday_s()

if (before_time != -1) {

printf("elapsed time %s %d\n",

probefunc(), after_time - before_time)

}

before_time = after_time

}

Figure 2.8. Doing ideal profiling with SystemTAP

Kerninst

Kerninst [71, 72, 74] is one of the dynamic code instrumentation tools for
Linux and Solaris. It can dynamically add code into the running OS kernel
anywhere anytime. Removal of code can be also done without rebooting the
kernel. Figure 2.9 shows the overview of Kerninst. Kerninst consists of a ker-
nel module and a userland daemon program, named kerninstd. The userland
application will communicate with the daemon for kernel instrumentation.
Note that no patches are required to use Kerninst.

There is an API provided by Kerninst to instrument the running OS
kernel. The users will write code with the API for changing its behavior.
The program written by the users using the API will communicate with
kerninstd to send and receive command to the kernel module of Kerninst.
Then the kernel module will modify the running kernel. Although the API is
written in C++ language, the usage of the API is looks like an assembly-like
language. The code the users should write to manage the running kernel is
given in an abstract syntax tree (AST) style.

For example, the code for calculating ’a = (b + c) ∗ d/(e − f)’ at the
beginning of the inode change ok function is shown in Figure 2.10. In the
code, there are three code sections, named (1), (2), and (3). The (1) code
section will get references to the variables from their memory address and
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Figure 2.9. Kerninst overview

make them available in following code. kapi int variable is used to get an
instance of an integer type variable whose address is given by its argument.
Here addresses of a, b, c, d, e, and f are though to be known. The (2) code
section will generate a code to calculate ’a = (b + c) ∗ d/(e − f)’. In the
program, code for calculation is written one by one. It is hard work to do
without making some mistakes. The (3) code section will insert code made
at the (2) section to the beginning of the inode change ok function. Note that
error handling is omitted in this code. Every Kerninst functions in the (3)
section will return -1 if the operation failed. It first connects to the Kerninst
daemon, then gets the entry point of the inode change ok function. After
this, a code snippet made at the (2) code section is inserted to the kernel by
the kmgr.insertSnippet function.

Since writing whole code in AST style is hard to do, there is an API to
call a function in a kernel module. Of course, the function can be written
with C language. It is easier to write code with Kerninst if the users call the
function instead of writing whole code with the Kerninst API. Figure 2.11 and
Figure 2.12 are example code using this feature. Suppose that the users want
to print a log message with a time stamp when inode change ok() function is
called. The log message includes the value of i uid member of local variable
inode declared in that function. They first define a function for printing a
log message. The function is shown in Figure 2.11. It gets the frame pointer
to investigate values of the local variable, inode, and print its member i uid
with a timestamp by using the printk function, which is the printf function
used inside Linux kernel.

This function is compiled as a kernel module and dynamically loaded into
the kernel address space. Note that the value of the local variable inode is
obtained by ebp[11], where ebp holds the value of the ebp register when the
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inode change ok() function is running. 11 is the offset of inode in the stack
frame. It must be manually calculated from the memory layout of a stack
frame. Then the users use Kerninst to insert a machine instruction at the be-
ginning of the inode change ok() function so that this print log() function will
be invoked. The program is shown in Figure 2.12. It is compiled and run as a
user process. It first connects to the Kerninst manager process and requests
to modify the kernel code. Then it finds the addresses of the entry points of
the two functions inode change ok() and print log(). Finally, it inserts a code
snippet “hook” so that inode change ok() will first call print log().

The program shown in Figure 2.12 looks simple because Kerninst provides
a mechanism for finding the address of the entry point of a function. However,
if the users want to print a log message in the middle of that function to
do ideal profiling shown in Section 2.1, the users must manually calculate
the address where the hook code is inserted and then the users must pass
that address to insertSnippet() instead of entries[0]. An example code for
inserting a code into an arbitrary execution point is shown in Figure 2.13.
As mentioned before, the users should calculate an address to insert a hook
by themselves, and the address is given as the inst ptr argument. Kerninst
only helps us find the addresses of the entry and exit points of a function. It
can also report the entry address of every basic block but the users have to
identify which statements in a source file each basic block corresponds to by
hand.

Although Kerninst provides basic mechanisms for kernel profiling, it is a
general-purpose system for extending a running kernel and thus the function-
ality of such tools is not sufficient for profiling. The most serious problem
is that the users must know how kernel source code is compiled into ma-
chine instructions; the users must manually calculate an address where they
want to print a log message and where the value of a variable they want to
inspect is stored. They need a front-end system of Kerninst that provides
higher-level abstraction than Kerninst.

GILK

GILK [57] is a similar tool to Kerninst but it uses only the jmp instruction to
insert hook code. The users can insert a code snippet before and after basic
blocks. On the other hand, Kerninst will insert the break point trap (int3) if
there is not enough space for a hook in the x86 architecture. This is achieved
through an implementation of runtime code splicing. For inserting a code
snippet, the users will first make a kernel module including a function to
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Summary

Kinds of profiler Flexibility Abstraction
An event-driven type X

A dynamic code instrumentation type X

Table 2.1. Comparison among Existing Systems

execute at a target execution point. Then, they will load the compiled kernel
module, and insert a hook from the target execution point. While Kerninst
provides the API that enables the users to write some code snippets with
it, GILK do not provides this kind of API. The code snippets given by the
users for profiling is written in the C language as a loadable kernel module.
The performance of GILK is better than that of Kerninst but GILK supports
only old Linux kernels.

The ideal profiling shown in Section 2.1 is difficult to do with GILK. The
selection of execution points for executing code snippets given by the users
is difficult to do because GILK does not provide any mechanism to make
selection easy. Moreover, since GILK only insert code into the beginning
and the ending of a basic block, the users cannot insert code snippet before a
member of a structure is accessed. We cannot do ideal profiling with GILK.

2.4 Summary

In this chapter, we proposed requirements for kernel profilers. The require-
ments are unlimited profiling points and code for profiling, and abstraction
of selecting an execution points for logging and writing a code. Those are
required feature to do profiling shown in Section 2.1.

We also confirmed that no profilers and code instrumentation tools ful-
fill whole requirements we proposed. There are two kinds of kernel profil-
ers, event-driven type and dynamic code instrumentation type. However, as
shown in Table 2.1, neither kind of them fulfill our requirements. The former
tools provides good abstraction but execution points that can be used for
profiling is quite limited. The latter tools enable users to insert arbitrary
code into an arbitrary position but their abstraction is bad. To do ideal
profiling shown in Section 2.1, we need a tool that provides both source level
abstraction and high flexibility.
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kapi_manager kmgr;
void insert_calculation() {

kapi_module kmod;
kapi_function kfunc;
kapi_vector<kapi_point> entries;

/* (1) */
kapi_int_variable a(address_of_a);
kapi_int_variable b(address_of_b);
kapi_int_variable c(address_of_c);
kapi_int_variable d(address_of_d);
kapi_int_variable e(address_of_e);
kapi_int_variable f(address_of_f);

/* (2) */
// b + c
kapi_arith_expr b_plus_c(kapi_plus, b, c);
// (b + c) * d
kapi_arith_expr bc_times_d(kapi_times, b_plus_c, d);
// e - f
kapi_arith_expr e_minus_f(kapi_minus, e, f);
// (b + c) * d / (e - f)
kapi_arith_expr result(kapi_divide, bc_times_d, e_minus_f);
// a = (b + c) * d / (e - f)
kapi_arith_expr code(kapi_assign, a, result);

/* (3) */
kmgr.attach("localhost", the listening port of kerninstd);
kmgr.findModule("kernel", &kmod);
kmod.findFunction("inode_change_ok, &kfunc);
kfunc.findEntryPoint(&entries);
kmgr.insertSnippet(code, entries[0]);

}

Figure 2.10. An example of Kerninst code
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void print_log() {
struct timeval tv;
void *ebp;
int uid;
__asm__ __volatile__("movl %%ebp, %0" : "=r"(ebp));
uid = ((struct inode *)ebp[11])->i_uid;
/* ebp[11] is inode */
do_gettimeofday(&tv);
printk("inode.i_uid: %d at %d.%ld\n",

uid, tv.tv_sec, tv.tv_usec);
}

Figure 2.11. An example of a function to get a log by Kerninst code

kapi_manager kmgr;
void insert_hook() {

kapi_module kmod;
kapi_function ifunc, pfunc;
kapi_vector<kapi_point> entries;
kapi_vector<kapi_snippet> args;
kapi_call_expr hook;

kmgr.attach("localhost", 32770);
kmgr.findModule("kernel", &kmod);
kmod.findFunction("inode_change_ok", &ifunc);
ifunc.findEntryPoint(&entries);
kmgr.findModule("profiler", &kmod);
kmod.findFunction("print_log", &pfunc);
hook = kapi_call_expr(pfunc.getEntryAddr(), args);
kmgr.insertSnippet(hook, entries[0]);

}

Figure 2.12. A Kerninst code for calling a function from a hook
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kapi_manager kmgr;
void insert_hook(kptr_t inst_ptr) {

kapi_module kmod;
kapi_point insert_point;
kapi_function pfunc;
kapi_vector<kapi_snippet> args;
kapi_call_expr hook;

kmgr.attach("localhost", 32770);
kmgr.createInstPointAtAddr(inst_ptr, &insert_point);
kmgr.findModule("profiler", &kmod);
kmod.findFunction("print_log", &pfunc);
hook = kapi_call_expr(pfunc.getEntryAddr(), args);
kmgr.insertSnippet(hook, insert_point);

}

Figure 2.13. A code for calling a function from an arbitrary execution point
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3
Kernel Profiling by Dynamic AOP

We propose to use dynamic aspect-oriented programming (DAOP) for pro-
filing an OS kernel. Since this is a dynamic system, profiling can be done
without rebooting the OS kernel. This helps developers for profiling effi-
ciently because rebooting the OS kernel flushes kernel memory whose status
is difficult to occur again. Aspect-oriented programming (AOP) provides a
higher-level abstraction. It enables the developers to select execution points
to insert profiling code in source-code level view. The execution points the
developers can select are function calls, function executions, assignment of
variables, and so on. It is also widely known as an excellent paradigm for
logging and profiling. If we use an AOP system, profiling code can be de-
scribed as a module separated from the kernel source files. That separate
module is called aspects. An aspect consists of pointcuts and advices. An
advice is a language construct similar to a function. It is invoked when the
thread of control reaches execution points specified by a pointcut. A pointcut
is a composition of several predicates; it selects execution points that match
those predicates. Those execution points are also called join points. To bind
an advice with a target program at the execution points specified by a point-
cut is called weaving, and unbinding the advice is called unweaving. It is
normally part of a compilation process or a program-transformation process
after compilation. We go into details for AOP in next section.
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3.1 What is AOP?

AOP is a programming technique to solve a cross cutting concern. It helps
developers to see programs with proper abstraction. It also helps them to
write a program based on the abstraction. To let them write a code from
proper abstraction, AOP provides a mechanism to write a series of code
without considering about main logic. The code is called aspect. The devel-
opers can write an aspect that is related to various modules. For example,
if they want to write logging code, a series of positions that developers want
to get logs will be listed into one aspect code. It can also write more than
one codes inside aspect. For example, developers want to write a disk cache
mechanism, they should write code to get information of a disk and a virtual
memory sub system at the same time. These codes will be written to one
aspect. Other typical example for AOP is distributed computing, security,
transaction, profiling, session management, and database management.

Similar to other separation techniques, a goal of AOP is improving mod-
ularity of design and implementation. In other words, its goal is localizing a
concern into a module, and providing a good interface. If the goal is com-
pleted, developers will get benefits of modularity; modification can be done
without thinking about other modules, development of each module can be
done separately, and modules can be removed or changed to similar modules
that have the same interface.

There are three important elements in AOP. They are join point model,
pointcut and advice. Pointcut is a mechanism to select a join point, and
advice is a series of code that affects at a join point. A join point is a
moment at which a proper event occurs. It is a function call, a variable
assignment, a control flow of a function, and so on. Some of join points, such
as a function call and a variable assignment, correspond to execution points
in the program. Those execution points are called join point shadows [47, 48].
Thinking about the AspectJ, which is the most popular AOP language for
Java, there are various join points: calling and execution of each method,
reading and writing of each member, call flow, and so on.

Pointcut

Pointcut will select a join point from the program. For example, following
pointcut will pick out the call of setX method Point class whose return value
is void:
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call(void Point.setX)

As you see in the example, the call will pick out the call of some methods
given as its argument. List of pointcuts supported by AspectJ is shown in
Table 3.1. Here, We listed the pointcuts available for profiling. Pointcuts
can be conjunct with && (and) and || (or). && is used to limit the join
point that satisfy all pointcuts conjunct with &&. Besides, || is union of
all pointcuts. There are also special meaning characters ! (not), *, .., and
+. ! will exclude join points specified by following pointcuts. *, .. and +
is used inside pointcuts such as call and execution. * means any characters
except white space and . whose number is more than or equals to 0. .. means
a conjunction of characters. + means inclusion of subclasses of classes and
implementation of interfaces. For example,

call(void Point.setX) || call(void Point.setY)

will select the calls to both setX method and setY method of Point whose
return value is void.

call(void Point.set*)

will select the all calls whose prefix is set in the Point class, and whose return
value is void.

For ease of understanding, we also show some join point shadows in Fig-
ure 3.1. They correspond to some pointcuts in Figure 3.1.

Advice

Advice is a method-like code snippet executed at the join point selected by a
pointcut. AspectJ has three kinds of advices: before, after, and around. Before
advice runs before the join point selected by the pointcut. After advice runs
after the join point selected by the pointcut. Around advice runs instead of
the original code at the join point selected by the pointcut.

Narrowly defined meaning of aspect is a pair of pointcut and advice shown
before. Figure 3.2 is an example of an AspectJ aspect. This aspect will
select join points where void Point.setX(int) and void Point.setY(int) are called.
These join points are named as move(). Before the call of methods specified
by move(), a message ”Entry of : <method name>” is printed through print
method defined in the aspect.
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Designator Join points
call(void Car.run(int)) a call to void Car.run(int).
execution(void Car.*(*))
throws FuelEmptyException.

the execution of any methods of Car
class that is declared to throw Fu-
elEmptyException.

set(int Car.fuel) when int Car.fuel is assigned.
get(int Car.fuel) when int Car.fuel is read.
cflow(call(void Car.run(int))) any join point in the control flow of

each call to void Car.run(int). This in-
clude call itself.

withincode(void Car.run(int)) any join points that are defined in void
Car.run(int) method.

target(zoo.animals.elephant) any join points where the target object
is instance of zoo.animals.elephant

Table 3.1. Pointcut designators available for profiling in AspectJ

3.1.1 An AOP system for the C language

There is an aspect-oriented system for the C language. Since AOP is firstly
started for research of solving a cross cutting concern in an object-oriented
language, aspect-oriented language for the C language is not as famous as
that for Java. It is not mainstream either. However, Coady showed that
AOP is also useful for developing an OS kernel written in the C language
in 2001 [21, 20, 17] Since an OS kernel is multi-layered system and consists
of many modules, there is also a cross cutting concern. She showed that
development of a disk cache has crosscutting concern in it. That is because
the developers should write both memory manipulation code and disk I/O
code, and those code should cooperate each other. We will first take a look
at static AOP systems, and then go into dynamic AOP systems. Static AOP
systems are not available for ideal profiling because rebooting an OS kernel
is required for changing the profiling code. It is not acceptable because it
clears memory image of the running kernel.

