
A Dissertation Submitted to Department of Mathematical and
Computing Sciences, Graduate School of Information Science

and Engineering, Tokyo Institute of Technology
In Partial Fulfillment of the Requirements for the Degree of

Doctor of Science in Mathematical and Computing Sciences

An Aspect-Oriented Programming

Language for

Agile Software Development

Muga Nishizawa Dissertation Chair:
Shigeru Chiba

March 2008,
Copyright (C) 2008 Muga Nishizawa. All Rights Reserved.

Abstract
This thesis proposes two new language constructs for aspect-oriented pro-
gramming (AOP) and a new AOP language that provides those language
constructs. AOP is useful for agile software development. However, ex-
isting AOP languages have not been used on agile software development
yet. This is because existing AOP languages are not good enough for
agile software development. This thesis first analizes the features of agile
software development and shows that AOP is useful for agile software
development with two example scenarios. Then it explains that AspectJ
is not good enough for concurrent development by several software en-
gineers and for developing distributed software in the agile methods.
AspectJ is one of existing general-purpose AOP languages for Java.

To solve the problems of existing AOP languages such as AspectJ,
this thesis presents our AOP language named GluonJ. GluonJ is based
on AspectJ. It provides mechanisms for pointcut-advice and inter-type
declarations. Moreover GluonJ provides new language constructs for
AOP named dynamic refinement and remote pointcut. Dynamic refine-
ment allows software engineers to change the behavior of an existing class
according to dynamic contexts. By using dynamic refinement, a soft-
ware engineer can implement his assigned feature as an aspect without
consideration of other features that other software engineers are devel-
oping at same time. Then he easily merges his implemented feature (his
aspect) into an existing program. Also remote pointcut allows modu-
larizing crosscutting concerns in distributed software as simple aspects.
Although AspectJ can separate distributed crosscutting concerns from
the rest of the program as aspects, the aspects consist of several complex
sub-modules. By using remote pointcut, a software engineer can write a

i

ii

feature that is newly appended to distributed software as a simple aspect.
This aspect is a single component at the code level and does not include
explicit network processing such as Java RMI.

Acknowledgments
This work would not have been possible without the guidance and friend-
ship of my superviser Shigeru Chiba. He supported me seven years from
a bachelor student to a PhD student in Tokyo Institute of Technology.
He gave me the freedom and the means to mature my ideas while always
pointing me in the right direction. I express my deepest gratitude to
him.

I deeply thank the current members, alumni, and alumnae of CSG
(Chiba Shigeru Group). In particular, from Kenichi Kourai, Michiaki
Tatsubori, Daisuke Yokota, Yoshiki Sato, Romain Lenglet and Yoshisato
Yanagisawa, I got precious comments that greatly improved the qual-
ity of my thesis. Also I greatly thank my thesis committee, Masataka
Sassa, Satoshi Matsuoka, Ken Wakita, Osamu Watanabe, and Etsuya
Shibayama. They gave me continuous feedback during the writing of
this thesis.

Finally, I want to thank my mother, father, and sister for support
and care during the years of my study.

I am grateful for financially support received from Japan Science and
Technology Agency and from The Information Technology Promotion
Agency, Japan.

Muga Nishizawa
March 2008

iii

Contents

1 Introduction 1
1.1 Motivation . 1

1.1.1 Features of Agile Software Development 2
1.1.2 Features of an Ideal Programming Language 3

1.2 Our New AOP Language 4
1.2.1 Dynamic Refinement 5
1.2.2 Remote Pointcut 6

1.3 The structure of this thesis 7

2 Limitations of Existing Languages 9
2.1 Agile Software Development 10
2.2 Features of an Ideal Language for Agile Software Development 13
2.3 Example Scenarios . 15

2.3.1 Scenario 1: Multilingualization of an Online Book Store 16
2.3.1.1 Overall architecture of the program of an

online book store 16
2.3.1.2 The feature for multilingualization 17

2.3.2 Scenario 2: Visualization of Distributed Software . . 18
2.3.2.1 Overall architecture of a raytracing applica-

tion . 18
2.3.2.2 The feature for visualization of calcurated

data . 19
2.4 Object-Oriented Programming (OOP) Languages 20

2.4.1 Solutions in Java 21
2.4.1.1 Scenario 1 21
2.4.1.2 Scenario 2 22

CONTENTS v

vi CONTENTS

2.4.2 Evaluation . 22
2.4.2.1 Use of delegation pattern 23
2.4.2.2 Using Version Control System 24
2.4.2.3 Dynamic Scoping 25

2.5 Inheritance . 26
2.5.1 Various Inheritance 26

2.5.1.1 Alternative inheritance 26
2.5.1.2 Mixin Layer 27

2.5.2 Solutions with Java Inheritance 28
2.5.2.1 Scenario 1 28
2.5.2.2 Scenario 2 29

2.5.3 Evaluation . 29
2.6 Aspect-Oriented Programming (AOP) Languages 30

2.6.1 Various AOP Languages 31
2.6.1.1 AspectJ 31
2.6.1.2 CaesarJ 33
2.6.1.3 Annotation based AOP frameworks 34
2.6.1.4 Dynamic AOP 35
2.6.1.5 Refinement 36

2.6.2 Solutions in AspectJ 37
2.6.2.1 Scenario 1 37
2.6.2.2 Scenario 2 37

2.6.3 Evaluation . 37
2.7 Other Approaches . 38
2.8 Summary . 39

3 GluonJ 58
3.1 New Language Constructs for AOP 59

3.1.1 Dynamic Refinement 59
3.1.2 Remote Pointcut 61

3.2 An Overview of GluonJ 63
3.2.1 Refinement . 63
3.2.2 Pointcut-advice 73

4 Dynamic Refinement 80
4.1 Design Overview of Dynamic GluonJ 81

4.1.1 Changing an existing method 81
4.1.2 Appending new methods 83
4.1.3 Appending new interfaces 85

CONTENTS vii

4.1.4 Changing an existing static method 86
4.1.5 Dynamic refinement 86
4.1.6 Restrictions by @Cflow 88
4.1.7 The order of @Glue class application 89
4.1.8 Changing the initial values of existing fields 90
4.1.9 Appending new fields 91
4.1.10 Changing and calling private methods 91
4.1.11 Accessing private fields 92

4.2 Implementation Issues . 93
4.2.1 Appending new methods 93
4.2.2 Changing methods in an original class 94
4.2.3 @Glue classes with @Cflow 94
4.2.4 Type names, type cast, and instanceof 95
4.2.5 Why is no NoSuchMethodException thrown? 96

4.3 Example Programs . 97
4.3.1 Multilingualization for an Online Book Store 97
4.3.2 A Test Code for Online Book Store with Mock Objects 98

4.4 Effectiveness . 101
4.5 Related Work . 103
4.6 Summary . 106

5 Remote Pointcut 108
5.1 Motivation . 109
5.2 Design Overview of Remote GluonJ 110

5.2.1 Remote pointcut 110
5.2.2 Pointcut designators 112
5.2.3 Pointcut parameters 114
5.2.4 @Local advice and @On advice 115

5.3 Example Programs . 116
5.3.1 The visualization code for a raytracer program . . . 116
5.3.2 A Test Code for Distributed Software 117

5.3.2.1 Unit test for authentication service 118
5.3.2.2 Test code in AspectJ 119
5.3.2.3 The use of remote pointcut 121
5.3.2.4 The use of remote refinement 122

5.4 Experiment . 123
5.5 Implementation Issues . 125

5.5.1 Load-time Weaving 125
5.5.2 Remote References 127

viii CONTENTS

5.5.3 Hot Deployment 128
5.5.4 Deadlock Avoidance 129
5.5.5 Distributed Garbage Collection 130
5.5.6 Thread Pool . 131

5.6 Related work . 131
5.7 Summary . 133

6 Conclusion 134
6.1 Dynamic refinement . 135
6.2 Remote pointcut . 136

Bibliography 139

List of Figures
2.1 software development cycle by one iteration on agile software

development . 11
2.2 The current program of an online book store in Java 42
2.3 Architecture of the program of online book store 43
2.4 Architecture of the program of a raytracing application . . . 43
2.5 An overview of a Raytracer program in Java 44
2.6 An overview of the Client program in Java 45
2.7 Architecture of a feature for real-time drawing 46
2.8 The implementation of the function for multilingualization in

Java . 47
2.9 An overview of the Raytracer program improved for visualiza-

tion in Java . 48
2.10 An overview of the client-side program for visualization in Java 49
2.11 A feature for real-time drawing cut across client-side and

server-side programs . 49
2.12 The implementation of multilingualization using delegation

pattern in Java . 50
2.13 The implementations of JapaneseService and Service using

delegation pattern in Java 51
2.14 An extension to BookStore for Japanese book search with

Java inheritance . 52
2.15 An extension to BookStore for French book search with Java

inheritance . 53
2.16 An extension to the existing raytracing program for visualiza-

tion with Java inheritance 54
2.17 The aspect implementation of multilingualization in AspectJ 55

LIST OF FIGURES ix

x LIST OF FIGURES

2.18 The class and aspect programs of visualization for a raytracing
application in AspectJ . 56

2.19 A function in AspectJ . 56

3.1 The code assist of Eclipse pops up a list of available methods
and fields on the b variable. Not only existing methods in
Book but also print() newly appended by BookPrinter are
included in that list. 69

4.1 The newly appended method is included in the list of avaiable
methods shown in a code assist by Eclipse 85

4.2 The implementation of Japanese service for multilingualiza-
tion in Dynamic GluonJ 98

4.3 The implementation of French service for multilingualization
in Dynamic GluonJ . 99

5.1 The visualization code in Remote GluonJ 116
5.2 The testing code in AspectJ 120
5.3 The testing code in Remote GluonJ 122
5.4 Architecture of hot deployment provided by the runtime sys-

tem of Remote GluonJ . 129

List of Tables
2.1 Several pointcut designators of AspectJ 32
2.2 Summary of existing programming languages 57

5.1 The pointcut designators of Remote GluonJ 112
5.2 The elapsed time (msec.) of testRegisterUser() 124

LIST OF TABLES xi

Chapter

1
Introduction

Recently, the methods for agile software development have been get-
ting widely accepted in software industry. The agile methods are ones
categorized into the methodology called iterative software development.
However, unlike existing methods such as waterfall and iterative models,
they have high flexibility against requirement change. The requirements
by customers are often ambiguous and are changed during the software
development. In the agile methods, software engineers divide the total
period of the software project into a large number of short iterations
(short periods). They incrementaly develop the software the five phases
of requirements analysis, design, implementation, testing, and documen-
tation by iterating. At the begining of each iteration, they analize the
requirements from their customers and then improve the software prod-
uct obtained after the previous iterations to satisfy those requirements.
Several different methods for agile software development have been pro-
posed and presented before.

1.1 Motivation

Existing methods for agile software development allow software engineers
(or project teams) to develop software products more rapidly. On the

INTRODUCTION 1

Motivation

other hand, existing programming languages are not enough for agile
software development.

1.1.1 Features of Agile Software Development

We analized the features of existing agile methods before developing an
ideal language suitable for agile software development. The following is
a list of the results of our analysis.

1. Analizing requirements in each iteration

2. Removing features from an existing program

3. Refactoring of an existing program

4. Concurrent development by several engineers

First, requirements analysis in each iteration is the most significant
feature of agile software development. Software developers show their
customers a working software product at the beginning of each itera-
tion. By checking the working program, the customers can easily notice
requirements that they want. The customers can give their developers
clear requirements. This requirements analysis is iterated many times
in the total period of software development. Unlike existing methods
of waterfall model, software engineers would thus be able to develop a
software product that their customers want. As a result, agile software
development can help increase the flexibility and productivity of a soft-
ware program.

Second, software developers ask for feedback (requirements) of a soft-
ware product from their customers many times on agile software devel-
opment. The requirements of customers often include the deletion of
an existing feature that had been developed by the previous iterations.
Software engineers must quickly respond to such a requirement and then
delete the features.

Third, software developers often refactor a software product devel-
oped by the previous iterations before they design and implement new
features that are required by the current iteration. In an agile method,
software developers append new features to the program of a software
product and its specification step by step in each iteration. The program
that has been developed in this way often makes it difficult for software

2 INTRODUCTION

Motivation

developers to add new functions. Thus, since software developers in-
crease the modularity of its software product, they sometimes refactor
the software product. Refactoring can help software developers easily
append new function to their software product.

Forth, rapid development of a required software product is the aim of
any methods of software development process, not just one of the agile
methods. To develop a software product rapidly, more software engineers
cooperate with each other, divide the tasks and burdens appropriately,
and then develop it. In the case of agile software development, more
software engineers divide newly appended functions appropriately.

1.1.2 Features of an Ideal Programming Language

By using the above results of our analysis, we consider an ideal program-
ming language for agile software development. The ideal language should
have four features as follow.

(A) Separation of features

(B) Without editing an existing program

(C) Concurrent development

(D) A statically typed language

First, an ideal language for agile software development should satisfy
separation of features. As mentioned above, requirements of customers
are based on features (functions) step by step in each iteration on agile
software development. For example, the customers require their software
engineers to add a new feature to an existing program, remove a feature
from the existing program, and improve an existing feature in the pro-
gram. Thus software engineers should focus on a appended feature only
and be able to develop the implementation of it. Unfortunately, most
of existing programming languages are not enough for separation of fea-
tures. The implementation of a newly appended feature in an existing
language often cut across several parts of the existing program. Thus It
is difficult to focus on the feature only.

Second, an ideal language should allow software engineers to improve
an existing program without editing the program. Customers often re-
quire the deletion of features that had been implemented by the previ-
ous iterations from a software product. Software engineers must quickly

INTRODUCTION 3

Our New AOP Language

add/remove the specified functions to/from the program according to re-
quirements of their customers. However, most of existing languages do
not enable improving an existing program without editing the program.

Third, an ideal language should enable several software engineers to
easily develop several new features in parallel at same iteration. To de-
velop a software product more rapidly, several developers divide their
tasks appropriately. Since requirements of customers are based on fea-
tures on agile software development, an ideal language should allow sev-
eral software engineers to implement different features at same time. The
ideal language should easily enable to marge the developed functions into
the existing program.

Fourth, an ideal language should be a statically typed language. On
concurrent development by several software developers, the types of mod-
ules in a software product should not be changed. It is because those
types can be used by several software developers as the specifications of
the modules. The implementation of a newly appended function often
cut across several modules in an existing program. If the types (spec-
ifications) of the modules is not changed, a developer who implements
the feature can safely use the modules. On the other hand, dynamic
languages enable changing the type of a module at anytime. To develop
a function, a software engineer of its function must carefully use several
modules that have already been developed since the type of module may
be changed at runtime. If he does not notice that the type is dynami-
cally changed, the instance of the type would cause some errors in the
function that he implements. A statically typed language also allows a
software engineer to enjoy several support provided by IDEs (Integration
Development Environments).

1.2 Our New AOP Language

In this thesis, we propose our new AOP language named GluonJ. It is
more suitable than existing programming languages for agile software
development. It is based on AspectJ, which is one of existing general-
purpose AOP languages. GluonJ provides the mechanisms for pointcut-
advice and inter-type declarations, which is called refinement here. Al-
tough AspectJ satisfies the above features of an ideal language for agile
software development to a certain degree, it is not enough for the fea-
tures (A) and (C). To resolve the problem of AspectJ, we thus propose

4 INTRODUCTION

Our New AOP Language

two new language constructs for AOP: dynamic refinement and remote
pointcut. We have appended these language constructs to GluonJ.

The reason why GluonJ is based on AspectJ is because AspectJ is
the most suitable language for agile software development in existing
programming languages. AspectJ satisfies the four features of an ideal
language for agile software development. It allows software engineers
to separate newly appended features to the existing program as aspects
to a certain degree. The aspects can easily be added/deleted to/from
the program. By using cflow that AspectJ provides, a software engineer
can develop his part independently of other members’ parts. Moreover
AspectJ is an extension to Java, which is a statically typed language.
Thus we extended AspectJ for agile software development and developed
GluonJ.

GluonJ is an extended Java language. One of our contributions is the
pragmatic design of GluonJ’s language construct for AOP. Our extension
to Java is small. GluonJ uses annotations and thereby does not extend
the lexical syntax of Java. It exploits the type system of Java as much
as possible. Thanks to these, a GluonJ program can be developed on a
normal Java IDE (Integrated Development Environment). Particularly,
software engineers can enjoy the coding supports by the normal IDE even
for GluonJ programming. A GluonJ program is compiled by a normal
Java compiler. Only a special runtime system is needed to run a GluonJ
program. We introduced these features for industrial acceptability, where
software engineers tend to stay with existing tools.

1.2.1 Dynamic Refinement

We propose dynamic refinement, which allows software engineers to dy-
namically refine the definition of an existing class. By using dynamic
refinement in GluonJ, software engineers can redefine existing methods
and append new methods, fields, and interfaces to an existing class ac-
cording to dynamic contexts. Since these changes are described in a
separate component (or module), this language mechanism is useful for
separation of concerns.

GluonJ that provides dynamic refinement satisfies the feature (C) of
an ideal language for agile software development in the previous section.
When several software engineers append different new features to an ex-
isting program in parallel, dynamic refinement allows a software engineer
to separate his features from the rest of the current program. Moreover

INTRODUCTION 5

Our New AOP Language

he can write his implementation without consideration of other features
that other engineers are developing.

The concept of dynamic refinement is similar to the mechanism of dy-
namic scoping. Generally speaking, a language that has dynamic scoping
is not easy-to-use. Such a language decreases the readability and under-
standability of its program. However, when software engineers improve
a software product on agile software development in parallel, dynamic
scoping is often effective. Thus GluonJ exploits dynamic scoping.

Although GluonJ allows software engineers to dynamically append-
ing a method to an existing class, a GluonJ program never throws a No-
SuchMethodException if it is successfully compiled and loaded. A naive
implementation of dynamic refinement would wrongly allow a client to
call an unavailable method, which will be appended later by refinement
but not now. To avoid such a wrong call, which will throw a runtime
exception, GluonJ requires programmers to follow some programming
conventions. A GluonJ program satisfying these conventions never calls
an unavailable method. If a program does not satisfy the conventions,
it is statically detected before the program starts running. To do this,
GluonJ exploits the type system of Java and the class loader of GluonJ.

GluonJ allows software engineers to dynamically refine an existing
class during runtime to a certain degree. It allows applying and remov-
ing refinement to/from a class on demand. Naively designed dynamic
refinement may allow a call to a method that has not been appended
yet or that has been already removed and then it may cause a runtime
type error. However, a GluonJ program never causes such a runtime type
error as a NoSuchMethodException although it may fail an explicit type
cast and throw a ClassCastException. To guarantee this property, GluonJ
does not use a custom type checker. It exploits the type checking by a
normal Java compiler and the verification by the custom class loader of
GluonJ.

1.2.2 Remote Pointcut

We propose remote pointcut, which is new AOP language constructs for
distributed computing. A remote pointcut is a function for designating
join points in the execution of a program running on a remote host.
Although a pointcut in AspectJ identifies execution points on the local
host, a remote pointcut can identify them on a remote host. In other
words, when the thread of control reaches the join points identified by a

6 INTRODUCTION

The structure of this thesis

remote pointcut, the advice body associated with that remote pointcut is
executed on a remote host different from the one where those join points
occur. Remote pointcuts are analogous to remote method calls, which
invoke the execution of a method body on a remote host.

GluonJ that provides remote pointcut satisfies the feature (A) of an
ideal language for agile software development in the previous section.
This language construct can simplify the code of a component implement-
ing a feature in distributed software as an aspect. AspectJ is a useful
programming language is a useful programming language for developing
distributed software. However, even if a feature can be implemented as a
single aspect at the code level, it might need to be deployed on different
hosts and it would therefore consist of several sub-components or sub-
processes running on each host. Remote pointcut enables implementing
such a feature as simple, non-distirbuted component without concerns
about network processing.

The aspect weaving in GluonJ is performed at load time on each
participating host. The normal Java classes on each participating host
must be loaded by the class loader provided by GluonJ. This class loader
weaves aspects and classes on the fly. The compiled aspects are stored in
the aspect server. The parts of the compiled code except for the advice
bodies are automatically distributed by the aspect server to each host, so
the latest aspects can be woven when the classes are loaded. The software
engineers of GluonJ do not have to manually deploy the compiled aspects
to every host.

1.3 The structure of this thesis

The structure of the rest of this thesis is as follows:

Chapter 2

Chapter 2 first explains agile software development as technological back-
ground of this thesis. It shows that software engineers can rapidly develop
a software product by using existing methods of agile software develop-
ment. Then we show that existing programming languages are not good
enough for agile software development and present the four features that
an ideal language suitable for agile software development should have.

INTRODUCTION 7

The structure of this thesis

Chapter 3

Chapter 3 proposes a new AOP language for agile software develop-
ment, named GluonJ. Alough GluonJ is based on AspectJ and provides
language constructs for pointcut-advice and inter-type declaration named
refinement, it has two new language constructs for AOP. This chapter
presents the motivation of these language constructs simply. Then we
illustrate an overview of pointcut-advice and refinement in GluonJ in
detal.

Chapter 4

Chapter 4 proposes dynamic refinement, which allows software develop-
ers to changing the behavior of an existing class according to dynamic
contexts to a certain degree. It can dynamically redefine methods and
append a new method to the class. Chapter 4 also presents new AOP
language named Dynamic GluonJ for Java. It provides a language con-
struct for dynamic refinement. Moreover, a Dynamic GluonJ program
never throws a runtime exception reporting that an undefined method is
called. Guaranteeing this fact is not straightforward because Dynamic
GluonJ allows programmers to refine a class definition during runtime.

Chapter 5

Chapter 5 proposes remote pointcut, which is a language construct for
distributed AOP. Remote pointcut allows modularizing a crosscutting
concern in distributed software as a simple aspect. By combining an AOP
based agile method and remote pointcut, engineers efficiently develop a
distributed software product rapidly and easily. Moreover Chapter 5
presents new AOP language named Remote GluonJ for Java. It provides
remote pointcut.

Chapter 6

Finally, this thesis is concluded in Chapter 6. This thesis presents con-
tributions of it and future directions.

8 INTRODUCTION

Chapter

2
Limitations of Existing

Programming Languages on Agile
Software Development

A wide variety of methods of software development has been proposed or
presented before [66, 78, 34, 18, 10]. Most of such methods are method-
ologies for managing software development projects. Due to diverse fac-
tors, a software development project easily misses a development dead-
line and then runs over budget. However, project management allows
reducing the delivery delay or over budget of its software project. It
can improve the productivity and quality of a software product. Thus
some of those methods have been getting widely recognized in software
industry today.

In 1970 Royce proposed the initial concept of waterfall model [66, 67],
which is well-known software development process1. Software engineers
by a method with this model sequentially develop a software product
through the phases of requirements analysis, design and implemention
of a product, testing programs, and installation and maintenance like a
waterfall.

1In that paper the term ”waterfall” was not used.

LIMITATIONS OF EXISTING LANGUAGES 9

Agile Software Development

According to Royce’s original waterfall model, software engineers pro-
ceed from one phase to the next phase in a sequential order. For example,
software engineers first start the phase of requirements analysis. When
they fully finished analizing the requirements of their customers, they
start the phase of design. When the design is fully complete, they start
the phase of implementation of that software product.

Existing methods of waterfall model do not allow software engineers
to return to previous phases that they have already finished. For example,
after software engineers analize the requirements of their customers, they
start the next phase according to the result of the analysis. When they
design and implement a software product, they cannot return to the
phase of requirements analysis and then change the result of the analysis.
Thus they must completely finish each phase. Note that, the current
version of waterfall model enables software engineers to return from one
phase to only the previous phase.

However, existing methods of waterfall model do not often allow soft-
ware engineers to develop a software product that their customers want.
This reason is because the needs of their customers are ambiguous. The
paper-based analysis of the requirements are not enough for designing
and implementing a software product that the customers want. When
the engineers installed the developed product on the environment of the
customers, the customers first review the working software product and
then notice their real requirements. Although the engineers must im-
prove the software product according to newly appended needs of their
customers, it is difficult to rapidly add newly appended functions to the
program that was almostly developed. As a consequence, the delivery
delay is caused.

2.1 Agile Software Development

To address the problem of the existing methods such as waterfall model,
agile software development has been proposed [37, 10]. It is one of
methodologies for rapidly developing a software product. It was pro-
posed in 1990s as part of a reaction against heavyweight software de-
velopment such as a method with waterfall model. Thus agile methods
are called lightweight methods. In 2001 the organization named Agile
Alliance [1] promoted agile software development. At same time, that
members of the organization were published an agile manifesto, which

10 LIMITATIONS OF EXISTING LANGUAGES

Agile Software Development

Figure 2.1. software development cycle by one iteration on agile software
development

is widely regarded as the canonical definition of agile development, and
accompanying agile principles [8]. The concept of agile manifesto is the
following:

• Individuals and interactions over processes and tools.

• Working software over comprehesive documentation

• Customer collaboration over contract negotiation

• Responding to change over following a plan

Several agile methods respect software development with iterative
model that was proposed in 1980s. In software development with an agile
method, software engineers divide the total period of the development
into a large number of short periods, named iterations. The iteration
is from two or three weeks from two or three months. They develop a
software product in an iteration. At the beginning of an iteration, they
get the requirements of their customers. They analize the requirements.
According to the result of the analysis, they design, implement, test a
software product. At the beginning of the next iteration, they show their
customers the developed program and receive the requirements of their
customers again.

The significant feature of an agile method is that software engineers
finish developing a software product that their customers want in each
iteration. At the end of each iteration, they complete a working software

LIMITATIONS OF EXISTING LANGUAGES 11

Agile Software Development

according to the result of requirements analysis. Unlike paper-based re-
quirements analysis, it is easy for their customers to send the engineers
the requirements, by showing the working software product. The re-
quirements of their customers are more clear and concrete. Thus it is
not difficult for the engineers to analize the customers’ requirements.

Extreme Programming Extreme programming is a well-known method of
agile software development [37]. In the late 1990s, it was created and pro-
posed by Beck. Although extreme programming is one of agile method-
ologies, it is famous as a set of practices for agile software development
such as test-first development, pair programming, and refuctoring. Most
of these practices have been proposed before.

Extreme programming is effective when the requirements of customers
are often ambiguous. One iteration in extreme programming is one (or
two) week. For example, at the begin of one iteration, an engineer re-
ceives feedback from his customer and develops the working software
according to the feedback in a week. At the begin of the next itera-
tion, he gives his customer feedback again. And then according to the
feedback, he improves the software that has been developed in a week.

Rational Unified Process (RUP) Rational unified process was created by
the Rational Software Corporation in the 1980s and 1990s, a division of
IBM since 2003 [10]. The rational unified process is a set of concrete
methods of object-oriented software development. The teams (or devel-
opers) of software projects can select which methods they should use for
the software development. Thus the rational unified process is called a
framework for creating concrete processes.

The rational unified process is also one of methods of iterative soft-
ware development process. It allows developers to improve that their
software product in each iteration. Generally speaking, in the rational
unified process, developers iterate requirements analysis of their software
product from three to six times total a development cycle. The number
of iterations is desided according to business case and risk list.

12 LIMITATIONS OF EXISTING LANGUAGES

Features of an Ideal Language for Agile Software Development

2.2 Features of an Ideal Language for Agile Soft-
ware Development

Today software engineers has been developing products by the combina-
tion an existing programming language and agile software development.
However, existing languages are not enough for software development by
agile methods. To propose a new language suitable for agile software de-
velopment, we surveyed the features of agile software development. And
then according to the results of the survey, we considered the features
of an ideal language for agile software development. The features are
following.

(A) Separation of features

(B) Without editing an existing program

(C) Concurrent development

(D) A statically typed language

First, an ideal language suitable for agile software development should
allow software engineers to write one newly appended function as one
module. In an agile method of software development, the requirements
of customers are often based on functions (features). For example, the
customers require their developers to add a new function to the existing
program, remove an existing function from the program, and improve
the existing function.

Software engineers should consider a required function only and then
be able to develop its implementation. If they implement a newly ap-
pended function in most of existing OOP languages, the implementation
of the function often cut across several programs in an existing soft-
ware product. To implement the function, they must edit the several
programs. In this case, it is difficult for them to consider the function
concern only. Rather, they need to consider not only the concern but
also the concerns of the several edit programs.

To append a new function, software engineers with an agile method
often refactor an existing program in advance. This reason is because it
is not easy to append the implementation of the function to the existing
program. Although refactoring of an existing program is necessary for
improving the maintainability of the program, software engineers involve

LIMITATIONS OF EXISTING LANGUAGES 13

Features of an Ideal Language for Agile Software Development

an immense amount of time and effort to do it. If a language satisfied the
feature (A) and enables separating a new function from the rest of the
program as a module, they would not refactor the program. They can
save the trouble of refactoring. Thus the total efficiency of the software
development increase.

