A Small Extension to Java for Class Refinement

Muga Nishizawa Shigeru Chiba
Dept. of Mathematical and Computing Sciences Dept. of Mathematical and Computing Sciences
Tokyo Institute of Technology Tokyo Institute of Technology
2-12-1 Ohkayama, Meguro-ku 2-12-1 Ohkayama, Meguro-ku
Tokyo 152-8552, Japan Tokyo 152-8552, Japan
muga@csg.is.titech.ac.jp chiba@is.titech.ac.jp
ABSTRACT (FOP), and so on. It is a language mechanism for extending an ex-

This paper presents an extended Java language in which users Caﬁting_clasé. UnIi.ke' _subclassing_ a.”d mixin mechanisms, itdirectly
refine a class definition to a certain degree. They can statically or Modifies the definition of an existing class. Thus, a client program
dynamically redefine methods and append a new method, field, angcanusea method overridden by reflngment without explicitly cre-
interfaces to the class like dynamic languages. A unique feature of atlng'an instance of the extendeddv(ejrsmn ?f that class. hod

this language, name@luon] is that users can use a standard Java . T IS paper proposes_ourexten e J_ava anguage, na 16t ‘]

IDE (Integrated Development Environment) to exploit coding sup- In Wh',Ch. USErSs can staUcaIIyl or Qynamlcally reflne‘the deﬁnmon of
port by the IDE. This is significant for the industrial acceptability 2 €Xisting class. Our confribution is the pragmatic design of Glu-
of a new language. A GluonJ program is written in standard Java onJ’s language construct for refm_ement. Our extension to Java is
with additional Java annotations. GluonJ was carefully designed SMall- GluonJ uses Java annotations and thereby does not extend
so that the IDE can recognize a GluonJ program and reflect it on the lexical syntax of Java. It exploits Java’s type system as much as

the coding support such as the code assist of Eclipse. Moreover,P0SSible. Thanks to these, a GluonJ program can be developed on a
tstandard Java IDE (Integrated Development Environment) such as

a GluonJ program never throws a runtime exception reporting tha Ecli d NetB Particular] ‘ovth di
an undefined method is called. Guaranteeing this property is not clipse and NetBeans. Particularly, users can enjoy the coding sup-

straightforward because GluonJ allows users to refine a class defi-PtS by a standard IDE even for GluonJ programming. The IDE
nition at runtime. can recognize methods appended by refinement and shows them

as candidates when its users are typing a method name. A GluonJ
program is compiled by a standard Java compiler. Only a special

Categorles and SUbJeCt Descrlptors runtime system is needed to run a GluonJ program. We introduced

D.3.3 [Programming Language$: Language Constructs and Fea- these features for industrial acceptability.

tures Although GluonJ enables appending/removing a method to/from
an existing class according to dynamic contexts, a GluonJ pro-

General Terms gram never throws &dloSuchMethodException if it is success-

) fully compiled and loaded. A naive implementation of dynamic-

Languages, Design refinement might wrongly allow a client to call an unavailable method,
that would be appended later by refinement but that does not yet

Keywords exist. To avoid such an invalid call, which would throw a runtime

exception, GluonJ requires users to follow some programming con-
ventions. A GluonJ program satisfying these conventions never
calls an unavailable method. If a program does not satisfy the con-
1. INTRODUCTION ventions, they are statically detected before the program starts run-
Software evolution is one of the most significant topics in the ning. To do this, GluonJ exploits Java’s type system and GluonJ's
software industry. To react to altering and evolving requirements at custom class loader.
a rapid pace, software must be extended quickly. To minimize this
effort, the extensions should be implemented in a modular fashion 2 GLUONJ
as much as possible. .
Refinement is one of the promising technologies for this. The . Th|§ paper proposes.ourextended J.ava Iangluage, rﬁmeqq
concept of refinement is similar to mixin layers, virtual classes, in Wh'_Ch_ users can statically or dynamically refme_the d?f”.““on of
aspect-oriented programming (AOP), feature-oriented programming?" existing class. The users of QIuonJ can.redeflne existing n.1e'.[h-
ods and append new methods, fields, and interfaces to an existing
class. Since these changes are described in a separate component
(or module), this language mechanism is useful for separation of
Permission to make digital or hard copies of all or part of this work for concerns. Refinementis described with annotations within the stan-

personal or classroom use is granted without fee provided that copies aredard Java syntax. Thus, a GluonJ program can be compiled by a
not made or distributed for profit or commercial advantage and that copies standard Java compiler although compiled bytecode is transformed
bear this notice and the full citation on the first page. To copy otherwise, to by GluonJ’s custom class loader.

republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. The term "refinement” is generally used in the context of formal
SAC'08March 16-20, 2008, Fortaleza, CaaBrazil methods. However, in this paper, it is used as a language mecha-
Copyright 2008 ACM 978-1-59593-753-7/08/000$5.00. nism for the extension to an existing class.

