
A Small Extension to Java for Class Refinement

Muga Nishizawa
Dept. of Mathematical and Computing Sciences

Tokyo Institute of Technology
2-12-1 Ohkayama, Meguro-ku

Tokyo 152-8552, Japan

muga@csg.is.titech.ac.jp

Shigeru Chiba
Dept. of Mathematical and Computing Sciences

Tokyo Institute of Technology
2-12-1 Ohkayama, Meguro-ku

Tokyo 152-8552, Japan

chiba@is.titech.ac.jp

ABSTRACT
This paper presents an extended Java language in which users can
refine a class definition to a certain degree. They can statically or
dynamically redefine methods and append a new method, field, and
interfaces to the class like dynamic languages. A unique feature of
this language, namedGluonJ, is that users can use a standard Java
IDE (Integrated Development Environment) to exploit coding sup-
port by the IDE. This is significant for the industrial acceptability
of a new language. A GluonJ program is written in standard Java
with additional Java annotations. GluonJ was carefully designed
so that the IDE can recognize a GluonJ program and reflect it on
the coding support such as the code assist of Eclipse. Moreover,
a GluonJ program never throws a runtime exception reporting that
an undefined method is called. Guaranteeing this property is not
straightforward because GluonJ allows users to refine a class defi-
nition at runtime.

Categories and Subject Descriptors
D.3.3 [Programming Languages]: Language Constructs and Fea-
tures

General Terms
Languages, Design

Keywords
Java, Class refinement, Programming transformation

1. INTRODUCTION
Software evolution is one of the most significant topics in the

software industry. To react to altering and evolving requirements at
a rapid pace, software must be extended quickly. To minimize this
effort, the extensions should be implemented in a modular fashion
as much as possible.

Refinement is one of the promising technologies for this. The
concept of refinement is similar to mixin layers, virtual classes,
aspect-oriented programming (AOP), feature-oriented programming

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SAC’08March 16-20, 2008, Fortaleza, Ceará, Brazil
Copyright 2008 ACM 978-1-59593-753-7/08/0003 ...$5.00.

(FOP), and so on. It is a language mechanism for extending an ex-
isting class1. Unlike subclassing and mixin mechanisms, it directly
modifies the definition of an existing class. Thus, a client program
can use a method overridden by refinement without explicitly cre-
ating an instance of the extended version of that class.

This paper proposes our extended Java language, namedGluonJ,
in which users can statically or dynamically refine the definition of
an existing class. Our contribution is the pragmatic design of Glu-
onJ’s language construct for refinement. Our extension to Java is
small. GluonJ uses Java annotations and thereby does not extend
the lexical syntax of Java. It exploits Java’s type system as much as
possible. Thanks to these, a GluonJ program can be developed on a
standard Java IDE (Integrated Development Environment) such as
Eclipse and NetBeans. Particularly, users can enjoy the coding sup-
ports by a standard IDE even for GluonJ programming. The IDE
can recognize methods appended by refinement and shows them
as candidates when its users are typing a method name. A GluonJ
program is compiled by a standard Java compiler. Only a special
runtime system is needed to run a GluonJ program. We introduced
these features for industrial acceptability.

Although GluonJ enables appending/removing a method to/from
an existing class according to dynamic contexts, a GluonJ pro-
gram never throws aNoSuchMethodException if it is success-
fully compiled and loaded. A naive implementation of dynamic-
refinement might wrongly allow a client to call an unavailable method,
that would be appended later by refinement but that does not yet
exist. To avoid such an invalid call, which would throw a runtime
exception, GluonJ requires users to follow some programming con-
ventions. A GluonJ program satisfying these conventions never
calls an unavailable method. If a program does not satisfy the con-
ventions, they are statically detected before the program starts run-
ning. To do this, GluonJ exploits Java’s type system and GluonJ’s
custom class loader.

2. GLUONJ
This paper proposes our extended Java language, namedGluonJ,

in which users can statically or dynamically refine the definition of
an existing class. The users of GluonJ can redefine existing meth-
ods and append new methods, fields, and interfaces to an existing
class. Since these changes are described in a separate component
(or module), this language mechanism is useful for separation of
concerns. Refinement is described with annotations within the stan-
dard Java syntax. Thus, a GluonJ program can be compiled by a
standard Java compiler although compiled bytecode is transformed
by GluonJ’s custom class loader.
1The term ”refinement” is generally used in the context of formal
methods. However, in this paper, it is used as a language mecha-
nism for the extension to an existing class.