AspectC

AspectC [40] is an early static aspect-oriented language for the C language
and it has been used for showing that aspect-oriented programming works
well for modularizing an OS kernel [21, 18, 20, 17, 19]. Syntax of AspectC is
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class Car {

int fuel;

:

// Join point shadow: execution(void Car.run(int))

void run(int distance) throws FuelEmptyException {

// Join point shadow: set(int Car.fuel) and get(int Car.fuel)

fuel = fuel - distance;

if (fuel < 0)

throw new FuelEmptyException();

// Join point shadow: call(Car.drawCar())

this.drawCar();

return distance;

}

}

Figure 3.1. An example of join point shadows

a subset of AspectJ. Since the C language is not one of the object-oriented
languages, AspectC does not support object-orientation and clear modules.
Instead of supporting these features, AspectC will limit extent of the weaving
by file names and directory names. One of the famous examples for AspectC
is writing a prefetch code by aspect. The mechanism for prefetching a disk
block must cut across a virtual memory sub-system and a disk sub-system.
Without AOP, developers should write a code into two sub-systems, which
cause source code tangled and difficult to understand. Aspect will clear the
behavior of prefetch code for both a virtual memory sub-system and a disk

aspect SimpleLogging {
pointcut move():

call(void Point.setX(int)) ||
call(void Point.setY(int));

before(): move() {
print("Entry of : " + thisJoinPoint);

}
void print(String message) {

System.out.println(message);
}

}

Figure 3.2. An example of aspect of AspectJ
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sub-system. The developers can see a series of prefetch code with reading
only a file.

AspectC++

AspectC++ [69, 6, 45] is another static aspect-oriented system for the
C/C++ language. It provides the same kinds of pointcut designators that
AspectJ does [41] since it is a source-to-source translator from an aspect-
oriented language to the regular C/C++ language. There is also an example
using AOP for the eCos kernel [43]. eCos is one of OS kernels whose target is
an embedded system. Tracing, interrupt synchronization, and event handling
are separated by AspectC++ for solving cross cutting concerns. According
to this study, performance of AOP is as good as a hand-written version.

3.2 Dynamic AOP

While applying aspects with static AOP systems require rebooting the OS
kernel, dynamic AOP systems do not. They can weave and unweave the
aspects without rebooting the OS kernel. They help the developers to do
profiling efficiently. Since rebooting the OS kernel clears memory that may
contain trails of some disordered behaviors, the developers should want to
avoid it. Otherwise, they should wait for a long time until the behaviors
occur again after weaving aspects.

Dynamic AOP systems also provide source-level abstraction as static
AOP systems do. They enable the developers to efficiently select execu-
tion points to investigate. They also enable the developers to write code for
profiling with a high-level programming language.

A large drawback in dynamic AOP systems is that they cannot use as
rich information as static AOP systems can use. Since most of source-level
information is discarded after compilation, existing dynamic AOP systems
cannot provide pointcuts as various as static AOP systems do. Besides,
since static AOP systems can utilize the complete source-level information of
a program when weaving an aspect at compile time, they can easily provide
various pointcut designators.

There are two kinds of techniques for implementing dynamic AOP system.
One is dynamic code instrumentation, and the other is a virtual machine
extension. The former kind of systems are PROSE [58] and Wool [63], and
the latter kind of system is Steamloom [10, 34].
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PROSE is an early dynamic AOP system for Java. It uses JVMDI (Java
Virtual Machine Debugger Interface) to implement dynamic weaving of as-
pects. It sets breakpoints at the join points specified by pointcuts. If the
thread of control reaches one of those breakpoints, the JVM (Java Virtual
Machine) transfers the control to the PROSE system so that PROSE will
execute advice code associated with the join point. The cost of handling
breakpoint traps in the OS kernel is relatively smaller than in the JVM.

Wool is another dynamic AOP system for Java that does dynamic code
instrumentation. The implementation of Wool is a hybrid of two implemen-
tation techniques. At first, Wool sets a breakpoint at the join point picked
out by a pointcut. Then, if the thread of control frequently reaches that
join point, Wool changes the implementation. It removes the breakpoint and
reloads the modified bytecode in which the advice body is embedded. This
hybrid approach improves total execution performance. Wool can perform
this hybrid approach since the binary code of a Java program includes richer
symbol information than in the C language.

Steamloom is a virtual machine (VM) for providing DAOP for Java. It
is the first VM implementation of DAOP. Dynamic weaving is implemented
as dynamic modification and reinstallation of method byte codes. Its im-
plementation is similar to JVM HotSwap and SLIC [29], which is a dy-
namic extending system for commodity operating systems. However, it can
achieve an aspect management. It is based on jikes Research Virtual Machine
(RVM), research VM developed by IBM. Steamloom is lower overheads than
the other DAOP systems that perform weaving by dynamic code instrumen-
tation. Since recompilation of methods is done with full optimization, an
application on Steamloom can run as fast as that woven with a static AOP
system, such as AspectJ.

Existing DAOP systems for the C language are not sufficient for ideal
profiling shown in Section 2.1 because their pointcuts are too limited. We
need a DAOP system for the C language with pointcuts of a DAOP system
for Java. An existing DAOP system for C language does not have pointcuts
for selecting data well because details of data access are eliminated at com-
pile time. Symbol information made by a C compiler is much less than that
made by a Java compiler. It does not have detailed information of variables.
Pointcuts for selecting data is required because an OS kernel has special char-
acteristics compared to other small C applications. The developers should
also use these characteristics for ease of development. We will first explain
the characteristics, and then explain why existing DAOP systems for C is
not sufficient in details.
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3.2.1 Characteristics of an OS kernel

Characteristics of source code of an OS kernel are high-level modularization
and multi-threaded data manipulation. To realize high-level modularization,
a structure is shared among plural modules in a large-scaled C program such
as an OS kernel. The structure contains a common data among modules
related to each other. It is often passed through a function to another for
sending and receiving data. It is also used to implement polymorphism-like
mechanism in the OS kernel. This implementation is used in a device driver
and a virtual file system of the kernel such as FreeBSD and Linux. There
is strict coding convention for writing code. Since usage of each structure is
ruled by the convention, the code using data structure has a pattern; it is
only used among related modules.

Multi-threaded data manipulation is normally used in the OS kernel for
coping with both low response time and manipulation of complex data. Pro-
grams that manipulate data in the kernel is separated into two threads, the
top half and the bottom half. The top half manipulates complex data for
providing higher-level abstraction to the userland programs. For example,
main logics of a file system, a socket I/O subsystem, and a memory sub-
system are implemented in the top half. The top half communicates with
the bottom half through a queue and a trap. The top half appends data
to a queue for sending it, and removes data from a queue for receiving it.
Appending and removing are signaled through the trap. On the other hand,
the bottom half manipulates a real device. Since response time and elapsed
time by the bottom half should be low and small, respectively, its jobs are
only simple things. Jobs for the bottom half are sending data in the queue to
a device, and receiving data from a device to append it to the queue. Data
arrival is signaled through the trap.

Since the OS kernel is multi-threaded application, profiling by tracing a
call flow or a control flow is difficult. The call flow will not continue through a
thread to another. Each data will be appended to a queue and the developers
tracing through call flow cannot investigate how the data is manipulated after
it is appended to the queue.

For tracing this kind of data, pointcuts that select data and a data flow
are required. It should also support characteristics of an OS kernel; a struc-
ture is shared among modules related to each other. As we mentioned before,
a structure is often used in a large-scaled C program. It is transferred among
modules for sending and receiving a series of data. It is also used to imple-
ment polymorphism-like structure in the C language. If the developers use
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the pointcuts, they can efficiently select modules that are using the data.
This is much easier than using a pointcut that select a function such as the
execution pointcut and the call pointcut. If the developers use this kind of
pointcuts, they should have deep knowledge of an OS kernel for enumerat-
ing all the functions related to profiling. Otherwise, there is possibility for
them to miss some important data. Moreover, the OS kernel should not be
optimized since symbol information is eliminated by an optimization. If a
function is inlined, the information for it will be eliminated. However, if the
developers use the kernel that is not optimized for profiling, the result should
become unrealistic. That is because an OS kernel is usually compiled with
some optimization option such as -Os, -O1 or -O2, which inlines functions.

3.2.2 Existing DAOP systems for the C language

There are several dynamic aspect-oriented systems for the C language. Each
system can weave an aspect into a running program written in the C language
without recompiling and rebooting it. A target of some systems is a userland
application, while a target of the others is an OS kernel. However, both kinds
of existing DAOP systems for the C language are insufficient for profiling
because they lack pointcuts for selecting data and a data flow. Here, we will
take a look at them one by one.

DAO C++

DAO C++ [1, 2] is a dynamic aspect-oriented system for user processes
written in the C++ language. For weaving an aspect, this system modifies
the compiled binary of C++ programs during runtime. It is designed and
implemented network application in mind, and it can weave and unweave an
aspect through a network. For implementing DAOP, it first preprocess C++
program to make meta-object data and to insert hooks. Then, AOP engine
works at runtime for dynamic weaving. Only the pointcut supported by the
system is selection of a method call. That is because its target application is
a dynamic adaptation. It lacks pointcuts for selecting data and a data flow.

TinyC2

TinyC2 [82] is a dynamic aspect-oriented system for userland application
written in the C language. It experiments the idea of implementing an
aspect-oriented language based on existing code instrumentation tool. In
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its prototype, Dyninst [11] is used. Its AOP language is an extension of the
C language. It provides the same mechanism with the before and after advices
of the execution pointcut in AspectJ, although its syntax is different. It use
the onentry and onexit designators as the before and after advices of the exe-
cution pointcut. The programs written by the developers will be translated
into a code snippet using Dyninst API. The translated code is executed for
dynamically weaving at runtime. Since its implementation is limited inside
Dyninst and use the symbol information produced by a normal compiler, it
does not have a pointcut that select data or a data flow.

Arachne

Arachne [22] is also a dynamic aspect-oriented system for user processes
written in the C language. Although it also uses the symbol information
produced by a normal compiler, the pointcut designators of Arachne cover
not only function calls but also accesses to global variables and memory
blocks allocated by the malloc function. However, pointcutting accesses to
memory blocks imply serious performance penalties since Arachne uses a
page fault for detecting accesses to the memory block. Arachne also showed
that it is useful for changing behavior of Squid web cache without recompiling
and rebooting it [65]. In [65], it is shown that Arachne is useful for security
fix, changing prefetching mechanism, and adding ICAP support at runtime.
Although Arachne has many pointcuts, it lacks a pointcut for selecting a
member access of a structure at runtime. As shown before, the pointcut is
required for efficient profiling of an OS kernel. Moreover, since a target of
Arachne is userland application, it cannot be used for an OS kernel.

µDyner

µDyner [67] is a predecessor of Arachne. It is also a dynamic aspect-oriented
system for user processes written in the C language. µDyner inserts hook
code at every join point marked as hookable when a source file is compiled.
The hook code examines whether or not the join point is selected by a point-
cut during runtime and, if it is selected, the hook code executes the asso-
ciated advice. Although µDyner potentially can support various kinds of
join points since it inserts hook code at compile time, the developers must
annotate source files by the hookable mark so that the hook code will be
inserted at appropriate join points. If a join point is not marked as hookable,
it cannot be selected by a pointcut during runtime. Furthermore, overheads
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due to hook code are not negligible if the number of hookable join points is
large.

Inserting hooks by AspectC++

[64] and [30] used AspectC++ for dynamic weaving. Their target applica-
tions are implementing software product line, the way of development to
make software as if making a car. The users can freely choose parts for mak-
ing their own software. Since hooks for dynamic weaving are inserted by
AspectC++, code insertion to join points becomes easy task. However, it
also has the same problem as µDyner has. Overheads of hook code should
become negligible if the number of hooks prepared for join points is large.

TOSKANA

TOSKANA [25, 27] is a dynamic aspect-oriented system for the NetBSD op-
erating system kernel. It dynamically modifies the compiled binary of the
kernel for weaving an aspect. Its target application is autonomic comput-
ing. This system only provides the before, after, and around advice for the
execution pointcut of functions. In its application examples, it is shown
that TOSKANA is useful for adding self-configuration, self-healing, self-
optimization, and self-protection features at run time. At the weaving, a
kernel module is automatically replaced to adapt the kernel dynamically.
Since its only pointcut is the execution pointcut, it is not useful for efficient
profiling of an OS kernel.

TOSKANA-VM

TOSKANA-VM [26] is a system that allows developers to dynamically weave
an aspect with the kernel. The approach of TOSKANA-VM is similar to the
approach of Steamloom [10, 34], which is a custom Java virtual machine
extended for enabling dynamic weaving. The kernel of TOSKANA-VM is
compiled by a special compiler into virtual machine code, which is run on a
virtual machine named LLVM. Since the virtual machine code contains rich
symbol information, TOSKANA-VM allows developers to pointcut various
kinds of join points such as reading and writing a variable. However, the
kernel must run on a virtual machine and thus this approach cannot be used
for profiling a kernel directly running on native hardware.
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3.3 Summary

In this section, we proposed that dynamic aspect-oriented programming
(DAOP) is useful for profiling OS kernels. Since aspect-oriented program-
ming (AOP) first started from an object-oriented language, AOP for the C
language is not as famous as that for Java. However, it is known that AOP is
also useful for kernel development. For example, it is useful for implementing
prefetch algorithm in an OS kernel. We first explained AOP for Java and
mentioned static AOP for the C language. After that, we go into DAOP.

For DAOP, we first explained existing AOP for Java, and mentioned that
some pointcuts of DAOP for Java are required for DAOP for the C language
to do better profiling. We first mentioned characteristics of an OS kernel, and
explained that existing DAOP systems for the C language lack pointcuts for
utilizing the characteristics. The characteristics are that a structure is often
used in an OS kernel, and that an OS kernel is a multi-threaded application.
Since an OS kernel is a large program, a structure is used for providing
good modularization. To cope with both lower latency and complex data
manipulation, an OS kernel should be multi-threaded.