Java, Class refinement, Programming transformation

GluonJ allows applying and removing refinement to/from a class BookLogger in standard Java. The call ¢eetPrice in the original
on demand. Naively designed dynamic-refinement may allow a call Book class invokes the method declarediookLogger.
to a method that has not been appended yet or that has been already From the viewpoint of a Java IDE, the definition of a refinement
removed and then the call may cause a runtime type error. How- class is just a standard subclass. Hence, users can fully exploit
ever, a GluonJ program never causes such a runtime type error agoding support provided by the IDE. For example, they can add
a NoSuchMethodException although it may fail an explicit type @Override to a method in a refinement class. If the name or the
cast and throw &lassCastException. To guarantee this prop- signature of that method is wrong and the method does not override
erty, GluonJ does not use a custom type checker. It exploits the a method in the original class, the IDE will report an error. Recall
type checking by a standard Java compiler and the verification by that@Override in standard Java declares that the method with this
GluonJ’s custom class loader. annotation overrides a method in a super class.

Java’s annotations are convenient language constructs for imple- Although a refinement class looks like a standard subclass, to
menting a language extension without changing the lexical syntax explicitly create an instance of a refinement class is prohibited in
of Java. For example, AspectJ5 [1] allows users to describe aspectsGluonJ. Creating an array of instances of a refinement class is also
in standard Java. An extended language construct of AspectJ5, suclprohibited. On the other hand, using a refinement class as a type
as a pointcut, is described by using annotations. name is allowed. We will later discuss details of this issue.

However, language extensions implemented with annotations are .
not understood by a standard Java IDE. Users must use an extendecd?-1-2 Appending new members
IDE for those language extensions, for example, the AspectJ plugin To append a new method to an original class, users declare the
for the Eclipse IDE if they want to enjoy IDE support for aspects. new method in a refinement class extending that original class. For
Although GluonJ uses Java annotations for implementing a refine- example, the following refinement claBookPrinter appends a
ment mechanism, our implementation is quite compatible with an new methodrint to theBook class:
unmodified Java IDE. We have carefully designed GluonJ so that
users can exploit the coding support of an unmodified Java IDE. @Glue class Printing {

For example, a new method appended by a refinement is listed in @Refine public static class BookPrinter

the available methods shown by the code assist of the Eclipse IDE. extends Book {
. . public void print() {
2.1 Design overview System.out.printin(
In GluonJ, a refinement, which represents modifications to an "Book[" + title + "," + price + "T");

original class, is described as a subclass of the original class. The} } }

subclass is annotated wi@Refine and calleda refinement class

Both the original class and the refinement class are compiled by The originalBook class is automatically modified by GluonJ's run-
a standard Java compiler. Then GluonJ's runtime system actuallytime system at load time according Reinting. The behavior of
modifies the definition of the original class at load time according instances of the modifieBlook class in GluonJ is equivalent to that

to the specification given in the refinement class. of instances oBookPrinter in standard Java.
] o To call a method appended by refinement, a reference to the tar-
2.1.1 Changing an existing method get object must be cast to the type of the refinement class. For

To change an existing method in an original class, users over- €xample, the following code calls theint method appended by
ride it in a refinement class described as a subclass of the originalthe refinement clasBookPrinter above:
class. For example, to change the implementation gét®rice . .) .
method inBook class, users must write the following refinement Public static void printBook(Book b) {

classBookLogger. } ((BookPrinter)b).print();
@Glue class Logging {
@Refine public static class BookLogger The type cast fronBook to BookPrinter always succeeds while
extends Book { the refinement clasBookPrinter is applied to theBook class.
@Override public int getPrice() { Users can understand this programming convention by analogy to
System.out.printin(price); down-casts in Java. To call a method in a subclass, a reference
return super.getPrice(); to the target object must be down-cast to the subclass’s type. This
} 1} type cast succeeds only if the target object is an instance of that sub-

