A study of modular reasoning in AspectJ

AspectScope U DU UO0OOOOOODOOOODODOOO
O

by

o0 oo
Michihiro Horie
06M37243

January 2008

A Master’s Thesis Submitted to
Department of Mathematical and Computing Sciences
Graduate School of Information Science and Engineering

Tokyo Institute of Technology

In Partial Fulfillment of the Requirements
for the Degree of Master of Science.

Supervisor: Shigeru Chiba

Copyright (©) 2008 by Michihiro Horie. All Rights Reserverd.

Abstract

This thesis proposes AspectScope, which is our programming tool for As-
pectd. It automatically performs a whole-program analysis and visualizes
the result, and shows how aspects affect module interfaces in the program.
When an aspect extends a method behavior, it will also extend the specifi-
cation which includes its behavior and its signature. In addition, the other
methods in the call graph of the advised method are also extended these
specifications. It is ideal to write a program only looking at a method spec-
ification. One of the typical examles is programming with API (Applica-
tion Program Interface) in OOP. Developers need not investigate a mehtod
implementation because the specification of the method is unchanged and
therefore reliable. In AOP, however, the existing specification after deploy-
ing aspects are no longer reliable.

Based on this notion, AspectScope can have developers look at the
extended method specification on its view to let them understand which
method is extended by an aspect. A developer who writes an aspect should
consider the influence not only to the target method but also to the other
methods that are indirectly affected by it. Therefore, AspectScope lets them
append several javadoc comments for the affected methods on each advice.
Besides, developers can decide which comment should be seen from the spec-
ified method. This feature to control the view is named comment aspect.
Becase of its control, developers can do modular reasoning in a method.
To reinforce the function of comment aspect, AspectScope also provides the
original advice that name is comment. This advice can weave a javadoc
comment to a method in case the method has no comment. The woven
result can be seen through the AspectScope editor.

Acknowledgments

I would like to express my profound gratitude to my supervisor, Shigeru
Chiba. He gave me closely teaching with his assiduous guidance and sup-
port. Our numerous discussions and his constructive comments have greatly
improved my work. I also thank Kenichi Kourai, who has been a research
associate of Tokyo Institute of Technology. He gave me various important
ideas and advice. Yoshisato Yanagisawa has supported me since I was a
bacheler student. He also taught me how to write a paper and to make
a presentation. Muga Nishizawa gave me various important advice for my
study. Finally, I greatly thank my colleagues of the Chiba Shigeru Group
in Tokyo Institute of Technology; Yuji Takizawa, Yohsuke Kurita, Ryuno-
suke Imayoshi, Hidekazu Tadokoro, Shunpei Akai, Takashi Azumi, Satoshi
Morita.

Contents

3.2
3.3
3.4

3.5

1 Introduction
1.1 Motivating problemo oL
1.2 Solution by this thesis
1.3 The structure of this thesis
2 Proposals for modular reasoning
2.1 Aspect-Oriented Programming,
2.1.1 Obliviousnesso oo
2.2 Aspect-Aware Interface L.
2.3 Open Modules for Aspectd
2.4 XPI (crosscutting program interface)
25 AJDT
2.6 Activemodel
2.7 Assistatnts and Spectators
2.8 Pointcut Interfaces
2.9 Join Point Encapsulation
2.10 Summary . .o ..o e
3 AspectScope
3.1 AspectScope editor L

comment aspecto Lo oL oL Lo
comment advice Lo
Outline Viewer
3.4.1 The execution and call pointcuts
3.4.2 The within and cflow pointcuts
3.4.3 Other pointcuts and Inter-type declarations
SUMMATY . . . o v o

CONTENTS

4 Implmentation Issues

4.1 Extended AJDT and JDT Parser
4.1.1 Org.eclipse.ajdt.core
4.1.2 Org.eclipse.ajdt.ui

4.1.3 Org.aspectj.ajde

5 Evaluation

5.1 A case study with an web-based information system

5.1.1 Design Patterns
5.1.2 Logging

5.1.3 Exception Handling

5.2 Experiment
5.3 Summary

6 Future work

6.1 Modularization of comments

6.2 comment advice control

7 Concluding Remarks

ii

40
40
40
41
43

47
47
47
49
50
o1
53

54
54
56

57

List of Figures

2.1
2.2
2.3
24
2.5
2.6
2.7

3.1
3.2
3.3

3.4
3.5
3.6
3.7

3.8
3.9

A simple drawing editor written by AspectJ
Interfaces in the AOP code
The representation of setX method in the AJDT editor
Arrows in moveBy method, in case of execution pointcut . . .
Arrows in moveBy method
A diagram forcusing on Billing aspect
telecom element after applying the abstraction operation . . .

The display by AspectScope
The call graph on setX method
The description of javadoc comments with @comment anno-
tationo Lo
The extended comment by DisplayUpdate
The outline view presents the effect of the execution pointcut.
The outline view presents the effect of the call pointcut.

A conditional extension by the within pointcut (the red un-
derline was drawn by the authors)
There is a before advice associated with the get pointcut.