For utilizing this feature, pointcuts that select data and a data flow are
required. However, existing DAOP systems for the C language do not have
enough support for this feature. We showed several DAOP systems for C
language and showed that all of them do not have support for the pointcuts.
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4
The Access Pointcut and KLASY

This chapter presents KLASY [80, 81], which is a dynamic AOP system
for profiling an OS kernel. The previous implementation of dynamic AOP
systems for the C languages lacks a pointcut to select a member access of a
structure. Since a member access of a structure is often used among functions
that related each other, the pointcut will help the developers to do profiling
efficiently. The pointcut is called the access pointcut. This chapter presents
usage of the access pointcut and our new dynamic weaving technique for
implementing the pointcut.

The name of our new technique is source-based binary-level dynamic
weaving. It collects richer symbol information including a position of a mem-
ber access at compile time. The richer symbol information is used at weave
time to get a memory address of a member access. At weave time, Kerninst
[71] is used to insert a hook. Note that a hook is a code for calling an advice
from arbitrary execution point in the kernel.

KLASY has a mechanism to get local variables for using inside an ad-
vice. With this feature, the developers can print values of those variables
and change code behavior according to the values. The richer symbol infor-
mation is also used to implement this feature. The memory addresses or the
register numbers for the variables are recorded inside it. The unique feature
of KLASY is that it can pass the instance of the structure whose member is
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selected by the access pointcut. We modified the parser of the compiler to
implement the feature.

The rest of this chapter is organized as follows. Section 4.1 explains
necessity of the access pointcut in details. Section 4.2 shows the syntax and
usage of our aspect language. Section 4.3 presents how the access pointcut
is implemented. We conclude this chapter in Section 4.4.

4.1 Necessity of the access pointcut

Although AOP is known as a good paradigm for logging, existing AOP sys-
tems are not satisfactory for profiling the OS kernel. First, an AOP system we
need is a dynamic AOP system, which can dynamically weave an aspect. As
Kerninst does, the AOP system must be able to attach and detach a profiling
aspect to a running kernel without rebooting it. There are several dynamic
AOP systems for the C language but they support only limited kinds of join
points. They do not provide significantly better functionality than Kerninst.
For example, TOSKANA [25] allows users to select only function execution
as join points. Arachne [22] allows users to select not only function calls but
also accesses to global variables and arbitrary memory blocks. However, any
of them does not enable selecting member accesses to structures.

In OS kernels, a number of structures are passed to transfer a collection
of data between functions. To trace such a data flow, the developers must be
able to select member accesses by pointcuts. Tracing how transferred data
is used is not a simple task if only function execution can be selected as join
points. Moreover, structures are often used to implement a polymorphism-
like mechanism in OS kernels. They are used as substitutes for classes avail-
able in C++ and Java. Some members of structures are function pointers
to a method, that is, a function specialized for a particular type of structure.
The network I/O subsystems, the virtual file systems, device drivers, and so
on are implemented with this technique. Therefore, the developers would
want to use pointcuts selecting member accesses to such function pointers
so that they can trace a call graph. A similar result could be obtained by
describing pointcuts that select all possible function executions belonging to
the call graph. However, selecting member accesses to the structures used in
a target subsystem is simpler and easier.

Another limitation of existing dynamic AOP systems for the C language
is a mechanism for context exposure. AOP systems have a mechanism for
passing context information of a join point to an advice. For example, if
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a join point is function execution, function arguments can be passed to an
advice. Arachne [22] allows an advice to access a return value and global
variables as well. However, existing AOP systems for the C language do
not allow an advice to local variables visible at a join point. Exposing local
variables at a join point to an advice might not be an appropriate design
with respect to modularization but it is often necessary for profiling.

4.2 KLASY

As we have shown above, existing AOP systems are not appropriate for profil-
ing and debugging OS kernels. We propose our dynamic AOP system named
KLASY (Kernel Level Aspect-oriented SYstem) for profiling and debugging
OS kernels written in the C language. Unlike other similar systems, KLASY
enables pointcutting member accesses to structures and provides better ac-
cessibility to context information at join points. KLASY thereby provides
better usability than Kerninst; the users of KLASY do not have to calculate
memory addresses by hand.

An aspect for KLASY is written in C although it includes XML-like tags.
Figure 4.1 is an example program. It can be compiled and woven by the klasy
command at any time during runtime. For example,

% klasy weave inode trace.klasy

weaves the aspect in the file inode trace.klasy into the OS kernel. After this
aspect is woven, it prints a log message when the i uid member of the inode
structure is accessed within the function body of inode change ok(). Note
that the printk function is used as the printf function in Linux kernel, and
the do gettimeofday function is used to get a current timestamp. Unlike the
example in Figure 2.11 and Figure 2.12, this aspect prints a log message
not when the execution of inode change ok() starts but whenever the i uid
member is accessed in inode change ok().

An aspect is surrounded by the aspect tag. The import tag specifies
the header files that are necessary to compile an advice body. When an
advice body is compiled, two header files linux/kernel.h and linux/module.h
are implicitly included. Other header files can be included by using the
import tag. They are just translated into #include <import content > in the
aspects body to be compiled. For example, the developers that want to use
do gettimeofday function, which is used for getting a current precious time,
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they should write:

<import> linux/time.h </import>

If they want to know a page size (PAGE SIZE) or the kernel page offset
(PAGE OFFSET), they should write:

<import> asm/page.h </import>

Developers can use their own header file by putting it to under the include
directory of Linux kernel. For example, if they made their own header file
with the name ”local.h” and directly put it to the include directory, import
description will be:

<import> local.h </import>

Any code can be written inside their own header file. It will be put at the
top of the aspects to be compiled and loaded to the kernel later.

The advice body is a code fragment written in the C language and it
is surrounded by the before (or after) tag. KLASY does not support an
around advice but it is not a serious drawback since an aspect in KLASY
is for profiling and it rarely needs around advice, which is mainly used to
execute a function at a join point only if necessary. In an advice body, several
characters must be escaped since an aspect is tagged in XML. For example,
angle brackets (< and >) must be replaced with &lt; and &gt;, respectively.
The ampersand & must be &amp;. In an advice body, a special variable $pc$
is available. It represents the current value of the program counter, that is,
the memory address of the machine instruction selected by a pointcut.

The advice body follows a pointcut definition surrounded by the point-
cut tag. KLASY currently provides seven pointcut designators: execution,
access, within file, within function, target, local var, and argument. The ex-
ecution pointcut identifies function executions as join points. The access
pointcut identifies both read and write member accesses to structures as join
points. For example, if the developers write access(sk buff.data), both read
and write access to data member of sk buff structure will be selected as join
points. Therefore, advice code will be executed before (with before advice)
or after (with after advice) in following situations:

skb->data = data;
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<aspect>
<import>linux/time.h</import>
<advice>

<pointcut>
access(inode.i_uid) AND
within_function(inode_change_ok) AND
target(inode_value);

</pointcut>
<before>

struct inode *i = (struct inode *)inode_value;
struct timeval tv;
do_gettimeofday(&amp;tv);
printk("inode.i_uid: %d at %d.%ld\n",

i-&gt;uid, tv.tv_sec, tv.tv_usec);
</before>

</advice>
</aspect>

Figure 4.1. An aspect written in KLASY (inode trace.klasy)

and

unsigned long offset = new->data - old->data;

Wild cards (%) are available in these pointcuts. Since * represents a pointer
type in the C language, wild cards are not * but %. Note that wild cards
matches any characters except ’.’ (delimiter of a structure name and a mem-
ber name) whose length is more than or equals to 0. For example,

skb.%

matches the any members of the structure whose name is skb.

skb.d%

matches the member of the structure whose name is skb and started from d.

skb.data%

matches the member of the structure whose name is skb and started from
data. skb.data is accepted by this pattern.
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%.data

matches the data member of any structures.

%.%

matches the any members of any structures. Since we use a regular expres-
sion library for matching in the background, our system potentially support
the regular expression for matching. However, to make syntax of pointcuts
similar to AspectJ, we do not use the regular expression itself.

If a join point selected by a pointcut is a member access, the target point-
cut is available. It sets a given variable to a pointer to the structure that is
accessed at the join point. In Figure 4.1, the pointer to the inode structure
is bound to a variable inode value that is available in an advice body. Even
if a local variable is not a reference to a structure instance, KLASY will au-
tomatically calculate the reference from the local variable. For example, if
the pointcut is access(file.f owner) and sk->sk socket->file->f owner matched,
sk->sk socket->file will be automatically calculated from sk and the reference
will be passed. Note that header files related to this calculation should be
included by import tag. The type of inode value is void*. If the developers
want to access each value, they should first cast to the proper type they want
to use. If the developers use target value pointcutted by access(sk buff.data),
they should cast the value to struct sk buff* before using its value.

If the within function pointcut is used, the local var pointcut is used for
obtaining the reference of a local variable at a join point. Syntax of local var
pointcut is:

local var(source local variable, destination advice variable)

Since the reference of the local variable is passed as void* variable, the de-
velopers should cast it before using it. For example, if the developers want
to use the local variable n inside advice and its name is np, they will write:

local var(n, np)

To use the variable, they should also write following kind of a program in
advice body:
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... no ’j’ is used ...// (A)

for (i = 0; i < 10; i++) {

int j;

... // (B)

}

Figure 4.2. Special meaning of the local var pointcut

struct sk buff *skb = np;

The local var pointcut can also be used to limit the range of pointcuts inside
the scope of the local variable given by 1st argument of the local var pointcut.
For example, if the developers use the pointcut like in Figure 4.2:

local var(j, j pointer)

only join points in Section (B) will be selected and join points in Section (A)
will not be selected.

The within file and within function pointcuts select join points included
in a specified file and function body, respectively. If the developers want to
limit join points inside net/core/dev.c file, they will write:

within file(net/core/dev.c)

Similar to within file, limiting join points inside skb clone function will be:

within function(skb clone)

Developers can use wild card (%) in both the within file pointcut and the
within function pointcut. For example, if the developers want to limit join
points inside .c files that is started from ip in net/ipv4 directory, they will
write:

within file(net/ipv4/ip %.c)

If the developers want to limit join points inside functions started from skb ,
they will write:
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within function(skb %)

Since within file pointcut and within function pointcut do not use complete
matching, they will match strings that contain patterns. For example, if the
developers write:

within file(dev.c)

then, net/core/dev.c file is matched by this pattern. Because of the implemen-
tation, a function name that is matched by within function pointcut should
be a name of an exported function. To get a function name of join points,
KLASY will resolve the name from symbol information by using Kerninst.
At this time only a function name got by symbol information is a name of an
exported function. Note that the within function pointcut and the within file
pointcut cannot be combined with the execution pointcut. If they are com-
bined, KLASY cause an error. For example, following code will cause an
error:

execution(skb clone) AND within file(dev.c)

The argument pointcut is used for obtaining the argument value of a
function specified with the execution pointcut. Syntax of argument pointcut
is the same as that of local var pointcut. Its syntax is:

argument(source parameter, destination advice variable)

For example, to get size parameter of alloc skb function, the developers will
write:

argument(size, sizep)

to get the reference to size parameter as its name is sizep variable. As the
same as local var pointcut, the reference of the argument is passed as void*
variable. Developers should cast it to a proper type before using it. This
pointcut can be also used to limit join points that have a parameter variable
specified by the argument pointcut. Developers can select some functions
with wild card and extract it with argument pointcut that has the parameter
specified by the argument pointcut.
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Multiple pointcuts shown above can be composed by AND or OR opera-
tors. If within function is composed by AND operator with another pointcut
such as access, the selected join points are ones that satisfy the conditions
specified by both within function and access. Developers can also use a paren-
thesis (’(’ and ’)’) to specify order of pointcuts. Note that AND operator is
evaluated before OR operator if pointcuts that contain OR operator is not in
parentheses. For example, “A AND B” is evaluated before “C” in:

A AND B OR C

Pointcut expressions that are combined with AND operator must have more
than one access pointcut or execution pointcut. Since this reason, following
pointcuts are invalid:

within file(sk buff.c) AND within function(skb clone)

that do not have either access pointcut or execution pointcut. Even at the
evaluation time, any pointcuts except access pointcut and execution pointcut
should be combined with access pointcut or execution pointcut. Since this
reason, following pointcuts are also invalid:

access(sk buff.data) AND within file(sk buff.c) OR within file(dev.c)

because within file(dev.c) is not combined with either access pointcut or ex-
ecution pointcut. After access(sk buff.data) AND within file(sk buff.c) will be
first evaluated, within file(dev.c) will be evaluated. However, within file(dev.c)
is not combined with access pointcut or execution pointcut. Note that more
than one access pointcuts are combined with AND operator for the purpose
of pattern matching. For example, if the developers write:

access(sk buff.%) AND access(%.data)

then, join points selected by access(sk buff.data) will be selected. Developers
can write similar thing with the execution pointcut. Note that the access
pointcut and the execution pointcut cannot be combined with AND operator.
That is because there is no join point selected by conjunction of those two
pointcuts. For example,

access(sk buff.data) AND execution(skb clone)
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will cause an error.

4.3 Source-based binary-level dynamic weaving

KLASY enables the developers to weave an aspect into the Linux kernel
dynamically without rebooting the OS. To provide a pointcut for select-
ing member accesses as join points, KLASY uses our new technique named
source-based binary-level dynamic weaving, in which the kernel source code is
compiled by an extended C compiler of KLASY and thereby a richer symbol
information is produced. An aspect is dynamically woven in the compiled
binary, that is, a running OS kernel by exploiting that richer symbol infor-
mation. KLASY modifies the compiled binary of the running kernel.

4.3.1 Extended symbol information

To enable the access pointcut shown above, the target OS kernel must be
compiled by our extended C compiler so that the compiled binary will include
the symbol information that is necessary to locate all occurrences of member
accesses to structures. We extended the GNU C compiler (gcc) to develop
that C compiler.

To record the locations of member accesses, we extended the parser of
gcc. Since the global variables lineno and input filename represent the current
line number and the file name during parsing, our extended parser records
the values of those global variables as well as a member name and a structure
name whenever it encounters member accesses. Note that an abstract syntax
tree produced by the gcc parser does not include type names. All type names
are converted into integer identifiers. Hence our extended parser maintains a
mapping from the integer identifiers to the type names. Our parser remem-
bers the type names of structures and their integer identifiers at declaration
time, and use them at use time. We use a hash table to remember them for
performance improvement of compiling.