)))) class. Although a refinement class is not equivalent to a subclass,
The getPrice method andprice field have been declared in the s analogy would help users understand GluonJ’s semantics.
Book class already. _T_hBookLogger classisa _standard Javg class The methodbrint appended by the refinement class is included
that extends the original claggook and overrides theetPrice in the list of the available methods shown by Eclipse (see Figure 1)

method. Note that the refinement class is a static nested class inyhen a user types the period at the end of the following sequence:
the Logging class annotated witt®@Glue. Such a class is called

an @Glue classind can group refinement classes related to each ((BookPrinter)b).
other. A refinement class can also overritatic methods in its

original class. This is because Eclipse recogniBesokPrinter as a standard class,

A method in a refinement class can wssger for invoking the which declares therint method under the interpretation for stan-
methods directly declared in its original class. The semantics of dard Java. Although GluonJ extends Java’'s semantics by using an-
super are the same as for subclassing. notations, the lexical representation of a GluonJ program can be

Once the two classes are compiled and loaded, GluonJ's runtimeread as a standard Java program and the types recognized by this
system automatically modifies the origirBdok class. Thus, dur- reading are almost equivalent to the types under GluonJ’s seman-

ing runtime, éBook object is an instance of the modified version of tics. We have carefully designed GluonJ to preserve this property
Book, the behavior of which is equivalent to that of an instance of

public void printBooki{Book b} {
{ {(BookPrinter)b).
¥ price int - Book
} title String - Book

@ equals{Object obj} boolean - Object
© eetClass{ Class - Object
@ getPriceQ int - Book
o eetTitled String - Book
©® hashCode® int - Object
@ notify(void - Object
@ notify&llQ void - Object
@ printd void - BookPrinter

© toString® String - Object ;I
Press 'Alt+/" to show Template Proposals

|»

Figure 1: The code assist of Eclipse pops up a list of available
methods and fields on théb variable. Not only existing methods
in Book but also print() newly appended byBookPrinter are
included in that list.

so that the coding support by Java IDEs can be used when writing

a GluonJ program.

A method appended by a refinement class v@@flow is never
invoked when the refinement class is inactive. Recall that, to call
a method appended by a refinement class, a reference to the target
object must be cast to the type of the refinement class. The type cast
from the type of an original class to the type of the refinement class
with @Cflow succeeds only when the refinement class is active. If
an overriding method in a refinement class w@Cflow is invoked
when the refinement class is inactive, the overridden method in its
original class is invoked instead of the overriding one.

The following code calls therint method appended by the re-
finement clas8ookPrinter shown above:

public class BookStore {
public int getBookPrice(Book b) {
((BookPrinter)b).print();
return b.getPrice();

}

public String getBookTitle(Book b) {
/I throw ClassCastException
((BookPrinter)b).print();
return b.getTitle();

In GluonJ, the type cast from the type of an array of an original } }
class to the type of an array of its refinement class succeeds while _ o) _
the refinement class is applied to the original class. For example, The refinement clasBookPrinter is effective only during the exe-

the following cast succeeds.

Book[] books = new Book[8];

Bo;)kPrinter[] printers = (BookPrinter[])books;

Also, in GluonJ, to append a new interface to a class, the inter-
face is declared in a refinement class. To call the interface method,
users must cast a reference to the target object to that refinement”
class or its interface. Moreover, to append a new field to a class,
the field can be described in its refinement class like as when sub-
classing. Note that the field is visible only within methods declare

in the refinement class.

2.2 Dynamic refinement

GluonJ allows applying a refinement class to its original class
during only limited time. Recall that a refinement class is a static

nested class in a class annotated w@itGlue, which can group
multiple refinement classes related to each other. If@®lue

class is annotated witf@ Cflow, then all the refinement classes in-
cluded in that@Glue class are activated during only the time spec-
ified by the@Cflow annotation. The extension by the refinement

classes is effective during only that time.

The argument t@Cflow is the time during which refinements
are effective. For example, the following refinement class appends

theprint method only while thgetBookPrice method in théBook-
Store class is being executed.