An intertype declaration of the distance method

3.10 Two advices extend the setX method.

4.1

5.1
5.2

Overview of AspectScope

Calculations of cross-cutting structures
Comprising data of calcuations in AspectScope

iii

List of Tables

2.1
2.2
2.3
24

4.1

5.1

5.2

5.3

0.4

9.5

Part of pointcuts in AspectJ
The order of precedence in the expansion operation
Example aspects and their categories
Example aspects from Kiselev’s book

The necessary files for build a jdt parser

The numbers of extended comments that developers will have
to add for upper methods in the call graph
The numbers of extended comments that developers will have
to add for lower methods in the call graph
The number of extended comments that developer have to
add for the logging aspect
The numbers of extended comments that exception handling
aspects extend for upper methods in the call graph
The number of extended comments that exception handling
aspect extend for lower methods in the call graph

iv

Chapter 1

Introduction

1.1 Motivating problem

The pointcut and advice mechanism of Aspect-Oriented Programming (AOP)
languages such as AspectJ [14] helps developers decompose software into
modules and compose them into software. This mechanism allows us to
(de)compose software of several modules, including crosscutting ones, with-
out editing the client source code that the modules cut across. The client
code does not have to explicitly invoke the code of the crosscutting modules.

This obliviousness [6] property of AOP languages is significant but it has
caused much debate. Some say that obliviousness is an essential property
[6] but others say that it is desirable but not mandatory [26]. Because of the
obliviousness property, when one module is executed in an AOP language,
other modules might be implicitly invoked from that module. This means
that developers cannot understand the behavior of a module as long as they
are looking at only the source code of that module. The behavior might be
changed by the deployment of other modules (i.e. aspects). Therefore, AOP
languages require a whole-program analysis for understanding a program.
This fact has let AOP detractors claim that the obliviousness of AOP makes
modular reasoning difficult although AOP was invented for better modular-
ity [28].

To address this issue, several programming tools for AOP have been
developed. One of the most popular tools is AJDT, AspectJ Development
Tools of Eclipse IDE [29]. It automatically performs a whole-program anal-
ysis and visualizes the crosscutting structures in the program according to
the result of the analysis. The developers do not have to manually perform
a whole-program analysis any more. However, AJDT does not seem to sat-

CHAPTER 1. INTRODUCTION 2

isfy AOP detractors. One (but ignorable) reason is that some developers
still prefer simple text editors such as vi and they do not want to write
programs with rich programming environments such as Eclipse. Another
reason worthy to consider is that developers want to see static module inter-
faces for understanding their programs. Here, the module interfaces include
the specifications of the behavior of the modules. Although AJDT auto-
matically performs a whole-program analysis while a developer is editing
a program, the visualization by AJDT does not much help the developer
see the module interfaces. It does nothing except simply showing the join
points where modules are connected to aspects. Even worse, module inter-
faces in AOP languages are never static or stable. It changes according to
the deployment of aspects. In this sense, the module interfaces in AOP are
essentially different from traditional ones.

Although making module interfaces in AOP be static might be nonsense
(because being not static might be essential), it should be possible to improve
the visualization by a programming tool so that developers can easily see
the module interfaces under the current deployment of aspects. This would
hopefully give better impression of AOP to the developers who do not think
AOP really helps modular programming due to its obliviousness property.

1.2 Solution by this thesis

This thesis proposes AspectScope, which is our programming tool for As-
pectJ. We have developed it for realizing our idea. Like AJDT, it automati-
cally performs a whole-program analysis and visualizes the result. However,
it shows how aspects affect module interfaces in the program. It interprets
an aspect as an extension to other classes and it displays the extended mod-
ule interfaces of the classes under the deployment of the aspects. It thereby
helps developers understand crosscutting structures in the program.

When an aspect extends a method behavior, it will also extend the spec-
ification which includes its behavior and its signature. In addition, the
other methods in the call graph of the advised method are also extended
these specifications. It is ideal to write a program only looking at a method
specification. One of the typical examles is programming with API (Applica-
tion Program Interface) in OOP. Developers need not investigate a mehtod
implementation because the specification of the method is unchanged and
therefore reliable. In AOP, however, the existing specification after deploy-
ing aspects are no longer reliable.

Based on this notion, AspectScope can have developers look at the

CHAPTER 1. INTRODUCTION 3

extended method specification on its view to let them understand which
method is extended by an aspect. A developer who writes an aspect should
consider the influence not only to the target method but also to the other
methods that are indirectly affected by it. Therefore, AspectScope lets them
append several javadoc comments for the affected methods on each advice.
Besides, developers can decide which comment should be seen from the spec-
ified method. This feature to control the view is named comment aspect.
Becase of its control, developers can do modular reasoning in a method.
To reinforce the function of comment aspect, AspectScope also provides the
original advice that name is comment. This advice can weave a javadoc
comment to a method in case the method has no comment. The woven
result can be seen through the AspectScope editor.

1.3 The structure of this thesis

From the next chapter, we presented background, our tool AspectScope,
and impelementation issues of AspectScope. The structure of the rest of
this thesis is as follows.

Chapter 2: Proposals for modular reasoning

This chapter first explains the feature of aspect-oriented programming and
the nature of it, obliviousness. Then we discuss the several existing proposals
to overcome obliviousness for modular reasoning.