Second, an ideal language should enable implementing a newly ap-
pended function without editing an existing software product. At the
beginning of an iteration, according to the requirements of customers,
software engineers often delete an existing function from a program that
has been developed by the previous iterations. Since a function written
in an existing language cut across several programs in a software prod-
uct, software developers must edit the several programs for deleting the
function. If a language satisfies the feature (B), it is easy for software
engineers to delete a function from the rest of the program.

Third, a language suitable for agile software development should en-
able software engineers to easily develop several new functions in parallel
at same time. At the beginning of one iteration, customers often require
software engineers to append several new functions to an existing pro-
gram that has been developed by the previous iterations. According to
such needs of customers, software engineers must rapidly be able to im-
plement several functions and then merge those implemented functions
into the existing program.

Concurrent development of a software product is one of significant
issues in any methods of software development. To develop a software
product more rapidly, software engineers divide the tasks and burdens
appropriately. In a method of waterfall model, the result of requirements
analysis is not changed during software developemnt. The specification
of a software product is not changed during that period. Thus software
engineers of waterfall model divide a software product into several com-
ponents in the product consists and then develop different components
each other. Since the specification of those components is not changed,
a software engineer is not affected by the progress of other engineers.

Unlike waterfall model, the requirements of customers will be changed
at every iteration under agile software development. Software engineers
of an agile method analize the requirements according to the needs of
customers. They cannot divide a software product into several compo-
nents and develop different the components each other. It is because
the specification of those components would be changed during software
development. Thus an ideal language should be able to allow software

14 LIMITATIONS OF EXISTING LANGUAGES

Example Scenarios

engineers to divide several functions into the requirements of customers
and develop different functions each other.

Several functions in an ideal language should easily be merged into the
rest of the existing program. If a function can be implemented without
consideration of other functions, it cannot always be merged into the
rest of the program easily. The errors of an existing program occur by
merging several functions into the existing program. Moreover several
functions are implemented by different software engineers in parallel. To
avoid such errors, a software engineer must thus cooperate with other
engineers who implement other functions. And then he must often edit
the existing program or the implementation of other functions carefully.
For example, name conflict often occurs when several software engineers
develop different functions in parallel. When each developer implement
his function, the conflict does not occur. However, when functions by
several developers is merged into an existing program, it occurs. To avoid
name conflict, software developers must cooperate with each other.

Fourth, an ideal language should be a statically typed language. In
concurrent development by a certain degree of several developers, the
types of modules in a software product should not be changed. It is be-
cause those types can be used by several developers as the specifications
of the modules. The implementation of a newly appended function often
cut across several modules in an existing program. If the types (spec-
ifications) of the modules is not changed, a developer who implements
the function can safely use the modules. On the other hand, dynamic
languages enable changing the type of a module at anytime. To develop
a function, a software engineer of its function must carefully use several
modules that have already been developed since the type of module may
be changed at runtime. If he does not notice that the type is dynami-
cally changed, the instance of the type would cause some errors in the
function that he implements. A statically typed language also allows a
software engineer to enjoy several support provided by IDEs (Integration
Development Environments).

2.3 Example Scenarios

An language suitable for agile software development should satisfy the
features shown in Section 2.2. To explain this reason, we illustrate the
following two example scenarios on agile software development. These

LIMITATIONS OF EXISTING LANGUAGES 15

Example Scenarios

scenarios are often required by customers on agile software development.
The software engineers must rapidly response these needs of the cus-
tomers and improve the current version of an existing program by the
previous iterations.

2.3.1 Scenario 1: Multilingualization of an Online Book

Store

For example, by using a method of agile software development, we show
that a function for multilingualization is appended to the program for an
existing online book store. Recently agile software development has often
been used for developing web applications such as an online shopping
cart, an online guest book, and so on.

2.3.1.1 Overall architecture of the program of an online book
store

Suppose that we were developed a part of the program for the online
book store by the previous iterations. A real online book store will be
implemented as a collection of components running on top of middleware
such as a web application server or a J2EE container. However, the
program BookStore of its basic business logic will be something like Figure
2.2. The current version of the book store program is for English.

Clients use their web browser and can enjoy the service provided
by the online book store. Once the URL of the book store is accessed
by clients, the web application server initializes an object of a servlet
representing the web page of the site. A servlet represents the web page
required by a client. When an object of a servlet is created, an object of
the class BookStore is created as follow.

class BookStoreServlet extends HttpServlet {

BookStore store = new BookStore();

void doGet(HttpServletRequest request,

HttpServletResponse response) {

// creates the web page of the online book store

}

... ...

}

16 LIMITATIONS OF EXISTING LANGUAGES

Example Scenarios

To response the GET requests of the clients, the method doGet on the
servlet object is invoked by the web application server. Its method creates
the HTML document of the book store. The client receives the web server
the document.

According to the needs by customers, we were developed a function
for keyword search of books that have already been registered in the
database. The implementation of the function is a method searchBook-
Titles. searchBookTitles first invokes a method readDatabase declared in
BookStore class and gets an array of book objects of titles associated with
the given keyword. Then it outputs the title and price of the each book
object.

To use the service of keyword search, a client of a real online book
store uses a web browser, types a keyword into a web form, and then
sends the book store the keyword via a network. By using reflection,
the web application server invokes the method searchBookTitles on the
BookStore object through the servlet and passes the received keyword to
the method. When the server receives the result of the method, it sends
the client the result.

2.3.1.2 The feature for multilingualization

In a current iteration of agile software development, software engineers
are appending the feature for multilingualization to the above program
of the online book store according to the needs by their customers. Al-
though the current version of the online book store is for english only, the
customers require that the online book store enables providing services
for several languages. Today, multilingualization of web applications has
considerable currency and is thus required by the customers.

To multilingualize the keyword search provided by the current pro-
gram of the online book store, software engineers would append several
buttons to the web page of the keyword search and improve the class
BookStore shown in Figure 2.2. Each button responds a service of the
keyword search for each language. For example, clients type a keyword
into a web form and then push a japanese button to call a searchBookTi-
tles method that was improved for japanese. The improved searchBook-
Titles method invokes getPrice, getTitle, and getCurrency methods that
were also improved for japanese and then returns its result in japanese.
The book store displays the clients the result like Figure 2.3.

When developing these features such as Japanese service, French ser-

LIMITATIONS OF EXISTING LANGUAGES 17

Example Scenarios

vice by several software engineers, they divide the function for multilin-
gualization into tasks and then develop different tasks in parallel. In agile
software development, they would implement parts of different languages
in the implementation of the function. For example, one developer im-
plements a part of Japanese service. Another implements one of French
service. Then they would merge their implementations into the current
book store when they finished developing all of the parts.

2.3.2 Scenario 2: Visualization of Distributed Software

In the second scenario, we append a function for visualization to an ex-
isting raytracing application by a method of agile software development.
Raytracing is a general technique from geometrical optics of modeling
the path taken by light by following rays of light as they interact with
optical surfaces. Its algorithm is often used in computer graphics. By
specifing the positions of figures and light, the users of this application
can get an image in which the figures were rendered.

2.3.2.1 Overall architecture of a raytracing application

Suppose that we had already developed the calcuration program of ray-
tracing algorithm by the previous iterations. The current version of the
program consists of two parts: calcuration programs and a client pro-
gram. A calcuration program, named Raytracer, is a program that ren-
ders (calcurates) the image of the specific figures by raytracing algorithm.
Its program runs on two nodes in the current version of the application.
The program on each node renders the separate area of the image. On
the other hand, a client, named Client, is a program for starting the cal-
curation program and rendering the specific image (Figure 2.4). Once
it is started by a user of this application, a GUI window on which wire-
frames of figures are drawn is popped up. By moving the wireframes
by a mouse, a user can specify the positions of the figures, reflection,
refraction and so on that he want to draw.

The code shown in Figure 2.5 is an overview of the Raytracer pro-
gram. The current version of a raytracing application uses Java RMI
which is a framework for distributed object. To start the rendering of
an image that a user wants, a client program calls a calcurate method in
the raytracer class. Once the calcurate method is given the postion cood-
inates of the specific figures and light as parameters, it invokes a method

18 LIMITATIONS OF EXISTING LANGUAGES

Example Scenarios

calcurateOnePixel for calcurating pixel data of one dot in the image. The
calcurateOnePixel returns a Color object of the position coodinate that
was specified as parameters. A Color class is used to encapsulate colors
in the RGB color space. The calcurated Color object is serialized and
written in a local file by a method writeOnePixel.

To draw an imag, a user must boot the Raytracer programs on two
nodes before he starts a client program and uses its GUI window. This
reason is because it makes a client program available to access the Ray-
tracer programs on different nodes. A main method in Raytracer makes
an instance of Raytracer. And then it registers the instance on a RMI
registry that is one of Java standard libraries. The registry runs on the
same node as the Raytracer program.

The code shown in Figure 2.6 is an overview of a client named Client.
The most part of the client is for displaying a GUI window. A method
main first creates an object of it and invokes a method init. The Client
object is a main component of a GUI window. The method init set up
GUI components and displays its window on a client side. init also calls a
method initRaytracers and then initializes a field raytracers in Client. The
type of raytracers is an array of the RemoteRaytracer interface shown in
Figure 2.5. Client must remotely access two Raytracer programs through
the RemoteRaytracer interface. The initRaytracers method first accesses
the remote references of RMI registries on remote nodes, gets the re-
mote references of the Raytracer objects in the registries, and set these
references to the field raytracers.

A method actionPerformed in Client is the difinition of an event at
when pressing a start button. When a user pushes a start button on
the GUI window by his mouse, this method is invoked. New threads are
created in this method and remotely calls the method calcurate on the
Raytracer programs through the RemoteRaytracer interface.

2.3.2.2 The feature for visualization of calcurated data

Here according to the needs of customers, software engineers append the
function for visualization of calcurated data to this raytracing application
in a current iteration. The function for visualizing the calcurated data is
one of important functions since it can help them detect a software bug.
As an example, the customers required to add the function for real-time
drawing calcurated pixel data on a client side to the current raytracing
application like Figure 2.7.

LIMITATIONS OF EXISTING LANGUAGES 19

Object-Oriented Programming (OOP) Languages

To implement this function, software engineers have to edit two pro-
grams: a client program and a calcuration program. They must improve
the calcuration program Raytracer since it sends the client side program
the pixel data that is rendered by calcurateOnePixel, it has to be im-
proved by the software engineers. Also they must improve the client side
program since it receives the passed data from Raytracer and then draws
it. Moreover these two programs are different nodes. Thus it is not easy
to write the implementation of this function as a module. An ideal lan-
guage should allow software engineers to write the implementation of one
feature as one module.

2.4 Object-Oriented Programming (OOP) Lan-
guages

The concept of object-oriented programming (OOP) has been proposed
in 1960s. It is a programming paradigm that uses objects and their inter-
actions to design and implement software products. OOP languages pro-
vide language constructs for implementing features as modules, named
classes. Thus users of these languages can explicitly modularize features.
Such OOP languages such as Java, C++, have been getting widely rec-
ognized in software industry.

Although OOP langauges allow modularizing features at a certain
level, they are not good enough for agile software development. This is
because most of these langugaes do not satisfy the above four features of
an language suitable for agile software development. Thus existing OOP
languages do not allow software engineers to easily add/delete an exist-
ing function to/from its software product on agile software development.
Also it is not easy for multiple software engineers to develop a software
product in parallel. To explain this fact, this section fist illustrates the
example programs shown in Section 2.3.1 and 2.3.2 in Java, which is
one of existing object-oriented programming languagees.

20 LIMITATIONS OF EXISTING LANGUAGES

Object-Oriented Programming (OOP) Languages

2.4.1 Solutions in Java

2.4.1.1 Scenario 1

To append multilingualization shown in Section 2.3.1, software engineers
would improve the current book store program developed by the previ-
ous sections like Figure 2.8. Software engineers first declare methods
representing several interfaces that provide multilingualized services for
the users. These methods are searchBookTitleForsJapanese, and search-
BookTitlesFrench. The users can use a multilingualized book search of
the online book store through these methods. A web form for typing
a keyword and several buttons appear on the web page. According to
the button that the user pushes, he can enjoy the book search in his lan-
guage. For example, if a user types a keyword into the form and pushes a
Japanese button on the web page, the information of the pressed button
is notified to the web server. And then the server calls the searchBook-
TitlesForJapanese method corresponding to the Japanese service.

Several searchBookTitles methods such as searchBookTitlesFor-
Japanese, searchBookTitlesForFrench, invoke a setLang method on a dy-
Context object and the method searchBookTitles that was developed by
the previous iterations. dyContext is declared in the BookStore class as
a field. Its type is DynamicContext2. The object is created when the
BookStore object is initialized. It is used in the searchBookTitles method.

To append this function to the program of book store, the existing
method searchBookTitles does not have to be changed. However, the ex-
isting methods getPrice, getTitle, and getCurrency must be overridden.
According to a language that a user specifies, the method getPrice must
switch the calcuration of conversion of dollars into the specified cur-
rency. For example, when getPrice is invoked during the execution of the
searchBookTitlesForJapanese method, it gets the price of a book given as
a parameter, converts the price from dollars into Japanese yen since the
return value of getLang is Japanese. And then it returns the converted
value. The methods getTitle and getCurrency must also be overridden for
adding this function like the getPrice method.

2Generally speaking, objects representing dynamic contexts is registered in a ses-
sion object on a J2EE container. The session object would be one of the libraries
provided by the container.

LIMITATIONS OF EXISTING LANGUAGES 21

Object-Oriented Programming (OOP) Languages

2.4.1.2 Scenario 2

To append the function for visualization to the current raytracing ap-
plication, software engineers would first improve the Raytracer program
on caculation nodes like Figure 2.9. They edit the body of the ex-
isting method calcurate. They insert a code for calling a method
sendOnePixel just after invoking the method calcurateOnePixel. The
method sendOnePixel is newly declared in the class Raytracer by the cur-
rent iteration. The raytracer program invokes sendOnePixel() and passes
its method the pixel data returned by the method calcuratedOnePixel as
the third parameter.

By using a remote object callback, the method sendOnePixel sends a
client-side program the pixel data given as the parameter. It accesses
a rmi registry running on the client-side, tries to get a remote reference
of an Callback object that has been registered in advance. If it correctly
gets the remote reference, it remotely calls a method drawOnePixel on
callback.

Moreover software engineers would improve the client-side programs
that had been developed by the previous iteration like Figure 2.10. To
draw the pixel data that is received from the Raytracer program, an
instance of Callback must be ceated and registered in a rmi registry on a
client node before running the calcuration programs. Thus they edit the
implementation of the Callback interface and then improve the method
main in Client. When the method drawOnePixel is remotely invoked by
the raytracer programs, its method uses a field graphics declared in a
client view and then renders the received pixel data.

2.4.2 Evaluation

Object-oriented programming (OOP) languages such as Java, C++ are
not good enough for agile software development. This is because these
languages do not satisfy all the features shown in the previous section.

At first, Java does not satisfy the features (A). When a required fea-
ture is written in an OOP language such as Java, a software engineer does
not write its implementation without consideration of multiple concerns.
In Figure 2.8 of example scenario 2.3.1, to append the feature for mul-
tilingualization to original online book store, a software developer must
edit the implementations of original getPrice, getTitle, and getCurrency
methods in the existing BookStore class. Thus he implements the feature

22 LIMITATIONS OF EXISTING LANGUAGES

Object-Oriented Programming (OOP) Languages

with consideration of the original book store.
Moreover the new feature in Figure 2.9 and 2.10 of example scenario

2.3.2 cut across the Client and Raytracer programs on different nodes 2.11.
A software developer must implement the Callback component on client-
side and edit the raytracing program on calcuration node for sending
that component pixel data via a network. He must thus implement the
feature with consideration of Client, Raytracer, and distribution concerns.

Second, Java does not also satisfy the feature (B). The implementa-
tion of a required function often spreads over several parts of the existing
program. If the function is removed from the program according to the
needs by customers, a software engineer must re-edit the several parts of
the existing program. It is not easy task. For example, if customers re-
quire the visualization in scenario 2.3.2 in the next iteration, the software
engineer must re-edit the Client and Raytracer programs.

Moreover Java does not satisfy the feature (C). Even if several soft-
ware developers implement different functions, they must often edit same
source programs in that software product for the addition of each func-
tion. It significantly decreases the productivity of a software program.
For example, in example scenario 2.3.1, two developers implement two
functions Japanese service and French service that are required by their
customers. One developer appends Japanese service to the existing Book-
Store. Another developer appends French one to the same BookStore. To
develop the two functions, they must edit original methods getPrice, get-
Title, and getCurrency in the same class BookStore. The time when one
developer edits the class BookStore conflicts with the time when another
developer edits same one. To avoid this conflict, they must thus cooper-
ate closely with each other and then dicide what order to edit the source
program of the class BookStore.

2.4.2.1 Use of delegation pattern

Unlike the ad-hoc implementation of multilingualization in Java, deleta-
tion pattern allows software engineers to implement this function without
editing the existing getPrice, getTitle, and getCurrency methods. Accord-
ing to the needs of their customers, even if they develop services of book
search in new languages, they did not have to edit these methods. The
program shown in Figure 2.12 is the book store with delegation pattern.

To design the BookStore class with delegation pattern, software en-
gineers implement a class that provides a service for each language. For

LIMITATIONS OF EXISTING LANGUAGES 23

Object-Oriented Programming (OOP) Languages

example, they declare a class JapaneseService that provides a japanese
service of book search (Figure 2.13). JapaneseService implements an
interface Service. Once the user of the book search pushes the japanese
button on its web page, searchBookTitlesForJapanese is invoked on server-
side by reflection. The method searchBookTitlesForJapanese creates an in-
stance of JapaneseService, invokes the method searchBookTitles that was
improved in advance. The improved searchBookTitles method newly has a
second parameter of the type Service. The seaerchBookTitlesForJapanese
method passes the searchBookTitles the instance of JapaneseService.

getPrice, getTitles, and getCurrency that are invoked by searchBook-
Titles are also improved. These methods newly have a second parameter
of the type Service. An instance of the type Service is passed as the
second parameter when the each method is called by searchBookTitles.
According to the actual type of the instance, the each method delegates
the next processing. For example, if the second parameter of getPrice in
BookStore is the type JapaneseService, getPrice delegates a method get-
Price in JapaneseService. getPrice in JapaneseService converts the price of
the given book object from dollar into japanese yen.

Although use of delegation pattern allows software engineers to sep-
arate features from other features (satisfing the feature (A)), it does not
satisfy the features (B) of an language for agile software development.
To develop the application by delegation pattern, the methods getPrice,
getTitles, and getCurrency have been refactored before implementing mul-
tilingualization. Moreover this pattern does not satisfy the features (C)
because software engineers must append searchBookTitlesForJapanese and
searchBookTitlesForFrench methods to original BookStore.

2.4.2.2 Using Version Control System

Version control systems such as CVS and subversion are often used when
several software engineers develop one software product. A version con-
trol system allows developers to implement different versions of its soft-
ware product in parallel. The Combination Java and CVS enables several
developers avoiding to edit a same source code since they append new
functions to an existing program in an iteration. Although the combina-
tion satisfies a certain degree of the features (C) of a language for agile
software development, it is not good enough for agile software develop-
ment.

For example, two developers append new functions Japanese service

24 LIMITATIONS OF EXISTING LANGUAGES

Object-Oriented Programming (OOP) Languages

and French service to the existing BookStore program in scenario 2.3.1.
To develop the both of Japanese and French services, they must edit
the original BookStore each other. CVS allows the software developers
to implement different functions without editing the existing BookStore
program. To implement Japanese service, one developer edits classes
BookStore1 that is different version of the existing BookStore classe. To
implement French service, another developer also edits classe Bookstore2
that is these different version of the original class. To append two func-
tions to the existing BookStore program, they would merge classes Book-
Store1 and BookStore2 into the current class BookStore.

However, it is not easy to merge different versions of a class by exist-
ing version control systems. To merge these different versions, developers
must carefully review each source code and then check if the code con-
flicts or not. For example, the two software developers improve methods
getPrice, getTitle, and getCurrency in each version of original BookStore.
To merge classes BookStore1 and BookStore2 into BookStore, they must
change the implementations of the original getPrice, getTitle, and getCur-
rency by hand. This does not satisfy the feature (B) of a language for
agile software development.

2.4.2.3 Dynamic Scoping

Dynamic languages that have dynamic scoping such as Common Lisp
satisfies the feature (C) of a language for agile software development.
For example, dynamic scoping in Common Lisp allows switching service
objects such as Japanese service, French service that are appended to the
BookStore according to control flow. Also since Common Lisp provides a
mechanism for a hook, it satisfies the feature (A). Japanese and French
services can be separated from the rest of the current program.

However, dynamic languages do not satisfy the feature (D). In con-
current development by a certain degree of several developers, the types
of modules in a software product should not be changed. It is because
those types can be used by several developers as the specifications of
the modules. The implementation of a newly appended function often
cut across several modules in an existing program. If the types (spec-
ifications) of the modules is not changed, a developer who implements
the function can safely use the modules. On the other hand, dynamic
languages such as Common Lisp and Perl enable changing the type of
a module at anytime. To develop a function, a software engineer of its

LIMITATIONS OF EXISTING LANGUAGES 25

Inheritance

function must carefully use several modules that have already been de-
veloped since the type of module may be changed at runtime. If he does
not notice that the type is dynamically changed, the instance of the type
would cause some errors in the function that he implements.

2.5 Inheritance

In object-oriented programming, inheritance is methodology to form new
classes using classes that have been defined already. The new version’s
classes, known as derived classes, take over (or inherit) attributes and
behavior of the pre-existing classes, which are referred to as base classes
(or ancestor classes). It is intended to help reuse existing code with little
or no modification.

2.5.1 Various Inheritance

2.5.1.1 Alternative inheritance

To extend an original class and an original class hierarchy, many number
of researchers have proposed and developed extensions to the idea of in-
heritance such as mixins (or mixin layers) [70, 22], traits [52], MixJuice
[83], MJ [36], virtual classes [47], nested inheritance [55] and so on. How-
ever, these technologies do not satisfy three requirements shown in the
previous section.

Cook presents a use of inheritance as a derivation of modified hierar-
chies or other graph structures [26]. Links between nodes in a graph are
interpreted as self-references from within the graph to itself. By inherit-
ing the graph and modifying individual nodes, any access to the original
nodes is redirected to the modified versions. For example, a complete
class hierarchy may be inherited, while new definitions are derived for
some internal classes. The result of this inheritance is a modified class
hierarchy with the same basic structure as the original, but in which
the behavior of all classes modified that depend upon the classes ex-
plicitly changed is modified. Hierarchy inheritance is based on having a
lookup of classes and on relationship between group of classes, whereas
with classboxes, no class-lookup is involved and import is done at the
class-level.

26 LIMITATIONS OF EXISTING LANGUAGES

Inheritance

Virtual classes [47] are a concept from BETA [48] (known as virtual
pattern in BETA) and have been supported by several languages such as
Caesar [50] and Keris [49]. Unlike Java, BETA allows extending not only
methods, fields but member classes in the classes. Member classes that
are included in its subclass can override the original member classes in
the superclass. Moreover, gbeta provides a family polymorphism, which
is a function for extending virtual class hierarchies. An sub-hierarchy can
reuse the methods in other sub-class hierarchies. Those functions allow
appending new methods that are declared in other sub-hierarchies.

The Jx programming language is an extension of Java where members
of an encapsulating class or package may be enhanced in a subclass or
subpackage [55]. Packages may have a declared inheritance relationship.
Nested classes in Jx are similar to virtual classes. Unlike virtual classes,
nested classes in Jx are attributes to their enclosing class, not attributes
of instances of their enclosing class.

The Scala programming language is a statically-typed object-oriented
and functional programming language developed at EPFL. It contains a
construct called views, which are a form of language support for adapta-
tion [12]. Views are essentially programmer-defined functions from one
type to another. However, the language infers where a view should be
inserted, in order to allow a value of one type to be treated as having
a different type. Views must be explicitly imported in order to be con-
sidered for such inference. On the implementation side views provide no
special support for adaptation. For example, in order to augment a type
with new methods, the developers have to implement a view that explic-
itly creates a wrapper class for values of that type, along with forwarding
methods for all of the original methods of that type.

2.5.1.2 Mixin Layer

Mixins are classes that provide a functionality to be inherited by a sub-
class, but is not meant to standalone. Inheriting from mixin is not a
form of specialization but is rather a means to collect functionality. A
subclass may even choose to inherit most or all of its functionality by
inheriting from one or more mixins through multiple inheritance.

A mixin can also be viewed as an interface with implemented meth-
ods. When a class includes a mixin, the class implements the interface
and includes, not inherits, all the mixin’s attributes and methods. They
become part of the class during compilation. Interestingly enough mixins

LIMITATIONS OF EXISTING LANGUAGES 27

Inheritance

don’t need to implement an interface. The advantage of implementing an
interface is obvious so that the class may be passed to methods requiring
that interface.

2.5.2 Solutions with Java Inheritance

Normal Java language provides a language construct for single inher-
itance. A class enables inheriting behaviors defined in another class,
named a superclass. Java inheritance allows us developing the features
(multilingualization and visualization) in the above scenarios as follow.

2.5.2.1 Scenario 1

By using Java inheritance, software engineers can separate the program
that they want to implement from the rest of the program to a certain
degree. Moreover its program can be developed without consideration of
other newly appended features and the rest of the program to a certain
degree.

For example, the program for Japanese book search with Java in-
heritance does not include other features of multilingualization shown in
Figure 2.14. The program is named JapaneseBookStore. It extends the
existing class BookStore. It has new methods and field searchBookTi-
tlesForEnglish, searchBookTitlesForJapanese, and dyContext. And then it
overrides three methods getPrice, getTitle, and getCurrency that were de-
fined in existing BookStore. See the method getPrice in the class Japane-
seBookStore. The methodc converts the price of the given book object
from dollar into Japanese yen if the return value of getLang is Japanese.
Otherwise, It invokes getPrice in original BookStore. Also the methods
getTitle and getCurrency include the concern for Japanese book search
only.

To append the function for French book search to the current pro-
gram, software engineers would declare a class FrenchAndJapaneseBook-
Store that extends the class JapaneseBookStore like Figure 2.15. The
class FrenchAndJapaneseBookStore has new methods searchBookTitlesFor-
French and overriding methods getPrice, getTitle, and getCurrency. The
method getPrice converts the price of the given book object from dollar
to euro if the return value of getLang is French. Otherwise, it invokes
original getPrice. getTitle and getCurrency are also overridden.

28 LIMITATIONS OF EXISTING LANGUAGES

Inheritance

Moreover to replace the current book store program with the one
of the multilingualized book store, software engineers must the servlet
program representing a web page of book store like the following.

class BookStoreServlet extends HttpServlet {

FrenchAndJapaneseBookStore store

= new FrenchAndJapaneseBookStore();

void doGet(HttpServletRequest request,

HttpServletResponse response) {

// creates the web page of the online book store

}

... ...

}

2.5.2.2 Scenario 2

By using Java inheritance, software engineers can separate the implemen-
tation for virtualization required by their customers from the rest of the
program to a certain degree. See Figure 2.16. The programs in the Fig-
ure are written with inheritance. A RaytracerWithCallback class extends
original Raytracer class. A calcurateOnePixel method in the class Ray-
tracerWithCallback overrides original one. When the overridden method
calcurateOnePixel is invoked, the overridden one calls original one. Then
it invokes a method sendOnePixel. The sendOnePixel method is newly ap-
pended to the RaytracerWithCallback class and sends the callback compo-
nent the pixel data returned by original calcurateOnePixel via a network.

2.5.3 Evaluation

Although inheritance allows separating Japanese and French service from
the original BookStore class in example scenario 2.3.1, it is not good
enough for agile software development. It does not satisfies the feature
(A) too much. This is because the feature for visualization consists of
two distributed sub-components on client node and calcuration node.
This feature cannot be implemented without consideration of distribution
concern.

Software developers can write the implementations of new functions
as subclasses however, they must change client programs of original
classes into a code to call these subclasses for appending the functions to

LIMITATIONS OF EXISTING LANGUAGES 29

Aspect-Oriented Programming (AOP) Languages

the program. Thus inheritance does not satisfy the feature (B). For exam-
ple, to implement the feature for multilingualization, software developers
write subclasses JapaneseBookStore and FrenchAndJapaneseBookStore of
original BookStore. To append the feature to the current book store
program, they must check all of the existing book store program and
then replace client codes for creating objects of BookStore with ones for
creating objects of FrenchAndJapaneseBookStore.