@Cflow("void BookStore.getBookPrice(Book)")
@Glue public class CflowBasedPrinting {
@Refine public static class BookPrinter
extends Book {
public void print() {
System.out.printin(
"Book[" + title + "" + price + "T");

}h}

The signature of a method is given as the argumer@tflow.
An @Glue class with@Cflow is active only while the specified
method is executed. After that, ti@Glue class is inactivated.
A refinement class included in th@Glue class is applied to its
original class only during the active time of t@Glue class.

cution of thegetBookPrice method. Thus, it is not effective while
thegetBookTitle method is executed. Thus, the cast frBopk to
BookPrinter fails and causes &lassCastException. The print
method is never invoked dm

The extension to a class by a refinement class @t@flow is
applied to all the instances of that class during a specified time. It
is applied to not only existing instances but also instances created
hile the @Glue class is active. Note that this application is on
a per-thread basis. The effect of t@Glue class is within the
thread that activated th@Glue class. When other threads access

d the instances, the extension by the refinement class is not effective.

An @Glue class without ar@ Cflow annotation is always active
at runtime. A refinement class included in ti@iGlue class is
statically applied to its original class.

2.3 Restriction by @cflow

To prevent a method appended by dynamic-refinement from be-
ing called when the method is not available, GluonJ requires users
to follow the programming conventions shown below.

Let G is an@Glue class associated wit Cflow and letG in-
clude a refinement clad?®. R appends an interfadeto its original
class. If atypél' is eitherR, I, or an array type oR? or I, such as
R[] andI[], then the following rules must be satisfied:

1. Afield of the typ€el” appears only withirg.

2. The typeT is not the return type or one of the parameter
types of the method specified as the argumei@tflow.

3. Tis not an exception type.é. a subclass of hrowable). It
is not the parameter toaatch clause.

4. The refinement clas® does not override atatic method in
its original class.

We later discuss why these rules guarantee that a method ap-
pended by dynamic-refinement is never invoked when the method
is not available. For more details, see Section 3.5.

GluonJ’s runtime system checks whether or not these rules are
satisfied in a given GluonJ program when the classes are loaded.

If the rules are not satisfied, the runtime system throws an excep-within the overriding method is also replaced with the method call
tion. Otherwise, the program is successfully loaded and it will onthis. When there are several refinement classes change the same
never throw aNoSuchMethodException, which reports that an method in its original class, each overriding method is copied to the

unavailable method was calletloSuchMethodException is an original class according to their priority.
exception type included in the standard Java library. It is thrown .
when a client calls a method that does not exist. 3.3 @Glue classes with@cfiow
Note that a GluonJ program may throvCassCastException When GluonJ copies an overriding method in a refinement class

when an object reference is cast from an original class to its refine- with @Cflow to its original class, itinserts some check codes at the
ment class. However, once the cast operation succeeds, a Gluonbeginning of the overriding method. These codes check whether or

program never throws ldoSuchMethodException. not the refinement class wit@Cflow is active, and if it is not,
. it forwards the call to the overridden method in its original class.
2.4 Other functions Since methods in multiple refinement classes v@icflow may

To extend a target class, GluonJ’s refinements have several func-override a method in its original class, if the refinement class with
tions other than the above-mentioned functions. The following is a @Cflow is not active, the check code forwards to the next method
list of the other functions. overridden by another refinement class according to their priori-

ties. When there are several refinement classes @ittflow that

1. Ifthere are several refinement classes for modifying the same gppend a method with the same name to an original class, the check

original class, each refinement class is applied to the original code is also inserted in each appending method like changing orig-
class by GluonJ’s runtime system in turn in the order of the jnal methods.

priority that the users specify.
3.4 Type names, type cast, antstanceof

GluonJ’s runtime system searches compiled Java class files (Java

bytecode) and replaces all occurrences of the type name of refine-
ment classes with their original class names. The replaced type

2. A refinement class allows overriding the initial value of a
field in its original class. When a constructor in the original
class is called, the field is set to the overridden value.

3. Arefinement class allows changing and calfmyate meth- names are ones used as a return type, a parameter type, or a thrown
ods in its original class only if it is annotated I@Privi- exception type. The runtime system substitutes the bytecode gen-
leged. A refinement with@Privileged also allows access- erated by the runtime system for virtual machine instructions that
ing private fields in its original class. perform a runtime type check. These instructionsareckcast

(type cast operator) anidstanceof.
3. RUNTIME SYSTEM If the destination type of theheckcast instruction is a refine-

ment class with@Cflow, the bytecode generated by the runtime
system is inserted before the instruction. The bytecode checks
whether or not the refinement class witCflow is active. If

the refinement class is inactiveCéassCastException is thrown.