To locate the memory addresses of the machine instructions correspond-
ing to the join point (shadow [47, 48]) of member accesses, KLASY also
needs to know where the compiled code of a given source line is placed in
memory. Although the original gcc produces such address information if it
runs with a debug option -g, the produced information is not sufficient for
KLASY. For example, consider pointcut accesses to the addr limit member
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of the thread info structure. A source file acct.c of the Linux 2.6.10 kernel
includes an access to that member at line 493:

493: fs = get fs();

Here, get fs is a macro. The definition of this macro is at line 32 in uaccess.h:

32: #define get fs() (current thread info()->addr limit)

Since this macro includes the member access, the line 493 in acct.c is selected
by the pointcut. KLASY records this line number. Note that the line 32 in
uaccess.h is not recorded. Since uaccess.h is not a compilation unit (uaccess.h
cannot be compiled into uaccess.o) but included in other files, KLASY can-
not easily find which object file (.o file) contains the machine instructions
corresponding to the line 32 in uaccess.h. Thus KLASY records the line 493
in acct.c as a join point since this line should be contained in acct.o, which is
obtained by compiling acct.c. However, according to the address information
produced by the -g option, the machine instructions for the member access
correspond to the line 32 in uaccess.h. It does not correspond to the line
493 in acct.c. Although this design is suitable for debuggers, KLASY cannot
find the machine instructions for the member access at line 493 in acct.c. To
solve this problem, we modified gcc. The parser of gcc associates the source
code after macro expansion:

fs = (current thread info()->addr limit);

with both the line 493 in acct.c and the line 32 in uaccess.h. These two line
numbers associated with the code is removed by the RTL (register transfer
language) generator and only the line 32 in uaccess.h is associated after that.
We modified the RTL generator and the sub systems following the RTL gen-
erator, such as an RTL optimizer, and an assembler (gas), so that they can
maintain multiple line numbers. In both systems, gcc and gas, multiple line
information of line numbers are reduced to one by default; only the top of
that information is remained and the others are eliminated. We changed
optimization code of gcc and code of debug information generator of gas to
have more than one mapping between lines and memory address of the lines.

Some readers might think that such complex implementation is unnec-
essary if all the source files of the Linux kernel are preprocessed in advance
by the cpp command with the -P option. This option suppresses gener-
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ating #line directives, which represent line numbers before preprocessing.
However, this approach loses the information of the original line numbers
and thus KLASY could not generate a helpful warning message including a
line number. Furthermore, the users would want to know the original line
numbers of the selected join points. Therefore, KLASY must maintain the
original line numbers by the approach described above. Another problem of
the cpp -P approach is that it cannot maintain correct line numbers if two
source lines are merged into one for optimization.

Also, KLASY can maintain multiple line numbers for inline functions.
Debug information has both information of a line number of an original
program and a line number of a header file that has the inline function at
the line. Although information for both an original program and the inline
function is stored in debug information of the kernel, debug information of a
header file will not used not to use join points twice.

To cope with a member access of a structure inside a parenthesis (or
surrounded by ’(’ and ’)’), we also modified the compiler. Problem cases
occur with the if, while, and for statement. Because of gcc limitation, a
mapping between a line number and a memory address is not made for a
statement in parentheses. For example, if the program is:

629: if (skb_copy_bits(skb, -head_copy_len, head + head_copy_off,

630: skb->len + head_copy_len))

then, only a mapping for the line 629 and the memory address for the line
is made while a mapping for the line 630 and its address is not be made.
If the developers write pointcut access(skb.len), skb->len in line 630 should
be selected. However, its address cannot be resolved since the mapping for
the line do not exist. Here we use the mapping for line 629 instead of the
mapping for line 630 since they are not far and they are in the same basic
block. To implement this feature, our compiler remembers the line number
where the statements that has ’(’ parenthesis exist, and uses its line number
instead of line numbers of statements in parentheses.

4.3.2 Dynamic weaving

An aspect is compiled by the aspect compiler of KLASY. The advice bodies
in the aspect are compiled into a loadable kernel module. It is loaded in the
kernel space by the insmod command of Linux. Then KLASY resolves the
memory addresses of the join points selected by pointcuts and KLASY inserts
hook code at those addresses by using Kerninst [71]. The hook code calls an
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Figure 4.3. Overview of KLASY

advice body when it is executed. The overall architecture is illustrated in
Figure 4.3.

KLASY resolves the memory address of a join point by analyzing the
symbol information produced by our extended gcc compiler. It first searches
the symbol information for the file name and the line number of each join
point selected by a given pointcut. Then it resolves the memory address
corresponding to that line number. Our extended compiler compiles the OS
kernel with the -g option and stores the extended address information in
the debug information section of the compiled binary code. The compiler
uses the DWARF 2 format [73] to construct the binary code. KLASY first
reads the .debug info section of the binary of the kernel and finds the ad-
dress information of the compilation unit that corresponds to the file name.
Since the address information consists of .debug line sections, KLASY reads
them to find the memory address that corresponds to the line number. In
KLASY, this resolution will be done by two daemons, symmapd and linemapd.
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Symmapd resolves line numbers and file names from a member access speci-
fied by the access pointcut. Linemapd analyzes debug information written in
DWARF 2 format, and resolves a memory address from a line number and a
file name. Note that mappings between member accesses and line numbers
are calculated and stored in a hash table before dynamic weaving starts for
performance improvement. Without calculating before weaving, weaving will
be too slow to use.

The minimum resolution of KLASY is a line since the symbol information
does not include the exact memory address that corresponds to an expres-
sion such as member accesses. Therefore, for example, a before advice is
executed not just before a join point such as a member access but before
the line including the join point (shadow) is executed. Some readers may
think that KLASY can pick the exact memory address by using the informa-
tion of the variable position pointcutted, which is in the symbol information.
However, we believe that this approach should often fail because the variable
position told in the symbol information is only warranted just before the line
is executed. Moreover, this approach spent so much time for weaving that
the developers would avoid using this tool. This limitation would not be a
serious problem if KLASY is used for debugging and profiling an OS kernel
because that resolution is the same as that of source-level debuggers and
typical profilers.

Since the compiler may merge multiple lines for optimization, some lines
including selected join points may disappear from the compiled binary.
KLASY cannot find the memory address of those lines. However, in that
case, KLASY tries to find the memory address of the line nearest to the orig-
inal line. KLASY increments and decrements the line number one by one
and tries to find the memory address of the line. When KLASY finds the
memory addresses of the two lines before and after the original line, it ex-
amines whether or not the two lines are in the same basic block. If they are,
KLASY adopts the memory address of the line before (or after) the original
line for a before (or after) advice. We assume that, if the two lines are in the
same basic block, the original line is also in the same block and the original
line is surely executed between them. Otherwise, KLASY prints a warning
message and ignores the join points included in the original line. The basic
blocks are computed by Kerninst.

If the memory address of a join point is found, KLASY inserts hook code
at that address by using Kerninst. Since an advice body is transformed into
a C function in a loadable kernel module, the hook code calls that function
with the address of the join point as an argument. More properly, the hook
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code calls the trampoline function, and the trampoline function will call the
function made from an advice body as will hereinafter be described in detail.
Here, we treat that the hook code calls the function made from an advice
body instead of the trampoline for ease of explanation. Kerninst substitute
a jump instruction for the original instructions at that address. The jump
instruction jumps to the hook code given by KLASY, which is placed some-
where else, and the original instructions are executed after the hook code. If
the size of the replaced instruction is too small to put the jump instruction (5
bytes), Kerninst uses a breakpoint-trap instruction, which is only one byte. If
the thread of control reaches that instruction, a trap handler is invoked and it
executes the hook code and the instruction replaced with the breakpoint-trap
instruction. Since the breakpoint-trap instruction causes software interrup-
tion and hence it implies a larger performance penalty than the jump in-
struction, Kerninst uses the breakpoint-trap instruction only when the jump
instruction cannot be substituted for the original instruction. If it is required
to weave multiple advice bodies at the same join point, KLASY generates a
trampoline function that calls multiple advice bodies in turn. The hook code
calls that function instead of advice bodies. This implementation is due to
limitations of the current version of Kerninst. Kerninst cannot insert more
than one hook code into the same execution point for executing several hook
code in turn.

4.3.3 Context exposure

The local var, target, and argument pointcut designators pass the value of lo-
cal variable, an accessed structure, or function arguments, to an advice body;
they can pass a value of execution context at a join point. For implement-
ing this feature, KLASY also manipulates the trampoline function, which
bridges between hook code inserted by Kerninst and an advice body. When
a trampoline function is called by hook code, it obtains a value of execution
contexts and passes it to an advice body as an argument.

To obtain the value of a local variable or a function argument, KLASY
reads the .debug info section of the kernel binary to know the register number
or the memory address of that variable. The .debug info section is generated
by the -g option to the gcc compiler. The -fno-omit-frame-pointer option is
also used to remain a frame pointer to know an accurate position of a lo-
cal variables. Since the frame pointer management is required and frame
pointer cannot be used as regular register, the -fno-omit-frame-pointer op-
tion will cause performance degradation. With the -fno-omit-frame-pointer
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option, the value of esp register is copied to ebp register at the beginning
of each function. We do not think this is a big drawback because the same
performance degradation will be caused if the developers use debugger. That
is because debugger, for example gdb, cannot get proper value of local vari-
ables without the frame pointer. If a register is allocated to a variable, it is
saved by Kerninst on stack memory before a trampoline function is called
and thus KLASY reads the stack memory to obtain the value of such a reg-
ister variable. On the other hand, if a stack frame is allocated to a variable,
KLASY reads the saved value of ebp register to obtain the address of that
stack frame and computes the memory address for a variable based on that.

If a pointcut includes access and target, a trampoline function must ob-
tain the address of an accessed structure specified by access. If that structure
is referred to by a local variable, KLASY obtains the value of that local vari-
able by the way mentioned above and computes the address. For example,

inode.length
inode ptr->length

If these accesses are selected by a pointcut, the addresses of the target struc-
tures are the values of &inode and inode ptr. Our extended gcc compiler
generates extra symbol information of how those values are computed from
local variable inode and inode ptr. We modified the parser of gcc to traverse
abstract syntax tree made by the parser when the member access occur.
KLASY computes the addresses according to that symbol information.

The target structure can be indirectly pointed. Suppose that p is a local
variable.

p->thread->fs

If the member access to fs is selected by a pointcut, the address of the target
structure is p->thread. Our compiler also generates symbol information of
how the address is computed. A local variable and an intermediate member
can be an array type. For example, our compiler generates symbol informa-
tion for the following access:

p[0]->threads[1]->fs

However, our compiler does not generate such symbol information if an
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<aspect>

<advice>

<pointcut>execution(check_free_space())

</pointcut>

<before>printk("execution of check_free_space");

</before>

</advice>

</aspect>

Figure 4.4. An example of execution pointcut

access is something like this:

current thread info()->exec domain

since current thread info() is a function call. Since calling it twice may cause
unexpected side effect, our compiler will avoid this. Our compiler generates
symbol information for computing a target address only if the address is a
member of a structure directly or indirectly referred to by a local variable.
If the target address is computed by an expression that KLASY does not
support, our compiler reports an error.

4.3.4 Execution pointcut

KLASY also support the execution pointcut designator, which select function
execution as a join point. For example, Figure 4.4 is an aspect that prints a
trace message when a function check free space is executed. Note that wild
card can also be used with the execution pointcut, and the execution pointcut
can be combined with other pointcut by using AND and OR as explained
before.

The implementation of the execution pointcut is simple because the sym-
bol information generated by a normal C compiler (in our case, gcc) includes
the memory address of function entry points. KLASY uses Kerninst for in-
serting hook code, which calls an advice body when executed. If an advice
is a before advice, KLASY inserts the hook code at the entry point of the
specified function, that is, at the beginning of the function body. If an ad-
vice is an after advice, KLASY inserts the hook code at the exit point of the
function. This insertion is processed by Kerninst. Note that both the entry
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point and the exit point of the specified function are calculated by Kerninst.
Due to the limitations of Kerninst, the execution pointcut cannot be used
with a static function or an inlined function. Again, only a pointcut used
with the execution pointcut is the argument pointcut, and no other pointcuts
can be used with the execution pointcut.

4.3.5 Unweaving

KLASY supports unweaving of an aspect during runtime. KLASY records
all the aspects that have been woven and, when the users request KLASY to
unweave one of the aspects, KLASY removes the hook code inserted for that
aspect, or removes the calls of the advice bodies from the trampoline func-
tions. The modification of the binary code is processed by using Kerninst.
KLASY updates all the trampoline functions and advice bodies, compiles
them to the loadable kernel module, replaces the loadable kernel module,
and inserts hooks by Kerninst again. The users can run a command for
unweaving an aspect with the name specified by a command-line argument.
For example,

% klasy unweave inode trace.klasy

unweaves an aspect named inode trace.

4.4 Summary

In this section, we present KLASY, which is our dynamic aspect-oriented
system for debugging or profiling the Linux kernel. We developed the source-
based binary-level dynamic weaving technique for implementing KLASY and
thus KLASY allows users to pointcut member accesses to structures. It is an
important feature since selecting member accesses to a few structures related
to a profiling is much simpler than selecting a large number of functions
related to a profiling. In the C language, structures are often shared among
functions implementing the same concern. They are units of modules as
classes in Java and C++. It also provides pointcut designators for accessing
local variables and target structures. Allowing accesses to local variables
might be inappropriate with respect to modularization but KLASY is mainly
for profiling and debugging. Since accessing local variables is necessary in
those domains, we relaxed modularization concern.
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Our dynamic weaving technique uses a modified C compiler that generates
extended symbol information, which the dynamic weaver refers to for finding
the memory addresses of the join points (shadow) selected by pointcuts. The
dynamic weaver modifies the binary code of a running kernel so that hook
code for executing an advice body is embedded at those addresses. The
extended symbol information also enables accesses to target structures.

The contributions of this study are to present the source-based binary-
level dynamic weaving and to discuss limitations of that approach. One
drawback of that approach is that our modified gcc compiler does not opti-
mize as well as the original gcc since our compiler must generate extended
symbol information. We will do some experiments for measuring overheads
caused by this drawback. Another drawback is that an aspect weaver may
fail to find some join points selected by a pointcut if a compiler performs
serious code motion for optimization.
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5
The Xflow Pointcut and XenLASY

In this chapter, we propose XenLASY [79], which is a dynamic AOP system
providing the xflow pointcut. The xflow pointcut is a pointcut for select-
ing a data flow manually defined by the developers. Since OS kernels are
multi-threaded applications, support of the pointcut is important. With the
pointcut, the developers can keep tracing even after a thread manipulating
data changed. The developers can define where to start tracing, where to
transit tracing, and where to quit tracing. According to the definition, Xen-
LASY will automatically start, propagate, and end a data flow. Without the
xflow pointcut, the situation become difficult. Conceivable alternates are us-
ing a cflow (aka. control flow) and a naive data flow. The developers cannot
keep tracing with cflow after a thread changes. The developers cannot keep
tracing with a naive data flow after a structure of data changes. Note that
each flow has its own ID number, and the developers can distinguish one flow
from another.

Another benefit of the xflow pointcut is that the developers can avoid
logging unnecessary data. With the xflow pointcut, the developers can select
data that is related to a data flow they defined. It is done automatically by
XenLASY according to the definition. With this feature, amount of memory
needed for logging can be reduced.