GluonJ allows applying and removing refinement to/from a class
on demand. Naively designed dynamic-refinement may allow a call
to a method that has not been appended yet or that has been already
removed and then the call may cause a runtime type error. How-
ever, a GluonJ program never causes such a runtime type error as
a NoSuchMethodException although it may fail an explicit type
cast and throw aClassCastException. To guarantee this prop-
erty, GluonJ does not use a custom type checker. It exploits the
type checking by a standard Java compiler and the verification by
GluonJ’s custom class loader.

Java’s annotations are convenient language constructs for imple-
menting a language extension without changing the lexical syntax
of Java. For example, AspectJ5 [1] allows users to describe aspects
in standard Java. An extended language construct of AspectJ5, such
as a pointcut, is described by using annotations.

However, language extensions implemented with annotations are
not understood by a standard Java IDE. Users must use an extended
IDE for those language extensions, for example, the AspectJ plugin
for the Eclipse IDE if they want to enjoy IDE support for aspects.
Although GluonJ uses Java annotations for implementing a refine-
ment mechanism, our implementation is quite compatible with an
unmodified Java IDE. We have carefully designed GluonJ so that
users can exploit the coding support of an unmodified Java IDE.
For example, a new method appended by a refinement is listed in
the available methods shown by the code assist of the Eclipse IDE.

2.1 Design overview
In GluonJ, a refinement, which represents modifications to an

original class, is described as a subclass of the original class. The
subclass is annotated with@Refine and calleda refinement class.
Both the original class and the refinement class are compiled by
a standard Java compiler. Then GluonJ’s runtime system actually
modifies the definition of the original class at load time according
to the specification given in the refinement class.

2.1.1 Changing an existing method
To change an existing method in an original class, users over-

ride it in a refinement class described as a subclass of the original
class. For example, to change the implementation of agetPrice
method inBook class, users must write the following refinement
classBookLogger.

@Glue class Logging {
@Refine public static class BookLogger

extends Book {
@Override public int getPrice() {

System.out.println(price);
return super.getPrice();

} } }

The getPrice method andprice field have been declared in the
Book class already. TheBookLogger class is a standard Java class
that extends the original classBook and overrides thegetPrice
method. Note that the refinement class is a static nested class in
the Logging class annotated with@Glue. Such a class is called
an @Glue classand can group refinement classes related to each
other. A refinement class can also overridestatic methods in its
original class.

A method in a refinement class can usesuper for invoking the
methods directly declared in its original class. The semantics of
super are the same as for subclassing.

Once the two classes are compiled and loaded, GluonJ’s runtime
system automatically modifies the originalBook class. Thus, dur-
ing runtime, aBook object is an instance of the modified version of
Book, the behavior of which is equivalent to that of an instance of

BookLogger in standard Java. The call togetPrice in the original
Book class invokes the method declared inBookLogger.

From the viewpoint of a Java IDE, the definition of a refinement
class is just a standard subclass. Hence, users can fully exploit
coding support provided by the IDE. For example, they can add
@Override to a method in a refinement class. If the name or the
signature of that method is wrong and the method does not override
a method in the original class, the IDE will report an error. Recall
that@Override in standard Java declares that the method with this
annotation overrides a method in a super class.

Although a refinement class looks like a standard subclass, to
explicitly create an instance of a refinement class is prohibited in
GluonJ. Creating an array of instances of a refinement class is also
prohibited. On the other hand, using a refinement class as a type
name is allowed. We will later discuss details of this issue.

2.1.2 Appending new members
To append a new method to an original class, users declare the

new method in a refinement class extending that original class. For
example, the following refinement classBookPrinter appends a
new methodprint to theBook class:

@Glue class Printing {
@Refine public static class BookPrinter

extends Book {
public void print() {

System.out.println(
"Book[" + title + "," + price + "]");

} } }

The originalBook class is automatically modified by GluonJ’s run-
time system at load time according toPrinting. The behavior of
instances of the modifiedBook class in GluonJ is equivalent to that
of instances ofBookPrinter in standard Java.