In example scenario 2.3.1, to add multilingualization to the current
program, the code who software developers replace is only one in the
class BookStoreServlet. However, generally speaking, there are several
client codes in a program. Thus the replacement is not a simple task.
Also some readers would think that use of factory pattern allows reducing
the number of such client codes. However, software engineers would not
design a program in which all instances are created with factory pattern.

Moreover inheritance does not satisfy the feature (C). It allows sep-
arating Japanese and French services from the program of online book
store. However, French service depends on Japanese service. For ex-
ample, the class FrenchAndJapaneseBookStore extends the class Japane-
seBookStore. Then FrenchAndJapaneseBookStore uses the field dyContext
declared in JapaneseBookStore. Thus French service cannot be imple-
mented without consideration of Japanese service.

2.6 Aspect-Oriented Programming (AOP) Lan-
guages

In 1997 Aspect-Oriented Programming (AOP) has been proposed as tech-
nology for improving separation of concerns within software by Kiczales
[33]. However Object-Oriented Programming (OOP) is a technology that
can modularize the source codes of software systems as class modules,
it is not sufficient technology enough to separate concerns that are scat-
tered throughout several modules. Such scattered concerns are called
crosscutting concerns.

Crosscutting concerns decrease maintainability and understandability
of software systems. To understand a crosscutting concern, developers
must read the source codes of all modules that the concern cut accross.
Also to edit the implementation of a crosscutting concern, developers
must edit multiple modules. For example, codes for logging are scattered

30 LIMITATIONS OF EXISTING LANGUAGES

Aspect-Oriented Programming (AOP) Languages

within code whose primary responsibility is something else. Even if the
developers change and remove the codes for logging, they must change
and remove every scattered codes for logging.

AOP can pull the widespread crosscutting concern into a single mod-
ule. These modules are termed aspects. AOP builds on several technolo-
gies, such as procedural programming and OOP, that have already made
significant improvements in software modularity.

2.6.1 Various AOP Languages

Several general-purpose AOP languages, tools, and systems have been
proposed and developed before. AspectJ [38] is a simple and practi-
cal AOP based extension to Java. Adaptive Programming provides a
special-purpose language, called DemeterJ [58], for writing class structure
traversal specifications. DemeterJ prevents knowledge of the complete
class structure from becoming tangled throughout the code. Composi-
tion filters object model [20] provides control over messages received and
sent by an object. The composition filters mechanism provides an aspect
language that can beused to control a number of aspects inlcuding syn-
chronization and communication. ComposeJ [81] is an extension of the
Java language that adds composition filters to Java classes through in-
lining. Multi-dimensional separation of concerns (Subject-Oriented Pro-
gramming) [76] provides for composing and integration disparate class hi-
erarchies, each of which might represent different concerns. Hyper/J [59]
supports separation and integration of concerns along multi-dimensional
in standard Java software. JAC [62, 60, 61, 57] is a Java framework for
dynamic AOP. Unlike other lanugages such as AspectJ, JAC does not
require any langugae extensions to Java.

2.6.1.1 AspectJ

AspectJ is an implementation of AOP for Java [38, 2] 3. But concerns,
such as logging and security, cut across the classes in Java, the crosscut-
ting concerns are not easily turned into classes precisely. AspectJ allows
developers to implement this concerns in Java.

AspectJ adds to Java just one new concept, a join point – and that’s
really just a name for an existing Java concept. It adds to Java only a

3In this paper, we call AspectJ 1.0.6 ”AspectJ”. Currently, AspectJ 1.2.1 have
been released.

LIMITATIONS OF EXISTING LANGUAGES 31

Aspect-Oriented Programming (AOP) Languages

few new constructs: pointcuts, advice, inter-type declarations and aspects.
Pointcuts and advice dynamically affect a thread of control, inter-type
declarations statically affects a program’s class heirarchy, and aspects
encapsulate these new constructs.

Join Points A join point is a program’s operation in the program flow.
As an example of operations, there are method calls, method executions,
field accesses, constructor calls, constructor executions, and exception
events in the program flow. A join point model of many AOP languages,
frameworks, and systems are based on AspectJ.

Pointcuts Pointcuts pick out certain join points in the program flow. For
example, the pointcut:

call(void Point.setX(int))

picks out join points that is a method call of the signature void
Point.setX(int) in the program flow. The call is one of pointcut desig-
nators, identifies each join points that are call of the specified method.
In table 2.1, we listed several pointcut designators that AspectJ is pro-
vided.

Table 2.1. Several pointcut designators of AspectJ

designator join points
within(TypePattern) the join points included in the declaration of the

types matching TypePattern
target(Type or Id) the join points where the target object is an

instance of Type or the type of Id
this(Types or Ids) the join points when the currently executing object

is an instance of Type or Id’s type
args(Types or Ids) the join points where the arguments are instances

of Types or the types of of the Ids
call(Signature) the calls to the methods matching Signature
execution(Signature) the execution of the methods matching Signature
cflow(Pointcut) all join points that occur between the entry and

exit of each join point specified by Pointcut

Also, a pointcut can be built out of other pointcuts with and (&&), or
(‖), and not (!). For example, the pointcut:

32 LIMITATIONS OF EXISTING LANGUAGES

Aspect-Oriented Programming (AOP) Languages

call(void Point.setX(int)) || call(void Point.setY(int))

picks out join points that is method call of the signature void
Point.setX(int) or void Point.setY(int).

Advice Advice is a method-like mechanizm used to declare that certain
code should execute at each join point in a pointcut. Advice consists
of two parts: the one is a pointcut, the other is the code. AspectJ has
before, after and around advice. before advice runs before the thread of
control reaches each join point in a pointcut. after advice runs after the
thread of control reaches identified join points.

Aspects Aspects are modular units of crosscutting implementation, wrap
up pointcuts and advice. It is defined like a class, can have member
methods and fields. As an example, the aspect:

aspect LoggingAspect {

pointcut move():

call(void Point.setX(int)

|| void Point.setY(int));

before(): move() {

System.out.println("about to move");

}

}

prints a message whenever the setX() and setY() method in the Point
class are called.

Inter-type Declarations Inter-type declarations (formerly called the intro-
duction) are declarations that cut across classes and their hierarchies in
AspectJ. We can declare those in an aspect.

Recently, AspectJ’s development team provides AJDT, which is an
eclipse plugin for AspectJ. By using AJDT, developers can write the
programs of AspectJ on the customized Eclipse IDE and users can enjoy
the code assist supported by the eclipse.

2.6.1.2 CaesarJ

CaesarJ [50, 16, 4] is an AOP language providing an expressive power and
is an extension to the standard Java syntax. CaesarJ takes a step further

LIMITATIONS OF EXISTING LANGUAGES 33

Aspect-Oriented Programming (AOP) Languages

and ensures other important properties of modularity: abstraction, infor-
mation hiding and minimization of dependencies. Aspects are designed
as components, which have clear abstraction and can be reusable. In or-
der to achieve these goals CaesarJ slightly extends run-time conception
of object-oriented systems by grouping objects to collaborations, using
virtual types and bindings.

CaesarJ improves separation of concern in the same way as AspectJ.
AspectJ style pointcuts and advices can be used to intercept points,
where component functionality should be integrated. CaesarJ also mod-
ularizes components, which consist of multiple collaborating classes. De-
veloper can define collaboration interface, which is a set of related Java
interfaces required and provided by the component. Then they imple-
ment the component in using collaboration interface. In a separate mod-
ule they define the binding of the component to the application. They
achieve information hiding, because component implementation is ab-
stracted from application specific concepts, and on the other hand com-
ponent implementation details are hidden behind the collaboration in-
terface. Moreover CaesarJ enables modularization of different features
within a class collaboration. By using virtual classes, developer can define
base class collaboration and incrementally refine it with new features in
its subcollaborations. Independently developed features can be smoothly
merged by applying mix-in composition on the subcollaborations.

CaesarJ also provides an Eclipse plugin, named Caesar plugin, for
customizing the normal Eclipse IDE same as AJDT. The plugin enables
those developers to develop the program of CaesarJ on the customized
Eclipse. The developers can exploit coding support such as a code assist
provided by the customized Eclipse.

2.6.1.3 Annotation based AOP frameworks

AspectJ5 [11], AspectWerkz [3], and JBoss AOP [6], which are
annotation-based AOP frameworks, allow programmers to write aspects
in the normal Java syntax. AspectJ5, AspectWerkz, and JBoss AOP
have an expressive power that is equivarent with one of pointcut-advice
provided by AspectJ’s. The contribution of their frameworks enable de-
velopers to write the programs on any Java IDE without customizing the
IDE. To use the frameworks, developers do not need to change the their
favorite IDE into a specific IDE.

34 LIMITATIONS OF EXISTING LANGUAGES

Aspect-Oriented Programming (AOP) Languages

2.6.1.4 Dynamic AOP

PROSE [64, 63] is efficient dynamic AOP system. and allows dynamically
weaving and unweaving aspects including pointcut-advices. The imple-
mentation of PROSE employs the Java Platform Debugger Architecture
(JPDA) [72]. JPDA can capture relevant execution events and intercept
the program execution. PROSE checks whether or not an intercepted
event is specified as a pointcut. If the event is specified, it executes the
corresponding advice.

JAsCo [75], AspectWerkz [3], and Wool [69] are dynamic AOP frame-
works based on the Java HotSwap [30]. Java HotSwap allows dynamically
reloading a class definition. However, a newly loaded class definition can
only changed the implementation of a method declared in its original
definition. It cannot add or remove a method or a field to the original
class. These frameworks allows not only weaving pointcut-advices but
overriding methods in an original class during runtime.

Steamloom [21] is a powerful dynamic AOP system and provides a
customized Java virtual machine (IBM’s Jikes RVM [7]) for users. The
current version of Steamloom supports a mechanism for dynamically
weaving only pointcut-advices. Sister namespaces [68] also extend Java
virtual machine (IBM’s Jikes RVM) and allow dynamically exchanging
instances of different versions of a class. If there is an AOP system based
on sister namespaces, the system allows weaving and unweaving aspects
that include not only pointcut-advices but also intertype declarations
during runtime.

These languages, frameworks, and systems (PROSE, JAsCo, As-
pectWerkz, Wool, and Steamloom) support a mechaism enough for dy-
namically modularizing crosscutting concerns that users cannot antici-
pate in advance at development time. Their importance has been get-
ting widely recognized. However, the applications of dynamic AOP is
not limited to that case. It is often convenient to be able to dynamically
switch aspects even if they know all the aspects in advance.

Wasif et al. proposed family-based dynamic weaver framework [80].
In that paper, they also proposed the concept of dynamic AOP with static
preparation. The concept is of an aspect weaver that statically makes
the preparation for dynamically switching aspects if all the aspects are
known at development time. It is similar to Dynamic GluonJ’s. However,
a dynamic weaver for it has not been supported and implemented in their
framework. Our paper presented the specification and implementation

LIMITATIONS OF EXISTING LANGUAGES 35

Aspect-Oriented Programming (AOP) Languages

of language constructs for the concept.

2.6.1.5 Refinement

Refinements allow developers to write an extension to the definition of
an original class. Unlike inheritance and mixin mechanisms, however,
refinements directly modify the original class definition. Thus to use the
extended class definition, its clients do not need to explicitly make a new
instance of the extended class.

In 2003 A classbox is one of concepts for extending classes and was
originally developed with Smalltalk [14]. The extension of Java for sup-
porting the concept of classboxes, called Classbox/J [19], were recently
implemented. Classbox/J allows not only appending new members (i.e.
fields, methods, constructors, and so on) to existing classes but overriding
original methods in those classes. The refined classes can be explicitly
imported from other classes. Classbox/J can dynamically collaborate to
control the scope of an extension of an existing class. In other words, it
can switch implementations of methods according to caller-side programs
that invoke those methods.

eJava [79] is the extension of Java and provides language constructs,
called expanders. Expanders allow appending new fields, methods, and
interfaces to an original class. To call new methods appended by ex-
panders, its programmers import the expanders into caller-side programs.
When the programmers append a feature to a class hierarchy that con-
sists of several classes, they can describe the feature that is appended to
each original class as an expander. Then the expanders can be grouped
as an expander family. The function has powerful expressiveness. All ex-
panders statically extend original classes. In other words, eJava does not
provide language constructs for dynamically changing an original class.
It cannot change the behavior of an object of its extended class during
runtime.

Lieberman originally introduced delegation in the framework of a
prototype-based object model [45]. An object (child) may have refer-
ences to other objects (parents). If a method that a child does not have
is executed, the extension is automatically forwarded to a method with
the same name on its parents. Darwin/Lava [42] moreover supports
dynamic delegation for Java. Dynamic delegation allows changing the
behavior of a child object during runtime by using changing its parent
objects. In other words, it enables switching a different set of method

36 LIMITATIONS OF EXISTING LANGUAGES

Aspect-Oriented Programming (AOP) Languages

implementations on the child object even though its object have been al-
ready created. We can say the same for delegation layers [40, 41], which
are functions for integrating virtual classes and delegation.

2.6.2 Solutions in AspectJ

2.6.2.1 Scenario 1

The aspects JapaneseService and FrenchService in Figure 2.17 are the
implementation of the feature for multilingualization in scenario 2.3.1.
These aspects include each three around advices and one inter-type dec-
laration.

For example, the first advice in JapaneseService modifies the behavior
of the getPrice method in the original BookStore class during execution of
a method searchBookTitlesForJapanese. The searchBookTitlesForJapanese
method is appended to the original BookStore class by using an inter-
type declaration. The second and third advices also modify the behavior
of the getTitle and getCurrency methods during the same period.

On the other hand, the first advice in FrenchService modifies the be-
havior of the getPrice method in original BookStore during execution of
a method searchBookTitlesForFrench, which is appended to BookStore by
using an inter-type declaration. The second and third advices modify
the behavior of the getTitle and getCurrency methods during the period.

2.6.2.2 Scenario 2

AspectJ allows writing the visualization code without editing the current
raytracing application like Figure 2.18. The aspect PixelDataGetting is
allocated on calcuration node. It specifies a call of a method calcura-
teOnePixel as a pointcut. Then in its advice, the callback component on
client node is invoked. Moreover a software developer must implement
the Callback component on client node before starting the application.
This is because the advice invokes the component.

2.6.3 Evaluation

First, AspectJ satisfies the feature (B) and (D). AspectJ is an extension
to Java, which is a statically typed language. Then the programs in

LIMITATIONS OF EXISTING LANGUAGES 37

Other Approaches

Figure 2.17 and 2.18 is written without editing the original programs
BookStore, Client, and Raytracer.

Next, AspectJ does not satisfies the feature (A) too much. Although
AspectJ allows separating the feature for visualization can be separated
from the rest of the reytracing application, the implementation consists
of two distributed sub-components like Figure 2.19. AspectJ allows
separating the code for getting the calcurated pixel data from the existing
Raytracer program as an aspect, named PixelDataGetting. The aspect
remotely sends the calcurated data to the Callback program when it gets
the data. The Callback component draws the data on the client’s window.

As we can see, even this visualization is implemented by distributed
sub-components and hence we had to write complicated network process-
ing code using Java RMI despite that it is not related to the visualization
concern. In particular, the PixelDataGetting aspect is used only for get-
ting the calcurated data by calcurateOnePixel on each calcuration node.
The PixelDataGetting aspect is a sub-component that is necessary only
because calcurateOnePixel() and the client’s window are deployed on dif-
ferent nodes. This means that the component design of the visualization
is influenced by concerns about distributed. Furthermore, this aspect
is similar to what the AspectJ compiler produces for implementing the
pointcut-advice framework. It should not be hand-coded, but implicit
within the language constructs provided by an AOP language.

Moreover, AspectJ does not satisfy the feature (C) too much. Al-
though cflow pointcut in AspectJ allows several engineers to develop dif-
ferent features as aspects, the implementation of each aspect are not
simple. The cflow expressions specified for each advice would be unnec-
essary and redundant. Appending a cflow pointcut expression to each
advice will be tedious if the number of advices is large.

2.7 Other Approaches

Hyper/J [59] is a subject-oriented programming (SOP) language for Java.
Hyper/J is based on the notion of hyperspaces, and promotes composi-
tion of independent concerns at different times. Hyperslices are building
blocks containing fragments of class definitions. They are intended to be
composed to form larger building blocks called hypermodules. A hyper-
slice defines methods for classes that are not necessarily defined in that
hyperslice: class members are spread over several hyperslices. Hyper/J

38 LIMITATIONS OF EXISTING LANGUAGES

Summary

can statically divide the existing program into several parts and then
merge the divided parts and other programs. Although language con-
structs provided by Hyper/J are powerful, Hyper/J needs to transform
a program statically. The program transformed by Hyper/J cannot be
changed during runtime.

MultiJava [29] is an extension of Java for providing open classes and
multiple method dispatch. Its language construct is called open classes.
It allows appending new methods to existing classes statically. To invoke
appended methods, users of MultiJava explicitly import those methods
into caller-side programs. However, MultiJava does not support append-
ing new fields or overriding existing methods. It moreover extends exist-
ing classes statically.

In 2005 context-based programming is a concept for dynamically ex-
tending original classes and enables switching the extension of original
classes according to dynamic contexts during runtime. It was originally
developed with CLOS [27]. ContextJ [28] is the extension of Java for
the concept. It allows programmers to override an existing method in its
original class and to change multiple overriding methods according to dy-
namic contexts. However, it does not allow appending a new method to
an original class according to dynamic contexts. Thus it cannot change
the behavior of an object of its original class during runtime.

Half and Half is an extension to Java that supports the ability to
add new superinterfaces to existing classes, as well as a form of multiple
dispatch. A wrapper strategy is similar to the eJava and is used to
compile the new language construct. Half and Half does not support the
addition of new methods or fields to existing classes. Therefore, a new
interface can only be given to an existing class if it already meets all the
requirements of that interface.

2.8 Summary

This chapter explained the motivation of our work. Although some of
existing programming languages have been used by software engineers
for agile software development, these languages are not good enough for
agile software development. Then we presented the four features of a
language for agile software development. These features were as follow.

(A) Separation of features

LIMITATIONS OF EXISTING LANGUAGES 39

Summary

(B) Without editing an existing program

(C) Concurrent development

(D) A statically typed language

Unfortunately, existing programming languages do not satisfy all the four
features (Table 2.2). Most of existing languages do not satisfy the feature
(A) too much. This is because these languages do not enable separating
visualization from the raytracing application even if these ones allows
separating multilingualization from the book store. These languages does
not provide mechanisms or language constructs for distributed features
like visualization.

In the table, AspectJ is the most suitable programming language for
agile software development in existing programming languages and tech-
niques. However, AspectJ is not good enough for agile software develop-
ment. According to the Table 2.2, although AspectJ satisfies features
(B) and (D), it does not satisfy features (A) and (C).

Although AspectJ allows separating the function for visualization
from the raytracing application as a component, the implementation
of its component is not simple and consists of several distributed sub-
components. To communicate these sub-components via a network, the
programs of these sub-components include complicated network process-
ing codes like Java RMI. AspectJ cannot modularize such functions for
distributed software without consideration of distribution. An ideal lan-
guage should allows separating these functions as simple aspects, which
are non-distributed modules.

Although cflow pointcut in AspectJ enables multiple software engi-
neers to develop different features at same iteration, these aspect im-
plementations are not simple. The cflow expressions specified for each
advice would be unnecessary and redundant. Appending a cflow point-
cut expression to each advice will be tedious if the number of advices is
large.

The target application in this thesis is development of web applica-
tions such as the program of an online book store shown in Section 2.3.1.
The programs of most web applications are particular forms. These pro-
grams have session objects, provide a way to identify a user access, and
a mechanism for managing those objects. Dynamic contexts of a web
application are registered and centralized in a session object. A soft-
ware engineer of a web application uses a session object and describe

40 LIMITATIONS OF EXISTING LANGUAGES

Summary

the codes for switching processings according to session objects by hand.
We should use sessions and a session management mechanism. Then, for
concurrent development, we should propose a language construct that al-
lows multiple software engineers to simply develop different processings
according to the session objects.

LIMITATIONS OF EXISTING LANGUAGES 41

Summary

class BookStore {

String searchBookTitles(String keyword) {

Book[] books = readDatabase(keyword);

StringBuffer sbuf = new StringBuffer();

for (Book b : books) {

sbuf.append(getTitle(b))

.append(",")

.append(getCurrency())

.append(getPrice(b))

.append("\n");

}

return sbuf.toString();

}

Book[] readDatabase(String keyword) {

// accesss a database and makes book objects of

// titls associated with the given keyword.

}

int getPrice(Book b) {

return b.price();

}

String getTitle(Book b) {

return b.title();

}

String getCurrency() {

return "USD";

}

... ...

}

Figure 2.2. The current program of an online book store in Java

42 LIMITATIONS OF EXISTING LANGUAGES

Summary

Figure 2.3. Architecture of the program of online book store

Figure 2.4. Architecture of the program of a raytracing application

LIMITATIONS OF EXISTING LANGUAGES 43

Summary

class Raytracer implements RemoteRaytracer {

void calcurate(List figures, Light light) {

for (int ypos = 0; ypos < IMAGE_SIZE; ypos++) {

for (int xpos = 0; xpos < xlen; xpos++) {

Color c = calcurateOnePixel(xpos, ypos);

writeOnePixel(xpos, ypos, c);

}

}

}

Color calcurateOnePixel(int x, int y) {

// Calcurates pixel data of one dot that was

// specified as parameters and returns its result

}

static void main(String[] args) {

RemoteRaytracer raytracer = new Raytracer();

Registry registry =

LocateRegistry.createRegistry(1099);

registry.bind("raytracer", raytracer);

}

... ...

}

interface RemoteRaytracer extends Remote {

void calcurate(List figures, Light light);

}

Figure 2.5. An overview of a Raytracer program in Java

44 LIMITATIONS OF EXISTING LANGUAGES

Summary

class Client extends JFrame {

String[] nodes;

RemoteRaytracer[] raytracers;

static Graphics graphics;

void init() {

// Set up a GUI window

// and initializes a field named raytracers

}

void initRaytracers() {

nodes = new String[] { "node1", "node2" };

raytracers = new RemoteRaytracer[2];

for (int i = 0; i < raytracers.length; i++) {

Registry registry =

Registry.getRegistry(nodes[i], 1099);

raytracers[i] = registry.lookup("raytracer");

}

}

void actionPerformed(ActionEvent event) {

if (event.getSource() == startButton) {

for (int i = 0; i < raytracers.length; i++) {

new Thread() {

void run() {

raytracers[i].calcurate(figures, light);

}

}.start();

}

}

}

static void main(String[] args) {

Client client = new Client();

client.init();

}

... ...

}

Figure 2.6. An overview of the Client program in Java

LIMITATIONS OF EXISTING LANGUAGES 45

Summary

Figure 2.7. Architecture of a feature for real-time drawing

46 LIMITATIONS OF EXISTING LANGUAGES

Summary

class BookStore {

DynamicContext dyContext;

String searchBookTitlesForJapanese(String kw) {

dyContext.setLang("JPN");

return searchBookTitles(kw);

}

String searchBookTitlesForFrench(String kw) {

dyContext.setLang("FRN");

return searchBookTitles(kw);

}

String searchBookTitles(String keyword) {

// this method was developed by the previous

// iterations

}

int getPrice(Book b) {

if (dyContext.getLang().equals("JPN"))

return b.price() * 105;

} else if (dyContext.getLang().equals("FRN") {

return b.price() * 7 / 10;

} else { // for english

return b.price();

}

}

String getTitle(Book b) {

// This method is also overridden like getPrice.

// According to the return value of getLang, it

// switches the notation of the given book title.

}

String getCurrency() {

// This method is also overridden like getPrice.

}

... ...

}

Figure 2.8. The implementation of the function for multilingualization in
Java

LIMITATIONS OF EXISTING LANGUAGES 47

Summary

class Raytracer implements RemoteRaytracer {

Callback callback;

void calcurate(List figures, Light light) {

for (int ypos = 0; ypos < IMAGE_SIZE; ypos++) {

for (int xpos = 0; xpos < xlen; xpos++) {

Color c = calcurateOnePixel(xpos, ypos);

sendOnePixel(xpos, ypos, c);

writeOnePixel(xpos, ypos, c);

}

}

}

void sendOnePixel(int x, int y, Color c) {

if (callback == null) {

Registry registry =

getRegistry("client", 1099);

callback = (Callback)

registry.lookup("callback");

}

callback.drawOnePixel(xpos, ypos, c);

}

... ...

}

Figure 2.9. An overview of the Raytracer program improved for visualiza-
tion in Java

48 LIMITATIONS OF EXISTING LANGUAGES

Summary

class Client extends JFrame {

class CallbackImpl implements Callback {

void drawOnePixel(int x, int y, Color c) {

synchronized(graphics) {

graphics.setColor(c);

graphics.drawLine(x, y, x, y);

}

}

}

static void main(String[] args) {

Callback callback = new CallbackImpl();

Registry registry =

LocateRegistry.createRegistry(1099);

registry.bind("callback", callback);

... ...

}

... ...

}

interface Callback {

void drawOnePixel(int x, int y, Color c);

}

Figure 2.10. An overview of the client-side program for visualization in
Java

Figure 2.11. A feature for real-time drawing cut across client-side and
server-side programs

LIMITATIONS OF EXISTING LANGUAGES 49

Summary

class BookStore {

String searchBookTitlesForJapanese(String kw) {

Service serv = new JapaneseService();

return searchBookTitles(kw, serv);

}

String searchBookTitlesForFrench(String kw) {

Service serv = new FrenchService();

return searchBookTitles(kw, serv);

}

String searchBookTitles(String keyword, Service serv) {

Book[] books = readDatabase(keyword);

StringBuffer sbuf = new StringBuffer();

for (Book b : books) {

sbuf.append(getTitle(b, serv))

.append(",")

.append(getCurrency(serv))

.append(getPrice(b, serv))

.append("\n");

}

return sbuf.toString();

}

int getPrice(Book b, Service serv) {

if (serv == null) return b.price();

return serv.getPrice(b);

}

String getTitle(Book b, Service serv) {

if (serv == null) return b.title();

return serv.getTitle(b);

}

String getCurrency(Service serv) {

... ...

}

... ...

}

Figure 2.12. The implementation of multilingualization using delegation
pattern in Java

50 LIMITATIONS OF EXISTING LANGUAGES

Summary

interface Service {

int getPrice(Book b);

String getTitle(Book b);

String getCurrency();

}

class JapaneseService implements Service {

int getPrice(Book b) {

return b.price() * 105;

}

String getTitle(Book b) {

//

}

String getCurrency() {

//

}

}

Figure 2.13. The implementations of JapaneseService and Service using
delegation pattern in Java

LIMITATIONS OF EXISTING LANGUAGES 51

Summary

class JapaneseBookStore extends BookStore {

DynamicContext dyContext = new DynamicContext();

String searchBookTitlesForJapanese(String kw) {

dyContext.setLang("JPN");

return searchBookTitles(kw);

}

String searchBookTitles(String keyword) {

// this method was developed by the previous

// iterations

}

int getPrice(Book b) {

if (dyContext.getLang().equals("JPN"))

return b.price() * 105;

} else {

return super.getPrice(b);

}

}

String getTitle(Book b) {

// overrides this method for Japanese service

}

String getCurrency() {

// overrides this method for Japanese service

}

... ...

}

Figure 2.14. An extension to BookStore for Japanese book search with
Java inheritance

52 LIMITATIONS OF EXISTING LANGUAGES

Summary

class FrenchAndJapaneseBookStore

extends JapaneseBookStore {

String searchBookTitlesForFrench(String kw) {

dyContext.setLang("FRN");

return searchBookTitles(kw);

}

int getPrice(Book b) {

if (dyContext.getLang().equals("FRN"))

return b.price() * 7 / 10;

} else {

return super.getPrice(b);

}

}

String getTitle(Book b) {

//

}

String getCurrency() {

//

}

... ...

}

Figure 2.15. An extension to BookStore for French book search with Java
inheritance

LIMITATIONS OF EXISTING LANGUAGES 53

Summary

interface Callback {

void drawOnePixel(int x, int y, Color c);

}

class RaytracerWithCallback extends Raytracer

implements RemoteRaytracer {

Callback callback;

Color calcurateOnePixel(int x, int y) {

Color c = super.calcurateOnePixel(x, y);

sendOnePixel(x, y, c);

return c;

}

void sendOnePixel(int x, int y, Color c) {

if (callback == null) {

Registry registry =

getRegistry("client", 1099);

callback = (Callback)

registry.lookup("callback");

}

callback.drawOnePixel(xpos, ypos, c);

}

... ...