A remarkable feature of XenLASY is that it supports tracing between
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virtual machines (VMs) through the Xen virtual machine monitor (VMM).
With this feature, the developers can keep tracing from Domain U to network
via Domain 0. Note that Domain 0 is a privileged VM that can handle
physical devices, while Domain U is a VM that request I/O for Domain 0. For
implementing this feature, the ID number attached to each flow is propagated
with data through the Xen VMM. It is also automatically done by XenLASY.
The way of propagation is also defined by the developers.

The rest of this chapter is organized as follows. Section 5.1 explains why
the xflow pointcut is required in details. Section 5.2 shows syntax and usage
of the xflow pointcut. Section 5.3 shows how to define the xflow pointcut.
Section 5.4 explains an implementation of the xflow pointcut. We compare
our study with other systems in Section 5.5, and we conclude this chapter in
Section 5.6.

5.1 Necessity of the xflow pointcut

Performance tuning used to work well inside an OS kernel because all the
devices and user processes are administrated by it. All bottlenecks used to
be fixed by modifying an OS kernel. There was a performance improvement
technique for a disk I/O named anticipatory scheduling [37]. This technique
will delay requesting a read operation to reduce disk-seek overhead.

After virtual machine (VM) becomes widely used, performance tuning
should be done not inside OS kernels but whole system including each VM
and VM monitor (VMM). That is because hardware is shared by several
VMs. In this case, even if the developers tune up one of the VMs, it will
not cause performance improvement of whole system. Moreover it will not
improve performance of the VM. For example, anticipatory scheduling, stated
above, will not work well on VM [38]. Although anticipatory scheduling need
accurate estimation of a position of a disk head, it is difficult to do for an
OS kernel on VM. This will cause frequent seeking of the disk head.

Performance tuning that considers Domain 0 is required for the Xen vir-
tual machine monitor [8] in particular. Domain 0 is a privileged VM that can
manipulate a real hardware. All the other domains, called Domain U, will
request I/O operation to Domain 0 as showed in Figure 5.1. Since the entire
request is passed from Domain U to Domain 0, the number of bottleneck
candidates will increase. For example, a process of requesting I/O operation
from Domain U to Domain 0, scheduler of VMs, a process of requesting I/O
operation to a real hardware in Domain 0 can be bottlenecks. In fact, there is
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Figure 5.1. I/O flow of Xen

a report that shows the process of requesting I/O operation from Domain U
to Domain 0 is a bottleneck [53]. If more than one Domain U publish I/O
request, congestion will occur among these domains. Then, each domain
should wait for their turn.

To investigate performance bottlenecks under this situation, performance
profiler should be able to trace I/O flow from Domain U to Domain 0. Since
bottleneck candidates can exist among whole system, the developers should
want to investigate performance bottlenecks of each flow. If they can distin-
guish a flow from the other flows, they can save their trouble. However, call
flow (aka. cflow or control flow) is not sufficient for this use. I/O flow among
some domains cannot be traced by call flow. Moreover, since I/O manipula-
tion inside an OS kernel is done at two parts, top-half and bottom-half, I/O
flow cannot also be traced this point. Note that top-half is an I/O manipu-
lation to provide I/O system call for a user land process and bottom-half is
an I/O manipulation to manage a real device. They are executed in different
threads to minimize a time for interrupt handler execution.

On the other hand, a naive approach of tracing data flow is not sufficient
for tracing I/O flow from Domain U to Domain 0. The approach cannot
chase I/O flow if a data structure of the I/O flow changes. A data structure
will change from sk buff, which is used inside the Linux kernel, to raw data in
shared memory, this approach cannot trace I/O flow between domains. The
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naive approach cannot trace if the data of the flow is copied or separated. For
example, if copy of the data is made for retransmission of TCP or the data
is separated to smaller size for realize fragmentation, the developers cannot
trace the I/O flow.

5.2 The xflow pointcut

To enable profiling over virtual machines, we propose XenLASY. XenLASY
provides the xflow pointcut for tracing a data flow of I/O processing on Xen.
It will select points where specified data is in a data flow defined by the
definition of the xflow The definition of the xflow pointcut specifies where a
data flow starts, how a data structure of a data flow is changed, and where a
data flow ends. Each data flow is distinguished by the ID number. We call
the ID number as the flow ID. XenLASY will automatically assign a unique
number to each data flow defined by the definition of the xflow pointcut.

OS kernels are multi-threaded application, and data is manipulated by
several threads for achieving purpose inside it. For example, network I/O will
be processed at system call parts and device driver parts. They are executed
in different threads to make device driver work well. Profiling by tracing a
call flow is not sufficient since functions are not called one after another in
the kernel for sending or receiving data. Moreover, a call flow will end when
the executing thread changes.

Tracing mechanism that can pursuit over domains is needed. Since data
is propagated among domains, call flow will be broken at the point where
a data is passed to the Xen virtual machine monitor (VMM). Since each
I/O request is passed through Domain 0, the developers cannot trace whole
flow from a system call to device driver. This is crucial problem to investi-
gate performance bottlenecks. That is because many performance bottleneck
candidates exist outside the domain such as Domain 0 and the Xen VMM.

Providing a proper abstraction is important for AOP development. As-
pectJ provides the cflow pointcut that is similar to the xflow pointcut. The
cflow pointcut selects a span that starts from a calling of a function and fin-
ishes at the returning of the function. On the other hand, the xflow pointcut
selects a data flow that manipulates specified data. Since the xflow pointcut
if for tracing a data flow, developers can keep on tracing even after a thread
that manipulate the data changes. Moreover, if developers describe the way
clearly, the xflow pointcut enables them keep tracing even if a VM changes.
It is possible for developers to do the same thing without the xflow pointcut
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by manually writing a code by hand. (Note that it is difficult to write sim-
ple macros for this. We will write about this after) However, the developers
can simplify the profiling code by using the xflow pointcut if they define the
definition of the xflow pointcut once.

Figure 5.2 is an example of aspect using the xflow pointcut. Pointcuts
are written inside a block of pointcut elements and codes are written inside
a block of before and after elements. In this case, a developer uses the flow
named netflow, which is a data flow of network I/O. The access pointcut
in Figure 5.2 select an execution point where any member (%) of sk buff
structure is accessed. An advice code will be executed if the selected structure
instance is data of a data flow whose name is netflow.

As shown in above, selection of a data flow can be done by passing a
name of a flow and a name of a variable as arguments of the xflow pointcut.
Its syntax is:

xflow(flow name, variable name, flow id)

In this example, reference to the sk buff structure instance is got by the
target pointcut, and it is named as skb. If skb is a data of the netflow data
flow, advice code will be executed. Each flow can be identified by a unique
ID number. The ID number can be obtained as a variable whose name is
specified by 3rd parameter of the xflow pointcut. Note that this parameter
can be omitted if developers do not use the ID number. At this time, syntax
will be:

xflow(flow name, variable name)

For example, developers can write:

xflow(netflow, skb)

to select a data of the netflow flow.
Advice code in Figure 5.2 will store a program counter ($pc$) of the

selected point, a flow id (id) and a time stamp (tsc). Note that DO RDTSC is
a macro to get a value of current time stamp counter, and STORE DATA3 is a
macro to store given data to kernel memory for reading from userland process
later. There is a series of STORE DATA* family to store some variables to
kernel memory; for example, STORE DATA1 for storing one variable, and
STORE DATA2 for storing two variables. Since STORE DATA* family will
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<advice>
<pointcut>

access(sk_buff.%) AND target(skb) AND
xflow(netflow, skb, id)

</pointcut>
<before>

long long tsc;
DO_RDTSC(tsc);
STORE_DATA3($pc$, tsc, id);

</before>
</advice>

Figure 5.2. An aspect using xflow pointcut

first get a spin lock before storing data, conflict of each STORE DATA* for
storing data will be avoided. By using this, developers can know when and
where data of a specified flow passed later.

5.3 The definition of the xflow pointcut

Figure 5.9 is an example of the definition of the xflow pointcut. Note that
we also call this definition as the xflow pointcut definition. The flow of the
example traces from alloc skb from cache function, where structure instance
is made, via skb clone function, where it is copied, to kfree skb function,
where structure instance freed. Developers can define the definition of the
xflow pointcut with a description like the example. It will be written sep-
arately from the advice block. The name of each xflow is given by name
attribute, and will be used for selecting the definition of the xflow pointcut
in advice. Developers can write any keywords here. For example, developers
want to name it as disk io, the description will be:

<xflow name=”disk io”>

There are rules that are written in the definition of the xflow pointcut to
specify a start point (the start element) and an end point (the quit element).
The transit element is also used to specify a relay point for keeping tracing
after a data structure changes. By using these rules, tracing can be continued
after changes of threads, domains, and data structures. Moreover, logging
unnecessary data will be avoided by precisely writing the rules. At the start
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<start>
<pointcut>

access(sk_buff.data) AND
within_function(netif_receive_skb)

</pointcut>
</start>

Figure 5.3. An example of the start element

and end points, the developers specify data and position for tracing by writ-
ing pointcuts. At the beginning of tracing, a pair of a pointer to structure
instance and newly created ID number is stored to a table. Note that struc-
ture instance is specified by a pointcut. At the end point, the pair is removed
from the table not to be able to get the ID number from the pointer to the
structure instance. If developers want to start a data flow from accessing
data member of sk buff structure in netif receive skb function, they will write
the start element like shown in Figure 5.3. Although this code do not have
a code snippet for registering the flow ID number to the table at a glance,
XenLASY automatically add the code for registration.

The developers can write the transit element in the definition of the xflow
pointcut to enable developers to get the flow ID number even after a copy
of data and a change of data structure. For example, since sk buff instance
will be copied for retransmission of a TCP packet, the copy cannot be traced
by simple tracing of a data flow. The transit element will solve this problem.
By writing this, an ID number of a structure instance of copy source will
be stored to the table as the ID number of a structure instance of copy
destination. Both copy source and destination are specified by the names of
local variables that contain structure instances in them. We will write details
later.

Selection of these points can be done with a pointcut as we showed be-
fore. An instruction for specifying a structure instance to store into or remove
from the table can be omitted in the start element and the quit element. If
it is omitted, the structure instance specified by the access pointcut will be
selected. To select the other variables, developers should write the select ele-
ment to specify the variable that contains a structure instance. For example,
selecting the local variable named data will be written as:

<select local var=”data” />

If developers want to use data variable in alloc skb from cache function, the
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<start>
<pointcut>

access(sk_buff.data) AND
within_function(alloc_skb_from_cache) AND

</pointcut>
<select local_var="data" />

</start>

Figure 5.4. An example of the select element

<start>
<pointcut>

access(sk_buff.data) AND
within_function(netif_receive_skb) AND
target(skb)

</pointcut>
<action>

... some code for registering ID number ...
</action>

</start>

Figure 5.5. An example of the action element

code will be in Figure 5.4.
To write a registration code by themselves instead of using normal way of

registration, there is the action element to specify the code. Figure 5.5 is the
example for using the action element. If developers use the action element,
they should add a pointcut designator to get a local context. target(skb) is
used to get a local context in Figure 5.5. The code developers can write
inside the action element is the same as that of the before or after advice.
Using the action element is not admirable because all the code should be
written by themselves, which is to annoying to do. The action element is
also supported by the transit element and the quit element. Figure 5.6 and
Figure 5.7 are examples. As the same as the action element used with the
start element, the developers should write the target pointcut or the local var
pointcut to get local contexts by themselves.

The move element in the transit element specifies a source and destination
variable name of structure instances for propagating a flow ID number. In
this example, since skb variable is written in the from attribute and n variable
is written in the to attribute, the flow ID number associated with the skb
variable will be succeeded by n variable at the specified pointcut. After
propagation, an entry that represents a pair of the passed ID number and
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<transit>
<pointcut>

access(sk_buff.data) AND
within_function(netif_receive_skb) AND
target(skb) AND local_var(data)

</pointcut>
<action>

... some code for registering ID number ...
</action>

</transit>

Figure 5.6. An example of the action element with the transit element

<quit>
<pointcut>

access(sk_buff.data) AND
within_function(netif_receive_skb) AND
target(skb)

</pointcut>
<action>

... some code for registering ID number ...
</action>

</quit>

Figure 5.7. An example of the action element with the quit element

skb variable will be removed from the table. If developers want to remain
the entry, they should use the copy element instead of the move element. If
they use the copy element, the ID number will be got from both skb variable
and n variable after propagation. Figure 5.8 is an example using the copy
attribute. In the example, since the copy element is used instead of the move
element, the ID number can be resolved from structure instances in both skb
variable and n variable after execution of skb clone function. Note that the
transit element should have either the move element or the copy element in
it but cannot have both. If syntax is wrong, an error will occur.

5.3.1 The definition for inter-domain transit

We provide the xin move, xin copy, xout move and xout copy elements to en-
able propagation of an ID number over the Xen VMM. They can be written
inside the transit element. We showed usage of the transit element in Sec-
tion 5.3, which cannot be used for propagating an ID number over the Xen
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<transit>
<pointcut>

access(sk_buff.head) AND
within_function(skb_clone)

</pointcut>
<copy from="skb" to="n" />

</transit>

Figure 5.8. An example of the copy attribute of the transit element

VMM. Since an ID number is gotten from a pointer to structure instance, it
will not be gotten in a different domain that do not share an address space
and the table. Moreover, since a data structure will change dramatically for
sending data from a domain to the other, a simple binding mechanism, which
will get an ID number from a pointer to a structure instance, will not work
well.

Figure 5.11 is an example of the definition of the xflow pointcut for inter-
domain transit. This description represents tracing of a network I/O data
passed from Domain U to Domain 0. Data used in each domain will be
separated to a header part and a data part by a pseudo-device driver when
it is passed through the Xen VMM. The data part will be passed by using
a shared memory. A header part will represent the position of the shared
memory that has the data part. The header part will be passed separately
from the data part. In XenLASY, the ID number will be stored inside the
header part for propagating it over the Xen VMM. It will be extracted at
a destination domain. In this example, the flow ID number got from skb
variable will be stored into tx variable at the point where flags member of
netif tx request structure is accessed in the netfront.c file of the linuxU domain.
Note that tx variable is a variable of a header part for network I/O, and
linuxU is one of Domain U type domains. The data of tx variable in the
linuxU domain is accessed as the data of txp variable in the linux0 domain.
Note that the linux0 is the Domain 0 type domain. The ID number stored
inside txp variable will become the flow ID number of skb variable at the point
where flags member of netif tx request structure is accessed in the netback.c
file of the linux0 domain. They are instructed by the xin move and xout move
elements.