To call a method appended by refinement, a reference to the tar-
get object must be cast to the type of the refinement class. For
example, the following code calls theprint method appended by
the refinement classBookPrinter above:

public static void printBook(Book b) {
((BookPrinter)b).print();

}

The type cast fromBook to BookPrinter always succeeds while
the refinement classBookPrinter is applied to theBook class.
Users can understand this programming convention by analogy to
down-casts in Java. To call a method in a subclass, a reference
to the target object must be down-cast to the subclass’s type. This
type cast succeeds only if the target object is an instance of that sub-
class. Although a refinement class is not equivalent to a subclass,
this analogy would help users understand GluonJ’s semantics.

The methodprint appended by the refinement class is included
in the list of the available methods shown by Eclipse (see Figure 1)
when a user types the period at the end of the following sequence:

((BookPrinter)b).

This is because Eclipse recognizesBookPrinter as a standard class,
which declares theprint method under the interpretation for stan-
dard Java. Although GluonJ extends Java’s semantics by using an-
notations, the lexical representation of a GluonJ program can be
read as a standard Java program and the types recognized by this
reading are almost equivalent to the types under GluonJ’s seman-
tics. We have carefully designed GluonJ to preserve this property

Figure 1: The code assist of Eclipse pops up a list of available
methods and fields on theb variable. Not only existing methods
in Book but also print() newly appended byBookPrinter are
included in that list.

so that the coding support by Java IDEs can be used when writing
a GluonJ program.

In GluonJ, the type cast from the type of an array of an original
class to the type of an array of its refinement class succeeds while
the refinement class is applied to the original class. For example,
the following cast succeeds.

Book[] books = new Book[8];
:

BookPrinter[] printers = (BookPrinter[])books;

Also, in GluonJ, to append a new interface to a class, the inter-
face is declared in a refinement class. To call the interface method,
users must cast a reference to the target object to that refinement
class or its interface. Moreover, to append a new field to a class,
the field can be described in its refinement class like as when sub-
classing. Note that the field is visible only within methods declared
in the refinement class.

2.2 Dynamic refinement
GluonJ allows applying a refinement class to its original class

during only limited time. Recall that a refinement class is a static
nested class in a class annotated with@Glue, which can group
multiple refinement classes related to each other. If the@Glue
class is annotated with@Cflow, then all the refinement classes in-
cluded in that@Glue class are activated during only the time spec-
ified by the@Cflow annotation. The extension by the refinement
classes is effective during only that time.

The argument to@Cflow is the time during which refinements
are effective. For example, the following refinement class appends
theprint method only while thegetBookPrice method in theBook-
Store class is being executed.

@Cflow("void BookStore.getBookPrice(Book)")
@Glue public class CflowBasedPrinting {

@Refine public static class BookPrinter
extends Book {

public void print() {
System.out.println(

"Book[" + title + "," + price + "]");
} } }

The signature of a method is given as the argument to@Cflow.
An @Glue class with@Cflow is active only while the specified
method is executed. After that, the@Glue class is inactivated.
A refinement class included in the@Glue class is applied to its
original class only during the active time of the@Glue class.

A method appended by a refinement class with@Cflow is never
invoked when the refinement class is inactive. Recall that, to call
a method appended by a refinement class, a reference to the target
object must be cast to the type of the refinement class. The type cast
from the type of an original class to the type of the refinement class
with @Cflow succeeds only when the refinement class is active. If
an overriding method in a refinement class with@Cflow is invoked
when the refinement class is inactive, the overridden method in its
original class is invoked instead of the overriding one.

The following code calls theprint method appended by the re-
finement classBookPrinter shown above:

public class BookStore {
public int getBookPrice(Book b) {

((BookPrinter)b).print();
return b.getPrice();

}
public String getBookTitle(Book b) {

// throw ClassCastException
((BookPrinter)b).print();
return b.getTitle();

} }

The refinement classBookPrinter is effective only during the exe-
cution of thegetBookPrice method. Thus, it is not effective while
thegetBookTitle method is executed. Thus, the cast fromBook to
BookPrinter fails and causes aClassCastException. Theprint
method is never invoked onb.