Chapter 3: AspectScope

To address the problems described in the previous chapter, we propose our
tool AspectScope. To resolve the obliviousness problem in Aspectd, the
functional capabilitis of this tool are presented.

Chapter 4: Implementation Issues

To develop AspectScope, we based on the implementation of AJDT. We
extended AJDT model and its view. Besides, We modified jdt parser to
accomplish comment advice.

Chapter 5: Evaluation

To evaluate the usefullness of AspectScope, we measured it using a web-
based information system, which contains the cross-cutting concerns such

CHAPTER 1. INTRODUCTION 4

as transaction, authentication, exception handling, and so on. Besides, we
did performance test by comparison with AJDT.
Chapter 6: Future Works

This chapter discuss the future work of AspectScope. The functonal feature
of it should be more sophisticated. We address the current problems and
describes the solutions against them.

Chapter 7: Concluding Remarks

Finally, we conclude this thesis in this chapter. We present contributions.

Chapter 2

Proposals for modular
reasoning

In this chapter, we start with the base of Aspect-Oriented Programming,
which is a mechanism to separate a cross-cutting structure as another mod-
ule named aspect. The typical cross-cutting concerns are logging, synchro-
nization, error handling, and so on. With a simple example, we explain the
notion of join point, pointcut, and advice. We also mention obliviousness
property of AOP, which is the basic problem in this thesis. Obliviousness
prevents developers from doing modular reasoning in a method. The rest
of this chapter presents the various related proposals against obliviousness,
and describes these own problems.

2.1 Aspect-Oriented Programming

The pointcut and advice mechanism of Aspect-oriented Programming (AOP)
languages such as AspectJ [14] allows developers to combine a module to
a special module, called an aspect, without explicit method calls. This is
useful to implement certain crosscutting concerns as a separate module. An
aspect can define pointcuts and advices. An advice is implicitly invoked
when a thread of control reaches some execution points in the other mod-
ule. Those execution points are selected from the predefined set of points by
the language. These points are called join points. Examples of join points
are method call, method execution, field get, and field set. A pointcut is a
set of join points. A Pointcut can also consist of the execution context of
these join points. Several such examples are this, target, and args. These
pointcuts supported in AspectJ is shown in Table 2.1.

CHAPTER 2. PROPOSALS FOR MODULAR REASONING 6

pointcuts join points

call(method pattern) method pattern is called

execution(method pattern) | an individual method is invoked

get(field pattern) a field of an object, class or interface is read

set(field pattern) a field of an object or class is set

within(class pattern) any joinpoints where the associated code
is defined in the class pattern

this(object) any join point where the currently executing
object is an instance of object

target(object) any join point where the target object is an
instance of object

cflow(pcd) any join point that is within the the dynamic
extent of the join points matched by ped

Table 2.1: Part of pointcuts in AspectJ

Pointcuts can be expressed logically with wild characters, ”*”, 747, and
7.7 (The details are given in Section 3.2 of Chapter 3). As an example,
following pointcut:

call(Point.new(*,*)) && !within(Figure+)

intercepts a call to a constructor of Point class only if the caller class is not
a subclass of Figure class. An advice is a language consruct similar to a
fuction. An advice is invoked whenever a join point specified by a pointcut
occurs in a base program. In AspectJ, the advice construct are of three
types, before, after, and around. Before advice runs just before a specified
join point arises, after advice runs just after a specified join point arises,
and around advice gives control over the actual execution of a specified join
point. An example of aspects is following TimelLogger aspect. A call pointcut
with target pointcut takes a dynamic context of the caller join point. In the
before and after advice bodies, startTime and stopTime field are referred.
Although these field variables have private visibility in Timer class, aspect
can refer them. When an aspect is declared with privileged, the aspect has
access to all members beyond the principles of encapsulation. An aspect can
have methods as print method in TimelLogger aspect.

class Timer {
private long startTime, stopTime;

CHAPTER 2. PROPOSALS FOR MODULAR REASONING 7

public long start() {
startTime = System.currentTimeMillis();
return startTime;

X

public long stop() {
stopTime = System.currentTimeMillis();
return stopTime;

public privileged aspect TimeLogger {
before(Timer t): call(* Timer.start()) && target(t) {
this.print("Started : " + t.startTime);
}
after(Timer t): call(* Timer.stop()) && target(t) {
this.print("Stopped: " + t.stopTime);
t.reset();
}
public void Timer.reset() {
this.start = 0;
this.stop = 0O;
}
private void print(Object obj) {
System.out.println(obj);
}
}

An aspect can introduce new members in a class with inter-type declarations.
The reset inter-type method in TimelLogger is an example. This method is
not a normal method in Java, and the syntax is " Timer.reset”. Note that
this in the inter-type method refers the target object of Timer class not
TimelLogger aspect. The introduced reset method is invoked in after advice.

2.1.1 Obliviousness

Because of the property of obliviousness, when a method is executed, advices
are implicitly invoked from aspects. This mechanism of AOP has let AOP
detractors claim that the obliviousness property makes modular reasoning
difficult. For example, when start method is called from a client class, the
advice body is implicitly executed to print the a log message and its time.