The xin move element represents how a flow ID number is stored to the
header part, and the xout move element represents how a flow ID number
is extracted from the header part. The name attribute will be given at the
xin move element. It will be referred by the name attribute in the xout move

THE XFLOW POINTCUT AND XENLASY 72



The definition of the xflow pointcut

<xflow name="netflow">
<start>

<pointcut>
access(sk_buff.data) AND
within_function(alloc_skb_from_cache)

</pointcut>
</start>
<transit>

<pointcut>
access(sk_buff.head) AND
within_function(skb_clone)

</pointcut>
<move from="skb" to="n" />

</transit>
<quit>

<pointcut>
access(sk_buff.%) AND
within_function(__kfree_skb)

</pointcut>
</quit>

</xflow>

Figure 5.9. An example of the definition of the xflow pointcut

element or the xout copy element later. The name attribute of the xin move
or xin copy element and the name attribute of the xout move or xout copy
element should be in concord. For example, if developers write:

<xin move name=”xennet” from=”skb” to=”tx” >

...omitted...
</xin move>

for sending the flow ID number. Then, they should also write:

<xout move name=”xennet” from=”txp” to=”skb” >

later to receiving it. Again, the name field should be in concord. The from
attribute of the xin move element represents a name of a variable that has the
ID number to be propagated. The to attribute of the xin move represents a
name of a variable that the ID number will be stored into. The field element,
which follows the xin move element, shows a bit field used for storing the
ID number. The offset attribute represents an offset of a bit field and the
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<xin_move name="netin" from="skb" to="tx" />
<field name="flags" offset="4" size="12" />
<field name="offset" offset="4" size="12" />
<field name="size" offset="4" size="12" />

</xen_move>

Figure 5.10. An example of the multiple field elements

size attribute represent a size of a bit field. Following code from Figure 5.11
represents using of flags member from least 4 bit to 16 bit:

<field name=”flags” offset=”4” size=”12” />

Note that flags member is a member of a structure whose instance is given by
the to attribute of the xin move or xin copy element. Multiple fields can be
used to send the flow ID number if developers write multiple field elements.
The flow ID number is stored from lower bit to upper bit. The example for
using the multiple field elements is shown in Figure 5.10. In Figure 5.10, the
flags member, the size member and the offset member are used to store the
flow ID number. They are in netif tx request structure instance whose pointer
is in tx variable. If the flow ID number does not go in the specified member, a
series of upper bits will be ignored. This limitation will not be a big problem
since data of the specified data can be distinguished by sorting with a time
stamp even if some upper bits are eliminated. The flow ID number assigned
to skb variable will be removed at the propagation time if developers use the
xin move element. If they use the xin copy element, the assignment will be
remained. The xout copy element will also remain the assignment besides
the xout move element will remove it. These mechanisms enable developers
to keeping tracing even if domains manipulating the data are changed.

@ is used inside within file pointcut to specify a domain name where an
aspect will be woven. An example is shown in Figure 5.11. As we mentioned
before, within file pointcut will be used to limit a range of join points inside
a specified file. With @, it can also limit a range of join points inside the
specified file in the specified domain. For example, netfront.c@linuxU means
that join points are limited in netfront.c file of linuxU domain. @ is also used
with within function pointcut, which will limit join points to the specified
function in the specified domain. If no @ is specified, join points in all
domains can be selected. It means that an aspect will be woven into the
entire domain.
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<transit>
<pointcut>
access(netif_tx_request.flags) AND
within_file(drivers/.../netfront.c@linuxU)

</pointcut>
<xin_move name="netin" from="skb" to="tx" />
<field name="flags" offset="4" size="12" />

</xen_move>
</transit>
<transit>
<pointcut>
access(netif_tx_request.flags) AND
within_file(drivers/.../netback.c@linux0)

</pointcut>
<xout_move name="netin" from="txp" to="skb" />

</transit>

Figure 5.11. Xflow definition for inter-domain transit

5.4 Implementation of the xflow pointcut

We implemented XenLASY by extending KLASY, which we implemented
before. The main points of extension are extending aspect language for
supporting xflow, implementation of distribution mechanism, and revision of
Kerninst, which we uses to insert a code into a running kernel, for supporting
domains on Xen. This section describes these points one by one.

5.4.1 Extension of aspect language

This section shows how the real code made from the xflow definition shown in
Section 5.2. Then, we introduce how the xflow pointcut will be translated into
normal aspects. Note that code made from the definition of the xflow pointcut
will be woven before other normal aspects. Because of this mechanism, the
developers do not have to care for the order of aspects weaving even when
they use the xflow pointcut.

For example, the start element in Figure 5.9 will become code in Fig-
ure 5.12. This aspect first get a pointer to a structure selected by the access
pointcut by using the target pointcut, then it is stored into the table with a
newly created ID number. For this purpose, the target pointcut will be auto-
matically added to the original pointcuts. Note that get new flowid function
will generate a newly created ID number and register flowid function will
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<advice>
<pointcut>
access(sk_buff.data) AND
within_function(alloc_skb_from_cache)
AND target(random_string)

</pointcut>
<before>
register_flowid(netflow, random_string,
get_new_flowid());

</before>
</advice>

Figure 5.12. A code example for the start element

store a pair of a pointer to a structure instance and the flow ID number to
let developers look it up from the pointer to the structure instance later.
If the select element is used, the local var pointcut will be used instead of
the target pointcut. In this case, a local variable is used as a pointer to a
structure.

The transit element in Figure 5.9 will become code in Figure 5.13. This
aspect will get the flow ID number assigned to the structure instance in skb
variable specified by from attribute, and store a pair of the flow ID number
and the structure instance in n variable to the table. References to skb
variable and n variable are got by using the local var pointcut, and *skb
and *n are their value. For example in Figure 5.9, following pointcuts are
automatically added to the original pointcuts:

AND local var(skb, random str1)
AND local var(n, random str2)

Note that get flowid function is used to get a flow ID number from a pointer to
a structure instance. The ID number assigned to the structure instance in skb
variable will be eliminated since the move element is used. If developers want
to remain the flow ID number, then they should use the copy element instead
of the move element. If they use the copy element, remove flowid(netflow, skb)
will not be executed. An example code using the copy element is shown in
Figure 5.14.

The first transit element in Figure 5.11 will be translated into code in
Figure 5.15. Even for the transit element that has the xin move element in
it, references to the local variables specified by the from attribute and the to
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<advice>
<pointcut>
access(sk_buff.head) AND
within_function(skb_clone)
AND local_var(skb, random_str1)
AND local_var(n, random_str2)

</pointcut>
<before>
void *skb = *(void**)random_str1;
void *n = *(void**)random_str2;
int id = get_flowid(netflow, skb);
if (id != 0) {

register_flowid(netflow, n, id);
remove_flowid(netflow, skb);

}
</before>

</advice>

Figure 5.13. A code example for the transit element

attribute will be got by following pointcut:

AND local var(skb, random str1)
AND local var(tx, random str2)

as the same as the transit element is used with the move element or the
copy element. To store the flow ID number into a header transferred among
domains, the flow ID number is got from the structure instance in skb vari-
able by using get flowid function, and stored into members of the structure
specified by to attributes of the xin move or xin copy element. The members
used for storing the flow ID number are specified by the field elements in
the xin move element or the xin copy element. The field elements can occur
in multiple times. Note that the flow ID number assigned to skb variable
is removed from the table by remove flowid function because the xin move
element is used. The remove flowid function will remove an entry of the flow
ID number and the pointer to the structure instance from the table. The
xout move element in the 2nd transit element of Figure 5.11 will do a reversed
procedure done by the code for the xin move element. The code for this will
get the ID number from a header, then store it to the table at the domain
where the flow ID number is read. The code for the transit element with
the xout move element is shown in Figure 5.16. The quit element will be
translated to the code similar to the start element. The code will remove the
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<advice>
<pointcut>
access(sk_buff.head) AND
within_function(skb_clone)
AND local_var(skb, random_str1)
AND local_var(n, random_str2)

</pointcut>
<before>
void *skb = *(void**)random_str1;
void *n = *(void**)random_str2;
int id = get_flowid(netflow, skb);
if (id != 0) {

register_flowid(netflow, n, id);
}

</before>
</advice>

Figure 5.14. A code example for the transit element used with the copy element

ID number from the table by calling remove flowid function instead of regis-
ter flowid function. The code translated from the quit element in Figure 5.9
is shown in Figure 5.17.

The aspect shown in Figure 5.2 will be translated into the code in Fig-
ure 5.18. The aspect has the xflow pointcut in its pointcut element. At the
time code using the xflow pointcut is woven, it is translated into the code
using get flowid function. If the flow ID number cannot be got from get flowid
function, advice will not be executed. Note that a random string will be used
as the name of the variable that contains the flow ID number if developers
omit the third parameter of the xflow pointcut. The random string is long
enough that probability of collision between it and other strings is negligible.
For example, the aspect in Figure 5.19 will be translated into Figure 5.20.

It is difficult to implement transformation from the xflow pointcut and
the definition of the xflow pointcut to an aspect code by simple macro trans-
formation. That is because a flow name used in the xflow pointcut is judged
to be effective or not at compile time. The name should be one of the
names given by the name fields of the definition of the xflow pointcut. A
similar mechanism is used to refer the way to store the flow ID number in
xin move and xin copy from xout move and xout copy. Moreover, it is difficult
to implement the transformation by macro transformation since the name
of the variable specified the xflow pointcut is also validated at compile time.
For validation, pointcuts should be parsed before translation. It also makes
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<aspect>
<pointcut>
access(netif_tx_request.flags) AND
within_file(drivers/.../netfront.c@linuxU)
AND local_var(skb, random_str1)
AND local_var(tx, random_str2)

</pointcut>
<before>
void *skb = *(void**)random_str1;
struct netif_tx_request *tx = *(void**)random_str2;
int id = get_flowid(netflow, skb);

if (id != 0) {
tx-&gt;flags |= id &lt;&lt; 4;
id &gt;&gt;= 12;
remove_flowid(netflow, skb);

}
</before>

</aspect>

Figure 5.15. A code example for the xin move element of the inter-domain
transit

macro transformation difficult the developers can omit some of code in the
definition of the xflow pointcut. That is because XenLASY should remember
some status to support this feature. One of the examples for this is that the
third parameter of xflow pointcut can be omitted, which should prepare a
unique variable name for storing an ID number.

5.4.2 Distribution of aspects

Control of weaving and unweaving aspects can be centralized since aspects
are automatically distributed to target domains. Distribution will be done
to domains that are specified by pointcuts. Each domain has a runtime
program for coping with distribution of aspects and dynamic weaving as
shown in Figure 5.21. For weaving, compiled advices and a list of execution
points to insert hooks generated from pointcuts will be sent to the runtime
on each domain. Then, the runtime will load the compiled advice to the
kernel, and the hooks are inserted according to the list. If @ is used in the
within file pointcut or the within function pointcut, an advice related to this
pointcut will be woven only into the domain specified by the @ designator.
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<aspect>
<pointcut>
access(netif_tx_request.flags) AND
within_file(drivers/.../netback.c@linux0)
AND local_var(skb, random_str1)
AND local_var(txp, random_str2)

</pointcut>
<before>
struct netif_tx_request *txp = *(void**)random_str1;
void *skb = *(void**)random_str2;
int id = 0;

id |= (tx-&gt;flags &gt;&gt; 4) &amp; 0xfff;
tx-&gt;flags &amp;= 0xfff &lt;&lt; 4;
if (id != 0) {

register_flowid(netflow, skb, id);
}

</before>
</aspect>

Figure 5.16. A code example for the xout move element of the inter-domain
transit

5.4.3 Extension of Kerninst

Since Kerninst did not work correctly on an OS in a domain of Xen, we
extended it. The bare bones of extensions are following two points. One
is about manipulation of the interrupt table. The other is a judgment of a
kernel mode.

Kerninst is a dynamic code instrumentation tool. It can modify a code of
a running kernel on an x86 processor. It will use a jump instruction (jmp) or
a break point trap instruction (int3) as a hook for modifying kernel behavior.
If a thread reached the hook, it will execute the code given by Kerninst, and
then return to the original code. The jump instruction is used if there is
enough space (5 bytes); otherwise the break point trap instruction is used. If
the break point trap instruction is used, a program counter will be changed
to the beginning of the code given by Kerninst in a trap handler, and return
to the modified program counter.

Kerninst will modify do int3 function of Linux, which is a trap handler for
int3 instruction for implementing this feature. Kerninst will directly refer the
interrupt table at modification time to know the memory address of do int3
function. However, this operation needs a privilege and each domain cannot
execute the operation. The reason why Kerninst reads the interrupt table is
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<advice>
<pointcut>
access(sk_buff.%) AND
within_function(__kfree_skb)
AND target(random_string)

</pointcut>
<before>
remove_flowid(netflow, random_string);

</before>
</advice>

Figure 5.17. A code example for the quit element

<advice>
<pointcut>
access(sk_buff.%) AND target(skb)

</pointcut>
<before>
int id = get_flowid(netflow, skb);
if (id != 0) {
long long tsc;
DO_RDTSC(tsc);
STORE_DATA3($pc$, tsc, id);

}
</before>

</advice>

Figure 5.18. A code example for the xflow pointcut

that do int3 function is a static function, whose symbol is not exported. Since
Xen do not provide an API to refer the interrupt table, we modified Linux
kernel source code to export do int3 function. We also modified Kerninst to
use the exported symbol information of the function instead of analyzing the
interrupt table.

Kerninst executes its code only if the break point trap occurs inside an OS
kernel. Since Kerninst judges a kernel execution mode before executing its
code, we modified the check routine of Kerninst to support execution inside
a kernel in a domain of Xen. do int3 function is always called at the time
the break point trap occurs. Thus, it is also called even if the trap occurs
from a user-land program. Kerninst distinguishes whether the trap occurred
from a kernel or a user-land by using the CR3 register, which shows current a
privilege-level. In native Linux, ring 0 shows a kernel mode and ring 3 shows
a user-land mode. However, if running Linux on Xen, ring 0 is used by VMM
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<advice>
<pointcut>
access(sk_buff.%) AND target(skb)
AND xflow(netflow, skb)

</pointcut>
<before>

... here is the advice ...
</before>

</advice>

Figure 5.19. The xflow pointcut without the 3rd parameter

<advice>
<pointcut>
access(sk_buff.%) AND target(skb)

</pointcut>
<before>
int random_str = get_flowid(netflow, skb);
if (random_str != 0) {

... here is the advice ...
}
</before>

</advice>

Figure 5.20. A code example for the xflow pointcut without the 3rd parameter

and ring 1 is used for a kernel. We modified Kerninst to distinguish ring 1
as a kernel-mode.

5.5 Related Work

There are sophisticated tools that have an ability to trace an I/O flow. A
good example is a profiler. There are profilers for tracing a data flow over a
network, and profilers that supports tracing the Xen virtual machine monitor.
Another good example is an AOP system. There are AOP systems for tracing
a data flow and that for distributed environment. From next section, we will
take a look at some of those tools one by one.
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Figure 5.21. How to distribute aspects

5.5.1 Existing tracers

MagPie [9, 7] and CauseWay [14, 13] are good examples of profilers for trac-
ing over multiple modules and hosts. MagPie will store log data at run time
for investigating the log data to find performance bottlenecks later. Cause-
Way is a system to trace a series of I/O flow by passing meta-data with each
data. Since XenLASY can store an ID number as meta-data, it is similar
to CauseWay. While Causeway needs some extension to a kernel for passing
meta-data at run time, XenLASY do not need such source code modification
and negligible overhead at run time. While developers using MagPie can-
not change behavior by using profiling result at run time, developers using
XenLASY can change its behavior at run time.