The extension to a class by a refinement class with@Cflow is
applied to all the instances of that class during a specified time. It
is applied to not only existing instances but also instances created
while the@Glue class is active. Note that this application is on
a per-thread basis. The effect of the@Glue class is within the
thread that activated the@Glue class. When other threads access
the instances, the extension by the refinement class is not effective.

An @Glue class without an@Cflow annotation is always active
at runtime. A refinement class included in that@Glue class is
statically applied to its original class.

2.3 Restriction by@Cflow
To prevent a method appended by dynamic-refinement from be-

ing called when the method is not available, GluonJ requires users
to follow the programming conventions shown below.

Let G is an@Glue class associated with@Cflow and letG in-
clude a refinement classR. R appends an interfaceI to its original
class. If a typeT is eitherR, I, or an array type ofR or I, such as
R[] andI[], then the following rules must be satisfied:

1. A field of the typeT appears only withinG.

2. The typeT is not the return type or one of the parameter
types of the method specified as the argument to@Cflow.

3. T is not an exception type (i.e. a subclass ofThrowable). It
is not the parameter to acatch clause.

4. The refinement classR does not override astatic method in
its original class.

We later discuss why these rules guarantee that a method ap-
pended by dynamic-refinement is never invoked when the method
is not available. For more details, see Section 3.5.

GluonJ’s runtime system checks whether or not these rules are
satisfied in a given GluonJ program when the classes are loaded.

If the rules are not satisfied, the runtime system throws an excep-
tion. Otherwise, the program is successfully loaded and it will
never throw aNoSuchMethodException, which reports that an
unavailable method was called.NoSuchMethodException is an
exception type included in the standard Java library. It is thrown
when a client calls a method that does not exist.

Note that a GluonJ program may throw aClassCastException
when an object reference is cast from an original class to its refine-
ment class. However, once the cast operation succeeds, a GluonJ
program never throws aNoSuchMethodException.

2.4 Other functions
To extend a target class, GluonJ’s refinements have several func-

tions other than the above-mentioned functions. The following is a
list of the other functions.

1. If there are several refinement classes for modifying the same
original class, each refinement class is applied to the original
class by GluonJ’s runtime system in turn in the order of the
priority that the users specify.

2. A refinement class allows overriding the initial value of a
field in its original class. When a constructor in the original
class is called, the field is set to the overridden value.

3. A refinement class allows changing and callingprivate meth-
ods in its original class only if it is annotated by@Privi-
leged. A refinement with@Privileged also allows access-
ing private fields in its original class.

3. RUNTIME SYSTEM
To parse the arguments of annotations such as@Refine and

@Cflow at runtime and then extend a GluonJ program according to
the annotations, a GluonJ program runs on the top of a runtime sys-
tem provided by GluonJ. The runtime system transforms the byte-
code of a GluonJ program at load time. A GluonJ program must
be compiled by a standard Java compiler in advance. Our imple-
mentation of refinements generates an original class definition that
is the union of all refinements for that class at the bytecode level.
The runtime system uses Javassist [8], which is a toolkit for trans-
forming Java bytecode.

3.1 Appending new methods
When GluonJ finds a method that a refinement class appends

to an original class, it copies the appended method to the original
class at load time. A call to a method in the original class onsuper
within the copied method is replaced with the method call onthis.

When there are several refinement classes that append a new
method with the same name to an original class, each appending
method is copied to the original class in turn in the order of their
priority. GluonJ first copies an appending method with the highest
priority to its original class. Next it renames the appended method
with the highest priority into a unique name and then copies a newly
appending method with a lower priority to the original class. The
priority of refinement classes was mentioned in Section 2.4.

3.2 Changing methods in an original class
If a refinement class includes a method changing a method exist-

ing in its original class, GluonJ first renames the overridden (changed)
method in the original class into a unique name, and then copies the
overriding (changing) method in the refinement class to the original
class. A call to the original method onsuper within the overrid-
ing method is replaced with a call onthis to the renamed method.
A call to a non-overridden method in the original class onsuper

within the overriding method is also replaced with the method call
on this. When there are several refinement classes change the same
method in its original class, each overriding method is copied to the
original class according to their priority.