To parse the arguments of annotations sucl@iefine and
@Cflow at runtime and then extend a GluonJ program according to
the annotations, a GluonJ program runs on the top of a runtime sys-
tem provided by GluonJ. The runtime system transforms the byte- 55~ similar bytecode is inserted if the destination type of the

code of a GluonJ program at load tlmg_ A GluonJ program.must checkcast instruction is an array type of a refinement class with
be compiled by a standard Java compiler in advance. Our imple- Cflow

mentation of refinements generates an original class definition that
is the union of all refinements for that class at the bytecode level.
The runtime system uses Javassist [8], which is a toolkit for trans-
forming Java bytecode.

If the right-hand type of thénstanceof instruction is a refine-
ment class with@Cflow, the instanceof instruction is replaced
with the bytecode generated by the runtime system. The bytecode
first checks whether or not the refinement class \@@flow is ac-

3.1 Appending new methods tive. If not, the bytecode pushes 0 (false) onto the operand stack.

When Gluond find thod that f tel q Otherwise, it really executes tlrestanceof instruction and pushes
en LluonJ 1inds a method that a retinement class appendsye regyit onto the stack. Also, thiestanceof instruction is re-

th> an otrllglnglt_classAlt lef'es th(iha%p_entﬂed r_ne_th?dlto the original placed if the right-hand type is an array type of a refinement class.
C?E.S a;h oa |_mde. tcha dc') am? Odm'thethongm?h cdassmr The virtual machine instructionsew, anewarray (array cre-
within th€ copied method IS replaced wi € method ca ation), andaastore (assignment to an array element) are not re-

VY)Iaced by the runtime system. In GluonJ, creating an instance of a
Yefinement class or an array of it is prohibited. Thus, sincedve
andanewarray instructions for a refinement class cannot appear in
the whole program, they do not need to be replaced by the runtime
system. Alsoaastore is not replaced even though it performs a
runtime type check. See the following example:

method with the same name to an original class, each appendin
method is copied to the original class in turn in the order of their

priority. Gluond first copies an appending method with the highest
priority to its original class. Next it renames the appended method
with the highest priority into a uniqgue hame and then copies a newly
appending method with a lower priority to the original class. The

priority of refinement classes was mentioned in Section 2.4. R[] r = new R[1];
Clc=m

3.2 Changing methods in an original class ol0] = new C() /i throws ArrayStoreException

If a refinement class includes a method changing a method exist-
ing in its original class, GluonJ firstrenames the overridden (changegjere, R is a subclass oF. The last assignment, which is compiled
method in the original class into a unique name, and then copies theinto the aastore instruction, performs a runtime type check and
overriding (changing) method in the refinement class to the original throws an exception because of the covariant rule of JavR If
class. A call to the original method wuper within the overrid- is a refinement class ar@ is its original class, then the behavior
ing method is replaced with a call ghis to the renamed method. of the aastore instruction would be extended to perform a type
A call to a non-overridden method in the original classsoper check considering dynamic activation. However, since creating an

array of a refinement class is prohibited in GluonJ, there is never anwhether or not a book with the title passed as a parameter has
array that can only contaii® objects. Thus, replacing tteastore been stored in a database. TieadDatabase method accesses
instruction is unnecessary. the database.
. By using dynamic-refinement provided by GluonJ, we can test

3.5 Why isNosuchMethodException never thrown? the E)/ehavi%r gtontains without acréessing a gatabase. The follow-

A GluonJ program that is successfully compiled and loaded nevering program allows switching the implementatiorredDatabase
throws aNoSuchMethodException. This exception is included in only while a test methotestContains is executed.
the standard Java library and it is thrown when an undefined method

is called. Suppose that a client class calls a methatkclared in @Cflow("BookTitlesTest#testContains()")
a classC. After the client class is compiled, if the methad is @Glue class GlueForBookTitlesTest {
removed from the clas€ and the clas€ is separately compiled @Refine static class MockTitles
again, then the client class will throwNoSuchMethodExcep- extends BookTitles {
tion at runtime. protected String[] readDatabase() {
Itis not straightforward to guarantee that a GluonJ program does return new String[] { "Proc. SAC 08" };

not throw aNoSuchMethodException. If @Cflow is specified, 11}

a refinement class is effective during only limited time. Thus, a public class BookTitlesTest extends TestCase {
method appended by the refinement class is not always available. BookTitles table = new BookTitles();