}

Figure 2.16. An extension to the existing raytracing program for visualiza-
tion with Java inheritance

54 LIMITATIONS OF EXISTING LANGUAGES

Summary

aspect JapaneseService {

String BookStore.searchBookTitlesForJapanese(String kw) {

return searchBookTitles(kw);

}

int around():

cflow(String BookStore.searchBookTitlesForJapanese(..))

&& args() && execution(int BookStore.getPrice(Book)) {

return proceed() * 105;

}

int around():

cflow(String BookStore.searchBookTitlesForJapanese(..))

&& args() && execution(String BookStore.getTitle(Book)) {

// an extension to getTitle for Japanese service

}

int around():

cflow(String BookStore.searchBookTitlesForJapanese(..))

&& args() && execution(String BookStore.getCurrency(Book)) {

// an extension to getCurrency for Japanese service

}

}

aspect FrenchService {

String BookStore.searchBookTitlesForFrench(String kw) {

return searchBookTitles(kw);

}

int around():

cflow(String BookStore.searchBookTitlesForFrench(..))

&& args() && execution(int BookStore.getPrice(Book)) {

return proceed() * 7 / 10;

}

int around():

cflow(String BookStore.searchBookTitlesForFrench(..))

&& args() && execution(String BookStore.getTitle(Book)) {

// an extension to getTitle for French service

}

int around():

cflow(String BookStore.searchBookTitlesForFrench(..))

&& args() && execution(String BookStore.getCurrency(Book)) {

// an extension to getCurrency for French service

}

... ...

}

Figure 2.17. The aspect implementation of multilingualization in AspectJ

LIMITATIONS OF EXISTING LANGUAGES 55

Summary

interface Callback {

void drawOnePixel(int x, int y, Color c);

}

aspect PixelDataGetting {

after(int x, int y, Color c) returning (c):

withincode(BookStore.calcuration(..))

&& args(x, y)

&& call(Color BookStore.calcurateOnePixel(..)) {

if (callback == null) {

Registry registry =

getRegistry("client", 1099);

callback = (Callback)

registry.lookup("callback");

}

callback.drawOnePixel(xpos, ypos, c);

}

... ...

}

Figure 2.18. The class and aspect programs of visualization for a raytracing
application in AspectJ

Figure 2.19. A function in AspectJ

56 LIMITATIONS OF EXISTING LANGUAGES

Summary

Table 2.2. Summary of existing programming languages
existing technologies (A) (B) (C) (D)
OOP languages (Java) × × × ○
OOP langugaes + delegation △ × × ○
Inheritance △ × × ○
OOP languages + dynamic scoping △ ○ ○ ×
AOP languages (AspectJ) △ ○ △ ○

LIMITATIONS OF EXISTING LANGUAGES 57

Chapter

3
GluonJ

This chapter presents a new AOP language, which is more suitable than
existing programming languages for agile software development. It is
named GluonJ [24, 13]. This language is based on AspectJ, which is
one of general-purpose AOP langauges for Java. It provides language
constructs for pointcut-advice and an inter-type declaration as well as
AspectJ 1.

The reason why GluonJ is based on AspectJ is because AspectJ is
the most suitable language for agile software development in existing
programming languages. AspectJ satisfies four ideal features shown in
Section 2.2 to a certain degree. See the table 2.2 of Section 2.8 again.
AspectJ allows software engineers to easily delete the feature that was
implemented as an aspect without editing the existing program (feature
(B)). Also it is an extension to Java, which is a statically typed language,
for AOP (feature (D)). However, AspectJ is not good enough for agile
software development. It does not satisfy the features (A) and (C) of an
ideal language shown in Section 2.2 too much.

The main contribution of this thesis is that we propose two new
language constructs for AOP. These language constructs are named dy-
namic refinement and remote pointcut. GluonJ provides these language

1In this thesis an inter-type declaration is called refinement.

GLUONJ 59

New Language Constructs for AOP

constructs. To solve the limitations of AspectJ, GluonJ was developed.
GluonJ satisfies not only features (B) and (D) but also (A) and (C).

It has been known that AOP is useful for agile software development
[39]. However, AOP languages have not been used on agile software
development yet. This is because there would not be existing AOP lan-
guages that are suitable for agile software development. In this thesis
we analized the features of agile software development. We showed that
an AOP language is the most suitable languages for agile software devel-
opment in existing programming languages with two example scenarios.
However, existing AOP languages such as AspectJ are not good enough
for agile software development since they do not satisfy the features (A)
and (C). Thus we proposed dynamic refinement and remote pointcut.

GluonJ is also an extended Java language. Our extension to Java is
small. GluonJ uses annotations and thereby does not extend the lexical
syntax of Java. It exploits the type system of Java as much as possible.
Thanks to these, a GluonJ program can be developed on a normal Java
IDE (Integrated Development Environment). Particularly, software engi-
neers can enjoy the coding supports by the normal IDE even for GluonJ
programming. A GluonJ program is compiled by a normal Java com-
piler. Only a special runtime system is needed to run a GluonJ program.
We introduced these features for industrial acceptability, where software
engineers tend to stay with existing tools.

3.1 New Language Constructs for AOP

Unlike AspectJ, GluonJ provides two new language constructs for AOP.
These constructs are dynamic refinement [53] and remote pointcut [54].
GluonJ that provides dynamic refinement and remote pointcut satisfies
the features (C) and (A) in Section 2.2 more than existing programming
languages. In the rest of this section, we explain motivation and con-
cept of these language constructs. The detail of them will be explain in
Chapter 4 and 5.

3.1.1 Dynamic Refinement

We proposes dynamic refinement, which allows software engineers to dy-
namically refine the definition of an existing class. By using dynamic
refinement in GluonJ, software engineers can redefine existing methods

60 GLUONJ

New Language Constructs for AOP

and append new methods, fields, and interfaces to an existing class ac-
cording to dynamic contexts. Since these changes are described in a
separate component (or module), this language mechanism is useful for
separation of concerns.

GluonJ that provides dynamic refinement satisfies the feature (C) of
an ideal language for agile software development in Section 2.2. Dy-
namic refinement allows software engineers to separate newly appended
functions from the rest of the program and other functions as aspects.
A software engineer can develop his function without consideration of
different functions that other engineers develop at same iteration. Also
it is easy to merge developed functions into an existing program. Un-
like cflow pointcut in AspectJ, dynamic refinement in GluonJ provides a
mechanism for grouping multiple redefined methods according to a same
dynamic context.

The concept of dynamic refinement is similar to the mechanism of dy-
namic scoping. Generally speaking, a language that has dynamic scoping
is not easy-to-use. Such a language decreases the readability and under-
standability of its program. However, when software engineers, in paral-
lel, improve a software product on agile software development, dynamic
scoping is often effective. Thus GluonJ exploits dynamic scoping.

To make dynamic refinement available, we added only small extension
to the original Java. Dynamic refinement is described with annotations
within the standard Java syntax. Hence, a GluonJ program can be de-
veloped on existing Java IDEs such as Eclipse [5] and NetBeans [9]. It
can be edited with a normal Java editor and compiled with a normal
Java compiler. Only a special runtime system is needed to run a GluonJ
program. A bytecode compiled by a normal Java compiler is transformed
by a custom class loader of GluonJ.

Using the standard Java and normal Java IDEs is worthy of challenge
with respect to industrial acceptability. Java is a statically typed lan-
guage and hence enabling dynamic refinement is more difficult than in
dynamically typed languages such as Python and Ruby. Nevertheless,
Java is one of the most widely used languages in industry and providing
an IDE-support is mandatory today. Although it is also a possible op-
tion to provide a custom GluonJ compiler and an IDE for GluonJ, for
example, an Eclipse plugin for GluonJ, developing those compiler and
IDE with industrial-strength quality needs a large amount of effort. If
we can enable dynamic refinement within the standard Java syntax on
normal Java IDEs, this approach is more desirable.

GLUONJ 61

New Language Constructs for AOP

Moreover, appended methods and fields are recognized by a normal
Java IDE. For example, the Eclipse IDE provides coding support called
code assist. When a programmer types a variable name and then a period
(.), Eclipse pops up a list of available methods and fields on that variable
so that she can easily complete typing an expression. In GluonJ, the
list popped up by Eclipse includes the methods and fields appended by
dynamic refinement. This is because we have carefully designed GluonJ
so that a class extended by dynamic refinment will be represented by a
normal Java type and appended methods and fields will belong to that
type.

Although GluonJ allows software engineers to dynamically append-
ing a method to an existing class, a GluonJ program never throws a No-
SuchMethodException if it is successfully compiled and loaded. A naive
implementation of dynamic refinement would wrongly allow a client to
call an unavailable method, which will be appended later by refinement
but not now. To avoid such a wrong call, which will throw a runtime
exception, GluonJ requires programmers to follow some programming
conventions. A GluonJ program satisfying these conventions never calls
an unavailable method. If a program does not satisfy the conventions,
it is statically detected before the program starts running. To do this,
GluonJ exploits the type system of Java and the class loader of GluonJ.

GluonJ allows software engineers to dynamically refine an existing
class during runtime to a certain degree. It allows applying and remov-
ing refinement to/from a class on demand. Naively designed dynamic
refinement may allow a call to a method that has not been appended
yet or that has been already removed and then it may cause a runtime
type error. However, a GluonJ program never causes such a runtime type
error as a NoSuchMethodException although it may fail an explicit type
cast and throw a ClassCastException. To guarantee this property, GluonJ
does not use a custom type checker. It exploits the type checking by a
normal Java compiler and the verification by the custom class loader of
GluonJ.

3.1.2 Remote Pointcut

We propose remote pointcut, which is new AOP language constructs for
distributed computing. A remote pointcut is a function for designating
join points in the execution of a program running on a remote host.
Although a pointcut in AspectJ identifies execution points on the local

62 GLUONJ

New Language Constructs for AOP

host, a remote pointcut can identify them on a remote host. In other
words, when the thread of control reaches the join points identified by a
remote pointcut, the advice body associated with that remote pointcut is
executed on a remote host different from the one where those join points
occur. Remote pointcuts are analogous to remote method calls, which
invoke the execution of a method body on a remote host.

GluonJ that provides remote pointcut satisfies the feature (A) of an
ideal language for agile software development in Section 2.2. This lan-
guage construct can simplify the code of a component implementing a
feature in distributed software as an aspect. AspectJ is a useful pro-
gramming language is a useful programming language for developing dis-
tributed software. However, even if a feature can be implemented as a
single aspect at the code level, it might need to be deployed on different
hosts and it would therefore consist of several sub-components or sub-
processes running on each host. Remote pointcut enables implementing
such a feature as simple, non-distirbuted component without concerns
about network processing.

The aspect weaving in GluonJ is performed at load time on each
participating host. The normal Java classes on each participating host
must be loaded by the class loader provided by GluonJ. This class loader
weaves aspects and classes on the fly. The compiled aspects are stored in
the aspect server. The parts of the compiled code except for the advice
bodies are automatically distributed by the aspect server to each host, so
the latest aspects can be woven when the classes are loaded. The software
engineers of GluonJ do not have to manually deploy the compiled aspects
to every host.

We also propose another language construct named remote refine-
ment, which allows software engineers to declare a new method and field
in an existing class on a remote host. An aspect can declare that it will
respond to certain methods and field-access requests on behalf of other
objects. In GluonJ, these methods and fields can be declared other ob-
jects on multiple remote hosts. Since the description of the refinement
automatically distributed from the aspect server to every host, declaring
a method or field to classes on remote hosts is simple. The software
engineers only have to install the compiled aspect on the aspect server.
Unlike in AspectJ, they do not have to manually deploy the woven aspect
and classes to every host.

Moreover GluonJ provides a mechanism for hot deployment. This
function is for automatically reloading the classfiles of an application

GLUONJ 63

An Overview of GluonJ

running on top of the runtime system by Remote GluonJ. The developers
of Remote GluonJ do not have to shutdown a working program since
they apply new aspects to the program on its runtime system. Before
the users start up their application on top of the runtime system provided
by Remote GluonJ, they must put the classfiles on a directory specified
by the runtime system. When the classfiles of aspects and classes on the
specific directory are changed, all runtime systems automatically restart
distributed software.

3.2 An Overview of GluonJ

GluonJ is a Java annotation based language and implemented the exten-
sion to Java without changing the original Java syntax. This lets devel-
opers write a GluonJ program with the standard Java IDE like Eclipse
IDE. This section explains an overview of GluonJ.

Java’s annotations are convenient language constructs for implement-
ing a language extension without changing the lexical syntax of Java. For
example, AspectJ5 [11] allows programmers to describe aspects in regular
Java. An extended language constructs of AspectJ5, such as a pointcut,
is described by using annotations.

However, language extensions implemented with annotations are not
understood by a normal Java IDE (Integrated Development Environ-
ment). Programmers must use an extended IDE for those language ex-
tensions, for example, the AspectJ plugin for Eclipse IDE if they want
to enjoy IDE support for the language extensions.

Our extended version of Java also uses Java annotations for imple-
menting a refinement mechanism. Unlike other naive implementations,
however, our implementation is quite compatible to a normal Java IDE.
We have carefully designed Dynamic GluonJ so that programmers can
exploit coding support by a normal Java IDE. For example, a new method
appended by a refinement is listed in the available methods shown by the
code assist of Eclipse IDE.

3.2.1 Refinement

Software evolution is one of the most significant topics in software in-
dustry. To react to altering and evolving requirements at a rapid pace,

64 GLUONJ

An Overview of GluonJ

software must be extended quickly. To minimize this effort, the exten-
sions should be implemented in a modular fashion as much as possible.

Refinement is a language mechanism for extending an existing
class. It is an useful mechanism for component-based programming
and thus a number of languages with refinement or similar mecha-
nisms, such as expander and intertype declaration, have been proposed
[79, 19, 70, 43, 16, 2]. Some languages allow only static refinement but
others allow even dynamic refinement. The latters such as CaesarJ [16]
enable programmers to partly modify the definition of an existing class
during runtime. This is useful for programming an object that changes
its behavior according to dynamic contexts. Refinement allows program-
mers to implement such behavior as a separate component for each con-
text and compose desired software from a selected set of components.

Note that refinement is different from subclassing or naive mixin. Re-
finement directly modifies the definition of an original class that the re-
finement targets for extension. On the other hand, subclassing produces
an extended definition of a super class while preserving the original def-
inition of the super class. Therefore, to use a method overwritten in
a subclass, a client program must explicitly creates an instance of the
subclass. The appended method is available only on an instance of the
subclass. It is not on an instance of the super class. If a class is ex-
tended by refinement, the original definition of that class is completely
replaced with the new extended definition. To use a method overwrit-
ten by refinement, a client program does not have to be modified. All
the subclasses of the class extended by refinement inherit the extended
definition without any program modification.

The GluonJ programming language provides a refinement mechanism.
Current AOP languages such as AspectJ are not perfectly suitable to
implement the extension to existing classes. In the case of AspectJ,
intertype declarations for appending getter/setter methods to existing
classes are natural presentation whereas around advices for overriding
existing methods by the execution pointcut are not. The expressive power
of the around advices is somewhat too powerful. Although what we want
to do is to define a modified version of the method, the advice body is not
executed as a method on the target object; it is executed on an instance
of the aspect.

If a simple thing should be expressible in a simple form, then we can
use a refinement mechanism such as Mixin Layers [70]. This mechanism
allows developers to describe an extension as if it were a subclass ex-

GLUONJ 65

An Overview of GluonJ

tending the target class. Unlike a subclass, however, it directly modifies
the definition of the target class. All calls to the original methods are
replaced with calls to the modified versions of those methods.

Although refinement enables intuitive presentation, its expressive
power is obviously lower than the pointcut-advice mechanism. In some
cases, using pointcut-advice instead of refinement achieves better mod-
ularization and presentation [15]. However, introducing both pointcut-
advice and refinement into a single AOP language is not acceptable be-
cause it degrades the conceptual integrity of the programming model
[65]. It will increase the amount of the language specification, make
the learning curve steeper, and complicate programming activities. It
would be also difficult to keep the semantic consistency between the two
mechanisms from the viewpoint of language design.

Changing an existing method Refinements that are provided by GluonJ
allow writing an extension to the definition of an original class. They are
written in Java as subclasses of their original classes. Unlike the inher-
itance and mixin mechanisms, however, refinements directly modify the
original class definition. Thus to use the extended class definition, its
clients do not need to explicitly make a new instance of the extended
class. Such subclasses representing refinements are called refinement
classes. They are language constructs available within aspect declara-
tions of GluonJ. Aspects are also written in Java. We here explain the
specification of refinement classes on details.

To change an existing method in an original class, programmers over-
write it in a refinement class described as a subclass of the original class.
For example, to change the implementation of the getPrice method in the
Book class:

public class Book { // original class

protected String title;

protected int price;

public Book(String t, int p) {

title = t;

price = p;

}

public String getTitle() {

return title;

}

66 GLUONJ

An Overview of GluonJ

public int getPrice() {

return price;

}

}

programmers must write the following refinement class BookLogger:

@Glue class Logging {

@Refine public static class BookLogger

extends Book {

@Override public int getPrice() {

System.out.println(price);

return super.getPrice();

}

}

}

The BookLogger class is a normal Java class that extends the original
class Book and overrides the getPrice method. Note that the refinement
class is a static nested class in the Logging class annotated with @Glue.
Such a class is called an @Glue class and can group refinement classes
related to each other.

A method in a refinement class can use super for invoking the methods
directly declared in its original class. The semantics of super is the same
as for subclassing.

Once the two classes are compiled and loaded, the runtime system
of GluonJ automatically modifies the original class Book. Thus, during
runtime, a Book object is an instance of the modified version of Book,
the behavior of which is equivalent to that of an instance of BookLogger
in the regular Java. For example,

Book b = new Book("AspectJ Primer", 50);

int p = b.getPrice();

The call to getPrice invokes the method declared in the BookLogger
class because the original method in Book has been replaced. Thus,
the mehtod prints the value of price before returning it. Note that re-
finement is different from subclassing. Although a subclass can partly
modify the definition of its super class, an instance of the subclass must
be explicitly created for using the modified class definition. Moreover,

GLUONJ 67

An Overview of GluonJ

a subclass does not affect the behavior of the sibling classes that share
the super class with that subclass. On the other hand, a refinement class
affects the behavior of its sibling classes. It directly modifies the origi-
nal class (i.e. the super class) and hence the sibling classes inherit the
modified definition from their super class.

From the viewpoint of a Java IDE, the definition of a refinement class
is just a normal subclass. Hence, programmers can fully exploit coding
support provided by the IDE. For example, they can add @Override to a
method in a refinement class. If the name or the signature of that method
is wrong and the method does not override a method in the original class,
the IDE will report an error. Recall that @Override in the regular Java
declares that the method with this annotation overrides a method in its
super class.

Although a refinement class looks like a normal subclass, creating an
instance of a refinement class is prohibited in GluonJ. Creating an array
of instances of a refinement class is also prohibited. On the other hand,
using a refinement class as a type name is allowed. We will later discuss
details of this issue.

Appending new methods To append a new method to an original class,
programmers declare the new method in a refinement class extending that
original class. For example, the following refinement class BookPrinter
appends a new method print to the Book class:

@Glue class Printing {

@Refine public static class BookPrinter

extneds Book {

public void print() {

System.out.println(

"Book[" + title + "," + price + "]");

}

}

}

The original Book class is automatically modified by the runtime system
of GluonJ at load time according to Printering. The behavior of instances
of the modified Book class in GluonJ is equivalent to that of instances of
BookPrinter in the regular Java.

To call a method appended by refinement, a reference to the target
object must be cast to the type of the refinement class. For example, the

68 GLUONJ

An Overview of GluonJ

following code calls the print method appended by the refinement class
BookPrinter above:

public void printBook(Book b) {

((BookPrinter)b).print();

}

The type cast from Book to BookPrinter always succeeds while the re-
finement class BookPrinter is applied to the Book class. Programmers
can understand this programming convention by the analogy to down-
cast in Java. To call a method in a subclass, a reference to the target
object must be down-cast to the subclass type. This type cast succeeds
only if the target object is an instance of that subclass. Although a re-
finement class is not equivalent to a subclass, this analogy would help
programmers understand the semantics of GluonJ.

The method print appended by the refinement class is included in the
list of the available methods shown by Eclipse (see Figure 3.1) when a
programmer types the period at the end of the following sequence:

((BookPrinter)b).

This is because Eclipse recognizes BookPrinter as a normal class, which
declares the print method under the interpretation for the regular Java.
Although GluonJ extends the semantics of Java by using annotations, the
lexical representaion of a GluonJ program can be read as a normal Java
program and the types recognized by this reading are almost equivalent
to the types under the semantics of GluonJ. We have carefully designed
GluonJ to preserve this property so that the coding support by Java
IDEs will be useful for writing a GluonJ program.

In GluonJ, the type cast from the type of an array of an original class
to the type of an array of its refinement class succeeds while the refine-
ment class is applied to the original class. For example, the following
test cast succeeds.

Book[] books = new Book[8];

:

BookPrinter[] printers = (BookPrinter[])books;

GLUONJ 69

An Overview of GluonJ

Figure 3.1. The code assist of Eclipse pops up a list of available methods
and fields on the b variable. Not only existing methods in Book but also
print() newly appended by BookPrinter are included in that list.

Overriding methods with private A refinement class allows users to override
private methods in its original class only if it is annotated by @Privileged.
For example, suppose that a private method validateBookStore has been
declared in BookStore.

@Glue class TraceAspect {

@Refine @Privileged

static abstract class BookStoreTracer extends BookStore {

abstract void super_validateBookStore();

private void validateBookStore() {

System.out.println("validate");

super_validateBookStore();

}

}

}

In the example above, the method validateBookStore in BookStoreTracer
is substituted for the original method validateBookStore in BookStore. To
call the private method validateBookStore in the original BookStore from
the refinement class, an abstract method named super validateBookStore
must be declared in the refinement class. The method name must start
with super , which is followed by the name of the private method in the
original class. @Privileged gives an aspect the power enough to violate
the information hiding principle. Dynamic GluonJ adopts @Privileged
because it is necessary to write white-box tests, for example.

70 GLUONJ

An Overview of GluonJ

Changing an existing static method Unlike a subclass, a refinement class
can override a static method in its original class. For example, the fol-
lowing class changes the implementation of the static createBook in its
original class Book:

@Glue class Logging {

@Refine public static class BookLogger

extends Book {

public static Book createBook(String title,

int price) {

System.out.println("create a book");

return Book.createBook(title, price);

}

}

}

A call to the createBook method in Book invokes the implementation
above in BookLogger. For example,

Book.createBook("AspectJ Primer", 50);

this method call first prints the message ”create a book” and then ex-
ecutes the original implementation declared in Book. An overriding
method in a refinement class can invoke the overridden static method
in its original class as in the example above.

Appending new interfaces In GluonJ, to append a new interface to an
original class, the interface is declared in a refinement class. For example,
the following refinement class makes the Book class implement the Tracer
interface:

@Glue class Tracing {

@Refine public static class BookTracer

extneds Book

implements Tracer {

public void trace(String msg) {

System.out.println("[TRACE] " + msg);

}

}

}

GLUONJ 71

An Overview of GluonJ

public interface Tracer {

void trace(String msg);

}

This refinement class also appends the trace method, which is declared
in the Tracer interface. To call the trace method, programmers must cast
a reference to the target object to the BookTracer class or the Tracer
interface.

Appending new fields GluonJ also enables appending a new field to an
original class. In GluonJ, to append a new field to an original class,
the field is declared in a refinement class. For example, the following
refinement class directly appends a field counter and a method count to
the Book class:

@Glue class Counting {

@Refine public static class BookCounter

extends Book

implements Counter {

int counter = 0;

public int getPrice() {

counter++;

return super.getPrice();

}

public int count() {

return counter;

}

}

}

public interface Counter {

int count();

}

This refinement class BookCounter counts how many the method getPrice
calls on the Book object. When getPrice is called, the value of the newly
appended counter increases. To check the value of the counter, the users
call a method count in an interface Counter.

72 GLUONJ

An Overview of GluonJ

The order of aspect weaving If there are several refinement classes for
extending the same target class, each of them is woven with the target
class in turn in the order of the priority that the users specify. The
priority is specified by using @Include.

For example, suppose that two aspects that extend BookStore are
declared as following:

@Glue class LowerPriorityAspect {

@Include HigherPriorityAspect higherAspect;

@Refine static class RefinedBookStore1 extends BookStore {

protected Book findTitle(String title) {

return super.findTitle(title);

}

}

}

@Glue class HigherPriorityAspect {

@Refine static class RefinedBookStore2 extends BookStore {

protected Book findTitle(String title) {

return super.findTitle(title);

}

}

}

The field higherAspect with @Include is declared in the aspect Lower-
PriorityAspect. @Include specifies another aspect included. HigherPrior-
ityAspect is included in LowerPriorityAspect as a child aspect. When they
are woven, a child aspect with a higher priority is woven first. The parent
aspect, which contains a field with @Include, has a lower-priority. Hence
HigherPriorityAspect has a higher priority over LowerPriorityAspect.

A refinement class in an aspect that has a higher priority extends an
original class before a refinement class in a lower-priority aspect. Book-
Store is first modified by RefinedBookStore2. The modified BookStore is
then modified by RefinedBookStore1. When the original method findTitle
in BookStore is called, the method findTitle in RefinedBookStore1 is in-
voked. super.findTitle() within RefinedBookStore1 then invokes findTitle
in RefinedBookStore2. Finally, a call super.findTitle() within RefinedBook-
Store2 invokes the original one in BookStore.

GLUONJ 73

An Overview of GluonJ

3.2.2 Pointcut-advice

Another kind of member of an @Glue class is a pointcut-advice, which
is a field annotated by @Before, @After, or @Around. Unlike AspectJ, a
pointcut and an advice are not separated. A @Glue class can contain any
number of pointcut-advices as an @Refine class.

A field representing a pointcut-advice, which we below call a pointcut
field, must have the type Pointcut. An @Glue class can contain any
number of fields of the type Pointcut and it can annotate only some of
them by @Before etc. If fields of the Pointcut type are not annotated,
then they are not treated as pointcut fields.

A typical pointcut field is like this:

@Before("{ System.out.println(‘call!‘); }")

Pointcut pc = Pcd.call("figure.Point#setX(..)");

Note that a back-quote ‘ used in an argument to @Before is interpreted
as an escaped double quote .̈ This notation is provided for convenience.
The declaration above specifies that the following block statement:

{ System.out.println("call!"); }

is executed when a setX method in figure.Point is called. Since the anno-
tation is @Before, the statement is executed just before the method body
starts running, after all the arguments to the method are evaluated. The
block statement above is below called an advice body.

A Pointcut object specifies when a block statement passed to @Be-
fore is executed. The Pcd (Pointcut Designator) class provides factory
methods to create a Pointcut object. The call method returns a Pointcut
object specifies the time when a method is called. The String argument
to call:

figure.Point#setX(..)

specifies a call to say declared in figure.Point. # is a separator between a
class name and a method name. The parameter types of the say method
are not specified since (..) is given. The argument above specifies calls
to setX(), setX(int), setX(int,int),...

74 GLUONJ

An Overview of GluonJ

Pointcut designators GluonJ can deal with several kinds of pointcuts. The
following is a list of factory methods in Pcd and Pointcut:

• Pointcut call(String methodPattern)

When a method (or a constructor) specified by methodPattern is
called.

• Pointcut get(String fieldPattern)

When the value of a field specified by fieldPattern is obtained.

• Pointcut set(String fieldPattern)

When a new value is assigned to a field specified by fieldPattern.

• Pointcut within(String classPattern)

When a thread of control is within a method immediately declared
in the class specified by classPattern.

• Pointcut within(String methodPattern)

When a thread of control is within the body of a method specified
by methodPattern.

• Pointcut annotate(String annotationPattern)

When a method or a field with an annotation specified by annota-
tionPattern is accessed.

• Pointcut when(String javaExpression)

While javaExpression is true. This corresponds to AspectJ’s if
pointcut designator.

• Pointcut cflow(String methodPattern)

While a method specified by methodPattern is running.

The pointcuts except call, get, and set are usually used with one of these
three poitncuts call, get, or set. These pointcuts can be composed with
others by using .and or .or. For example,

Pointcut pc =

Pcd.call("figure.Point#setX(..)").and.within("test.PointTest");

GLUONJ 75

An Overview of GluonJ

The created Pointcut object specifies the time when the setX method in
figure.Point is called from a method declared in the test.PointTest class.

Multiple .and and .or can be used in a single expression. For example,

Pointcut pc =

Pcd.call("figure.Point#setX(..)").and

.within("test.PointTest").or

.call("figure.Point#getX());

This specifies the time when the setX method is called within the
test.PointTest class or when the getX method of the figure.Point class
is called within any class. .and has a higher precedence than .or. If you
want to change this precedence rule, you must use the expr method in
Pcd and Pointcut. This method works as parentheses.