CHAPTER 2. PROPOSALS FOR MODULAR REASONING 8

As long as developers look at the implementation of start method, they do
not understand the accurate behavior of it.

In AOP, a whole anaylisis of all aspects is required to figure out the
cross-cutting structures of a program. In the above example, developers
only have to investigate TimelLogger aspect and the advice body. Consider
another aspect extends the same join point of a call to start method as the
following TimerContract aspect.

aspect TimerContract {
before(Timer t) : call(* Timer.start()) && target(t) {
if (t.start !'= 0)
throw new ContractBrokenException();

aspect Precedencelrder {
declare precedence : TimerContract, TimeLogger;

3

TimerContract aspect also extends the call to start method, and adds a con-
tract that start method must satisfy before its execution. Besides, Prece-
denceOrder aspect defines the precedence order of the aspects so that Timer-
Contract aspect will be executed first. declare precedence decides the prece-
dence order starting from the left side. If there is no precedence, it is not
decidable which aspect is executed first. Therefore, to understand the exact
behavior of start method, the analysis about three aspects is required.

2.2 Aspect-Aware Interface

AspectScope dynamically generates module interfaces according to current
deployment of aspects. The generated interfaces are not statically deter-
mined ones. AspectScope shares this basic idea with aspect-aware interfaces
[15]. We can say that AspectScope is a programming tool that realizes the
basic idea of aspect-aware interfaces in AspectJ. However, interpreting as-
pects as both the callers and the callee sides extension is a unique idea of
AspectScope. In the original article of aspect-aware interfaces, the interpre-
tations of the call, get, and set pointcuts are open questions (in Section 4.2
of [15]). They even suggest interpreting an aspect including those pointcuts
as a caller-side extension.

CHAPTER 2. PROPOSALS FOR MODULAR REASONING 9

To illustrate the key property of aspect-aware interface, we below show
a refactoring process of a figure editor as an example. A figure editor is
a simple tool for editing drawings that are composed of points and lines.
Figure 2.1 shows the AspectJ program of this figure editor. The concern of
restricting the display size of editing pane is implemented in an aspect. Since
a pane of the tool has the predetermined display size, the developer will write
a constraint condition by defining Contract aspect. Constract restricts the
horizontal size from 0 to 100, and the vertical size from 0 to 50. When figures
in the editing pane are moved out of these range, lllegalArgumentException
will be thrown. In this case, like figure 2.2, an aspect-aware interface should
be presented after the whole program analysis of the figure editor. Once the
aspect-aware interface has been presented, developers are able to understand
through this interface both setX and setY are extended by Contract aspect.
Note that before advices in Contract aspect designate execution pointcuts.
Even when call pointcuts are designated instead of execution pointcuts (as
described below), setX and setY behave similarly.

before(int x) : call(void Point.setX(int)) && args(x) { ... }
before(int y) : call(void Point.setY(int)) && args(y) { ... }

However, the resolution of call pointcut is not mentioned definitely whether
the extension is written on the callee method setX or not. They mentions
that an initial answer might be to list the extenstion on the caller method
moveBy in Line as well.

AspectScope resolves these open issues. For example, when call pointcut
is declared in an aspect, the outline viewer of AspectScope lists the extension
on both caller method moveBy in Line class and the callee setX. AspectScope
can also show the extension of an advice on the caller methods of moveBy
method because the behavior of these caller methods are indirectly extended.

2.3 Open Modules for AspectJ

Open module for AspectJ is a mechanism to hide class implementations
from advice. Since AspectdJ is one of the powerfull languages, developers
can select any joinpoints beyond information hiding rule. The concept of
open modules is proposed by Aldrich, and open module for AspectJ is the
one construct based on it. Onglingco et.al fully extended the notion of open
modules to AspectJ. For example, first, Aldrich specifies only call pointcuts
in his language. They also extend the notion of module compositions not

CHAPTER 2. PROPOSALS FOR MODULAR REASONING 10

public interface Figure {
Vi
* Mowes the figure by dx along the x axis
* and dy along the y axis
*/
void moveBy(int dx, int dy);

}

class Line implements Figure {
private Point pl, p2;

/** Sets the starting point of this line */
public void setP1(Point npl) {pl = npl;}

/** Sets the end point of this line */
public void setP2(Point np2) {p2 = np2;}

/** Returns the starting point of this line */
public Point getP1() {return p1;}

/** Returns the end point of this line */
public Point getP2() {return p2;}

Vi
* Mowes this line by dx along the x axis
* and dy along the y axis
Y/

public void moveBy(int dx, int dy) {

pl.setX(pl.getX() + dx);
pl.setY(pl.getY() + dy);
p2.setX(p2.getX() + dx);

p2.setY(p2.getY() + dy);

}
}

class Point implements Figure {
private int x, v;