3.3 @Glue classes with@Cflow
When GluonJ copies an overriding method in a refinement class

with @Cflow to its original class, it inserts some check codes at the
beginning of the overriding method. These codes check whether or
not the refinement class with@Cflow is active, and if it is not,
it forwards the call to the overridden method in its original class.
Since methods in multiple refinement classes with@Cflow may
override a method in its original class, if the refinement class with
@Cflow is not active, the check code forwards to the next method
overridden by another refinement class according to their priori-
ties. When there are several refinement classes with@Cflow that
append a method with the same name to an original class, the check
code is also inserted in each appending method like changing orig-
inal methods.

3.4 Type names, type cast, andinstanceof
GluonJ’s runtime system searches compiled Java class files (Java

bytecode) and replaces all occurrences of the type name of refine-
ment classes with their original class names. The replaced type
names are ones used as a return type, a parameter type, or a thrown
exception type. The runtime system substitutes the bytecode gen-
erated by the runtime system for virtual machine instructions that
perform a runtime type check. These instructions arecheckcast
(type cast operator) andinstanceof.

If the destination type of thecheckcast instruction is a refine-
ment class with@Cflow, the bytecode generated by the runtime
system is inserted before the instruction. The bytecode checks
whether or not the refinement class with@Cflow is active. If
the refinement class is inactive, aClassCastException is thrown.
Also, similar bytecode is inserted if the destination type of the
checkcast instruction is an array type of a refinement class with
@Cflow.

If the right-hand type of theinstanceof instruction is a refine-
ment class with@Cflow, the instanceof instruction is replaced
with the bytecode generated by the runtime system. The bytecode
first checks whether or not the refinement class with@Cflow is ac-
tive. If not, the bytecode pushes 0 (false) onto the operand stack.
Otherwise, it really executes theinstanceof instruction and pushes
the result onto the stack. Also, theinstanceof instruction is re-
placed if the right-hand type is an array type of a refinement class.

The virtual machine instructionsnew, anewarray (array cre-
ation), andaastore (assignment to an array element) are not re-
placed by the runtime system. In GluonJ, creating an instance of a
refinement class or an array of it is prohibited. Thus, since thenew
andanewarray instructions for a refinement class cannot appear in
the whole program, they do not need to be replaced by the runtime
system. Also,aastore is not replaced even though it performs a
runtime type check. See the following example:

R[] r = new R[1];
C[] c = r;
c[0] = new C(); // throws ArrayStoreException

Here,R is a subclass ofC. The last assignment, which is compiled
into the aastore instruction, performs a runtime type check and
throws an exception because of the covariant rule of Java. IfR
is a refinement class andC is its original class, then the behavior
of the aastore instruction would be extended to perform a type
check considering dynamic activation. However, since creating an

array of a refinement class is prohibited in GluonJ, there is never an
array that can only containsR objects. Thus, replacing theaastore
instruction is unnecessary.

3.5 Why isNoSuchMethodException never thrown?
A GluonJ program that is successfully compiled and loaded never

throws aNoSuchMethodException. This exception is included in
the standard Java library and it is thrown when an undefined method
is called. Suppose that a client class calls a methodm declared in
a classC. After the client class is compiled, if the methodm is
removed from the classC and the classC is separately compiled
again, then the client class will throw aNoSuchMethodExcep-
tion at runtime.

It is not straightforward to guarantee that a GluonJ program does
not throw aNoSuchMethodException. If @Cflow is specified,
a refinement class is effective during only limited time. Thus, a
method appended by the refinement class is not always available.
If a client class calls that method when it is not available, then an
exception will be thrown.

Our idea is the following. (1) To call a method appended by a
refinement class, a reference to the target object first must be cast
to the typeT of that refinement class. Then, (2) a value of this type
T is alive at most while the refinement class is effective. Therefore,
a method appended by a refinement class is never called when it is
not available.

The property (1) is enforced by a standard Java compiler and the
cast operation extended by GluonJ’s runtime system. Since Java
is a statically typed language, it is not possible that a client calls
a method appended by a refinement class if the target reference is
not the type of the refinement class. The type cast to the refine-
ment class is extended by GluonJ and it succeeds only when the
refinement class is effective.