Pointcut pc =

Pcd.expr(Pcd.call("figure.Point#setX(..)").or

.call("figure.Point#getX()")).and

.within("test.PointTest")

This specifies the time when either setX or getX of an figure.Point object
is called within test.PointTest. The two call pointcuts are grouped by the
expr method.

The expr method is available in the middle of an expression:

Pointcut pc =

Pcd.within("test.PointTest").and.

expr(Pcd.call("figure.Point#setX(..)").or

.call("figure.Point#getX()"))

You can also split the declaration above into two:

Pointcut pc0 =

Pcd.call("figure.Point#setX(..)").or

.call("figure.Point#getX());

@Before("{ System.out.println(‘call!‘); }")

Pointcut pc =

Pcd.expr(pc0).and.within("test.PointTest");

76 GLUONJ

An Overview of GluonJ

This also creates the same Pointcut object. Since the declaration of pc0
is not annotated, pc0 is not treated as a pointcut field. It is only used as
a sort of temporary variable.

For negation, GluonJ provides .not, which can be placed after Pcd,
.and, or .or. .not has the highest precedence. For example,

Pointcut pc =

Pcd.call("figure.Point#setX(..)").and

.not.within("test.PointTest");

Pointcut pc2 =

Pcd.not.within("test.PointTest").and

.call("figure.Point#setX(..)");

Both the two pointcuts above specify the time when the setX method is
called within any class except test.PointTest.

call takes a method pattern. It is a concatenation of a class name,
a method name, and a list of parameter types. The class name and the
method name are separated by #. For example,

figure.Point#move(int, int)

represents a move method declared in figure.Point. It receives two int pa-
rameters. The class name must be a fully qualified name, which includes
a package name. If the class name ends with +, subclasses of that class
also match the pattern. A class name and a method name can include a
wild card *. For example, figure.* means any class in the figure package.
A list of parameter types cannot include a wild card *. To specify any
type, (..) is used.

A method pattern may match a constructor if the method name in
the pattern is new. For example,

figure.Point#new(int, int)

This pattern matches a new expression with two int arguments.
A field pattern taken by get and set is similar to a method pattern.

It is a concatenation of a class name and a field name. For example,

figure.Point#x

GLUONJ 77

An Overview of GluonJ

represents a x field declared in figure.Point. A class name and a field
name can include a wild card * as well.

Finally, a class pattern is a fully-qualified class name. It can include a
wild card *. An annotation pattern is a fully-qualified class name starting
with/without @, for example, @figure.Change. It can include a wild card
*.

Advice body The declaration of a pointcut field is annotated by either
@Before, @After, or @Around. If @Before is used, the advice body passed to
that annotation as an argument is executed just before the time specified
by the pointcut field. If @After is used, the advice body is executed just
after the time specified by the pointcut field. For example, if the pointcut
field specifies the time when a method is called, then the advice body is
executed just after a return statement in the body of the called method
is executed.

• @Before(adviceBody)

The given advice body is executed before the time specified by the
pointcut field annotated by this.

• @After(adviceBody)

The given advice body is executed after the time specified by the
pointcut field annotated by this.

• @Around(adviceBody)

The given advice body is executed instead of the computation spec-
ified by the pointcut field annotated by this.

@Around has a special meaning. If it is used, the given advice body
is executed instead of the code fragment specified by the pointcut field
annotated by that @Around. For example,

@Around("{ System.out.println(‘call!‘); }")

Pointcut pc =

Pcd.call("figure.Point#setX(..)").and

.within("test.PointTest");

If a method in test.PointTest class attempts to invoke the setX method,
that method invocation is intercepted. Then the body of the setX method
is not executed but instead the advice body given to the @Around is
executed. In other words, the advice body is substituted for the call to
say from a method in test.PointTest.

78 GLUONJ

An Overview of GluonJ

Runtime Contexts In an advice body given to @Around, a special form
$proceed is available. It represents the original computation that the
advice body is substituted for.

@Around("{

System.out.println(‘call!‘); $_ = $proceed($$);

}")

Pointcut pc =

Pcd.call("figure.Point#setX(..)");

This advice body first prints a message and then invokes the setX
method in figure.Point since the method invocation is the original com-
putation that the advice body is substituted for. $proceed is used as a
method name. If it is called, it executes the original computation, that
is, the say method. $$ represents the original set of arguments given to
the computation, that is, the setX method.

$ is the special variable that the resulting value must be stored.
Since @Around substitutes the computation specified by a pointcut field,
its advice body must set $ to an appropriate value before finishing.
The type of $ is the same type as the resulting value of the original
computation. If the return type of the originally called method is void,
then the value stored in $ is ignored. Otherwise, the value stored in $
is used as the result of the advice body. For example, suppose that the
getX method returns a value of the int type:

int x = p.getX();

If the pointcut field:

@Around("{ $_ = 100; }")

Pointcut pc =

Pcd.call("figure.Point#getX()");

is applied to the call to getX, then the value stored in $, which is 100, is
assigned to the variable x. This is because the advice body is substituted
for the call to getX. The getX method is never executed.

The meanings of $proceed, $$, and $, depend on the kind of the
original computation. However, the following statement:

$_ = $proceed($$);

GLUONJ 79

An Overview of GluonJ

executes the original computation whatever is the original computa-
tion.

If the original computation is a method call, then $proceed executes
that method call. It takes the same set of parameters as the original
method and returns the same type of value. $$ represents the list of
the original arguments. The type of $ is the return type of the original
method. The value stored in $ is used as the result of the advice body.

If the original computation is a field read, $proceed executes that
operation. It takes no parameter and returns the value of the field. $$
represents an empty list. The type of $ is the same as the field type.
The value stored in $ is used as the result of the field access instead of
the value of the accessed field.

If the original computation is a field write, $proceed changes the value
of the field. It takes a new value as a parameter and returns no value (i.e.
void). $$ represents the value that the original computation attempts to
assign. $ is still available but the value stored in $ is ignored.

Although $$ represents a list of actual arguments given to origi-
nal computation, the value of an individual argument is also accessible
through a special variable. If original computation is a method call, then
$1 represents the first argument, $2 represents the second argument, and
so on. $0 represents the target object that the method is called on.
Thus, $0.getClass() returns the type of the target object. The name
of the method is available from $name. To obtain a reference to the
caller/accessor object, i.e. an issuer of original computation, this should
be used.

A value assigned to $1, $2, ... is reflected on $$. For example,

@Around("{ $1 = 50; $_ = $proceed($$); }")

Pointcut pc =

Pcd.call("figure.Point#setX(int)");

After this advice body is executed, the value stored in $ is the value
returned from the setX method called with 50. Thus, the effects of the
advice body above is equivalent to:

@Around("{ $_ = $proceed(50); }")

Pointcut pc =

Pcd.call("figure.Point#setX(int)");

$0, $1, $2, ... are available within an advice body given to @Before or
@After.

80 GLUONJ

Chapter

4
Dynamic Refinement

This chapter presents the detail of dynamic refinement. Dynamic refine-
ment allows software engineers to dynamically refine a class definition to
a certain degree. It allows them to dynamically inactivate a refinement
that has been applied to a class C and activate another refinement for
the same class C. This function improves the description of aspects.

This chapter also presents how dynamic refinement is implemented for
Java. Since Java is a statically typed language, it is not obvious how to
implement a mechanism for switching refinements during runtime. Our
idea of the implementation is to generate a class definition that reflects
a union of all refinements.

The current version of GluonJ does not have dynamic refinement. To
append the function of dynamic refinement to GluonJ later, we remod-
elled the implementation of GluonJ and prototyped dynamic refinement.
To discriminate between the remodelled GluonJ and regular GluonJ, the
remodelled one is called Dynamic GluonJ. In the rest of this chapter,
we explain the detail of dynamic refinement and Dynamic GluonJ that
provides a language construct for it.

DYNAMIC REFINEMENT 81

Design Overview of Dynamic GluonJ

4.1 Design Overview of Dynamic GluonJ

Programmers of Dynamic GluonJ can use a normal Java IDE (Integrated
Development Environment) to exploit coding support by the IDE. This is
significant for the industrial acceptability of a new language. A program
of Dynamic GluonJ is written in the regular Java with Java’s annotations.
A new class definition refined in Dynamic GluonJ was carefully designed
so that the IDE can recognize that refinement and reflect it on the coding
support such as the code assist of Eclipse. Moreover, a Dynamic GluonJ
program never throws a runtime exception reporting that an undefined
method is called. Guaranteeing this fact is not straightforward because
Dynamic GluonJ allows programmers to refine a class definition during
runtime.

In Dynamic GluonJ, a refinement, which represents modifications to
an original class, is described as a subclass of the original class. The
subclass is annotated with @Refine and called a refinement class. Both
the original class and the refinement class are compiled by a normal
Java compiler. Then the runtime system of Dynamic GluonJ actually
modifies the definition of the original class at load time according to the
specification given by the refinement class.

4.1.1 Changing an existing method

To change an existing method in an original class, programmers overwrite
it in a refinement class described as a subclass of the original class. For
example, to change the implementation of the getPrice method in the
Book class:

public class Book { // original class

protected String title;

protected int price;

public Book(String t, int p) {

title = t;

price = p;

}

public String getTitle() {

return title;

}

public int getPrice() {

82 DYNAMIC REFINEMENT

Design Overview of Dynamic GluonJ

return price;

}

}

programmers must write the following refinement class BookLogger:

@Glue class Logging {

@Refine public static class BookLogger

extends Book {

@Override public int getPrice() {

System.out.println(price);

return super.getPrice();

}

}

}

The BookLogger class is a normal Java class that extends the original
class Book and overrides the getPrice method. Note that the refinement
class is a static nested class in the Logging class annotated with @Glue.
Such a class is called an @Glue class and can group refinement classes
related to each other.

A method in a refinement class can use super for invoking the methods
directly declared in its original class. The semantics of super is the same
as for subclassing.

Once the two classes are compiled and loaded, the runtime system of
Dynamic GluonJ automatically modifies the original class Book. Thus,
during runtime, a Book object is an instance of the modified version
of Book, the behavior of which is equivalent to that of an instance of
BookLogger in the regular Java. For example,

Book b = new Book("AspectJ Primer", 50);

int p = b.getPrice();

The call to getPrice invokes the method declared in the BookLogger
class because the original method in Book has been replaced. Thus,
the mehtod prints the value of price before returning it. Note that re-
finement is different from subclassing. Although a subclass can partly
modify the definition of its super class, an instance of the subclass must
be explicitly created for using the modified class definition. Moreover,
a subclass does not affect the behavior of the sibling classes that share

DYNAMIC REFINEMENT 83

Design Overview of Dynamic GluonJ

the super class with that subclass. On the other hand, a refinement class
affects the behavior of its sibling classes. It directly modifies the origi-
nal class (i.e. the super class) and hence the sibling classes inherit the
modified definition from their super class.

From the viewpoint of a Java IDE, the definition of a refinement class
is just a normal subclass. Hence, programmers can fully exploit coding
support provided by the IDE. For example, they can add @Override to a
method in a refinement class. If the name or the signature of that method
is wrong and the method does not override a method in the original class,
the IDE will report an error. Recall that @Override in the regular Java
declares that the method with this annotation overrides a method in its
super class.

Although a refinement class looks like a normal subclass, creating an
instance of a refinement class is prohibited in Dynamic GluonJ. Creating
an array of instances of a refinement class is also prohibited. On the
other hand, using a refinement class as a type name is allowed. We will
later discuss details of this issue.

4.1.2 Appending new methods

To append a new method to an original class, programmers declare the
new method in a refinement class extending that original class. For ex-
ample, the following refinement class BookPrinter appends a new method
print to the Book class:

@Glue class Printing {

@Refine public static class BookPrinter

extneds Book {

public void print() {

System.out.println(

"Book[" + title + "," + price + "]");

}

}

}

The original Book class is automatically modified by the runtime system
of Dynamic GluonJ at load time according to Printering. The behavior
of instances of the modified Book class in Dynamic GluonJ is equivalent
to that of instances of BookPrinter in the regular Java.

84 DYNAMIC REFINEMENT

Design Overview of Dynamic GluonJ

To call a method appended by refinement, a reference to the target
object must be cast to the type of the refinement class. For example, the
following code calls the print method appended by the refinement class
BookPrinter above:

public void printBook(Book b) {

((BookPrinter)b).print();

}

The type cast from Book to BookPrinter always succeeds while the re-
finement class BookPrinter is applied to the Book class. Programmers
can understand this programming convention by the analogy to down-
cast in Java. To call a method in a subclass, a reference to the target
object must be down-cast to the subclass type. This type cast succeeds
only if the target object is an instance of that subclass. Although a re-
finement class is not equivalent to a subclass, this analogy would help
programmers understand the semantics of Dynamic GluonJ.

The method print appended by the refinement class is included in the
list of the available methods shown by Eclipse (see Figure 4.1) when a
programmer types the period at the end of the following sequence:

((BookPrinter)b).

This is because Eclipse recognizes BookPrinter as a normal class, which
declares the print method under the interpretation for the regular Java.
Although Dynamic GluonJ extends the semantics of Java by using anno-
tations, the lexical representaion of a Dynamic GluonJ program can be
read as a normal Java program and the types recognized by this read-
ing are almost equivalent to the types under the semantics of Dynamic
GluonJ. We have carefully designed Dynamic GluonJ to preserve this
property so that the coding support by Java IDEs will be useful for writ-
ing a Dynamic GluonJ program.

In Dynamic GluonJ, the type cast from the type of an array of an
original class to the type of an array of its refinement class succeeds
while the refinement class is applied to the original class. For example,
the following test cast succeeds.

Book[] books = new Book[8];

:

BookPrinter[] printers = (BookPrinter[])books;

DYNAMIC REFINEMENT 85

Design Overview of Dynamic GluonJ

Figure 4.1. The newly appended method is included in the list of avaiable
methods shown in a code assist by Eclipse

4.1.3 Appending new interfaces

In Dynamic GluonJ, to append a new interface to an original class, the
interface is declared in a refinement class. For example, the following
refinement class makes the Book class implement the Tracer interface:

@Glue class Tracing {

@Refine public static class BookTracer

extneds Book

implements Tracer {

public void trace(String msg) {

System.out.println("[TRACE] " + msg);

}

}

}

public interface Tracer {

void trace(String msg);

}

This refinement class also appends the trace method, which is declared
in the Tracer interface. To call the trace method, programmers must cast
a reference to the target object to the BookTracer class or the Tracer
interface.

86 DYNAMIC REFINEMENT

Design Overview of Dynamic GluonJ

4.1.4 Changing an existing static method

Unlike a subclass, a refinement class can override a static method in its
original class. For example, the following class changes the implementa-
tion of the static createBook in its original class Book:

@Glue class Logging {

@Refine public static class BookLogger

extends Book {

public static Book createBook(String title,

int price) {

System.out.println("create a book");

return Book.createBook(title, price);

}

}

}

A call to the createBook method in Book invokes the implementation
above in BookLogger. For example,

Book.createBook("GPCE 2007", 50);

this method call first prints the message ”create a book” and then ex-
ecutes the original implementation declared in Book. An overriding
method in a refinement class can invoke the overridden static method
in its original class as in the example above.

4.1.5 Dynamic refinement

Dynamic GluonJ allows applying a refinement class to its original class
during only limited time. Recall that a refinement class is a static nested
class in a class annotated with @Glue, which can group multiple refine-
ment classes related to each other. If the @Glue class is annotated with
@Cflow, then all the refinement class included in that @Glue class are
activated during only the time specified by the @Cflow annotation. The
extension by the refinement classes is effective during only that time.

The argument to @Cflow is the time while refinements are effective.
For example, the following refinement class appends the print method
only while the getBookPrice method in the BookStore class is executed.

DYNAMIC REFINEMENT 87

Design Overview of Dynamic GluonJ

@Cflow("void BookStore.getBookPrice(Book)")

@Glue public class CflowBasedPrinting {

@Refine public static class BookPrinter

extends Book {

public void print() {

System.out.println(

"Book[" + title + "," + price + "]");

}

}

}

The signature of a method is given as the argument to @Cflow1. An @Glue
class with @Cflow is active only while the specified method is executed.
After that, the @Glue class is inactivated. A refinement class included in
the @Glue class is applied to its original class only during the active time
of the @Glue class.

A method appended by a refinement class with @Cflow is never in-
voked when the refinement class is inactive. Recall that, to call a method
appended by a refinement class, a reference to the target object must be
cast to the type of the refinement class. The type cast from the type of
an original class to the type of the refinement class with @Cflow succeeds
only when the refinement class is active. If an overriding method in a
refinement class with @Cflow is invoked when the refinement class is in-
active, the overridden method in its original class is invoked instead of
the overriding one.

The following code calls the print method appended by the refinement
class BookPrinter shown above:

public class BookStore {

public int getBookPrice(Book b) {

((BookPrinter)b).print();

return b.getPrice();

}

public int getBookTitle(Book b) {

// throw ClassCastException

((BookPrinter)b).print();

return b.getTitle();

1There is restriction on the signature of a method that can be specified as the
argument to @Cflow. The restriction will be shown in Section ??.

88 DYNAMIC REFINEMENT

Design Overview of Dynamic GluonJ

}

}

The refinement class BookPrinter is effective only during the execution of
the getBookPrice method. Thus, it is not effective while the getBookTitle
method is executed. Thus, the cast from Book to BookPrinter fails and
then causes a ClassCastException. The print method on b is never invoked.

The extension to a class by a refinement class with @Cflow is applied
to all the instances of that class during the specified time. It is applied
to not only existing instances but also instances created while the @Glue
class is active. Note that this application is per-thread basis. When
other threads access the instances, the extension by the refinement class
is not effective. The effect of the @Glue class is within the thread that
activated the @Glue class.

An @Glue class without an @Cflow annotation is always active during
runtime. A refinement class included in that @Glue class is statically
applied to its original class.

4.1.6 Restrictions by @Cflow

To prevent a method appended by dynamic refinement from being called
when the method is not available, Dynamic GluonJ requires programmers
to follow the programming conventions shown below.

Let G is an @Glue class associated with @Cflow and let G include a
refinement class R. R appends an interface I to its original class. If a
type T is either R, I, or an array type of R or I, such as R[] and I[],
then the following rules must be satisfied:

1. A field of the type T appears only within G.

2. The type T is not the return type or one of the parameter types of
the method specified as the argument to @Cflow.

3. T is not an exception type (i.e. a subclass of Throwable). It is not
the parameter to a catch clause.

4. The refinement class R does not override a static method in its
original class.

DYNAMIC REFINEMENT 89

Design Overview of Dynamic GluonJ

We later discuss why these rules guarantee that a method appended
by dynamic refinement is never invoked when the method is not available.
For more details, see Section 4.2.5.

The runtime system of Dynamic GluonJ checks whether or not these
rules are satisfied in a given Dynamic GluonJ program when the program
is loaded. If the rules are not satisfied, the runtime system throws an
exception. Otherwise, the program is successfully loaded and it will
never throw a NoSuchMethodException, which reports that an unavailable
method is called. NoSuchMethodException is an exception type included
in the standard Java library. It is thrown when a client calls a method
that does not exist.

Note that a Dynamic GluonJ program may throw a ClassCastExcep-
tion when an object reference is cast from an origianl class to its re-
finement class. However, once the cast operation succeeds, a Dynamic
GluonJ program never throws a NoSuchMethodException.

4.1.7 The order of @Glue class application

If there are several refinement classes for modifying the same original
class, each refinement class is applied to the original class by the runtime
system of Dynamic GluonJ in turn in the order of the priority that the
programmers specify. The priority is specified by using @Include.

For example, suppose that two @Glue classes that modify BookStore
are declared as following:

@Glue class LowerPriorityGlue {

@Include HigherPriorityGlue higherGlue;

@Refine public static class RefinedBookStore1

extends BookStore {

public int getBookPrice(Book b) {

return super.getBookPrice(b);

}

}

}

@Glue class HigherPriorityGlue {

@Refine public static class RefinedBookStore2

extends BookStore {

public int getBookPrice(Book b) {

return super.getBookPrice(b);

90 DYNAMIC REFINEMENT

Design Overview of Dynamic GluonJ

}

}

}

The field higherGlue with @Include is declared in the @Glue class Lower-
PriorityGlue. @Include specifies another @Glue class included. The @Glue
class HigherPriorityGlue is included in LowerPriorityGlue as a child @Glue
class. When they are applied to its original class, a child @Glue class with
a higher priority is applied first. The parent @Glue class, which contains
a field with @Include, has a lower-priority. Hence HigherPriorityGlue has
a higher priority over LowerPriorityGlue.

A refinement class in the @Glue class that has a higher priority is
applied to its original class before a refinement class in a lower-priority
@Glue class. BookStore is first modified by RefinedBookStore2. Then the
modified BookStore is modified by RefinedBookStore1. When the origi-
nal method getPrice in BookStore is called, the method getBookPrice in
RefinedBookStore1 is invoked. super.getBookPrice() within RefinedBook-
Store1 then invokes getBookPrice in RefinedBookStore2. Finally, a call
super.getBookPrice() within RefinedBookStore2 invokes the original one
in BookStore.

If there are several refinement classes with @Cflow for modifying the
same class, each refinement class is applied to its original class in turn
in the order of the priority specified by @Include. The modified behavior
of objects of that class is changed according to whether or not those
refinement classes with @Cflow are active.

4.1.8 Changing the initial values of existing fields

Refinement allows changing the initial value of an existing field declared
in its original class like subclassing. For example, the following refinement
class sets the initial value of the protected field enableDebug in the Book
class to true:

@Glue class Debugging {

@Refine public static class BookDebugger

extends Book {

protected boolean enableDebug = true;

}

}

DYNAMIC REFINEMENT 91

Design Overview of Dynamic GluonJ

The enableDebug field in BookDebugger overrides the initial value of the
original enableDebug field with the same name and signature in the Book
class. enableDebug is set to true by refinement class when a constructor
in the Book class is called.

4.1.9 Appending new fields

To append a new field to an original class, the field can be described in its
refinement class like subclassing. Note that the field is visible only within
methods declared in the refinement class. For example, the following
refinement class appends a new field ps of the type of PrintStream to the
Book class:

@Glue class Logging {

@Refine public static class BookLogger

extends Book {

public PrintStream ps =

new PrintStream(new File("log.txt"));

@Override public int getPrice() {

ps.println("executes getPrice()");

return super.getPrice();

}

}

}

The refinement class BookLogger also overrides the getPrice method in
Book. Thus, A call to getPrice in Book first writes the message ”executes
getPrice()” to the file named log.txt and then executes the original one
in the Book class.

4.1.10 Changing and calling private methods

A normal refinement class cannot change a private mehtod in its original
class to preserve the principle of the information hiding. However, a
refinement class annotated with @Privileged can do it. Suppose that a
private method validate has been declared in Book:

@Glue class Logging {

@Refine @Privileged

92 DYNAMIC REFINEMENT

Design Overview of Dynamic GluonJ

public static abstract class BookLogger

extends Book {

abstract void super_validate();

private void validate() {

System.out.println("executes validate");

super_validate();

}

}

}

This refinement class changes the validate method. If this method is
called on a Book object, the validate method declared in BookLogger is
executed. To call the original validate method in Book from BookLogger,
an abstract method super validate must be declared in the refinement
class BookLogger. If the super validate method is called, the original
validate method in Book is executed. The name of the abstract method
must start with super , which is followed by the name of the private
method that programmers want to call.

Unlike private methods, the current version of Dynamic GluonJ does
not allow changing a final method declared in an original class. Even a
@Privileged refinement class cannot do so. Enabling this is part of our
future work.

4.1.11 Accessing private fields

A private field can be accessed only in a refinement class with @Privileged.
For example, suppose that a private field stock has been declared in the
Book class:

@Glue class StockControl {

@Refine @Privileged

public static class BookStockClerk extends Book {

private int stock;

public boolean inStock() {

return stock != 0;

}

}

}

DYNAMIC REFINEMENT 93

Implementation Issues

The refinement class BookStockClerk appends a new method inStock to
Book. To access a private field stock within inStock, a private field with
the same name must be declared in the refinement class. If a refinement
class declares a private field with the same name as a private field in its
original class, that field is identical to the private field in the original
class.

4.2 Implementation Issues

To parse the arguments of annotations such as @Refine and @Cflow dur-
ing runtime and then extend a program of Dynamic GluonJ according
to the annotations, the program runs on the runtime system provided by
Dynamic GluonJ. The runtime system transforms the bytecode of a pro-
gram of Dynamic GluonJ at load time. A program of Dynamic GluonJ
must be compiled by a standard Java compiler in advance. Our imple-
mentation of refinements generates an original class definition that is the
union of all refinements for that class at the bytecode level. The runtime
system uses Javassist [23, 25], which is a toolkit for transforming Java
bytecode. This section presents the processing by the runtime system of
Dynamic GluonJ in detail.

4.2.1 Appending new methods

When Dynamic GluonJ finds a method that a refinement class appends
to an original class, it copies the appended method to the original class
at load time. A call to a method in the original class on super within the
copied method is replaced with the method call on this.

When there are several refinement classes that append a new method
with the same name to an original class, each appending method is copied
to the original class in turn in the order of their priority. Dynamic GluonJ
first copies an appending method with the highest priority to its original
class. Next it renames the appended method with the highest priority
to a unique name and then copies a newly appending method with a
lower priority to the original class. The priority of refinement classes was
mentioned in Section 4.1.11.

94 DYNAMIC REFINEMENT

Implementation Issues

4.2.2 Changing methods in an original class

If a refinement class includes a method changing a method existing in its
original class, Dynamic GluonJ first renames the overridden (changed)
method in the original class to a unique name. Then it copies the over-
riding (changing) method in the refinement class to the original class.
A call to the original method on super within the overriding method is
replaced with a call on this to the renamed method. A call to a non-
overridden method in the original class on super within the overriding
method is also replaced with the method call on this.

When there are several refinement classes change the same method
in its original class, each overriding method is copied to the original class
according to their priority. First Dynamic GluonJ renames the overrid-
den method to a unique name and then copies an overriding method
with the highest priority to the original class. Next it changes the name
of the copied method with the highest priority to a unique name and
then copies an overriding method with a lower priority to its original
class. A call to the original method on super within the copied method
with a lower priority is replaced with the call to the method copied with
a higher priority. The priority of refinement classes was mentioned in
Section 4.1.11.

4.2.3 @Glue classes with @Cflow

When Dynamic GluonJ copies an overriding method in a refinement class
with @Cflow to its original class, it inserts a check code at the beginning
of the overriding method. This code checks whether or not the refine-
ment class with @Cflow is active, and if it is not, it forwards the call
to the overridden method in its original class. Since methods in multi-
ple refinement classes with @Cflow may override a method in its original
class, if the refinement class with @Cflow is not active, the check code
forwards to the next method overridden by another refinement class ac-
cording to their priorities. When there are several refinement classes with
@Cflow that append a method with the same name to an original class,
the check code is also inserted in each appending method like changing
original methods.

DYNAMIC REFINEMENT 95

Implementation Issues

4.2.4 Type names, type cast, and instanceof

The runtime system of Dynamic GluonJ searches compiled class files
(Java bytecode) for replacing all occurrences of the type name of refine-
ment classes with their original class names. The replaced type names
are ones used as a return type, a parameter type, or a thrown exception
type. The runtime system substitutes the bytecode generated by the
runtime system for virtual machine instructions that perform a runtime
type check. These instructions are checkcast (type cast operator) and
instanceof.

If the destination type of the checkcast instruction is a refinement
class with @Cflow, the bytecode generated by the runtime system is in-
serted before the instruction. The bytecode checks whether or not the
refinement class with @Cflow is active. If the refinement class is inac-
tive, ClassCastException is thrown. Also, the same bytecode is inserted
if the destination type of the checkcast instruction is an array type of a
refinement class with @Cflow.

If the right-hand type of the instanceof instruction is a refinement
class with @Cflow, the instanceof instruction is replaced with the bytecode
generated by the runtime system. The bytecode first checks whether or
not the refinement class with @Cflow is active. If not, the bytecode
pushes 0 (false) onto the operand stack. Otherwise, it really executes
the instanceof instruction and pushes the result onto the stack. Also, the
instanceof instruction is replaced if the right-hand type is an array type
of a refinement class.

The virtual machine instructions new, anewarray (array creation), and
aastore (assignment to an array element) are not replaced by the runtime
system. In Dynamic GluonJ, creating an instance of a refinement class
and an array of it is prohibited. Thus, since the new and anewarray
instructions for a refinement class do not appear in the whole program,
they do not need to be replaced by the runtime system. Also, aastore is
not replaced although it performs a runtime type check. See the following
example:

R[] r = new R[1];

C[] c = r;

c[0] = new C(); // throws ArrayStoreException

Here, R is a subclass of C. The last assignment, which is compiled into
the aastore instruction, performs a runtime type check and throws an

96 DYNAMIC REFINEMENT

Implementation Issues

exception because of the covariant rule of Java. If R is a refinement class
and C is its original class, then the behavior of the aastore instruction
would be extended to perform a type check considering dynamic activa-
tion. However, since creating an array of a refinement class is prohibited
in Dynamic GluonJ, there is never an array that contains only R objects.
Thus, replacing the aastore instruction is unnecessary.