/** Sets the horizontal position
*to a given argument
Y/

public void setX(int nx) {x = nx;}

/** Sets the vertical position
* to a given argument
Y/

public void setY(int ny) {y = ny;}

/** Returns the horizontal position */
public int getX() {return x;}

/** Returns the vertical position */
public int getY() {return y;}

Vais
* Mowes this point by dx along the
* x axis and dy along the y axis
Y/
public void moveBy(int dx, int dy) {
X 4+=dx; y +=dy;
}
}

aspect Contract {
Vs
* the set value <code>z</code> should be
* no fewer than 0, nor more than 100
* @throws Illegal ArgumentException
*/
before(int x) : execution(void Point.setX(int))
&& args(x) {
if (x < 0] 100 < x)
throw new lllegal ArgumentException();
}
Vs
* the set value <code>y< /code> should be
* no fewer than 0, nor more than 50
* @throws Illegal ArgumentEzception
Y/
before(int y) : execution(void Point.setY/(int))
&& args(y) {
if (y <0 50<y)
throw new lllegalArgumentException();
b}

Figure 2.1: A simple drawing editor written by AspectJ

CHAPTER 2. PROPOSALS FOR MODULAR REASONING 11

Figure
void moveBy(int, int)

Point implements Figure

int x;
int y;
int getX(Q);
int getY();
void setX(int) : Contract - before Contract.
execution(void Point.setX(int));
void setY(int) : Contract - before Contract.

execution(void Point.setY(int));
void mvoeBy(int, int);

Line implements Figure
Point pil;
Point p2;
Point getP1();
Point getP2();
void setP1(Point);
void setP2(Point);
void moveBy(int, int);

Contract
before : Point.setX(int), Point.setY(int)

Figure 2.2: Interfaces in the AOP code

CHAPTER 2. PROPOSALS FOR MODULAR REASONING 12

only to restrict the accesses but also to open some aspects by exposing
almost all joinpoints.

We below show an example of the drawing editor program (figure 2.1).
The usage of open modules is mainly supposed the partitioned two groups of
code: one can manipulate the code of aspects, and another can only manip-
ulate the class codes. Unless a open module exposes particular joinpoints,
aspect is not able to select any of them. Therefore, before an aspect writer
adds the constraint condition to setX and setY, a class writer must declare
an open module as described below.

module FigureModule {
class Point;
expose execution(void Point.setX(int))
| | execution(void Point.setY(int));

}

class in FigureModule is the declaration that means some joinpoints in Point
class will expose to aspects. The details of the exposure is specified at
expose statement. In the way, Contract aspect can be defined to select the
execution of setter methods in Point class. There are other ways to define
FigureModule. Since the developers who manipualte class codes understand
moveBy method in Line class only calls the setter methods in Point class,
FigureModule can be described as follows.

module FigureModule {
class Line || Point;
expose call(void Point.setX(int))
|l call(void Point.setY(int))
}

call pointcut intercepts the joinpoints in Line class that is the caller class.
Therefore, the developer must specify Line class at the class. Open modules
have serveral other rules to expose joinpoints. friend allows the aspect to
intercept all joinpoints in the specified classes. This is useful to use logging
aspects because logging inserts many places in codes. For example, the
following definition allows LoggingAspect to hook all joinpoints in Figure
class and Point class.

module FigureModule {
class Figure || Point;
friend LoggingAspect;

CHAPTER 2. PROPOSALS FOR MODULAR REASONING 13

A module can be hierarchically constructed with other modules. There-
fore, open modules can work well with larger systems. One of the basic
composition of modules are shown below (in Section 3.6 of [25]). M2 gives
M1 the further strict visibility of pointcuts.

module M1 {

class C1, C2;

friend A1, A2;

expose : Cl.pointcutl();
}
module M2 {

class C3;

friend A3;

constrain Mi;

friend A4;

expose : A4.pointcut2();
}

By using the keyword constrain, M1 is forced to be incorporated expose entity
with one of M2. Note that, friend clause of M1 does not change. Instead of
adding the constrain entity in M2, the replacement of the following expose
entity in M1 behaves equally.

(Cl.pointcut() && A4.pointcut2());
|| (Cl.pointcutl() && thisAspect(A3 || A4));

2.4 XPI (crosscutting program interface)

XPI consists of an abstract aspect that declares several joinpoints. The
Advice code can only designate these joinpoints declared in XPI to extend
the class behaviors. Note that, there is no restriction rule in XPI. The
developers are supposed to look first at XPI and then write advices which
joinpoints are exposed in the XPI. In this way, the class writers are able
to know only joinpoints exposed in XPI can be extended, and modular
reasoning in methods are kept. William et.al. claim that developers need
not know about specific aspects, such as logging, but they must decide
which abstractions to expose as XPIs to facilitate aspect developement and
evolution.

CHAPTER 2. PROPOSALS FOR MODULAR REASONING 14

An XPI consists of four elements: the name of the XPI, the visibility
of pointcuts, the sets of abstract join points, and a partial implementa-
tions. For example, as described bellow, XPointChange XPI has two point-
cuts whose visibility are public. Each pointcut designates execution and args
pointcut. Then, Contract aspect can be defined. The advices in Contract
aspect uses the public pointcuts in XPointChange XPI. Althouh the develop-
ers cannot know the details of advice behaviors, they can notice these setter
methods are extended by some aspects. Therefore, the modular reasoning
of these setter methods may be maintained.

public aspect XPointChange {
public pointcut X(int x):
execution(void Point.setX(int))
&& args(x);

public pointcut Y(int y):
execution(void Point.setY(int))
&& args(y);