(2) is guaranteed by the programming conventions shown in Sec-
tion 2.3. A value obtained by the type cast to a refinement class may
be stored in a local variable or a field. However, if the field is not de-
clared in the refinement class, the value stored in the field will sur-
vive after the refinement class becomes ineffective. A method call
on that field may throw aNoSuchMethodException. To avoid
this, a GluonJ program must follow the programming conventions,
which guarantee that a field of the type of a refinement class is de-
clared only in its@Glue class. When the@Glue class becomes
inactive, that field also becomes invisible from the program. The
programming conventions also guarantee that a value of the type of
a refinement class does not leak out of its@Glue class as a return
value or an exception.

4. AN APPLICATION
Dynamic-refinement is useful for writing unit tests. Suppose that

we are describing the test program for thecontains method in the
following BookTitles class.

public class BookTitles {
protected String[] readDatabase() {

// reads the book titles from a database
// and returns them

}
public boolean contains(String title) {

for (String s : readDatabase()) {
if (s.equals(title)) return true;

}
return false;

} }

BookTitles is a program used to access the data of books that have
been stored in a database.contains is the method for checking

whether or not a book with the title passed as a parameter has
been stored in a database. ThereadDatabase method accesses
the database.

By using dynamic-refinement provided by GluonJ, we can test
the behavior ofcontains without accessing a database. The follow-
ing program allows switching the implementation ofreadDatabase
only while a test methodtestContains is executed.

@Cflow("BookTitlesTest#testContains()")
@Glue class GlueForBookTitlesTest {

@Refine static class MockTitles
extends BookTitles {

protected String[] readDatabase() {
return new String[] { "Proc. SAC 08" };

} } }
public class BookTitlesTest extends TestCase {

BookTitles table = new BookTitles();
public void testContains() {

assertTrue(table.contains("Proc. SAC 08"));
assertFalse(table.contains("Proc. SAC 07"));

} }

5. RELATED WORK
Most AOP languages such as AspectJ [11], CaesarJ [5], PROSE

[17], JAsCo [19], Steamloom [7] for Java more or less have a mech-
anism for changing the definition of an original class at runtime.
However, they require extensions of the standard Java syntax. Al-
though some of them provide Eclipse plugins for customizing the
Eclipse IDE, the plugins cannot extend other IDEs because the
specification of plugin mechanisms that other IDEs provide is dif-
ferent from Eclipse’s. To use coding support of various IDEs when
users write a program in those languages, those languages must
provide the plugins for customizing those IDEs.

AspectJ5 [4], AspectWerkz [2], and JBoss AOP [3], which are
annotation-based AOP frameworks, allow users to write aspects
using standard Java syntax. They provide language constructs for
dynamically changing the behavior of an existing method on an
object with pointcut-advice. Unlike GluonJ, however, they do not
provide language constructs for dynamically adding and removing
new fields and methods to and from an object according dynamic
contexts.

Hyper/J [16], eJava [20], MultiJava [10], mixin layers [18], vir-
tual classes [14], nested inheritance [15], and so on, are similar to
static refinement. To statically extend an original class and an orig-
inal class hierarchy, these mechanisms have been proposed before.
Also Classbox/J [6], Darwin/Lava [13], and delegation layers [12]
allow extending an original class at runtime. All of them make
extensions to Java’s syntax.

ContextJ [9] enables switching the extension of original classes
according to dynamic contexts. It allows users to override an exist-
ing method in its original class and to dynamically change multiple
overriding methods. However, it does not allow appending a new
method to an original class according to dynamic contexts. Thus it
cannot change the behavior of an object of its original class accord-
ing to dynamic contexts.

6. CONCLUSION
This paper proposed GluonJ, in which the users can statically or

dynamically modify the definition of an existing class according to
refinement at runtime. A main contribution of our work is the prag-
matic design of a language construct for refinement. To make re-
finement available, GluonJ uses Java annotations and thereby does

not extend the lexical syntax of Java. Unlike other naive imple-
mentations, however, our implementation is quite compatible with
an unmodified Java IDE. GluonJ has carefully been designed so
that the users can exploit coding support by a standard Java IDE.
Also, a GluonJ program can be edited with an unmodified Java ed-
itor and compiled with a standard Java compiler. Only a special
runtime system is needed to run a GluonJ program. This feature of
GluonJ is good for industrial acceptability.