4.2.5 Why is no NoSuchMethodException thrown?

A Dynamic GluonJ program successfully compiled and loaded never
throws a NoSuchMethodException. This exception is included in the stan-
dard Java library and it is thrown when an undefined method is called.
Suppose that a client class calls a method m declared in a class C. After
the client class is compiled, if the method m is removed from the class
C and the class C is separately compiled again, then the client class will
throw a NoSuchMethodException during runtime.

It is not straightforward to guarantee that a Dynamic GluonJ pro-
gram does not throw a NoSuchMethodException. If @Cflow is specified,
a refinement class is effective during only limited time. Thus, a method
appended by the refinement class is not always available. If a client class
calls that method when it is not available, then an exception will be
thrown.

Our idea is the following. (1) To call a method appended by a re-
finement class, a reference to the target object first must be cast to the
type T of that refinement class. Then, (2) a value of this type T is
alive at most while the refinement class is effective. Therefore, a method
appended by a refinement class is never called when it is not available.

The property (1) is enforced by a normal Java compiler and the cast
operation extended by the runtime system of Dynamic GluonJ. Since
Java is a statically typed language, it is not possible that a client calls
a method appended by a refinement class if the target reference is not
the type of the refinement class. The type cast to the refinement class is
extended by Dynamic GluonJ and it succeeds only when the refinement
class is effective.

(2) is guaranteed by the programming conventions shown in Sec-
tion 4.1.6. A value obtained by the type cast to a refinement class may
be stored in a local variable or a field. However, if the field is not de-
clared in the refinement class, the value stored in the field will survive
after the refinement class becomes ineffective. A method call on that

DYNAMIC REFINEMENT 97

Example Programs

field may throw a NoSuchMethodException. To avoid this, a Dynamic
GluonJ program must follow the programming conventions, which guar-
antee that a field of the type of a refinement class is declared only in its
@Glue class. When the @Glue class becomes inactive, thus, that field also
becomes invisible from the program. The programming conventions also
guarantee that a value of the type of a refinement class does not leak out
of its @Glue class as a return value or an exception thrown out.

4.3 Example Programs

4.3.1 Multilingualization for an Online Book Store

Here we illustrate the implementation of multilingualization shown in
Section 2.3 in Dynamic GluonJ. The program in Figure 4.3.1 is an
overview of Japanese service for the online book store. The code in
Figure 4.3.1 is French service. See the Figure 4.3.1. The program in
Dynamic GluonJ can be separated from the rest of the program such as
BookStore, French service. Thus the developer of Japanese service can
be written without consideration of French service.

Unlike AspectJ, Dynamic GluonJ provides a mechanism for grouping
multiple redefined methods according to a same dynamic context. In the
implementation in Dynamic GluonJ, there is no redundant repetition of
@Cflow. A refinement class can be grouped into an aspect with other re-
finement classes that share the same @Cflow. This grouping mechanism
makes the description of an aspect simple and intuitive if the implemen-
tation of a crosscutting concern is a homogeneous aspect, in which each
pointcut is associated with a different advice. A number of advices can
be grouped according to the structure of the target program woven with
the aspect, so that the readability of the aspect will be improved. Fur-
thermore, since dynamic refinement in Dynamic GluonJ uses the same
syntax as regular classes, each advice (i.e. a method in a refinement
class) looks like a regular method. This will also improve the readability.

The aspect FrenchService in Figure 4.3.1 can also be separated from
the rest of the program and other feature (Japanese service).

98 DYNAMIC REFINEMENT

Example Programs

@Glue class JapaneseService {

@Refine static class MultilingualizedBookStore

extends BookStore {

String searchBookTitlesForJapanese(String kw) {

return searchBookTitles(kw);

}

}

@Cflow("String BookStore#searchBookTitleForJapanese(..)")

@Refine static class JapaneseService

extends BookStore {

int getPrice(Book b) {

return proceed() * 105;

}

String getTitle(Book b) {

//

}

String getCurrency(Book b) {

//

}

}

}

Figure 4.2. The implementation of Japanese service for multilingualization
in Dynamic GluonJ

4.3.2 A Test Code for Online Book Store with Mock

Objects

A regression test is a good application of Dynamic GluonJ. Regression
testing is to confirm whether or not all the functionality that previously
worked still correctly works after the tested program is modified. Since
performing a regression test as frequently as possible is one of today’s
best practice, automating the test is strong demand in industry.

Writing a test program is, however, not a simple task. Suppose that
we want to check the behavior of the registerCustomer method in the
following BookStore class:

public class BookStore {

public BookStore() {}

DYNAMIC REFINEMENT 99

Example Programs

@Glue class FrenchService {

@Refine static class MultilingualizedBookStore

extends BookStore {

String searchBookTitlesForFrench(String kw) {

return searchBookTitles(kw);

}

}

@Cflow("String BookStore#searchBookTitleForFrench(..)")

@Refine static class FrenchService

extends BookStore {

int getPrice(Book b) {

return proceed() * 7 / 10;

}

String getTitle(Book b) {

//

}

String getCurrency(Book b) {

//

}

}

}

Figure 4.3. The implementation of French service for multilingualization
in Dynamic GluonJ

protected HashMap customers;

public void registerCustomer(String customer,

String password) {

if (customers == null)

customers = new HashMap();

customers.put(customer, password);

}

public boolean login(String customer,

String password) {

// If customer makes the login succeed, then

// this method returns true. Otherwise,

// it returns false.

}

100 DYNAMIC REFINEMENT

Example Programs

:

}

This method records a pair of a customer’s name and her password. To
test the behavior of this method, the readers might think that a test
program first calls registerCustomer method and then checks whether or
not the login method returns true if a right pair of a customer’s name
and her password is given.

However, in practice, we often want not to call the login method for
the test because this method might also perform some setup for database
accesses done later or some undesirable side-effects. The method might
pop up a GUI window and require a user to press a button on it. In
these cases, the simplest way for testing the registerCustomer method is
to inspect the customers field of the BookStore object and confirm that
the pair is correctly recorded after the method is called.

If there is no accessor method to the customers field, we must append
it to the BookStore class for the test but appending an accessor only for
testing is not acceptable because this means a change of the specifica-
tion of BookStore. Other parts of the program might accidentally call
the appended accessor method, which was not included in the original
specification.

A refinement class of Dynamic GluonJ enables programmers to ap-
pend such an accessor method and make it available only while a specific
test method is running. The tested program does not have to be mod-
ified at all. The following refinement class appends an accessor method
containsCustomer to BookStore only while a test method is executed:

@Cflow("void BookStoreTest.testRegisterCustomer()")

@Glue class RegisterCustomerTesting {

@Refine public static class CustomersAccessor

extends BookStore {

public

boolean containsCustomer(String customer) {

return customers.containsKey(customer);

}

}

}

public class BookStoreTest extends TestCase {

BookStore store = Factory.makeBookStore();

public void testRegisterCustomer() {

DYNAMIC REFINEMENT 101

Effectiveness

assertFalse(((CustomersAccessor)store)

.containsCustomer("muga"));

store.registerCustomer("muga", "xxxx");

assertTrue(((CustomersAccessor)store)

.containsCustomer("muga"));

}

:

}

The above test class BookStoreTest is used with the JUnit framework
[56]2. store is a field declared in the test class and initialized during the
constructor call3. The containsCustomer method appended by the refine-
ment class is called before and after the invocation of registerCustomer
within the testRegisterCustomer method.

The above refinement class appends an accessor method for accessing
the protected customers field to the BookStore class. Even if the field is
private, a refinement class of Dynamic GluonJ can append it. How an
appended method accesses a private field was mentioned in Section 4.1.11.

4.4 Effectiveness

This section discuss when and where dynamic refinement is effectively
used.

Dynamic refinement is effectively used for extensions to existing
classes according to session objects in web applications. A software en-
gineer of a web application often appends new interfaces (methods) for
creating session objects to the business logic of the web application. Once
a user of the web application accesses an interface via a network, a ses-
sion object that responds to the accessed interface is created. A software
engineer uses the created session object and implements the program
for switching processings that a user wants according to its object. Since

2TestCase is a class provided by JUnit. assertFalse and assertTrue are methods
inherited from TestCase. assertFalse throws an exception unless the first argument is
false. assertTrue throws an exception if the first argument is not true.

3Although the constructor of BookStore in the BookStore class is simple, a real
constructor of BookStore might take a complex data structure for the initialization
and preparing that data structure might be so tedious that we might want to reuse
an existing factory method for the initialization.

102 DYNAMIC REFINEMENT

Effectiveness

those switched processings have same signatures, they can simply be sep-
arated as dynamic refinements provided by GluonJ. GluonJ allows sev-
eral software engineers to develop different processings without writing
the codes for switching their processings according to dynamic contexts.

On the other hand, dynamic refinement is ineffectively used for an
extension to an existing class according to a fine-grained dynamic con-
text. It enables separating an extesion to an existing class according to
any control-flow, no matter how small. However, its implementation de-
creases the modularity or readability of the whole of the program. This
is because a software engineer must often declare multiple extensions to
an existing class for multiple small contexts. For example, suppose that
a software engineer is extending the behavior of an existing class C ac-
cording to two dynamic context d1, d2. By using dynamic refinement,
he would write two refinement classes C11, C12 according to d1. Also
he would describe three refinement classes C21, C22, C23 according to
d2. Dynamic refinement in GluonJ allows separating these extensions by
dynamic contexts as @Cflow refinement classes. However, there are six
kinds of the behaviors of the woven class according to d1 and d2.

Also dynamic refinement is effectively used for unit tests. It allows
software engineers to switch mock objects that are applied to its target
program according to each test method. By using dynamic refinement,
also software engineers can easily append accessor methods to a target
program only while a specific test method is executed for accessing the
internal state of the target object. They do not have to edit the program
of the target class. When testing a business logic of a web application,
due to an instance creation overhead, the instance of the business logic
is not created each test method. The instance is shared with several test
methods. In this case, dynamic refinement is useful.

Although refinement in GluonJ allows a software engineer to improve
and refactor an existing program at a certain degree, it is difficult to
change (override) the signature of an existing method in its class. A lan-
guage construct for refinement in GluonJ is based on Java subclassing.
By using the syntax of subclassing, GluonJ exploits the type system of
Java. A GluonJ program can be compiled by the normal Java compiler
and be developed on a normal Java IDE. However, Java subclassing can-
not override the signature of an existing signature. It is the limitation of
Java subclassing and GluonJ.

Classbox/J [19] is an extension to Java for the concept of the classbox
[14] and allows switching refinement classes (classboxes) applied to its

DYNAMIC REFINEMENT 103

Related Work

existing class according to the type of a caller-side object. By using
Classbox/J, a software developer does not need to write the codes for
type-checking (i.e. cast and instanceof expressions) in a program such as
a Java GUI library. However, The current version of GluonJ does not
provides a language construct for switching refinements by caller-side
objects. It allows switching refinements according to control-flow only.

4.5 Related Work

Most aspect-oriented programming (AOP) languages, frameworks, and
systems for Java more or less have a mechanism for change the defini-
tion of an original class during runtime. We below mention differences
between them and Dynamic GluonJ.

AspectJ [38, 2] is a general-purpose AOP language for Java and it is
the extension of Java. Also AspectJ5 [11], AspectWerkz [3], and JBoss
AOP [6], which are annotation-based AOP frameworks, allow program-
mers to write aspects in the regular Java syntax. They provide language
constructs for dynamically changing the behavior of an existing method
on an object with pointcut-advices. Unlike Dynamic GluonJ, however,
they do not provide language constructs for dynamically adding and re-
moving new fields and methods to/from an object. Moreover, since the
language constructs of JBoss AOP and AspectWerkz cannot access pri-
vate fields and methods in its original class, a regression test shown in
Section 4.3 cannot be written in them.

CaesarJ [50, 16] is an AOP language providing powerful language
constructs for changing a class according to dynamic contexts during
runtime4. It is the extension of Java. To change the behavior of an ob-
ject during runtime, CaesarJ also allows dynamically activating an aspect
that includes pointcut-advices. To dynamically append new methods to
an object, it provides a wrapper mechanism. A difference between Cae-
sarJ and Dynamic GluonJ is that Dynamic GluonJ allows writing an
extension to its original class in the regular Java syntax since Dynamic
GluonJ is an annotation-based framework. Thus a program in Dynamic
GluonJ can be developed on an existing IDE. This is good for industrial
acceptability. On the other hand, a program of CaesarJ must be writ-
ten according to programming conventions of CaesarJ. If programmers
want to extend an existing Java application with an aspect of CaesarJ,

4CaesarJ is also known as a feature-oriented programming language for Java.

104 DYNAMIC REFINEMENT

Related Work

they must rewrite the existing application according to the conventions.
Moreover, to add new methods to an object of its class, CaesarJ creates
a wrapper object with the new methods and binds the original object to
it. The wrapper object is not identical to its original object. Refinement
of Dynamic GluonJ does not create such a wrapper object for adding
new methods to an object. They directly add the methods to the object.

AspectJ and CaesarJ provide Eclipse plugins for customizing Eclipse
IDE. The plugins enable those programmers to develop a program in
those languages on the customized Eclipse. The programmers can ex-
ploit coding support such as a code assist provided by the customized
Eclipse. However, the Eclipse plugins cannot extend other IDEs be-
cause the specification of plugin machanisms that other IDEs provide is
different from Eclipse’s. To use coding support of various IDEs when
programmers write a program of AspectJ or CaesarJ, AspectJ and Cae-
sarJ must provide the plugins for customizing those IDEs. A program of
Dynamic GluonJ can be developed on any normal Java IDEs.

Several frameworks and systems for dynamic weaving for Java have
been proposed and developed [64, 63, 75, 69, 21]. Dynamic weaving is a
mechanism to dynamically enable weaving/unweaving aspects and allows
programmers to change an original class according to aspects during run-
time. Most of them have been implemented on top of JPDA [72] or Java
Hotswap [30]. Since JPDA captures relevant execution points and inter-
cepts the program execution, pointcut-advice frameworks and systems
can easily be implemented on top of it. However, it is difficult to de-
sign and implement a mechanism for adding and removing new methods,
fields, and interfaces to an original class dynamically. On the other hand,
Java Hotswap allows dynamically reloading a class definition. However,
since the definition of a newly loaded class must preserve the type sig-
nature of its original class, the loaded class definition can only change
the implementation of methods declared in its original class. Thus, Java
Hotswap cannot also add and remove methods and fields to the orig-
inal class like JPDA. Another implementation of dynamic weaving is
to extend the Java virtual machine (JVM). Steamloom [21] is a power-
ful dynamic AOP system using a customized JVM, which is based on
IBM’s Jikes RVM [7]. It supports a mechanism for dynamically weaving
pointcut-advices only. Thus it cannot dynamically append and remove
new methods and fields to an object.

Refinement is similar to mixin layers [70, 22], virtual classes [47],
nested inheritance [55], and so on. To extend an original class and an

DYNAMIC REFINEMENT 105

Related Work

original class hierarchy, these mechanisms have been proposed before,
but they statically extend a program. Here we introduce other languages
that provide refinement and compare those languages with our work.

A classbox is one of the concepts for extending classes and it was orig-
inally developed with Smalltalk [14]. The Java extension of the concept
of the proposed classbox, called Classbox\J [19], was recently proposed.
Classbox\J allows not only appending new members such as fields, meth-
ods, constructors, and so on, to existing classes but overriding original
methods in the classes. The refined classes can be explicitly imported
from other classes. Unlike Classbox\J, Dynamic GluonJ does not provide
a language construct for appending a new constructor to an original class.
Moreover Classbox\J can dynamically control the scope of an extension
to an existing class. In other words, it can switch implementations of
methods according to caller-side programs that invoke the methods. On
the other hand, Dynamic GluonJ dynamically applies and removes sev-
eral refinement classes to/from its original class according to dynamic
contexts, in particular, a control flow. Unlike Classbox\J, a program
of Dynamic GluonJ can be developed on an existing IDE without any
plugins.

eJava [79] is the extension of Java and provides language constructs
for refinement, called expanders. Expanders allow appending new fields,
methods, and interfaces to an original class. To call new methods ap-
pended by expanders, its programmers import the expanders into caller-
side programs. When the programmers append a feature to a class hier-
archy that consists of several classes, they can describe the feature that
is appended to each original class as an expander. Then the expanders
can be grouped as an expander family. The function has powerful ex-
pressiveness. However, all expanders statically extend original classes. In
other words, eJava does not provide language constructs for dynamically
changing an original class. It cannot change the behavior of an object of
its extended class during runtime.

Context-based programming is a concept for dynamically extending
original classes and enables switching the extension of original classes ac-
cording to dynamic contexts during runtime. It was originally developed
with CLOS [27]. ContextJ [28] is the extension of Java for the concept.
It allows programmers to override an existing method in its original class
and to change multiple overriding methods according to dynamic con-
texts. However, it does not allow appending a new method to an original
class according to dynamic contexts. Thus it cannot change the behavior

106 DYNAMIC REFINEMENT

Summary

of an object of its original class during runtime. On the other hand, Dy-
namic GluonJ enables not only overriding a method in its original class
but also appending a new method to its original class during runtime.

Hyper/J [59] is a subject-oriented programming (SOP) language for
Java. It allows programmers to specify rules for composing multiple
features. To reuse and evolve an existing program, Hyper/J can statically
divide the existing program into several parts and then merge the divided
parts and other programs. Although language constructs provided by
Hyper/J are powerful, Hyper/J needs to transform a program statically.
The program transformed by Hyper/J cannot be changed during runtime.

Lieberman originally introduced delegation in the framework of a
prototype-based object model [45]. An object (child) may have refer-
ences to other objects (parents). If a method that a child does not have
is executed, the extension is automatically forwarded to a method with
the same name on its parents. Darwin/Lava [42] and delegation layers
[40, 41] support dynamic delegation for Java. Dynamic delegation allows
changing the behavior of an object during runtime according to appended
parents. This function is similar to a wrapper mechanism of CaesarJ. A
child object is not identical to its parent object. Unlike Darwin/Lava and
delegation layers, refinement of Dynamic GluonJ does not create another
object. They add methods to the object directly.

4.6 Summary

This chapter proposed dynamic refinement and Dynamic GluonJ, in
which the programmers can dynamically modify the definition of an ex-
isting class according to refinement during runtime. A main contribution
of our work is the pragmatic design of a language construct for dynamic
refinement. To make refinement available, Dynamic GluonJ uses Java
annotations and thereby does not extend the lexical syntax of Java. Un-
like other naive implementations, however, our implementation is quite
compatible to a normal Java IDE. Dynamic GluonJ has carefully been
designed so that the programmers can exploite coding support by a nor-
mal Java IDE. Also, a Dynamic GluonJ program can be edited with a
normal Java editor and compiled with a normal Java compiler. Only
a special runtime system is needed to run a Dynamic GluonJ program.
This feature of Dynamic GluonJ is good for industrial acceptability.

Also, this chapter explained that a Dynamic GluonJ program never

DYNAMIC REFINEMENT 107

Summary

occurs a runtime type error NoSuchMethodException if the program is
successfully compiled and loaded. To prevent a method appended by
dynamic refinement from being called when the method is not available,
Dynamic GluonJ requires programmers to several programming conven-
tions. When a Dynamic GluonJ program satisfies the conventions, an
unavailable method is never invoked. To guarantee this property, Dy-
namic GluonJ does not use a custom type checker. It exploits the type
checking by a normal Java compiler and the verification by the custom
class loader of Dynamic GluonJ.

108 DYNAMIC REFINEMENT

Chapter

5
Remote Pointcut

This chapter presents new AOP language constructs for distributed com-
puting. These language construct are called remote pointcut. Existing
AOP languages such as AspectJ are suitable for agile software devel-
opment however, such languages are not enough for appending a new
function to a distributed software product in an iteration of agile devel-
opment. In AspectJ, several functions that are newly appended to dis-
tributed software cannot often be modularized as simple aspects. Rather,
such aspects spread over multiple hosts and explicitly communicated
across the network. This chapter shows that remote pointcut enables
developers to write simple aspects to modularize newly appended func-
tions.

The current version of GluonJ does not have remote pointcut. To ap-
pend the function of remote pointcut to GluonJ later, we remodelled the
implementation of GluonJ and prototyped remote pointcut. To discrimi-
nate between the remodelled GluonJ and regular GluonJ, the remodelled
one is called Remote GluonJ. In the rest of this chapter, we explain the
detail of remote pointcut and Remote GluonJ that provides a language
construct for it.

REMOTE POINTCUT 109

Motivation

5.1 Motivation

In an iteration of agile software development, crosscutting concerns are
included in a new function that is added to a distributed software prod-
uct. Such concerns cannot be modularized as simple aspects in existing
AOP languages such as AspectJ. If we use AspectJ to modularize such
concerns, the aspects can be some what modular but it often consists
of several sub-components distributed on different hosts. They must be
manually deployed on each host and the code of these sub-components
must include explicit network processing among the sub-components ofr
exchanging data sice they cannot have shared variables or fields. These
facts compicate the code of the aspect and degrade the benefits of using
aspect-oriented programming.

The source of these problems is that the language constructs of As-
pectJ do not accommodate to distribution or network processing. Com-
bination of AspectJ and an existing framework for distributed software,
such as Java RMI (remote method invocation) [73] is not a solution. The
existing frameworks extend language constructs for object-orientation,
such as method ccalls, so that they can accommodate distribution. They
do not support language constructs for aspect-orientation.

AspectJ is a useful programming language for developing distributed
software. It enables modular implementation even if some crosscutting
concerns are included in the implementation. However, the developers
of distributed software must consider the deployment of the executable
code. Even if some concerns can be implemented as a single component
(”aspect”) at the code level, it might need to be deployed on differ-
ent hosts and it would therefore consist of several sub-components or
sub-processes running on each host. Since Java (or AspectJ) does not
provide variables or fields that can be shared among multiple hosts, the
implementation of such a concern would include complicated network
processing for exchanging data among the sub-components.

Programming frameworks such as Java RMI do not solve this prob-
lem of complication. Although they make details of network processing
implicit and transparent from the programmers’ viewpoint, the program-
mers still must consider distribution and they are forced to implement the
concern as a collection of several distributed sub-components exchanging
data through remote method calls. The programmers cannot implement
such a concern as a simple, non-distributed monolithic component with-
out concerns about network processing. This is never desirable with

110 REMOTE POINTCUT

Design Overview of Remote GluonJ

respect to aspect orientation since it means that the programmers must
be concerned about distribution when implementing a different concern.

5.2 Design Overview of Remote GluonJ

To address the problems of the previous section, we propose Remote
GluonJ, which is an extension to GluonJ for distributed software. It
allows the users to implement a crosscutting concern as an aspect that
does not include explicit network processing using Java RMI, even if that
concern cuts across multiple components on different hosts.

5.2.1 Remote pointcut

The most significant difference between AspectJ and Remote GluonJ is
that Remote GluonJ provides remote pointcuts. A remote pointcut is a
function for identifying join points in the execution of a program running
on a remote host. In other words, when the thread of control reaches the
join points identified by a remote pointcut, the advice body associated
with that remote pointcut is executed on a remote host different from
the one where those join points occur. Remote pointcuts are analogous
to remote method calls, which invoke the execution of a method body on
a remote host. Unfortunately, GluonJ does not provide such a pointcut.
An advice body in GluonJ is executed on the same host as where the
join points identified by a pointcut occur.

Remote pointcuts enable implementing a distributed crosscutting
concern as a simple, non-distributed component without concerns about
network processing. The following is an aspect written in Remote Glu-
onJ, which conforms to the regular GluonJ syntax:

@Glue class Logging {

@Before("{

System.out.println(‘set x: ‘ + x);

}")

Pointcut pc =

Pcd.define("int", "x", "$1")

.call("Point#setX(int)");

}

REMOTE POINTCUT 111

Design Overview of Remote GluonJ

This aspect prints a message whenever the setX() method is called on
each participating host. The message is printed on a single particular
host wherever the setX() method is called.

The pointcut pc in Logging:

call("Point#setX(int)")

identifies each join point that is a call to the setX() method in the Point
class. Unlike pointcuts in GluonJ, however, this pointcut identifies the
join points matching the signature on every host even if the advice body
is not deployed on the host.

Aspect server

The body of the advice:

System.out.println(‘set x: ‘ + x);

is executed just before each call to setX(), but it is executed on a host
different from the host where the caller thread is running. If the thread
of control reaches the join point, it implicitly sends a message through
the network to an aspect server running on a different host1 so that the
aspect server will execute the advice body. The thread of control that
sent the message blocks until the aspect server finishes the execution of
the advice body. Since all of the advice bodies are executed by the aspect
server on the central host, they can easily exchange values by storing data
in the fields defined in the aspect. These fields are locally accessible from
the advice bodies. Note that, in AspectJ, the advice body is executed on
the same host where the caller thread is running. Thus it may have to
explicitly send values through the network to exchange them with other
advice bodies executing on other hosts.

Load-time weaving and remote refinement

Remote GluonJ performs load-time weaving. The normal Java classes
on each participating host must be loaded by the class loader provided
by Remote GluonJ [44]. This class loader weaves aspects and classes
on the fly. The compiled aspects are stored in the aspect server. The

1Technically, the aspect server might be running on the same host.

112 REMOTE POINTCUT

Design Overview of Remote GluonJ

Table 5.1. The pointcut designators of Remote GluonJ

designator join points
within(TypePattern) the join points included in the declaration of

the types matching TypePattern
target(Type or Id) the join points where the target object is an instance

of Type or the type of Id
args(Type or Id, ...) the join points where the arguments are instances of

Types or the types of the Ids
call(Signature) the calls to the methods matching Signature
execution(Signature) the execution of the methods matching Signature
cflow(Pointcut) all join points that occur between the entry and exit of

each join point specified by Pointcut
host(Host) the join points in the execution on Host.

parts of the compiled code except for the advice bodies are automatically
distributed by the aspect server to each host, so the latest aspects can
be woven when the classes are loaded. The users of Remote GluonJ do
not have to manually deploy the compiled aspects to every host.

This fact improves the usefulness of the refinement (formerly called
the introduction) in Remote GluonJ. An aspect can declare that it will
respond to certain methods and field-access requests on behalf of other
objects. In Remote GluonJ, these methods and fields can be declared
other objects on multiple remote hosts. Since the description of the
refinement is automatically distributed from the aspect server to every
host, declaring a method or field to classes on remote hosts is simple. The
users only have to install the compiled aspect on the aspect server. Unlike
in AspectJ, they do not have to manually deploy the woven aspect and
classes to every host. This automatic deployment is useful in the context
of distributed unit testing. We will revisit this issue in Section 4.

5.2.2 Pointcut designators

The pointcut designators provided by the current implementation of Re-
mote GluonJ are listed in Table 5.1. Most of the pointcut designators
are from AspectJ.

A pointcut designator unique to Remote GluonJ is hosts. It identifies

REMOTE POINTCUT 113

Design Overview of Remote GluonJ

the join points in the execution on the designated hosts. Although Re-
mote GluonJ can deal with all the join points on every participating host,
this pointcut designator is used to identify the join points on particular
hosts.

For example, the users of Remote GluonJ can describe the following
pointcut with the host pointcut designator:

Pointcut pc =

Pcd.call("Point#setX(int)").and

.expr(Pcd.host("hostId1").or.host("hostId2"));

This pointcut identifies join points that are calls to the setX() method
in the Point class on the hosts with the names specified by hostId1 or
hostId2. HostId1 and hostId2 are parameters given by the users when the
program starts running. These runtime parameters allow the developers
to avoid embedding particular host names as constants in the source code
so that they can enjoy good flexibility.

Remote GluonJ extends the cflow pointcut designator to handle the
control flows of distributed software. cflow identifies join points that oc-
cur between the start of the method specified by cflow and the return. It
identifies only the join points visited by the thread executing the method
specified by cflow. In AspectJ, cflow cannot pick out join points on a
remote host since the control-flow data needed to implement cflow is
stored in a ThreadLocal variable but the ThreadLocal variable is never
passed through a network.