2.5 AJDT

The standard AspectJ support of Eclipse IDE, named AJDT [29], visualizes
a crosscutting structure in an AspectJ program. This helps developers to
reason about the program with a modular fashion despite the obliviousness
property of AspectJ. However, the help by this visualization is still limited
and thus developers sometime feel that AOP makes modular reasoning dif-
ficult. For example, AJDT only shows an arrow at which a target joinpoint
(joinpoint shadow [20]) occurs in the ruler of the editor, and tells developers
which event in the code are caught. Therefore, developers who use AJDT
must investigate the implementation of a method and an advice to under-
stand the program behavior. However, this investigation breaks modular
reasoning. In the next section, we would detail its feature.

execution pointcut

An execution pointcut selects joinpoints at which the specified method is
executed. As shown in figure 2.3, in the ruler of the editor, AJDT puts a
mark at setX method in Point class. The mark indicates that advices will
extend the behavior of setX method when setX will be extecuted.

CHAPTER 2. PROPOSALS FOR MODULAR REASONING 15

48 fux

& * Sets the horizontal position to
& * a given argument

7 = f

7

(5]

public void setX(int nx) { x = nx; }

Figure 2.3: The representation of setX method in the AJDT editor

J,f:-r;-r
*¥ Moves this line by dx along the x axis
* and dy along the y axis
=/

poblic void moveBy(int dx, int dy) {
pl.setX(pl.getX() + dx):

Pl. = yoid Point.setX{int nx)

b2 : Sets the horizontal position to a given argument

Figure 2.4: Arrows in moveBy method, in case of execution pointcut

However, this way of visualization does not let developers know how
the specification of setX method is changed by an aspect. Developers must
investigate the source code of Contract aspect to understand the detailed
specification of setX method. In Figure 2.4, AJDT editor does not show any
sign of extension in moveBy method in Line class. Note that moveBy is the
caller method that calls setX method. This is because AJDT only shows
joinpoints that advices capture. The pop-up display (the gray box in Figure
2.4) does not also indicate the advice extension of setX method. The content
of the comment has not been changed after weaving. Developers can only
notice the advice extension after looking at the setX method implementation.

call pointcut

A call pointcut selects joinpoints at which the specified method is called
in client classes. In Figure 2.1, before advices in Contract aspect designate
exeuction pointcuts. When these advices uses call pointcut insted of the
execution pointcut, the behaviors of setX and setY method are not changed.

aspect Contract {
/**

CHAPTER 2. PROPOSALS FOR MODULAR REASONING

30% poblic vold moveBv(int dx, int dy) {

31 pl.secX(pl.getX() + dx):
32 pl.setY(pl.getY () + dv):

"33 p2.secX(p2.getX() + dx):

i34 p2.set¥ (p2.get¥ () + dv):
35 3

Figure 2.5: Arrows in moveBy method

*/
before(int x)
call(void Point.setX(int))
&& args(x) {
if (x <0 || 100 < x)
throw new IllegalArgumentException();

/**
*/
before(int y)
call(void Point.setY(int))
&& args(y) {
if (y <0 Il 50 < y)
throw new IlleaglArgumentException();
}

16

AJDT puts arrows at moveBy method in Line class that is the caller class
(Figure 2.5). As well as execution pointcuts, developers must investigate
the implementation of Contract aspect to understand how setX method are
extended. An arrow only shows that some aspects will capture the joinpoint
when moveBy method calls setX method. AJDT displays arrows based on
the event of joinpoints, and does not consider the modular programming,.

In addition, there is no arrow indicating that setX method behavior is
extended at the methods that call the moveBy method. As shown below,
MultiLines class is one of the client classes that call moveBy method in Line
class. This class represents a unicursal line that consisits of random lines.

public class Multilines implements Figure {

CHAPTER 2. PROPOSALS FOR MODULAR REASONING 17

private List lines;

public void moveBy(int dx, int dy) {
for (Iterator it =
lines.iterator(); it.hasNext();)
((Line) it.next()).
moveBy (dx, dy);

There is no arrow indicating that the specification of moveBy method
in Line class is extended. Therefore, only looking at MultiLines class does
not tell developers that setX and setY methods are extended. They need to
look at the moveBy method implementation in Line class. This breaks the
encapsulation rule.

2.6 Active model

Active models [5] is another approach to represent a crosscutting structure
better than AJDT. ActiveAspect, which is their tool based on the active
models, presents a node-and-link diagram representing an interesting slice
of the crosscutting structure of an AspectJ aspect. Although ActiveAspect
and our AspectScope share the same goal, ActiveAspect’s approach is to vi-
sualize join points selected by aspects. On the other hand, our AspectScope
visualizes module interfaces extended by aspects. It uses traditional tree-
based representation.

An active model allows developers to focus on a piece of an aspect in
the whole systems. Active model provide the three operations, projection,
expansion, and abstraction. Projection operation shows joinpoint shadows

Order | Relationship
1 Method call from advice body
Reference from inter-tyep method
reference to inter-type method
reference from advice body to field in an other type
reference to inter-type field

O = W N

Table 2.2: The order of precedence in the expansion operation

CHAPTER 2. PROPOSALS FOR MODULAR REASONING 18

{3 Connection
afterReturning L, payer
after - L callRatel)
. @ _drop()

® Call

@ Cal{Customer caller, Customer recei...