Also, this paper explained that a GluonJ program never occurs
a runtime type errorNoSuchMethodException if the program is
successfully compiled and loaded. To prevent a method appended
by dynamic-refinement from being called when the method is not
available, GluonJ requires users to several programming conven-
tions. When a GluonJ program satisfies the conventions, an un-
available method is never invoked. To guarantee this property, Glu-
onJ does not use a custom type checker. It exploits the type check-
ing by a standard Java compiler and the verification by GluonJ’s
custom class loader. This paper, moreover, presented the imple-
mentation of GluonJ’s refinement and illustrated a regression test
program using GluonJ. At load time, GluonJ merges an original
class and its refinement classes into one class definition.

7. REFERENCES
[1] aspectj project — aspectj crosscutting objects for better

modularity. URL
http://www.eclipse.org/aspectj/ .

[2] AspectWerkz - Plain Java AOP. URI
http://aspectwerkz.codehaus.org/ .

[3] JBoss Aspect Oriented Programming (AOP). URL
http://labs.jboss.com/portal/jbossaop .

[4] The AspectJ 5 Development Kit Developer’s Notebook. URL
http://www.eclipse.org/aspectj/doc/
released/adk15notebook/index.html .

[5] I. Aracic, V. Gasiunas, M. Mezini, and K. Ostermann. An
Overview of CaesarJ.

[6] A. Bergel, S. Ducasse, and O. Nierstrasz. Classbox/J:
Controlling the Scope of Change in Java. InProc. of
OOPSLA ’05.

[7] C. Bockisch, M. Haupt, M. Mezini, and K. Ostermann.

Virtual machine support for dynamic join points. InProc. of
AOSD ’04.

[8] S. Chiba. Load-Time Structural Reflection in Java. InProc.
of ECOOP ’00.

[9] P. Costanza, R. Hirschfeld, and W. D. Meuter. Efficient
Layer Activation for Switching Context-dependent Behavior.

[10] Curtis Clifton and Gary T. Leavens and Craig Chambers and
Todd Millstein. MultiJava: Modular Open Classes and
Symmetric Multiple Dispatch for Java. InProc. of OOPSLA
’00, pages 130–145, New York, NY, USA, 2000. ACM Press.

[11] G. Kiczales, E. Hilsdale, J. Hugunin, M. Kersten, J. Palm,
and W. G. Griswold. An overview of AspectJ. InProc. of
ECOOP ’01, volume 2072, pages 327–355. Springer-Verlag,
2001.

[12] Klaus Ostermann. Dynamically Composable Collaborations
with Delegation Layers. InProc. of ECOOP ’02.

[13] G. Kniesel. Type-Safe Delegation for Run-Time Component
Adaptation. InProc. of ECOOP ’99, pages 351–366, Lisbon,
Portugal, June 1999. Springer-Verlag.

[14] O. L. Madsen and B. Moller-Pedersen. Virtual classes: a
powerful mechanism in object-oriented programming. In
Proc. of OOPSLA ’89, pages 397–406, New York, NY, USA,
1989. ACM Press.

[15] N. Nystrom, S. Chong, and A. C. Myers. Scalable
extensibility via nested inheritance. InProc. of OOPSLA ’04.

[16] H. Ossher and P. Tarr. Hyper/J: Multi-dimensional
Separation of Concerns for Java. InProc. of ICSE ’00.

[17] A. Popovici, T. Gross, and G. Alonso. Dynamic weaving for
aspect-oriented programming. InProc. of AOSD ’02.

[18] Y. Smaragdakis and D. Batory. Mixin layers: an
object-oriented implementation technique for refinements
and collaboration-based designs.ACM Trans. Softw. Eng.
Methodol., 11(2):215–255, 2002.

[19] D. Suvee, W. Vanderperren, and V. Jonckers. JAsCo: an
Aspect-Oriented approach tailored for Component Based
Software Development. InProc. of AOSD ’03.

[20] A. Warth, M. Stanojevic, and T. Millstein. Statically Scoped
Object Adaptation with Expanders. InProc. of OOPSLA ’06.