Remote GluonJ provides a custom socket class so that the ThreadLo-
cal variable can be passed through a network. If network communication
is performed with this custom socket class [74], then cflow can pick out
join points on a remote host. For example, if Java RMI is used for net-
work communication, the following program exports a remote object to
make it available to receive incoming calls, using the custom socket class:

PointImpl p0 = new PointImpl();

Point p

= (Point) UnicastRemoteObject.exportObject(

p0, 40000,

new DJCClientSocketFactory(),

new DJCServerSocketFactory());

This program exports a PointImpl object, which is accessible from a re-
mote host through the Point interface. The DJCClientSocketFactory and

114 REMOTE POINTCUT

Design Overview of Remote GluonJ

DJCServerSocketFactory classes are the factory classes provided by Re-
mote GluonJ for creating the custom socket. Remote GluonJ also pro-
vides a convenient method with which the program shown above can be
rewritten as follows:

PointImpl p0 = new PointImpl();

Point p

= (Point) Remote GluonJ.exportObject(p0, 40000);

5.2.3 Pointcut parameters

Like AspectJ, Remote GluonJ allows pointcuts to expose the execution
context of the join points they identify. For example, the args pointcut
designator can expose method parameters and the target pointcut desig-
nator can expose the target object. Each part of the exposed context is
bound to a pointcut parameter, which is accessible within the body of
the advice. For example,

Pointcut pc =

Pcd.define("int", "x", "$1")

.call("Point.move(int,int)")

This setter pointcut exposes the first int-type parameter to the move
method through a pointcut parameter x.

In Remote GluonJ, since remote pointcuts identify join points on
remote hosts, the pointcut parameters should refer to data on the remote
hosts. By default, they refer to a copy of that data constructed on the
aspect server. The runtime system of Remote GluonJ first serializes the
data on the remote hosts, transfers it through the network, and constructs
a copy from the serialized data. The pointcut parameters available in the
advice body refer to that copy.

Pointcut parameters can be specified as remote references instead of
local references to the copies. If the configuration file specifies that point-
cut parameters of class type C are remote references, then the runtime
system of Remote GluonJ dynamically generates a proxy class for C.
From the implementation viewpoint, the pointcut parameters are made
to refer to instances of that proxy class on the aspect server. If the advice
body calls a method on that proxy object, then the method is invoked
on the master object on the remote host where the join point occurs.

REMOTE POINTCUT 115

Design Overview of Remote GluonJ

To generate proxy classes, Remote GluonJ uses the replace approach we
developed for Addistant [51]. For example, if the remote object associ-
ated with a proxy object is a Widget object, then the proxy class is also
named Widget. On the aspect server, this proxy class is loaded instead of
the original Widget class. The proxy-class generation is performed with
our bytecode engineering library Javassist [23, 25].

Remote references are used not only for pointcut parameters but also
references to instances of aspects. Normal Java classes can call methods
declared in aspects. The references to the instances of the aspects are
also remote references implemented using the same approach as for the
pointcut parameters. In addition, the parameters of the methods called
on the remote object indicated by a remote reference can be also remote
references.

5.2.4 @Local advice and @On advice

The implementations of crosscutting concerns in distributed systems do
not always involve multiple hosts. Such crosscutting concerns can be
implemented without remote pointcuts as a simple non-distributed com-
ponent. If they are implemented with remote pointcuts, the execution
performance is rather worse because of the overheads due to network
communication to the aspect server. These crosscutting concerns should
be implemented with the aspects provided by GluonJ.

Remote GluonJ therefore provides ones similar to the advice of Glu-
onJ. The developers can specify that copies of an advice are distributed
to each participating host and that body of advice is locally executed
on the same host as where the join points exist. This type of advice,
which is called an local advice, are equivalent to the advices available in
GluonJ.

For example, to use an local advice, developers declare a pointcut
field annotated by @Local as following:

@Glue class Logging {

@Local

@Before("{ System.out.println(‘local advice‘); }")

Pointcut pc =

Pcd.call("Point#setX(int)");

}

116 REMOTE POINTCUT

Example Programs

Figure 5.1. The visualization code in Remote GluonJ

The above pointcut allows displaying the log message on the host where
specified join point is executed.

Also by using @On annotation, an advice can be executed on the
specific host.

@Glue class Logging {

@On("hostId")

@Before("{ System.out.println(‘local advice‘); }")

Pointcut pc =

Pcd.call("Point#setX(int)");

}

For example, the above pointcut enables executing advice on the host
named hostId before the setX method on a Point object is called. hostId
is the name of runtime system provided by Remote GluonJ.

5.3 Example Programs

5.3.1 The visualization code for a raytracer program

We illustrate the visualization code that was shown in Section 2.3 in
Remote GluonJ. Remote GluonJ allows implementing this function as
an simple aspect that runs on client-side (Figure 5.1).

@Glue class RealtimeDrawing {

REMOTE POINTCUT 117

Example Programs

@Before("{ RealtimeDrawing.draw(x, y, col); }")

Pointcut pc =

Pcd.define("int", "x", "$1")

.define("int", "y", "$2")

.define("java.awt.Color", "col", "$3")

.call("Raytracer#writeOnePixel(..)");

static void draw(int x, int y, Color col) {

synchronized (GUIWindow.g) {

GUIWindow.g.setColor(col);

GUIWindow.g.drawLine(x, y, x, y);

}

}

}

The RealtimeDrawing aspect runs on the top of the runtime system pro-
vided by Remote GluonJ on a client node. By using remote pointcut, the
aspect specifies the execution of a writeOnePixel method on a Raytracer
object on different nodes as join points. The advice calls a static method
draw in the aspect. draw is a method for drawing the calcurated data on
the GUI window of a client program.

5.3.2 A Test Code for Distributed Software

We illustrate an example of unit testing2 for distributed software. Dis-
tributed test code includes crosscutting concerns but, if they are modu-
larized in AspectJ, the code develops the complexities mentioned above.
Writing test code for automating unit tests is an important development
process that the XP (Extreme Programming) community [37] recom-
mends. The automation results in cleaner code, encourages refactoring,
and makes rapid development possible. Recently, simple regression test
frameworks such as JUnit and Cactus have been getting popular for the
automated unit testing.

2Some might think this example should be called not unit testing but end-to-end
testing.

118 REMOTE POINTCUT

Example Programs

5.3.2.1 Unit test for authentication service

As an example, we present test code for a distributed authentication ser-
vice. The implementation of this service consists of two components: a
front-end server AuthServer on a host W and a database server DbServer
on another host D. This is a typical architecture for enterprise Web ap-
plication systems. If a client application needs to register a new user,
it remotely calls registerUser() on the front-end server using Java RMI.
Then the registerUser() method remotely calls addUser() on the database
server, which will actually access the database system to update the user
list.

To unit-test the registerUser() method, the test code would first re-
motely call the registerUser() method and then confirm that the addUser()
method is actually executed by the database server. Note that since the
test code must confirm that remote method invocation is correctly exe-
cuted, it must confirm not only that registerUser() on the host W calls
addUser() but also that addUser() starts running on the host D after the
call.

The test code would be simple and straightforward if the examined
program is not distributed. We below show the test code written in
AspectJ:

aspect AuthServerTest extends TestCase {

boolean wasAddUserCalled;

void testRegisterUser() {

wasAddUserCalled = false;

String userId = "muga", password = "xxx";

AuthServer auth = new AuthServer();

auth.registerUser(userId, password);

assertTrue(wasAddUserCalled);

}

before():

execution(void DbServer.addUser(String,

String)) {

wasAddUserCalled = true;

}

}

Although this is not complete code due to the space limitations, the
readers would understand the overall structure of the test code. The

REMOTE POINTCUT 119

Example Programs

main part of the test code is testRegisterUser(). It calls the registerUser()
method and then confirms the wasAddUserCalled field is true. This field is
set to true by the before advice when the addUser() method is executed.

5.3.2.2 Test code in AspectJ

Unfortunately, the test code becomes more complicated if the examined
program is distributed. The test code shown below is a distributed ver-
sion (again, it is not complete code. Access modifiers such as public and
constructors are not shown):

// on host T

class AuthServerTest extends TestCase {

boolean wasAddUserCalled;

void testRegisterUser() {

Naming.rebind("test", new RecieverImpl());

wasAddUserCalled = false;

String userId = "muga", password = "xxx";

AuthServer auth

= (AuthServer) Naming.lookup("auth");

auth.registerUser(userId, password);

assertTrue(wasAddUserCalled);

}

class ReceiverImpl

extends UnicastRemoteObject

implements NotificationReceiver {

void confirmCall() {

wasAddUserCalled = true;

}

}

}

interface NotificationReceiver

{ // on both hosts

void confirmCall();

}

aspect Notification { // on host D

before():

120 REMOTE POINTCUT

Example Programs

:AuthServer

:AuthServerTest

:DBServer

3. confirmCall()

1. registerUser()

2. addUser()

Host W

Host T

Host D

<<aspect>>
:Notification

<<pointcut>>
execution(addUser())

:Receiver

Figure 5.2. The testing code in AspectJ

execution(void DbServer.addUser(String,

String)) {

NotificationReceiver test

= (NotificationReceiver)

Naming.lookup("test");

test.confirmCall();

}

}

The test code now consists of three sub-components: AuthServerTest,
ReceiverImpl, and Notification (Figure 5.2). Although the overall structure
is the same, the AuthServerTest and ReceiverImpl objects run on a testing
host T but the Notification aspect runs on the host D, where the DbServer
is running. The host T is different from W or D.

The testRegisterUser() method on T remotely calls registerUser() on
W and then confirms that the wasAddUserCalled field is true. This field is
set to true by the confirmCall() method in ReceiverImpl, which is remotely
called by the before advice of Notification running on D. The confirm-
Call() method cannot be defined in AuthServerTest since AuthServerTest
must extend the TestCase class whereas Java RMI requires that remotely-
accessible classes extends the UnicastRemoteObject class.3

3This is not precisely accurate. Technically, a confirmCall() can be defined in
AuthServerTest by using certain programming tricks. However, the test code would
be significantly more complicated.

REMOTE POINTCUT 121

Example Programs

As we can see, even this simple testing concern is implemented by
distributed sub-components and hence we had to write complicated net-
work processing code using Java RMI despite that it is not related to the
testing concern. In particular, the Notification aspect is used only for no-
tifying confirmCall() on the host T beyond the network that the thread
of control on the host D reaches addUser(). The Notification aspect is
a sub-component that are necessary only because confirmCall() and ad-
dUser() are deployed on different hosts. This means that the component
design of the unit testing is influenced by concerns about distributed.

5.3.2.3 The use of remote pointcut

The testing code was complicated compared to the non-distributed ver-
sion of the testing code. If we rewrite that testing code in Remote GluonJ,
then the resulting code becomes as simple as the non-distributed version:

// on host T

@Glue class AuthServerTest extends TestCase {

static boolean wasAddUserCalled;

void testRegisterUser() {

wasAddUserCalled = false;

String userId = "muga", password = "xxx";

AuthServer auth

= (AuthServer) Naming.lookup("auth");

auth.registerUser(userId, password);

assertTrue(wasAddUserCalled);

}

@Before("{

AuthServerTest.wasAddUserCalled = true;

}")

Pointcut pc =

Pcd.call("DbServer#addUser(..)");

}

Unlike the code in AspectJ, the testing code in Remote GluonJ is
not divided into distributed sub-components (Figure 5.3). Although the
before advice is executed when the thread of control reaches the addUser()
method on the host D, where the DbServer is running, the execution of the
before advice is on a different host T, where the testRegisterUser() method
is running. Thus the before advice can directly set wasAddUserCalled

122 REMOTE POINTCUT

Example Programs

:AuthServer :DBServer

1. registerUser()

2. addUser()

Host W

Host T

Host D

<<pointcut>>
execution(addUser())

<<aspect>>
:AuthServerTest

Figure 5.3. The testing code in Remote GluonJ

to true. All the network processing for reporting the execution of the
addUser() method to the host T needs not be explicitly described.

Note that the before advice contains the cflow pointcut designator,
since Remote GluonJ provides cflow across multiple hosts if the compo-
nents communicate with the Java RMI. This improves the accuracy of the
testing code. The code can examine not only whether or not addUser()
is executed, but also whether the caller to addUser() is registerUser().

The testing code in Remote GluonJ has another advantage. Since
Remote GluonJ automatically distributes the definitions of the aspects to
each participating host and weaves them at load time, the programmers
do not have to manually deploy the compiled and woven code to the hosts
whenever the definitions of the aspects are changed for different tests.

5.3.2.4 The use of remote refinement

Unit testing sometime requires accessor methods for inspecting the in-
ternal state of objects. AspectJ can be used to append such accessor
methods just for testing if these methods are not defined in the original
program. For example, the developer may want to confirm that the data
sent by the registerUser() method is actually stored in the database by the
addUser() method. To do this, an accessor method containsUser() must
be appended to the DbServer class so that the testing code can examine
whether the added user entry is contained in the database.

The remote refinementof Remote GluonJ simplifies such unit test-

REMOTE POINTCUT 123

Experiment

ing. If the developers use AspectJ, they have to recompile all the pro-
grams and deploy the compiled and woven code to the participating hosts
whenever they change the refinement in the aspect. On the other hand,
Remote GluonJ can simplify this deployment. Since Remote GluonJ au-
tomatically distributes the new definitions of the aspect to the hosts and
weaves it at load time, the new aspect is reflected in the programs if the
programs are simply restarted.

The following is the testing code written in Remote GluonJ. It ap-
pends containsUser() to the DbServer class to. The testRegisterUser()
method first confirms that the user muga is not recorded in the database
and then it calls the registerUser() method. After that, it confirms that
the user muga is recorded in the database.

// on host T

@Glue class AuthServerTest extends TestCase {

void testRegisterUser() {

String userId = "muga", password = "xxx";

AuthServer auth

= (AuthServer) Naming.lookup("auth");

DbServer db

= (DbServer) Naming.lookup("db");

assertTrue(!db.containsUser(userId));

auth.registerUser(userId, password);

assertTrue(db.containsUser(userId));

}

@Refine static class Diff

extends DbServer {

boolean containsUser(String userId) {

// this method returns true if the user

// entry specified by userId is found

// in the database.

}

}

5.4 Experiment

To examine the execution performance of remote pointcuts, we com-
pared the execution time between Remote GluonJ and AspectJ using

124 REMOTE POINTCUT

Experiment

Java RMI. For this experiment, we used the testing programs shown in
Section 5.3.2.2 (AspectJ using Java RMI) and Section 5.3.2.1 (Remote
GluonJ). These programs examine whether registerUser() in AuthServer
remotely calls addUser() in DbServer. We measured the elapsed time of
the testRegisterUser() method for each program. The body of the ad-
dUser() method was empty. In this experiment, the AuthServer and the
AuthServerTest ran on the same host while DbServer ran on another host.
The AuthServer host was a Sun Blade 10004 and the DbServer was a Sun
Fire V4805. These hosts were connected through a 100 BaseTX network.
We used Sun JDK 1.4.0 01 and AspectJ 1.0.6.

Table 5.2. The elapsed time (msec.) of testRegisterUser()

Pointcut parameters () (String) (String,String)
Java + Java RMI 5.9 5.9 6.0
AspectJ + Java RMI 5.9 6.0 6.0
Remote GluonJ 4.8 4.9 5.0
Remote GluonJ without cflow 4.8 4.9 4.9

Table 5.2 lists the results of our measurement. Although the program
in Remote GluonJ was slightly faster than in AspectJ, this result does
not mean Remote GluonJ is considerably faster than AspectJ using Java
RMI. In the program in AspectJ (see Section 5.3.2.2), when the body
of the before advice is executed, a remote reference test (lines 31 to 33)
is obtained for calling confirmCall(). On the other hand, this remote
reference is not obtained in Remote GluonJ during the measurement. It
is implicitly obtained by the runtime system in advance. Since obtaining
this remote reference needs remote access to the registry server, this
difference caused about 1 milli-second ahead of Remote GluonJ in the
measurement. We confirmed this fact by other experiment.

The programs shown in Section 5.3.2.2 and 5.3.2.1 do not use point-
cut parameters. To evaluate effects by sending pointcut parameters
through a network, we also examined the programs in that the before
advice (in Remote GluonJ) or the confirmCall() method (in AspectJ) re-
ceives one or both of the parameters to the addUser() method (Remote
GluonJ). The type of the parameters is the String class. The results

4Dual UltraSPARC III 750 MHz with 1 GB of memory and Solaris 8.
5UltraSPARC III Cu 900 MHz ×4 with 16 GB of memory and Solaris 9.

REMOTE POINTCUT 125

Implementation Issues

of our measurement showed that the performance impacts by pointcut
parameters are small.

For fair comparison, we also measured the elapsed time of the program
written in Remote GluonJ without cflow since the program in AspectJ
did not use cflow. The results were similar to those of the program using
cflow since the overhead due to cflow across a network is not significant.

5.5 Implementation Issues

5.5.1 Load-time Weaving

Custom Classloader Remote GluonJ provides unique class loader for im-
plementing remote pointcuts mechanism. As mentioned above (Remote
GluonJ runtime on each host doesn’t know which join points are identi-
fied in pointcuts and which classes are declared in inter-type declarations
on startup. Therefore, the class loader provided by Remote GluonJ asks
the aspect server those information, receives the information matching
join points within a loading class, and weaves (translates) a loading class
by using the information.

In the Java language, developers can implement subclass of
java.lang.ClassLoader class in order to extend the manner in which the
JVM dynamically loads classes [44]. We implement the findClass method
defined in ClassLoader class for achieving load-time weaving. The follow-
ing code is the findClass() method defined in the class loader provided by
Remote GluonJ runtime.

1: Class findClass(String className) {

2: ...

3: byte[] classFile = ...;

4: ...

5: Pointcut[] pcs = getPointcuts(className);

6: InterTypeDecl[] itds = getInterTypeDecls(className);

7: ...

8: classFile = weaver.weave(classFile, pcs, itds);

9: ...

10: return defineClass(...);

11: }

126 REMOTE POINTCUT

Implementation Issues

getPointcuts() is the method that Remote GluonJ runtime ask the aspect
server whether join points within the loading class are designated in
pointcut or not. It returns an array of Pointcut objects even if join
points are designated in pointcut(line 5). GetInterTypeDecl() is also the
method that Remote GluonJ runtime ask the aspect server whether the
fields and methods of loading class are declared in aspects or not. It
returns an array of InterTypeDecl objects even if the fields and methods
are declared (line 6). The processing on line 8 is that an aspect weaver of
Remote GluonJ runtime, the weaver variable, recieves the arguments pcs
and itds from the class loader and weaves (translates) the loading class
by using the information of pointcuts and inter-type declarations defined
in aspects. After weaving the loading class, the aspect weaver returns the
array of bytes of loading class to the class loader (line 8). Next, the class
loader converts the array of bytes into an instance of class java.lang.Class
using the defineClass method defined in class ClassLoader (line 10).

Aspect Weaver The most significant role of weave() in an aspect weaver
is to insert the codes for invoking the bodies of advice by bytecode trans-
lation at load-time. The aspect weaver is executed by the class loader.
Then it modifies the array of bytes of the class by using the Pointcut
objects and InterTypeDecl objects passed by the class loader.

The aspect weaver checks whether each of join points within the load-
ing class, such as a method call, a field access, an object creation, and
exception event, matches the designated join points in pointcuts or not.
Even if a join point within the loading class matches the designated join
points, the aspect weaver immediately starts weaving. We show an ex-
ample of weaving the Line class and Logger aspect as follows:

class Line {

void moveX(int dx) {

int x1 = p1.getX();

p1.setX(x1 + dx);

int x2 = p2.getX();

p2.setX(x2 + dx);

observer.paint();

}

}

@Glue class Logger {

@Before("{ System.out.println(’set x’); }")

REMOTE POINTCUT 127

Implementation Issues

Pointcut pc =

Pcd.within("figure.Line").and

.call("figure.Line#setX(int)")

}

In this example, join points designated by Pointcut object is the
Point#setX method call. The aspect weaver of Remote GluonJ checks
whether each join point within moveX() of the Line class is equal to the
Point#setX method call or not. First join point within moveX() is the
Point#getX method call. The Point#getX method call is not equal to the
designated join point. Next, join point within moveX() is the Point#setX
method call. As this join point is equal to the designated join point as
pointcut, the weaver inserts the code that invokes the code flagment of
@Before before calling Point#setX(). On the same way, the weaver checks
whether join points are equal to the designated join point or not. As a
result, the weaver modifies the body of moveX() as follow.

void moveX(int dx) {

int x1 = p1.getX();

Logger.before_$0();

p1.setX(x1 + dx);

int x2 = p2.getX();

Logger.before_$0();

p2.setX(x2 + dx);

observer.paint();

}

Note that the before $0 method in Logger is the method that has the
code flagment of @Before as a method body. The class loader provided
by Remote GluonJ receives the array of modified bytes from the weaver,
and then loads those.

5.5.2 Remote References

Unfortunately, any single implementation approach of the proxy-master
model cannot deal with all kinds of classes. Each approach convers only
the classes satisfying the criteria peculiar to that approach. The devel-
opers cannot choose a single approach and enforce the criteria on the
whole program. For example, one of the approaches needs to modify the

128 REMOTE POINTCUT

Implementation Issues

declaration of the class of master objects. Since the JVM does not accept
modified system classes, if an instance of a system class is a remote ob-
ject, that approach cannot be used. A different approach must be used
for that case.

To avoid this problem, Addistant [51], which is our old work, provides
several different approaches for implementing a proxy-master model. It
provides four approaches; replace, rename, subclass, and copy. The de-
velopers can choose one from the four for each class of master. The
differences among the four approaches are mainly how a proxy class is
declared, how caller-side code, that is, expressions of remote method in-
vocations, is modified, and how a master class is modified. The four
approaches cover most of case.

Remote GluonJ allows developers to specify a policy of proxy im-
plementaion for each of classes. The developers can declare that every
instances of remote reference of the class are implemented the specified
approach. The policy declaration is written in a policy file in an XML
syntax. Remote GluonJ runtime receives the policy file that the devel-
opers write on startup, it parses the file as an XML document. Then,
Remote GluonJ runtime automatically implements remote references of
each classes on demands at load-time.

As an example, the policy file:

<policy>

<class name="Point" proxy="replace">

<class name="java.lang.String" proxy="copy">

<aspect name="Logger" proxy="replace">

</policy>

means that every instances of remote reference of the Point class is
implemented by using replace approach, java.lang.String class is imple-
mented by using copy approach, and Logger aspect representing the Log-
gingAspect aspect is implemented by using replace approach. Currently,
Remote GluonJ allows to choose one from replace and copy approaches.

5.5.3 Hot Deployment

Remote GluonJ provides a mechanism for hot deployment 6. This func-
tion is for automatically reloading the classfiles of an application running

6It has already been provided by most web application servers and web containers
such as JBoss[32, 35], Tomcat [?], and so on.

REMOTE POINTCUT 129

Implementation Issues

Figure 5.4. Architecture of hot deployment provided by the runtime system
of Remote GluonJ

on top of the runtime system by Remote GluonJ. The developers of Re-
mote GluonJ do not have to shutdown a working program since they
apply new aspects to the program on its runtime system. Before the
users start up their application on top of the runtime system provided
by Remote GluonJ, they must put the classfiles on a directory specified
by the runtime system. When the classfiles of aspects and classes on
the specific directory are changed, all runtime systems on participating
nodes automatically restart distributed software. When restarting dis-
tributed application, a runtime system on each node changes the behavior
of classes at load time according to the context of the changed aspect.

The runtime system provided by Remote GluonJ observes classfiles
on a specific directory at runtime. It checks if the last-modified time
of the classfile is changed or not. If the time of the file is changed and
the file is the classfile of an aspect, it gets the data of its aspect. It
sends the participating runtime systems the data. The runtime system
that received the data creates new classloader and makes the classloader
reload the classfiles of a working application. It and its classloader edit
the bytecode of the loading class at load time and then load the modified
class like Figure 5.4.

5.5.4 Deadlock Avoidance

Any host can invoke a method on a remote object and receive a method
invocation from a remote object in Remote GluonJ runtime. Therefore, a

130 REMOTE POINTCUT

Implementation Issues

remote method call from a host A to an other host B may cause another
method call back from B to A. In this case, the latter method call must be
handled by the same thread that requested the former method call on the
host A. Otherwise, a deadlock may occur if the methods are synchronized
ones.

In order to ensure the same thread executes all the methods called
back, Remote GluonJ establishes a one-to-one communication channel
between the thread executing a method on the host B and the thread
executing a method that is handled the method on the host A. This com-
munication channel is stored in a thread-local variable implemented with
java.lang.ThreadLocal. The ThreadLocal class provides thread-local vari-
ables for the Java developers. These variables differ from their normal
counterparts in that each thread that accesses one has its own, indepen-
dently initialized copy of the variable.

A thread always uses the same channel for every remote method call
and it waits for not only the result of the invocation but also another
request of invocation from a remote thread sharing the same channel. A
deadlock is avoided.

5.5.5 Distributed Garbage Collection

Remote GluonJ maintains a table of objects exported to a remote host.
While there exists a proxy object on a remote host, the master object is
recorded in that table so that it is not garbage collected. If all the proxy
objects are garbage collected, then the master object is removed from
the table. If there are no other references to the master object, then the
master object is garbage collected.

The table of proxy objects for checking the equality between remote
references is implemented with the weak reference mechanism of Java.
An element of the table is a weak reference to a proxy object. Thus, the
proxy object is garbage collected when the garbage collector determines
that nothing except that table refers to the proxy object.

Currently, Remote GluonJ cannot collect all objects if remote refer-
ences make cycles. Although several algorithms are known for dealing
with distributed cycles, efficiently implementing those algorithms is not
straightforward without modifying the JVM. For example, if using a dis-
tributed mark-sweep algorithm, we would need a mechanism for tracing
object references. However, Java’s reflection API does not provide such
a mechanism. We expect that weak references and object finalizers might

REMOTE POINTCUT 131

Related work

help to solve this problem but implementation details are still open.

5.5.6 Thread Pool

One simplistic model for building a RMI server program would be to
create a new thread each time a request arrives and serivce the request
in the new thread. This approach actually works fine for prototyping
though, has significant disadvantages that would become apparent if you
tried to deploy the RMI server program that worked this way. One of
the disadvantages of the thread-per-request approach is that the over-
head of creating a new thread for each request is significant, the server
that created a new thread for each request would spend more time and
consume more system resources creating and destroying threads than it
would processing actual user requests. In addition to the overhead of cre-
ating and destroying threads, active threads consume system resources.
Creating too many threads in one JVM can cause the system to run out
of memory or thrash due to excessive memory consumption.

To resolve this problem, current Remote GluonJ tries to reduce the
overhead of creating and destroying threads by using the thread pool
[31]. We implement a thread pool that combined with a fixed group of
worker threads. The thread pool uses wait() and notify to signal waiting
threads that new work has arrived. The thread pool in Remote Glu-
onJ meets the requirements for safely using notify(). The thread pool
offers a solution to both the problem of thread life-cycle overhead and
the problem of resource thrashing. By reusing threads for multiple tasks,
the thread-creation overhead is spread over many tasks. As a bonus,
because the thread already exists when a request arrives, the delay in-
troduced by thread creation is eliminated. Thus, the request can be
serviced immediately, rendering the application more responsive. Fur-
thermore, by properly tuning the number of threads in the thread pool,
you can prevent resource thrashing by forcing any requests in excess of
a certain threshold to wait until a thread is available to process it.

5.6 Related work

Soares et al reported that they could use AspectJ for improving the mod-
ularity of their program written using Java RMI [71]. Without AspectJ,
the program must include the code following the programming conven-

132 REMOTE POINTCUT

Related work

tions required by the Java RMI. AspectJ allows separation of that code
from the rest into a distribution aspect. However, the ability of AspectJ
is limited with respect to modularization for distributed programs and
thus the resulting programs are often complicated and difficult to main-
tain. To address these complications, we propose remote pointcuts and
the inter-type declaration as extended language constructs for distributed
aspect-oriented programs.

Although Java RMI is the standard framework, several researchers
have been proposing other systems such as cJVM [17], our own Addis-
tant [51] and J-Orchestra [77]. These systems provide a single virtual
machine image on several hosts connected through a network. They al-
low for the distributed execution of a program originally written as a
non-distributed one, without code modification for the distribution. An
alternative to the approach presented here might be to write a program
in AspectJ and run it on these systems, which would appropriately trans-
late local pointcuts into remote pointcuts at the implementation level.
We did not take this approach since our target applications are for the
unit testing of enterprise server software, and these programs are inher-
ently designed and implemented as distributed software. Therefore, we
do not have to translate such software to distributed software by, for
example, using Addistant, except for the modules implemented as as-
pects. If we translate all the modules of such software, the unnecessary
indirections due to the proxy objects would cause significant performance
penalties, since such software has already included indirections for remote
accesses. On the other hand, Remote GluonJ can be regarded as a sys-
tem that translates only aspects to enable transparent remote accesses.
Although Addistant allows the programmers to specify translation only
for the classes generated by the AspectJ compiler from the aspects, the
programmers must manually describe these specifications. Remote Glu-
onJ provides better syntax so that these specifications can be simple or
implicit within the language constructs.