Pinpoint [15, 16] is a tracer for a distributed environment. It automat-
ically traces a request flow without any definitions. It tags each call with
a request ID. This approach is similar to the xflow pointcut. However, its
target application is much different. Pinpoint is made for fault analysis by
using statistical approach. Besides, the developers using the xflow point-
cut store timestamps to investigate performance bottlenecks. Moreover, the
target application of Pinpoint is J2EE, and it does not support profiling of
operating systems on a virtual machine monitor.
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5.5.2 Profilers for Xen

Xenmon [32] and Xenoprofile [53] are well-known profilers for the Xen VMM.
There is a case study to increase performance of Xen by using Xenoprofile
[52]. Each tool can investigate a performance bottleneck by counting the
number of the specified event. An execution point that has a large number
of an event is a point of a performance bottleneck. On the other hand,
profiling is done based on source code with XenLASY. Since what usage can
be thought is that developers roughly find the bottleneck by these tools and
go into a detail by XenLASY, these tools and XenLASY are complimentary
tools in one another.

5.5.3 Aspect-oriented language

The dflow pointcut [46] is proposed as a pointcut to select a flow of data. The
dflow pointcut can select a data flow the same as the cflow pointcut selects a
call flow. The dflow pointcut will also select a data flow that is a result of some
calculation of data selected by the dflow pointcut. The xflow pointcut cannot
be used for profiling OS kernels. Since dflow pointcut will select all the data
automatically, performance overheads caused by the pointcut is quite large.
Moreover since code snippets for the dflow pointcut are inserted at compile
time, it cannot insert a code into a running kernel, which is supported by
XenLASY. The dflow pointcut is made for a Java language application, while
the xflow pointcut is made for an OS kernel in a domain of the Xen VMM.

There are aspect-oriented system for distributed environment; e.g.
DAC++ [3] and DJcutter [55]. Targets of these systems are userland ap-
plications written in C++ or Java. On the other hand, XenLASY is an
aspect-oriented system for investigating an OS kernel.

5.6 Summary

In this chapter, we proposed a dynamic aspect-oriented system called Xen-
LASY for tracing an I/O processing on Xen. We provide the xflow pointcut
to enable developers to write an aspect for tracing a data flow easily. Since
the number of modules related to an I/O processing on VMM is much larger
than that on an OS kernel, investigation of performance bottlenecks becomes
harder on VMM. However, the xflow pointcut will help developers to investi-
gate performance bottlenecks of each I/O flow. By using the xflow pointcut,
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developers can trace a flow even if threads or modules that manipulates the
flow change.
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6
Experiments

6.1 Experiments for KLASY

We have developed KLASY for the Linux 2.6.10 kernel (Fedora Core 2) with
Kerninst 2.1.1 and gcc 3.3.3. This section reports the results of our experi-
ments with this prototype. The machine we used for the experiments has an
AMD AthlonTM XP 2200+ processor (1.8GHz), 1GB memory and an Intel R©
PRO/1000 network card.

6.1.1 Micro benchmarks

First, we measured the overheads of a null advice. Since KLASY uses
Kerninst as a back end, an advice is invoked by either jump instruction
or breakpoint-trap instruction. If the size of the machine instruction at a
join point (shadow) is too short, the breakpoint-trap instruction is used.
Otherwise, the jump instruction is used. Furthermore, KLASY generates
trampoline functions for either local var or target pointcut is used. There-
fore, we examined all these combinations. We implemented a simple new
system call and wove a null advice with the kernel function implementing
that system call.
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Trampoline
No Register Stack frame

Jump 16 18 19
Breakpoint trap 200 202 203

Table 6.1. Overheads of null advice (nano sec.)

Name Details
dhry2reg Dhrystone 2 benchmark using register variables.

whet Whetstone benchmark.
execl Performance of exec system calls.
pipe Throughput of process pipes.

context Performance of context switching between processes
connected through a pipe.

file1 File copy 256 byte.
file2 File copy 1024 byte.
file3 File copy 4096 byte.

create Process creation.
shell Shell scripts.

syscall Overheads of system calls.

Table 6.2. List of benchmarks in UnixBench

Table 6.1 lists the results. We examined three cases: no trampoline func-
tion, a trampoline function obtaining data located in a register, and a tram-
poline function obtaining data located in a stack frame. If an advice is
invoked through the jump instruction, an average overhead is about 16 nano
seconds per join point. If it is invoked through the breakpoint-trap instruc-
tion, an average overhead is about 200 nano seconds. The overhead due to
a trampoline function was negligible compared to the overhead of an advice
invocation.

6.1.2 Overheads of the KLASY kernel

To evaluate overheads of KLASY in more realistic situations, we ran bench-
mark programs from UnixBench [75]. The programs are shown in Table 6.2.

We first measured the execution performance of three Linux kernels with
these benchmark programs. One is monolithic, which is a kernel compiled by
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Figure 6.1. The performance indexes of the Linux kernels

the regular gcc and statically linked. Another is klasy, which is a kernel com-
piled by our extended gcc for dynamic weaving. Any aspects were not woven
during experiments. This kernel is also statically linked because KLASY does
not support a dynamically-linked kernel. The last one is normal, which is a
normal Linux kernel included in the Fedora Core 2 distribution. Note that
the normal kernel is not statically linked. A number of kernel modules will be
loaded during runtime. On the other hand, the monolithic and klasy kernels
are statically linked and thus they should have performance advantages.

The results of the benchmarks are shown in Figure 6.1. The results are
the index numbers reported by the benchmark programs. A large number is
better. According to the results, there is little difference among three ker-
nels. Although the klasy kernel is little slower than the monolithic kernel in
several experiments, the average of the overheads is only 1%. The klasy com-
piler could not optimize as well as the regular compiler because our extended
compiler must run with -g and -fno-omit-frame-pointer options as well as -Os
option (normal optimization for a kernel) to obtain correct debug informa-
tion. Those options disable a few optimizations. The other possible cause of
the difference is the difference of cache-hit ratio among the tree kernels. That
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is because allocation of program code is different among the tree kernels.

6.1.3 Overheads of aspects

Then we ran several CPU-intensive benchmark programs (dhry2reg, syscall,
pipe, execl, and context) with four kinds of aspects. Two aspects point-
cut accesses to the nr switches member of the runqueue structure, and the
other two aspects pointcut accesses to the state member of the task struct
structure. For each set of the two aspects, the advice body of one aspect
increments a counter while that of the other aspect records the current time.
The nr switches member represents the number of context switches that have
been done and the state member represents the process state such as running
and sleeping. When we wove these aspects, the weaver inserted hook code
at 2 execution points for the nr switches member and 50 execution points for
the state member.

The results of the benchmarks are shown in Figure 6.2. As the same
as the results in Figure 6.1, the results are the index numbers reported by
the benchmark programs. A larger number means better performance. The
number above each item represents the number of times that the advice body
is called at the kernel run time. The number in round brackets (’(’ and ’)’)
represents the number of times that the advice body is called by the jump
instruction, while the number in angled brackets (’<’ and ’>’) represents the
number of times that the advice body is called through the breakpoint trap
instruction. We executed the benchmarks for 38 times, and calculated the
averages and the variance.

The overheads due to advice execution vary among benchmark programs.
They depend on how frequently advice is executed, which instruction (jump
or breakpoint-trap) is used for executing advice, and the execution time of the
advice body. According to the results, overheads of the aspects are acceptable
except the advice body is called for extremely large number of times, such as
more than a few ten-millions times. For example, some readers might think
that the results of syscall benchmark in (a) have a difference between with and
without the aspect. However, there is no statically significant difference. We
did a t-test under a 10% level of statically significance, and cannot reject null
hypothesis that the tree data of the syscall benchmark are not different. We
also did a similar test to the results of the pipe benchmark, and no statically
significant difference between with and without the aspect.

On the other hand, there is notable difference between with and without
the aspect among the results of the context benchmark in (b). We think that
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Figure 6.2. Indexes of Unix benchmark

the cause of the difference is that the advice body is mostly called through
the breakpoint traps instruction in the context benchmark in (b), while the
breakpoint traps are rarely used in other benchmarks. Again, the execution
time for calling the advice body through the breakpoint trap instruction is
about 200 nano seconds, while the execution time for calling the advice body
through the jump instruction is about 20 nano seconds.

6.1.4 Case study

We below show our case studies. Note that we use the access pointcut des-
ignator to identify a number of interesting join points. In the C language,
enumerating member accesses for identifying join points is often easier than
enumerating functions even if we use wild cards; unlike C++ or Java, the
C language does not provide a grouping mechanism for functions, such as
packages and classes. Furthermore, in the first case study, we obtain a target
structure by the target pointcut designator and use it to avoid logging the
time stamp of unnecessary events.
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Network tracing

One of our initial motivations to develop KLASY was to find performance
bottleneck of the network I/O sub-system under heavy workload. Thus, we
tried measuring the elapsed time at several points of the network I/O sub-
system when we sent bulk data from a remote host using the scp command.
From the result, we could find that one of possible root causes is process
scheduling.

Figure 6.3 is an aspect we used for this measurement. This aspect point-
cuts accesses to all the members of the sk buff structure and sets arg0 to
a pointer to that structure. local.h is a file we wrote. Since some kernel
data structures are defined in not a .h file but a .c file, we copied those data
structures into local.h and included it in the aspect. The advice first casts
the value of target to sk buff. Then, if the protocol is not ARP, the advice
records the current time as well as the program counter $pc$. DO RDTSC
is a macro provided by KLASY. It executes the rdtsc (Read Time Stamp
Counter) machine instruction for obtaining the current time. Its execution
time is about 6 nano seconds. STORE DATA is another macro provided by
KLASY. It is used to record data in kernel memory, which can be read later
from a user process.

When we wove this aspect, the weaver could successfully insert hook code
at 2494 lines but failed at 297 lines. KLASY failed to resolve the memory
address of join points at 70 lines and failed to obtain the value of target
at 227 lines. We explored the reason for these failures. The former failure
occurred when a join point is in a conditional expression that consists of
multiple lines. We modified KLASY for avoiding that failure in case of if
and while statements. However, KLASY still fails for other cases. The latter
failure occurred when the value of target was lost by optimization. We can
avoid this failure if we do not use target. Both kinds of failures would be
unacceptable if we used KLASY for extending the functionality of the Linux
kernel. However, the target application of KLASY is profiling and debugging,
which do not need precise selection of join points according to our experience.
Moreover, if the user avoids using target, the failure is only 70 lines (about
2.5% of all join points). Also, note that KLASY prints a warning message if
it fails to finds the memory address at which hook code should be inserted.
The users can see where KLASY fails to insert hook code.

We invoked the scp command from a remote host after we wove the aspect.
For each arrival of a network packet, we could measure the elapsed time from
when the network device of the target host received a packet, at several points
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<aspect>

<import>linux/skbuff.h</import>

<import>linux/netdevice.h</import>

<import>linux/netlink.h</import>

<import>net/gen_stats.h</import>

<import>net/sock.h</import>

<import>net/tcp.h</import>

<import>local.h</import>

<advice>

<pointcut>

access(sk_buff.%) AND target(arg0)

</pointcut>

<before>

struct sk_buff *skb = (struct sk_buff *)arg0;

unsigned long long timestamp;

if (skb-&gt;protocol != ETH_P_ARP) {

STORE_DATA($pc$);

STORE_DATA(skb);

DO_RDTSC(timestamp);

STORE_DATA(timestamp);

}

</before>

</advice>

</aspect>

Figure 6.3. An aspect example for tracing network I/O

of the network sub-system. Table 6.3 shows the result of tracing network I/O.
We selected only 11 points out of measured 74 points and two different traces
due to the space limitation of the paper. If the target host receives a packet,
the thread of control first passes through line 2773 in e1000 main.c. For
both traces, it takes 14 to 15 micro seconds from this line to the line 4355
in tcp input.c. However, the elapsed time from this line to the line 234 in
datagram.c is largely different: 12 or 688 micro seconds. When we examined
source code, we found that tcp rcv established puts sk buff on a queue and
skb copy data iovec dequeues it. Since skb copy data iovec is executed by a
process, the time between these two lines depends on process scheduling.
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Function File Line Packet 1 Packet 2
e1000 rx checksum e1000 main.c 2773 0.00 0.00
netif receive skb dev.c 1638 1.06 1.39
netif rx dev.c 1500 1.68 2.17
ip rcv ip input.c 367 3.43 4.35
ip local deliver ip input.c 275 5.56 6.67
tcp v4 rcv tcp ipv4.c 1741 6.84 8.05
tcp rcv established tcp input.c 4238 11.14 12.62
tcp event data recv tcp input.c 554 13.36 14.54
tcp rcv established tcp input.c 4355 14.23 15.43
skb copy datagram iovec datagram.c 234 25.93 703.76

kfree skb skbuff.c 225 27.14 707.25

Table 6.3. Tracing result of network I/O (partial)

Tracing process switching

In our previous study, we examined how frequently an OS kernel switches
processes under heavy workload, and revealed that behavioral anomaly be-
tween light- and heavy-weight processes under heavy workload is due to the
thread scheduling policy in Linux [35]. To investigate that, we measured a
CPU time quantum consumed by each thread in the Tomcat web applica-
tion server [5], but we had to modify the kernel source code of Linux by
hand since the execution point where we wanted to record the time in the
scheduler was a member access to a structure. The previous aspect-oriented
systems similar to KLASY did not enable us to pointcut member accesses.

If we used KLASY, such measurement could be implemented without
modifying the kernel source code. We show the aspect for that measurement
in Figure 6.4. This aspect pointcuts accesses the timestamp member of the
task struct structure within function bodies defined in sched.c. The advice
body stores the program counter, the process identifier, and the current time.
When we wove this aspect, the weaver could successfully insert hook code at
10 lines.

We ran both light- and heavy-weight services on Tomcat after we wove
the aspect. To compute CPU time quantum from the log recorded by the
advice body, we selected log entries related to process switches (line 2682 in
sched.c). Table 6.4 shows the distribution of CPU time quantum consumed
by threads. This shows that there are two peaks and the second peak is
between 10 and 12. Based on the same observation, we showed that the
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<aspect>

<import>linux/sched.h</import>

<import>asm/page.h</import>

<advice>

<pointcut>

access(task_struct.timestamp) AND

within_file(sched.c) AND target(arg0)

</pointcut>

<before>

struct task_struct *p =

(struct task_struct *)arg0;

unsigned long long timestamp;

DO_RDTSC(timestamp);

STORE_DATA($pc$);

STORE_DATA(p-&gt;pid);

STORE_DATA(timestamp);

</before>

</advice>

</aspect>

Figure 6.4. An aspect example for tracing process switching

Range (ms) 0–2 2–4 4–6 6–8 8–10 10–12 12–14 14–
Frequency 10,481 1,537 2,174 125 136 709 127 30

Table 6.4. Distribution of CPU time quantum

large CPU time quantum prevents the execution of the light-weight service
in our previous study [35]. To perform our previous study, a few more aspects
are needed in addition to the aspect in Figure 6.4. Those aspects are not
shown here due to limited space but writing them is as easy as writing the
aspect in Figure 6.4.