If a client class calls that method when it is not available, then an public void testContains() {

exception will be thrown. assertTrue(table.contains("Proc. SAC 08"));
Our idea is the following. (1) To call a method appended by a assertFalse(table.contains("Proc. SAC 07"));
refinement class, a reference to the target object first must be cas} }

to the typeT of that refinement class. Then, (2) a value of this type
T is alive at most while the refinement class is effective. Therefore, 5, RELATED WORK

a method appended by a refinement class is never called when it is Most AOP languages such as AspectJ [11], CaesarJ [5], PROSE

not available.
The property (1) is enforced by a standard Java compiler and the[l7.]’ JAsCo [19], .Steamloorr.l [.7.] for Java mare or less have a ”.‘eCh'
anism for changing the definition of an original class at runtime.

cast operation extended by GluonJ’s runtime system. Since Jav. . .

. ; o . . owever, they require extensions of the standard Java syntax. Al-

is a statically typed language, it is not possible that a client calls . . : .
though some of them provide Eclipse plugins for customizing the

a method appended by a refinement class if the target referenpe i%Eclipse IDE, the plugins cannot extend other IDEs because the
not the type of the refinement class. The type cast to the refine- specification of plugin mechanisms that other IDEs provide is dif-

ment class is extended by GluonJ and it succeeds only when the I . :
i . . ferent from Eclipse’s. To use coding support of various IDEs when

refinement class is effective. users write a program in those languages, those languages must
(2) is guaranteed by the programming conventions shown in Sec- prog guages, guag

. ;) provide the plugins for customizing those IDEs.
tion 2.3. A_value obtalr_led by the_type castto argfmement_class may AspectJ5 [4], AspectWerkz [2], and JBoss AOP [3], which are
be stored in a local variable or a field. However, if the field is not de-

clared in the refinement class, the value stored in the field will sur- annotation-based AOP frameworks, allow users to write aspects

.) - . using standard Java syntax. They provide language constructs for
vive after the refinement class becomes ineffective. A method call . . ; e
on that field mav throw ANoSuchMethodException. To avoid dynamically changing the behavior of an existing method on an

. y ption. . object with pointcut-advice. Unlike GluonJ, however, they do not
this, a GluonJ program must follow the programming conventions, ide | for d ically addi d :
which guarantee that a field of the type of a refinement class is de- provide fanguage constructs for dynamica y adding and removing
clared only in its@Glue class. When th@Glue class becomes new fields and methods to and from an object according dynamic

inactive, that field also becomes invisible from the program. The contexts.

rogramming conventions also guarantee that a value of the type of Hyper/J [16], eJava [20], MultiJava [10], mixin layers [18], vir-
prog 9 9 YPE€ Ol al classes [14], nested inheritance [15], and so on, are similar to
a refinement class does not leak out of@&lue class as a return

) static refinement. To statically extend an original class and an orig-
value or an exception. ; . .
inal class hierarchy, these mechanisms have been proposed before.
Also Classbox/J [6], Darwin/Lava [13], and delegation layers [12
4. AN APPLICATION x/J 6], Darwin/Lava [13] gation layers [12]

allow extending an original class at runtime. All of them make
Dynamic-refinement is useful for writing unit tests. Suppose that extensions to Java’s syntax.

we are describing the test program for ttentains method in the ContextJ [9] enables switching the extension of original classes
following BookTitles class. according to dynamic contexts. It allows users to override an exist-
public class BookTitles { ing method in its original class and to dynamically change multiple
protected String[] readDatabase() { overriding methods. However, it does not allow appending a new

/| reads the book titles from a database method to an original class according to dynamic contexts. Thus it

// and returns them cannot change the behavior of an object of its original class accord-

ing to dynamic contexts.
public boolean contains(String title) {

for (String s : readDatabase()) { 6. CONCLUSION
if (s.equals(title)) return true; This paper proposed Gluond, in which the users can statically or
) dynamically modify the definition of an existing class according to
return false; refinement at runtime. A main contribution of our work is the prag-
b } matic design of a language construct for refinement. To make re-