@ hangup(Customer c}

i‘J@ Customer © LongDistance O Local
9;1 totalZharge © LonaDistance{Customer a, Custome. .. @ LocaliCustomer a, Custome. ..
Y, addicharge() BY calRate)) L callRatel)

Figure 2.6: A diagram forcusing on Billing aspect

in each models, and selects only essential entities in crosscutting structures
to and from a particular models such as aspects and classes. For example,
figure 2.6 (derived from Section 3.2 of [5]) shows the projection result gen-
erated from Billing aspect. Expansion operation is prepared for the further
investigation of crosscutting structures. To present first the most important
elements in all structures, the order of precedence is given as shown in ta-
ble 2.2. Class diagrams tend to be complicating when many elements are
displayed in one place. For better visualization and understanding, active
models prepare the abstraction operation. The diagram in Figure 2.7 shows
the around advice in Profilling aspect intercepts a number of modules in tele-
com package. The abstraction operation has been applied by aggregating
classifiers, members, and these relationships.

Active models represents necessary information for developers who wants
to know the influence of one aspect over other modules. However, advice
models focus on showing aspect influence over other modules. Since devel-
opers would not find crosscutting structures that are originated from a class,
obliviousness property of aspects has been only partly solved.

2.7 Assistatnts and Spectators

Clifton et.al. address the problem of modular reasoning via annotations
that state which aspect may extend the module [4, 3]. They build their
system on top of JML [18, 19]. The most distinctive feature of their proposal

CHAPTER 2. PROPOSALS FOR MODULAR REASONING 19

[5] Prnﬁlin%
around beeeeeesseeeeaes = {:Btelecu-m

'3 Connection
@ complete()
@ drop()

(© AbstractSimulstion
@ run)

® Customer

& cal

% & More advised by Profiling

Figure 2.7: telecom element after applying the abstraction operation

is that they distinguish assistants and spectators. An assistant means an
aspect that changes the semantics of the base programs, while a spectator
means an aspect that merely observes class behaviors. Spectators are quite
close to pure aspects [30]. For example, the following Tracing aspect is
an spectator that does not change the effective specifications of any other
classes. This spectator mutates its own state by appending StringBuffer
and mutates global state of classes by printing an output. However, this
advice does not change the effective pre- and postconditions of Line’s moveBy
method. Tracing merely observes the arguments of the moveBy method and
reports them. The arguments are passed on to the method unchangedand
the method’s results are unchanged. Since an spectator does not change
the effective specification of the method they observe, the code outside an
existing program can apply an spectator to any joinpoint in the original
program without lack of modular reasoning.

aspect Tracing {
private StringBuffer sbuf = new StringBuffer();
before(Line 1, int dx, int dy)
call(moveBy(int, int)) && target(l) && args(dx, dy) {
String msg = 1 + " moves (" +dx + ", " +dy ").";
sbuf . append (msg) ;
System.out.println(msg) ;

An assistants can change the effective specification of a module. Contract
aspect in figure 2.1 is an assistant. before advices can change the effective
specification by throughing lllegalArgumentException in case that the argu-

CHAPTER 2. PROPOSALS FOR MODULAR REASONING 20

ments dose not fulfills conditions. When assistants are present, developers
cannot do modular reasoning only looking at a module. Curtis et.al. pro-
pose a class must explicitly name those assistants in itself. They say that
a module accepts assistants when it inames the asssitants that are allowed
to change its effective specification or the effective specification of modules
that it uses. Accept clause can be declared in normal AspectJ program.

accept TypeName

where TypeName must be a fully qualified name of an assistant. For example,
Point class accepts the Contract assistant by declaring: ”accept Contract”.
Note that this acceptance is only allowed in Point class. The client classes
that call setX and setY method in Point class would not have it applied to
their calls. This is because the compiler doesn’t know modularly where all
accept culauses in a program might appear. We think that to keep modular
reasoning in Line class as well, Line also must declare an acceptance as shown
below. Even if exection pointcuts are declared in Contract aspect, a caller
side Line class should also accept Contract assistant for better reasoning.
Similary, when Contract uses call pointcuts, Point class that is a callee class
should accept that assistant.

To reduce the burden of writting accept clause in the base classes, accept
maps are introduced. An accept map allows developers to write specifica-
tions of acceptance in one place. This module can resolve not only the code
tangling between class codes and accept clause, but also the scattering of
accept clauses. An example aspect map is given as follows.

package figures;
Point {
accept Contract;
b
Line {
accept Contract;
b
*
accept FigureUpdate;
X

The Line pattern in the example says that Line class accepts Contract assis-
tant. The next module starting with wildcard "*’ indicates that every classes
accept FigureUpdate assistant. Therefore, Line class accepts both Contract

CHAPTER 2. PROPOSALS FOR MODULAR REASONING 21

and FigureUpdate assistants. As with accept clauses in modules, the iden-
tifier in an accept maps is subject to Java’s normal namespace rules for
packages and imports. Aspect maps are similar to open modules. However
aspect maps are far more restricted and they have no rule combining each
module both hierarchically and even flat.