To investigate the overhead of advice execution in a real application, we
measured the throughput of Tomcat using the ApacheBench benchmark pro-
gram [4]. Table 6.5 shows the throughput (the number of processed requests
per second) for light- and heavy-weight services with or without the aspect in
Figure 6.4. In case of Tomcat, the overhead due to using aspect was negligible
even if an advice was executed whenever a process switch occurred.
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Light-weight Heavy-weight
service service

Without aspect 650.20 6.87
With aspect 645.58 6.84
Overhead 0.7% 0.4%

Table 6.5. Throughput of Tomcat (requests/sec)

6.1.5 Effectiveness of the access pointcut

We used the access pointcut in all case studies above. For the C language,
selecting join points by specifying a member of a structure is easier than
selecting those by specifying functions in most cases even if the developers
can select multiple functions. That is because the C language does not have
a mechanism to make a group of a series of functions, such as package and
class in C++ and Java. We will discuss availability of the access pointcut
through showing the problem without the pointcut.

A code of case study in Section 6.1.4 uses a feature that the sk buff struc-
ture is used among functions of a network I/O subsystem in Linux. By
selecting all members of the sk buff structure, we can recognize behavior of
the network I/O subsystem. We can also distinguish a packet from another
by registering an address of an instance of the sk buff structure.

Let us think about getting the same information by only using the execu-
tion pointcut, which is the pointcut to select a function execution in existing
AOP systems. In this experiment, we get logs at 76 execution points. They
are in 21 functions because we sometimes get logs at multiple execution points
in the same function. 11 functions of 21 functions are static functions, and
6 functions of 11 static functions are inline functions. Since there is a possi-
bility that the same name is used among the different static functions, there
is ambiguity for selecting the static functions. Since signatures of the inline
functions are eliminated after compiling, we should disable optimization if we
use only the execution pointcut. We are also required to have deep knowledge
about a network I/O subsystem of Linux: for example, which function is exe-
cuted when a packet arrives. If we select some functions that are unnecessary
for profiling, we will get useless logs. Moreover, a normal kernel is compiled
with the optimized option (-Os), some functions are inlined even if they are
not qualified by the inline modifier. Thus, optimization for compiling the OS
kernel should be disabled to do profiling shown in Section 6.1.4 only with the
execution pointcut. However, the result of investigation with an unoptimized

EXPERIMENTS 95



Experiments for XenLASY

OS kernel is far from realistic result since the OS kernel is normally compiled
with optimization option. We believe that the result would not be useful.

Moreover, using the access pointcut enables fine-grained investigation be-
cause logs are generated when any members of the sk buff structure, which
can be existing multiple times in a function, are accessed. Besides, the de-
velopers using the execution pointcut can get logs only at a beginning and
ending of a function. Another merit of KLASY is that we can avoid storing
logs for ARP packets, which is unnecessary for investigation, by using the
target pointcut. We can know a packet is an ARP packet or not by using
information got through the target pointcut.

A case study in Section 6.1.4 measures elapsed time between context
switches. In this case study, we used a feature that the timestamp member
of the task struct structure is updated after a process is context-switched.
We select the timestamp member access of the task sturct structure to get
a precise timestamp of a context switch. It is roughly possible to do the
same thing by using the execution pointcut. However, we cannot select the
sched info switch function, which really achieve a context switch in the Linux
kernel, because it is a static inline function. As mentioned before, a signature
of a static inline function is eliminated at compile time. We should select the
schedule function instead of the sched info switch function. However, since the
schedule function is a large code size, accuracy of measuring time quantum
of context switches by using the execution pointcut is a little bit lower than
that by using the access pointcut.

6.2 Experiments for XenLASY

To investigate XenLASY availability, we did some experiment. Experiment
includes micro benchmarks and some case studies. Micro benchmarks are
used to evaluate overheads of XenLASY and it works in quite acceptable
time. Case studies will show availability of XenLASY in a real situation. A
machine used for experiment is AMD AthlonTM 64 3500+ (2.2GHz) and 2GB
memory. We used Xen 3.0.4, CentOS 4.4 (Linux 2.6.16.33), gcc 3.3.3, and
binutils 2.16 for this experiment. Note that both Domain U and Domain 0
are using the same Linux distribution and the same kernel.
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Function name Details
get new flowid Generate a new ID number.
register flowid Register a pair of a pointer and an ID number.

get flowid Get an ID number from a pointer.
remove flowid Remove an ID number associated to an ID number.

Table 6.6. Functions used inside XenLASY

Function Elapsed time
get new flowid 3 ± 0.0

(empty) get flowid 9 ± 0.0
(changeID) register flowid 33 ± 3.0

(changeID) get flowid 15 ± 1.0
(changeID) remove flowid 32 ± 2.0
(sameID) register flowid 33 ± 4.0

(sameID) get flowid 15 ± 1.0
(sameID) remove flowid 32 ± 2.0

Table 6.7. Execution time of each function (nano sec.)

6.2.1 Micro benchmarks

We first did micro benchmarks to measure execution time of functions made
for implementation of the xflow pointcut and its definition. We measured
execution time of each functions in 2000 times. We used the time stamp
counter (TSC) to get a precise time during the benchmarks. We did this
measurement for 100 times and divided the result by 2000 × 100 to get the
averages. Note that since a kernel module for CPU frequency control was
not running during the experiments, CPU frequency is constant during the
experiments.

We measured execution time of functions in Table 6.6. We first mea-
sured the execution time of get new flowid function and get flowid function
with no entry stored (marked as empty). We looked up no existent entry
with get flowid function. Then, we measured register flowid, get flowid and
remove flowid in those two situations. One is incrementing an ID number
and an address of a pointer (changeID) for each entry, the other is storing
different addresses to the same ID number (sameID).

The result of the experiment is shown in Table 6.7. Execution time of
each function is acceptable for practical use. Execution times are almost the
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same between changeID and sameID. In both case, registration needs only
33 nano seconds and elimination needs only 32 nano seconds on average.
15 nano seconds on average are needed to looking up an ID number from a
pointer to a structure instance.

6.2.2 Case study

We investigated a flow of data sent from Domain U to a network via Domain 0
by using xflow pointcut. We also investigated how much resource can be
reduced by using the pointcut. The aspect we used is like Figure 5.2 and the
definition of the xflow pointcut is like Figure 5.9 and Figure 5.11.

The result of investigation is shown in Table 6.8. The elapsed time item in
Table 6.8 shows elapsed time from execution of line 234 in net/core/skbuff.c
file. The filename, line number, function name are analyzed from the saved
program counter. Program counters are saved by using the aspect when
they are executed. According to the result, we can see data is made in
tcp make synack function, moved to Domain 0, sent to a network in SkGeXmit
function, and freed in FreeTxDescriptors function. From the result, the bot-
tleneck of the network I/O is between netif rx function and netif receive skb
function in Domain 0. netif rx function inserts a packet data to a queue for
passing it to the top half from the bottom half, and netif receive skb will
take the packet from the queue. Surprisingly, elapsed time between netif rx
function and netif receive skb function is much longer than the elapsed time
to pass a packet from Domain U to Domain 0.

Next, we investigated how much resource for investigation can be saved by
using the xflow pointcut. At the experiment shown above, the aspects weed
out data by using the xflow pointcut. It means that we did not save data
that is not registered in the table. We used get flowid function to distinguish
each data is stored or not. To investigate how much resource saved, and
how much time saved, we did an experiment with the aspect that does not
limit data by using the xflow pointcut. The experiment we did is giving a
high overload by using ApacheBench. Note that the saved data is a program
counter of the join point, a time stamp, and an address of a pointer to a
structure instance. At the experiment, ApacheBench gave 300 requests with
10 requests at a time.

The result of the experiment is shown in Table 6.9. Domain 0 and Do-
main U shows the memory usage of each domain. The result shows that
about 60% memory is saved by using the xflow pointcut. Besides, perfor-
mances of replying requests are almost the same between with and without
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Elapsed Domain File name Line Function name
time (µs) number

0.0 U skbuff.c 234 alloc skb from cache
3.4 U tcp.c 726 tcp sendmsg

15.3 U tcp output.c 495 tcp set skb tso segs
72.4 U dev.c 1379 dev queue xmit

101.3 U skbuff.c 471 skb clone
130.8 U netfront.c 963 network start xmit
882.5 0 netback.c 1058 netbk fill frags
894.9 0 dev.c 1543 netif rx

3310.4 0 dev.c 1730 netif receive skb
3332.7 0 br netfilter.c 418 br nf pre routing
3352.2 0 br forward.c 70 br forward
3362.5 0 br netfilter.c 760 br nf post routing
3367.1 0 br forward.c 35 br dev queue push xmit
3368.4 0 dev.c 1379 dev queue xmit
3462.6 0 skge.c 1416 SkGeXmit
3495.5 0 skge.c 1829 FreeTxDescriptors

Table 6.8. Result of Tracing

Domain 0 Domain U
With xflow pointcut 1,557,248 10,587,776

Without xflow pointcut 13,598,976 15,739,968

Table 6.9. Difference of memory usage with or without xflow pointcut (bytes)

the xflow pointcut. The performance is about 382 requests per second in
both cases.

6.2.3 Effectiveness of the xflow pointcut

We used the xflow pointcut in case study above. Since data is manipulated
by multiple threads in an OS kernel, supporting a pointcut that helps the
developers to trace a data flow is important. We will discuss availability of
the xflow pointcut through showing the problem without the pointcut.

First, the xflow pointcut helps the developers to write tracing code easily.
Since the definition of the xflow pointcut and the xflow pointcut are translated
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into aspect codes, the developers can write those aspect codes by hand.
However, writing those codes is too annoying to do by hand. As you can
see in Chapter 5, codes for managing a data flow contains similar code in
too many times. It is error-prone to write them by hand. Moreover, it is
difficult to reuse those codes for managing a data flow because those codes
are not modularized. On the other hand, the definition of the xflow pointcut
is reusable. It has a name to be specified in the xflow pointcut.

The xflow pointcut will also reduce amount of memory required for logging
because the developers can avoid logging unnecessary data. According to the
result of the experiment in Section 6.2.2, we could reduce 60% of memory
compared to the amount of memory without the xflow pointcut, only using
the access pointcut.

6.3 Summary

In this chapter, we first measured the overheads of KLASY and XenLASY.
Then, we investigated the availability of these systems by using case studies.
From micro benchmarks of KLASY, the hook overhead of the breakpoint
trap is about ten times larger than that of the jump instruction. We also
measured the overhead of the OS kernel compiled by our modified compiler,
and an average overhead is 1%.

For KLASY, we measured some overheads of aspects. According to the
results of measurement, there is no statically significant difference between
with and without aspects in most cases. The exception is that the breakpoint
trap is used too much times for invoking the advice body. We also did
some case studies; network I/O tracing, investigation of time quantum. Both
results show that KLASY is useful for profiling.

For XenLASY, we measured execution time of functions for implementing
the xflow pointcut. According to the results, execution times of those func-
tions are acceptable. In all functions, execution time is less than 40 nano
seconds. We also did case study for tracing network I/O from Domain U to
Domain 0. We can clearly trace a packet and found the bottleneck was in
Domain 0. This case study shows that XenLASY is useful for tracing a data
flow on Xen.
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Chapter

7
Conclusion

This thesis has discussed a dynamic aspect-oriented system for an OS kernel.
We proposed that a dynamic AOP is useful for profiling an OS kernel. For
profiling an OS kernel efficiently, we proposed new two pointcuts, the access
pointcut and the xflow pointcut. The access pointcut selects a member access
of a structure, and is useful for collecting join points using a specified data
structure. The xflow pointcut selects a data flow, and is useful for tracing a
data flow over domains on Xen.

Contributions

The contributions by this thesis are summarized as follows:

• This thesis proposed using a dynamic aspect-oriented programming
(DAOP) for profiling an OS kernel. Profiling by DAOP combines both
flexibility of execution points and code for profiling, and abstraction of
selecting an execution points for logging and writing code.

• This thesis clears that existing DAOP systems for C language lack
data-driven pointcuts required for profiling OS kernels. Since they do
not use richer symbol information, their pointcuts are limited.
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• This thesis proposed the access pointcut, which can specify a member
access of a structure as a join point. While existing DAOP for C lan-
guage cannot select a member access as a join point, KLASY can select
a member access because it uses richer symbol information. We also
showed that the access pointcut saves time for enumerating functions
related to a module for getting logs.

• We proposed a new implementation technique named source-based
binary-level dynamic weaving. This is useful for implementing the ac-
cess pointcut. It collects richer symbol information at compile time,
and use the information at weaving time.

• This thesis proposed the xflow pointcut, which can trace a data flow
even through changes of threads and virtual machines. Developers can
write the way of tracing in details not to get unnecessary logs.

• Case studies showed that those pointcuts are useful for profiling a real
OS kernel. We did two case studies for the access and xflow pointcuts.
In both case studies, we can know where the performance bottlenecks
are.

Future Directions

Possible future directions of this thesis are follows:

Implementation in other architectures Although technique for implementing
KLASY is not depend on an x86 architecture and Linux, proving it
is not done. It will help development of other OS kernels on other ar-
chitectures. However, our system depends on Kerninst, which is made
only for Solaris and Linux, implementation of hook insertion system
for other architectures are needed.

Support for flow division XenLASY did not support flow division because it
has a difficulty on assignment of an ID number. It should show re-
lationship to the original as well as it should be distinguished from
others.

Weaving inside VMM XenLASY did not support weaving inside VMM be-
cause it was not necessary for profiling a data flow we investigated.
However, it will be needed if developers want to investigate other things
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such as scheduling. Implementation of the feature will extend the exe-
cution points for investigation.

Cooperation with profilers using statistics Profiling by DAOP will get exact in-
formation base on the source code. It is useful for getting accurate
information caused at execution time. However, this approach is weak
for disturbance. On the other hand, profilers using statistics is strong
for disturbance but cannot get accurate information. The profilers and
our tools should be complementary to each other.

Implementation of user interface for line pointcuts If developers can use line
pointcuts, it will strongly help users profiling. Although this fea-
ture helps developers for profiling, this feature breaks good modularity.
That is why we did not implement the feature.
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[22] Rémi Douence, Thomas Fritz, Nicolas Loriant, Jean-Marc Menaud,
Marc Ségura-Devillechaise, and Mario Südholt. An expressive aspect
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