BookTitles is a program used to access the data of books that havefinement available, GluonJ uses Java annotations and thereby does
been stored in a databaseontains is the method for checking

not extend the lexical syntax of Java. Unlike other naive imple- Virtual machine support for dynamic join points. Rmoc. of
mentations, however, our implementation is quite compatible with AOSD '04
an unmodified Java IDE. GluonJ has carefully been designed so [8] S. Chiba. Load-Time Structural Reflection in JavaPhoc.
that the users can exploit coding support by a standard Java IDE. of ECOOP '00
Also, a GluonJ program can be edited with an unmodified Java ed- [9] P. Costanza, R. Hirschfeld, and W. D. Meuter. Efficient
itor and compiled with a standard Java compiler. Only a special Layer Activation for Switching Context-dependent Behavior.
runtime system is needed to run a GluonJ program. This feature of[10] Curtis Clifton and Gary T. Leavens and Craig Chambers and
GluonJ is good for industrial acceptability. Todd Millstein. MultiJava: Modular Open Classes and

Also, this paper explained that a GluonJ program never occurs Symmetric Multiple Dispatch for Java. Proc. of OOPSLA
a runtime type erroNoSuchMethodException if the program is '00, pages 130145, New York, NY, USA, 2000. ACM Press.
successfully compiled and loaded. To prevent a method appended[ll] G. Kiczales, E. Hilsdale, J. Hugunin, M. Kersten, J. Palm,
by dynamic-refinement from being called when the method is not and W. G. Griswold. An overview of AspectJ. Frroc. of

available, GluonJ requires users to several programming conven- ECOOP '01 volume 2072, pages 327-355. Springer-Verlag
tions. When a GluonJ program satisfies the conventions, an un- 2001, ’ ' '

s\gﬁlgg r:;:tt 222 ': Es\s/grlnmtlok:ihzglgeljralriigie?oﬁ?sliﬁ;()tpe:engr?e ';;_[12] Klaus Ostermann. Dynamically Composable Collaborations
yp) P yp with Delegation Layers. IiRroc. of ECOOP '02

ing by a standard Java compiler and the verification by GluonJ’s . . .
: : [13] G. Kniesel. Type-Safe Delegation for Run-Time Component
custom class loader. This paper, moreover, presented the imple Adaptation. InProc. of ECOOP "99pages 351-366, Lisbon,

mentation of GluonJ’s refinement and illustrated a regression test Portugal. J 1999 Sori Verl
program using GluonJ. At load time, GluonJ merges an original ortugal, June - Springer-veriag. i
[14] O. L. Madsen and B. Moller-Pedersen. Virtual classes: a

class and its refinement classes into one class definition. 1Bt . - >
powerful mechanism in object-oriented programming. In
7. REFERENCES Proc. of OOPSLA '89pages 397-406, New York, NY, USA,

[1] aspectj project — aspectj crosscutting objects for better 1989. ACM Press.
modularity URL [15] N. Nys_trc_)_m, S Chong, gnd A. C. Myers. Scalable
http://www.eclipse.org/aspecti/ extensibility via nested inheritance. Rroc. of OOPSLA '04

[2] AspectWerkz - Plain Java AOBRI [16] H. Ossher and P. Tarr. Hyper/J: Multi-dimensional

http://aspectwerkz.codehaus.org/ .

[3] JBoss Aspect Oriented Programming (AOBR

http://labs.jboss.com/portal/jbossaop

[4] The Aspectd 5 Development Kit Developer’s Notebbbi-

http://www.eclipse.org/aspectj/doc/
released/adk15notebook/index.html

[5] I. Aracic, V. Gasiunas, M. Mezini, and K. Ostermann. An

Overview of CaesarlJ.

[6] A. Bergel, S. Ducasse, and O. Nierstrasz. Classbox/J:

Controlling the Scope of Change in JavaFroc. of
OOPSLA'05

[7] C. Bockisch, M. Haupt, M. Mezini, and K. Ostermann.

Separation of Concerns for Java.Rroc. of ICSE 00

[17] A. Popovici, T. Gross, and G. Alonso. Dynamic weaving for
aspect-oriented programming. Rroc. of AOSD '02

[18] Y. Smaragdakis and D. Batory. Mixin layers: an
object-oriented implementation technique for refinements
and collaboration-based desigA&M Trans. Softw. Eng.
Methodol, 11(2):215-255, 2002.

[19] D. Suvee, W. Vanderperren, and V. Jonckers. JAsCo: an
Aspect-Oriented approach tailored for Component Based
Software Development. IRroc. of AOSD '03

[20] A. Warth, M. Stanojevic, and T. Millstein. Statically Scoped
Object Adaptation with Expanders. Rroc. of OOPSLA '06