Distribution is a well known crosscutting concern and several sys-
tems have been proposed to support such concerns. For example, the
D language [46] allows the programmers to separately describe how a
parameter is passed to a remote procedure. Such work has explores new
crosscutting concerns in distributed programs whereas our work explore
general-purpose language constructs for distributed aspect-oriented pro-
grams. The goal of our work is to develop language constructs so that
programs written in an AspectJ-like language can be simple and easy to

REMOTE POINTCUT 133

Summary

maintain.
JAC [62, 57] is a powerful framework for dynamic AOP in Java. Un-

like other lanugages such as AspectJ, JAC does not require any langugae
extensions to Java. An aspect of JAC is implemented by a set of aspect
objects. JAC also supports Java API that easily implements crosscutting
concerns in distributed systems such as the codes changing consistency
protocol on a set of replications and implementing load-balancing for
developers. But, using JAC, even if developers will separate the cross-
cutting concerns during unit testing, complicated network processing is
not necessarily solved. The significant difference JAC and Remote Glu-
onJ is that Remote GluonJ provide the remote pointcut.

DADO (Distributed Adaplets for Distributed Objects) [82] provides
a CORBA-like programming model, which comprises several languages,
tools, and runtime environment, to support crosscuting concerns in dis-
tributed heterogeneous systems. This programming model enables the
developers to separate crosscutting implementation that arised in ap-
plication components on both client and server side such as security,
caching. In particular, the DADO programming model has two lan-
guages. One of these languages, DADO deployment language, is based
on AspectJ and specifies how a QoS feature interacts with an underly-
ing application. However these languages allow modeling the communi-
cations between client and server side, don’t support remote pointcuts
provided by Remote GluonJ.

5.7 Summary

This chapter presented Remote GluonJ, which provides remote pointcut
as a new language construct for distributed AOP. A remote pointcut is a
function for identifying join points in the execution of a program running
on a remote host. It can simplify the description of aspects with respect
to network processing if the aspects implement a crosscutting concern
spanning over multiple hosts. To illustrate this situation, this chapter
used the example of a program written in Remote GluonJ for distributed
unit testing. The remote pointcut is a crucial language construct for
distributed AOP, corresponding to remote method invocation (RMI) for
distributed object-oriented programming.

134 REMOTE POINTCUT

Chapter

6
Conclusion

This thesis has presented an aspect-oriented programming (AOP) lan-
guage for agile software development named GluonJ. This chapter con-
cludes the thesis with a summary of our contribution.

First this thesis explained four features of an ideal language for agile
software development and showed that AspectJ is the most ideal language
for agile software development in existing programming languages. The
ideal features are as following.

(A) Separation of features

(B) Without editing an existing program

(C) Concurrent development

(D) A statically typed language

AspectJ is one of general-purpose AOP languages for Java and provides
language constructs for pointcut-advice and inter-type declarations. By
using pointcut-advice and inter-type declarations in AspectJ satisfy the
features (B) and (D). Although AspectJ also satisfies the features (A)
and (C) to a certain degree, it is not good enough.

CONCLUSION 135

Dynamic refinement

Our contribution is that we proposed two new language constructs
for AOP, named dynamic refinement and remote pointcut. Dynamic
refinement is an AOP language construct for concurrent development. It
allows software engineers to write extensions to existing classes according
to dynamic contexts. Remote pointcut is an AOP language construct
for distributed computing and allows separating a distributed feature
from the rest of the program as a simple aspect. We also developed
GluonJ, which is an AspectJ-like AOP language for Java. It provides
these language constructs and satisfies the ideal features not only (B)
and (D) but also (A) and (C). We developed GluonJ that provides these
language constructs.

6.1 Dynamic refinement

We proposed dynamic refinement, which allows software engineers to dy-
namically refine the definition of an existing class. By using dynamic
refinement in GluonJ, software engineers can redefine existing methods
and append new methods, fields, and interfaces to an existing class ac-
cording to control-flow. Since these changes are described in a separate
component (or module), this language mechanism is useful for separation
of concerns.

Dynamic refinement is effectively used for development of web ap-
plications. The programs of most web applications have session objects
and a mechanism for managing these objects. Dynamic contexts of a web
application are registered and centralized in a session object. Software
engineers of web applications use these session objects and describe the
codes for switching processings according to sessions by hand. By using
dynamic refinement in GluonJ, they do not have to write such codes.
GluonJ automatically enables switching the the processings declared in
refinements by control-flow (dynamic scoping). Moreover GluonJ allows
them to group extensions to existing classes related to a same session as
refinements.

GluonJ that provides dynamic refinement satisfies the feature (C) of
an ideal language for agile software development. Dynamic refinement
allows software engineers to separate newly appended functions from the
rest of the program and other functions as aspects. A software engineer
can develop his function without consideration of different functions that
other engineers develop at same iteration. Also it is easy to merge de-

136 CONCLUSION

Remote pointcut

veloped functions into an existing program. Unlike cflow pointcut in As-
pectJ, dynamic refinement in GluonJ provides a mechanism for grouping
multiple redefined methods according to a same dynamic context.

The concept of dynamic refinement is similar to the mechanism of dy-
namic scoping. Generally speaking, a language that has dynamic scoping
is not easy-to-use. Such a language decreases the readability and under-
standability of its program. However, when software engineers, in paral-
lel, improve a software product on agile software development, dynamic
scoping is often effective. Thus GluonJ exploits dynamic scoping.

GluonJ allows software engineers to dynamically refine an existing
class during runtime to a certain degree. It allows applying and remov-
ing refinement to/from a class on demand. Naively designed dynamic
refinement may allow a call to a method that has not been appended
yet or that has been already removed and then it may cause a runtime
type error. However, a GluonJ program never causes such a runtime type
error as a NoSuchMethodException although it may fail an explicit type
cast and throw a ClassCastException. To guarantee this property, GluonJ
does not use a custom type checker. It exploits the type checking by a
normal Java compiler and the verification by the custom class loader of
GluonJ.

6.2 Remote pointcut

We proposed remote pointcut, which is new AOP language constructs for
distributed computing. A remote pointcut is a function for designating
join points in the execution of a program running on a remote host.
Although a pointcut in AspectJ identifies execution points on the local
host, a remote pointcut can identify them on a remote host. In other
words, when the thread of control reaches the join points identified by a
remote pointcut, the advice body associated with that remote pointcut is
executed on a remote host different from the one where those join points
occur. Remote pointcuts are analogous to remote method calls, which
invoke the execution of a method body on a remote host.

GluonJ that provides remote pointcut satisfies the feature (A) of an
ideal language for agile software development in Section 2.2. This lan-
guage construct can simplify the code of a component implementing a
feature in distributed software as an aspect. AspectJ is a useful pro-
gramming language is a useful programming language for developing dis-

CONCLUSION 137

Remote pointcut

tributed software. However, even if a feature can be implemented as a
single aspect at the code level, it might need to be deployed on different
hosts and it would therefore consist of several sub-components or sub-
processes running on each host. Remote pointcut enables implementing
such a feature as simple, non-distirbuted component without concerns
about network processing.

The aspect weaving in GluonJ is performed at load time on each
participating host. The normal Java classes on each participating host
must be loaded by the class loader provided by GluonJ. This class loader
weaves aspects and classes on the fly. The compiled aspects are stored in
the aspect server. The parts of the compiled code except for the advice
bodies are automatically distributed by the aspect server to each host, so
the latest aspects can be woven when the classes are loaded. The software
engineers of GluonJ do not have to manually deploy the compiled aspects
to every host.

AOP are useful for agile software development. However, existing
AOP languages, which include GluonJ, are not good enough for agile
software development.

Existing AOP languages do not often allow implementing a new func-
tion as an aspect. This chapter proposes to use AOP languages for agile
software development and then to implement a newly appended function
as an aspect. If this addition of an aspect is iterated in software develop-
ment, a developer must often append a new function to an existing aspect
that was developed before by an aspect. Existing AOP languages such
as AspectJ make it difficult to extend an existing aspect by an aspect.
This is because an advice in those languages is an anonymous method.
Thus they cannot appropriately specify the execution or call of an advice
as join points. To avoid this problem, before developers append a new
function to an existing program in an iteration, they should refactor the
existing program that includes several aspects every several iterations.
After they change an existing program into a program without aspects,
they should append a new function to the refactored program.

Existing AOP languages easily enable deleting the implementations
of functions (aspects) that have been developed by the previous iteration
only. In existing AOP languages, the deletion of an aspect on which
other aspects are depended requires care. For example, suppose that an
intertype declaration is declared in an aspect A1 and the execution of
the intertype declaration is specified by another aspect A2 as join points.
If a developer removes aspect A1 from the rest of the program without

138 CONCLUSION

Remote pointcut

consideration of aspect A2, the aspect A2 is not effective. Thus, when
a developer removes an aspect from the rest of the program, he should
check the dependency relation between its aspect and other aspects. Note
that, he would easily delete an aspect only that was developed by the
previous iteration.

CONCLUSION 139

Bibliography
[1] Agile Alliance. URI http://www.agilealliance.com/.

[2] aspectj project — aspectj crosscutting objects for better modularity.
URL http://www.eclipse.org/aspectj/.

[3] AspectWerkz - Plain Java AOP. URI http://aspectwerkz.

codehaus.org/.

[4] CaesarJ Project. URL http://caesarj.org/.

[5] eclipse. URL http://www.eclipse.org/.

[6] JBoss Aspect Oriented Programming (AOP). URL http://labs.

jboss.com/portal/jbossaop.

[7] Jikes Research Virtual Machine. Online publishing, URI http://

jikesrvm.sourceforge.net/.

[8] Manifesto for Agile Software Development. URI http://

agilemanifesto.org/.

[9] NetBeans. URL http://www.netbeans.org.

[10] Rational Unified Process. URI http://www-306.ibm.com/

software/awdtools/rup/?S_TACT=105AGY59&S_CMP=WIK%I&ca=

dtl-08rupsite.

[11] The AspectJ 5 Development Kit Developer’s Notebook.
URL http://www.eclipse.org/aspectj/doc/released/

adk15notebook/index.html.

BIBLIOGRAPHY 141

[12] The Scala language home page. URL http://scala.epfl.ch/.

[13] GluonJ Home Page. URL http://www.csg.is.titech.ac.jp/

projects/gluonj/, 2006.

[14] Alexandre Bergel and Stephane Ducasse and Roel Wuyts. Class-
boxes: A minimal module model supporting local rebinding. In Pro-
ceedings of the Joint Modular Languages Conference 2003 (JMLC
’03), volume 2789 of Lecture Notes in Computer Science, pages 122–
131. Springer-Verlag, 2003.

[15] Sven Apel and Don Batory. When to use features and aspects?: a
case study. In Proceedings of the 5th International Conference on
Generative Programming and Component Engineering (GPCE ’06),
pages 59–68, New York, NY, USA, 2006. ACM.

[16] Ivica Aracic, Vaidas Gasiunas, Mira Mezini, and Klaus Ostermann.
An Overview of CaesarJ. In Awais Rashid and Mehmet Aksit, edi-
tors, Transactions on Aspect-Oriented Software Development I, Lec-
ture Notes in Computer Science, pages 135–173. Springer, 2006.

[17] Yariv Aridor, Michael Factor, and Avi Teperman. cJVM: A single
system image of a JVM on a cluster. In Proceedings of International
Conference on Parallel Processing (ICPP ’99), pages 4–11, 1999.

[18] asset.com.

[19] Alexandre Bergel, Stéphane Ducasse, and Oscar Nierstrasz.
Classbox/J: Controlling the Scope of Change in Java. In Proceed-
ings of the 20th annual ACM SIGPLAN Conference on Object Ori-
ented Programming, Systems, Languages, and Applications (OOP-
SLA ’05), pages 177–189, New York, NY, USA, October 2005. ACM
Press.

[20] Lodewijk Bergmans and Mehmet Aksits. Composing crosscutting
concerns using composition filters. Commun. ACM, 44(10):51–57,
2001.

[21] Christoph Bockisch, Michael Haupt, Mira Mezini, and Klaus Os-
termann. Virtual machine support for dynamic join points. In
Proceedings of the 3rd International Conference on Aspect-Oriented
Software Development (AOSD ’04), pages 83–92, March 2004.

[22] Gilad Bracha and William Cook. Mixin-based inheritance. In Pro-
ceedings of the European Conference on Object-Oriented Program-
ming on Object-Oriented Programming Systems, Languages, and
Applications (OOPSLA/ECOOP ’90), pages 303–311, New York,
NY, USA, 1990. ACM Press.

[23] Shigeru Chiba. Load-Time Structural Reflection in Java. In Pro-
ceedings of the 14th European Conference on Object-Oriented Pro-
gramming (ECOOP ’00), pages 313–336, London, UK, June 2000.
Springer-Verlag.

[24] Shigeru Chiba and Rei Ishikawa. Aspect-Oriented Programming Be-
yond Dependency Injection. In Andrew P. Black, editor, Proceedings
of the 19th European Conference on Object-Oriented Programming
(ECOOP ’05), volume 3586 of Lecture Notes in Computer Science,
pages 121–143. Springer Berlin/Heidelberg, 2005.

[25] Shigeru Chiba and Muga Nishizawa. An Easy-to-Use Tookkit for
Efficient Java Bytecode Translators. In Proceedings of the 2nd In-
ternational Conference on Generative Programming and Component
Engineering (GPCE ’03), volume 2830 of Lecture Notes in Computer
Science, pages 364–376, New York, NY, USA, 2003. Springer-Verlag
New York, Inc.

[26] W. R. Cook. A Denotational Semantics of Inheritance. PhD thesis,
Department of Computer Science, Brown University, Providence,
RI, May 1989.

[27] Pascal Costanza and Robert Hirschfeld. Language Constructs for
Context-oriented Programming: an Overview of ContextL. In Pro-
ceedings of the 2005 Conference on Dynamic Languages Symposium
(DLS ’05), pages 1–10, New York, NY, USA, 2005. ACM Press.

[28] Pascal Costanza, Robert Hirschfeld, and Wolfgang De Meuter. Ef-
ficient Layer Activation for Switching Context-dependent Behavior.
volume 4228 of Lecture Notes in Computer Science, pages 84–103.
Springer, September 2006.

[29] Curtis Clifton and Gary T. Leavens and Craig Chambers and Todd
Millstein. MultiJava: Modular Open Classes and Symmetric Mul-
tiple Dispatch for Java. In Proceedings of the 15th ACM SIGPLAN

BIBLIOGRAPHY 143

conference on Object-Oriented Programming, Systems, Languages,
and Applications (OOPSLA ’00), pages 130–145, New York, NY,
USA, 2000. ACM Press.

[30] Mxx Dmitriev. Towards Flexible and Safe Technology for Run-
time Evolution of Java Language Applications. In Workshop on
Engineering Complex Object-Oriented Systems for Evolutions, Pro-
ceedings of Object-Oriented Programming Softwares, Languages and
Applications (OOPSLA ’01), October 2001.

[31] Doug Lea. Concurrent Programming Second Edition Design Princi-
ples and Patterns, chapter 4. Addison Wesley Java Series, 2000.

[32] Marc Fleury and Francisco Reverbel. The JBoss extensible server.
In Markus Endler and Douglas Schmidt, editors, Proceedings
of ACM/IFIP/USENIX 4th International Middleware Conference
(Middleware ’03), volume 2672 of Lecture Notes in Computer Sci-
ence, pages 344–373. Springer-Verlag, 2003.

[33] Gregor Kiczales and John Lamping and Anurag Menhdhekar and
Chris Maeda and Cristina Lopes and Jean-Marc Loingtier and John
Irwin. Aspect-Oriented Programming. In Mehmet Akşit and Satoshi
Matsuoka, editors, Proceedings of the eleven European Conference
on Object-Oriented Programming (ECOOP ’97), volume 1241, pages
220–242, Berlin, Heidelberg, and New York, 1997. Springer-Verlag.

[34] Mills H., Dyer M., and Linger R. Cleanroom software engineering.
In IEEE Software 4, 5, pages 19–25, September 1987.

[35] JBoss Inc., URL http://www.jobss.org/. JBoss 4.0.2, 2004.

[36] John Corwin and David F. Bacon and David Grove and Chet
Murthy. MJ: a rational module system for Java and its applica-
tions. SIGPLAN Not., 38(11):241–254, 2003.

[37] Kent Beck. Extreme Programming Explained: Embrace Change,
chapter 4. Addison-Wesley Professional, October 1999.

[38] Gregor Kiczales, Erik Hilsdale, Jim Hugunin, Mik Kersten, Jeffrey
Palm, and William G. Griswold. An overview of AspectJ. In Proceed-
ings of the 15th European Conference on Object-Oriented Program-
ming (ECOOP ’01), volume 2072, pages 327–355. Springer-Verlag,
2001.

[39] Michael Kircher, Prashant Jain, and Angelo Corsaro. XP + AOP
= Better Software? URI http://agilealliance.com/system/

article/file/882/.

[40] Klaus Ostermann. Implementing Reusable Collaborations with Del-
egation Layers. In First Workshop on Language Mechanisms for
Programming Software Components at OOPSLA’01, October 2001.

[41] Klaus Ostermann. Dynamically Composable Collaborations with
Delegation Layers. In Proceedings of the 16th European Confer-
ence on Object-Oriented Programming (ECOOP ’02), pages 89–110,
Malaga, Spain, 2002. Springer.

[42] Gunter Kniesel. Type-Safe Delegation for Run-Time Component
Adaptation. In Proceedings of the 13th European Conference on
Object-Oriented Programming (ECOOP ’99), pages 351–366, Lis-
bon, Portugal, June 1999. Springer-Verlag.

[43] Kresten Krab Thorup. Genericity in Java with Virtual Types.
In Mehmet Akşit and Satoshi Matsuoka, editors, Proceedings of
the eleven European Conference on Object-Oriented Programming
(ECOOP ’97), volume 1241, pages 444–471, Berlin, Heidelberg, and
New York, 1997. Springer-Verlag.

[44] Sheng Liang and Gilad Bracha. Dynamic class loading in the java
virtual machine. In Proceedings of the 13th ACM SIGPLAN confer-
ence on Object-oriented programming, systems, languages, and ap-
plications (OOPSLA ’98), pages 36–44, New York, NY, USA, 1998.
ACM Press.

[45] Henry Lieberman. Using prototypical objects to implement
shared behavior in object-oriented systems. In Proceedings on
Object-Oriented Programming Systems, Languages and Applications
(OOPLSA ’86), pages 214–223, New York, NY, USA, 1986. ACM
Press.

[46] Cristina Lopes. D: A Language Framework for Distributed Pro-
gramming. PhD thesis, College of Computer Science, Northeastern
University, Dec. 1997.

BIBLIOGRAPHY 145

[47] O. L. Madsen and B. Moller-Pedersen. Virtual classes: a powerful
mechanism in object-oriented programming. In Conference proceed-
ings on Object-oriented programming systems, languages and appli-
cations (OOPSLA ’89), pages 397–406, New York, NY, USA, 1989.
ACM Press.

[48] Ole Lehrmann Madsen, Birger Mø-Pedersen, and Kristen Ny-
gaard. Object-oriented programming in the BETA programming lan-
guage. ACM Press/Addison-Wesley Publishing Co., New York, NY,
USA, 1993.

[49] Matthias Zenger. Evolving Software with Extensible Modules. In In-
ternational Workshop on Unanticipated Software Evolution, Malaga,
Spain, June 2002.

[50] Mira Mezini and Klaus Ostermann. Conquering aspects with Cae-
sar. In Proceedings of the 2nd international conference on Aspect-
oriented software development (AOSD ’03), pages 90–99, New York,
NY, USA, March 2003. ACM Press.

[51] Michiaki Tatsubori and Toshiyuki Sasaki and Shigeru Chiba and
Kozo Itano. A Bytecode Translator for Distributed Execution of
Legacy Java Software. In Proceedings of the 15th European Confer-
ence on Object-Oriented Programming (ECOOP ’01), volume 2072
of Lecture Notes in Computer Science, pages 236–255. Springer-
Verlag, 2001.

[52] Nathanael Scharly and Ste phane Ducasse and Oscar Nierstrasz and
Andrew Black. Traits: Composable Units of Behavior. In Proceed-
ings of the European Conference on Object-Oriented Programming
(ECOOP ’03), volume 2743 of Lecture Notes in Computer Science,
pages 248–274, New York, NY, USA, July 2003. Springer.

[53] Muga Nishizawa and Shigeru Chiba. A small extension to java for
class refinement. In Proceedings of the 23rd Annual ACM Symposium
on Applied Computing (ACM SAC ’08). ACM, 2008.

[54] Muga Nishizawa, Shigeru Chiba, and Michiaki Tatsubori. Remote
pointcut: a language construct for distributed AOP. In Proceed-
ings of the 3rd International Conference on Aspect-Oriented Soft-
ware Development (AOSD ’04), pages 7–15, New York, NY, USA,
March 2004. ACM Press.

[55] Nathaniel Nystrom, Stephen Chong, and Andrew C. Myers. Scalable
extensibility via nested inheritance. In Proceedings of the 19th an-
nual ACM SIGPLAN conference on Object-oriented programming,
systems, languages, and applications (OOPSLA ’04), pages 99–115,
New York, NY, USA, October 2004. ACM Press.

[56] Object Mentor, URI http://www.junit.org/index.htm. JU-
nit.org, 2001.

[57] ObjectWeb Consortium, Online publishing, URI http://jac.

objectweb.org/index.html.

[58] Doug Orleans and Karl J. Lieberherr. Dj: Dynamic adaptive pro-
gramming in java. In Akinori Yonezawa and Satoshi Matsuoka, ed-
itors, Proceedings of the 3rd International Conference of Metalevel
Architectures and Separation of Crosscutting Concerns (Reflection
’01), volume 2192 of Lecture Notes in Computer Science, pages 73–
80. Springer-Verlag, 2001.

[59] Harold Ossher and Peri Tarr. Hyper/J: Multi-dimensional Sepa-
ration of Concerns for Java. In Proceedings of the 22nd interna-
tional conference on Software engineering (ICSE ’00), pages 734–
737, 2000.

[60] Penaud Pawlak, Laurence Duchien, Gerard Florin, Fabrice Legond-
Aubry, Lionel Seinturier, and Laurent Martelli. Jac: An aspect-
based distributed dynamic framework. In Aspect-Oriented Software
Development 2003 (AOSD 2003) Tutorial, 2003.

[61] Renaud Pawlak, Lionel Seinturier, Laurence Duchien, G. Florin,
F. Legond-Aubry, and L. Martelli. JAC : An Aspect-based Dis-
tributed Dynamic Framework. Software Practise and Experience
(SPE), 34(12):1119–1148, October 2004.

[62] Renaud Pawlak, Lionel Seinturier, Laurence Duchien, and Gerard
Florin. Jac: A flexible solution for aspect-oriented programming in
java. In Akinori Yonezawa and Satoshi Matsuoka, editors, Proceed-
ings of the 3rd International Conference of Metalevel Architectures
and Separation of Crosscutting Concerns (Reflection ’01), volume
2192 of Lecture Notes in Computer Science, pages 1–24. Springer-
Verlag, 2001.

BIBLIOGRAPHY 147

[63] Andrei Popovici, Gustavo Alonso, and Thomas Gross. Just-in-time
aspects: efficient dynamic weaving for Java. In Proceedings of the
2nd International Conference on Aspect-Oriented Software Devel-
opment (AOSD ’03), pages 100–109, New York, NY, USA, March
2003. ACM.

[64] Andrei Popovici, Thomas Gross, and Gustavo Alonso. Dynamic
weaving for aspect-oriented programming. In Proceedings of the 1st
International Conference on Aspect-Oriented Software Development
(AOSD ’02), pages 141–147, New York, NY, USA, March 2002.
ACM Press.

[65] Hridesh Rajan and Kevin J. Sullivan. Classpects: Unifying Aspect-
and Object-Oriented Language Design, booktitle =.

[66] Winston. W. Royce. Managing the development of large soft-
ware systems: concepts and techniques. In Proceedings of IEEE
WESCON 26, pages 1–9, August 1970.

[67] Winston. W. Royce. Managing the development of large software
systems: concepts and techniques. In Proceedings of the Ninth Inter-
national Conference on Software Engineering, pages 328–338, 1987.

[68] Yoshiki Sato and Shigeru Chiba. Loosely-Separated ”Sister” Names-
paces in Java. In Andrew P. Black, editor, Proceedings of the 19th
European Conference on Object-Oriented Programming (ECOOP
’05), volume 3586 of Lecture Notes in Computer Science, pages 49–
70. Springer Berlin/Heidelberg, 2005.

[69] Yoshiki Sato, Shigeru Chiba, and Michiaki Tatsubori. A selective,
just-in-time aspect weaver. In Proceedings of the 2nd International
Conference on Generative Programming and Component Engineer-
ing (GPCE ’03), volume 2830 of Lecture Notes in Computer Sci-
ence, pages 189–208, New York, NY, USA, 2003. Springer-Verlag
New York, Inc.

[70] Yannis Smaragdakis and Don Batory. Mixin layers: an
object-oriented implementation technique for refinements and
collaboration-based designs. ACM Trans. Softw. Eng. Methodol.,
11(2):215–255, 2002.

[71] Sergio Soares, Eduardo Laureano, and Paulo Borba. Implementing
distribution and persistence aspects with aspectj. In Proceedings of
the 17th ACM SIGPLAN Conference on Object-oriented Program-
ming, Systems, Languages, and Applications (OOPSLA ’02), pages
174–190, New York, NY, USA, 2002. ACM Press.

[72] Sun Microsystems, Online publishing, URI http://java.sun.com/
j2se/1.5.0/docs/guide/jpda/index.html. Java Platform Debug-
ger Architecture.

[73] Sun Microsystems, URL http://java.sun.com/products/jdk/

rmi/. Java RMI.

[74] Sun Microsystems, URL http://java.sun.com/j2se/1.4.1/

docs/guide/rmi/socketfactory/. Using a Custom RMI Socket
Factory, 1997.

[75] Davy Suvee, Wim Vanderperren, and Viviane Jonckers. JAsCo: an
Aspect-Oriented approach tailored for Component Based Software
Development. In Proceedings of the 2nd International Conference of
Aspect-Oriented Software Development (AOSD ’03), pages 21–29.
ACM Press, March 2003.

[76] Peri Tarr, Harold Ossher, William Harrison, and Jr. Stanley M. Sut-
ton. N degrees of separation: multi-dimensional separation of con-
cerns. In Proceedings of the 21st international conference on Soft-
ware engineering (ICSE ’99), pages 107–119, Los Alamitos, CA,
USA, 1999. IEEE Computer Society Press.

[77] Eli Tilevich and Yannis Smaragdakis. J-orchestra: Automatic java
application partitioning. In Proceedings of the 16th European Con-
ference on Object-Oriented Programming (ECOOP ’02), pages 178–
204, Malaga, Spain, 2002. Springer.

[78] Walter Maner, URL http://csweb.cs.bgsu.edu/maner/domains/

RAD.htm. RAPID APPLICATION DEVELOPMENT, 1997.

[79] Alessandro Warth, Milan Stanojevic, and Todd Millstein. Statically
Scoped Object Adaptation with Expanders. In Proceedings of the
21th annual ACM SIGPLAN Conference on Object Oriented Pro-
gramming, Systems, Languages, and Applications (OOPSLA ’06),
New York, NY, USA, October 2006. ACM Press.

BIBLIOGRAPHY 149

BIBLIOGRAPHY

[80] Gilani Wasif and Spinczyk Olaf. Dynamic Aspect Weaver Family for
Family-based Adaptable Systems. In Proceedings of Net.ObjectDays
2005, pages 94–109. Lecture Notes in Computer Science, September
2005.

[81] J. C. Wichman. The Development of a Preprocessor to Facilitate
Composition Filters in the Java Language. PhD thesis, Dept. of
Computer Science, University of Twente, December 1999.

[82] Eric Wohlstadter, Stoney Jackson, and Premkumar Devanbu. Dado:
Enhancing middleware to support cross-cutting features in dis-
tributed, heterogeneous systems. In Proceedings of the 25th In-
ternational Conference on Software Engineering (ICSE ’03), pages
174–186. ACM Press, May 2003.

[83] Yuuji Ichisugi and Akira Tanaka. Difference-Based Modules: A
Class-Independent Module Mechanism. In Proceedings of the 16th
European Conference on Object-Oriented Programming (ECOOP
’02), pages 62–88, London, UK, 2002. Springer-Verlag.

150 BIBLIOGRAPHY