The charange is to classify aspects in two categories, assistants and spec-
tators. Curtis et.al. suggest no solution to categorize aspects automatically.
Alternatively, they investigate some categorization data through several ex-
amples.

A list from aspectj programing guide

They separate the example aspects into two categories based on how they
would implement them with their restrictions. Table2.3 (derived in Section
3.2.1 of [3]) lists the examples by category. They also describe the cate-
gories finely. In their categorization, most of the example aspects clearly
meet their definition of spectator. To satisfy their restrictions these would
only require the spectator annotation. Aspect in the examples that could
be implements as assistants are divided into two kinds. Client utilities are
used by client codes to change the effective behavior of the target objects.
They premise that the changes in effective behavior of a target module do
not affect the callee side class. Other example aspects can be categorized as
implementation utilities in assistants. These assistants would be accepted
by the module that it advises, for example, an aspect that uses an execution
pointcut. There are some exceptions in their categorizad aspects. Coordina-
tor aspect is an abstract aspect and only refers to abstract pointcuts that
are defined in GameSynchronization and RegistrySynchronization. In this case,
they categorize Coordinate aspect as assistant because it does not change ef-
fective behavior of classes. Debug aspect is categorized as combined. This
aspect would require a combination of assistants and spectators.

A list from Kiselev’s case study

Curtis et.al. also make a category list (derived from Section 3.2.2 of [3]) from
the case study of Kiselev’s book Aspect-Oriented Programming with AspectJ
[?]. The examples derived from this book are related to the concerns of a
web service. Examples are liberally divided into ”development”, ”produc-
tion”, "runtime” and the others. CodeSegregation aspect are categorized not
defined because this aspect declares declare error and declare warning in it.

These constructs cannot be categorized in their current work. They mention

CHAPTER 2. PROPOSALS FOR MODULAR REASONING

Examples Category
telecom/TimerLog spectator
tjp/Getlnfo spectator
tracing/lib/AbstractTrace spectator
tracing/lib/ TraceMyClasses spectator
tracing/versionl/TraceMyClasses spectator
tracing/version2Trace spectator
tracing/version2/TraceMyClasses spectator
tracing/version3/Trace spectator
tracing/ version3/TraceMyClasses spectator

bean/BoundPoint
introduction/CloneablePoint
introduction/ComparablePoint
introduction /HashtablePoint

observer /SubjectObserverProtocol
observer /SubjectObserverProtocollmpl
spacewar /Display.Display Aspect
spacewar/Display1l.SpaceObjectPainting
spacewar /Display2.SpaceObjectPainting
telecom/Billing

telecom/Timing
spacewar/EnsureShiplsAlive

spacewar /GameSynchronization
spacewar/RegistrySynchronization

spacewar /Registry.RegistrationProtection

coordination Coordinator
spacewar Debug

client utility
client utility
client utility
client utility
client utility
client utility
client utility
client utility
client utility
client utility
client utility
impl.utility
impl.utility
impl.utility
impl.utility
assistant
combined

Coordinator refers only to abstract pointcuts.
GameSynchronization and RegistrySynchronization

extends sf Coordinator assistant.

Table 2.3: Example aspects and their categories

22

CHAPTER 2. PROPOSALS FOR MODULAR REASONING 23

Example category
Development Aspects
Logger spectator
Tracer spectator
Profiler spectator
CodeSegregation not defined
Production Aspects
Authentication client utility
Exceptions client utility
NullChecker spectator
Runtime Aspects
OutputStreamBuffering impl.utility
Pooling impl.utility
ConnectionChecking impl.utility
ReadCache impl.utility
not categorized
NewLogging client utility
PaidStories spectator

Profiler and NullChecker needs minor change to

make this aspect a spectator.

CodeSegregation introduces warnings and errors, which
are outside the scope of the current work.

Authentication includes some features (parent declaration)
that are outside the scope of the current work.

Table 2.4: Example aspects from Kiselev’s book

that these constructs can be allowed in spectator aspects because they do
not change the behavior of a program in any way. Authentication aspects
declares declare parents that is also out of their current work. The aspects
that declare declare parents can be allowed in either spectators or assistants
in its own case.

By looking at the accept clause or the accept maps, developers can keep
modular reasoning. Accept maps also ensure their visibility over other mod-
ules. At the beggining of a module, it lists all the possible locations where an
aspect map naming that module might appear. From a module listed at the
package clause, accept maps is visible. It is sure that, once a class accepts
assistats by using accept maps or not, developer can do modular reasoning

CHAPTER 2. PROPOSALS FOR MODULAR REASONING 24

in that class. However, class writers have to declare the acceptance clause
each time of applying aspects. One of the benefit in AOP is applying aspects
after defining classes with no modification of these base codes.

2.8 Pointcut Interfaces

In pointcut interfaces [10], named pointcuts provide a basis for a new kind of
interface. There will be three possibilities for the scope of a named pointcut:

1. When the pointcut is semantically scoped within a class, then it can
be placed in the class.

2. When the pointcut is semantically scoped within a single package, then
it can be placed within a special ”Pointcuts” class in this package.

3. When the pointcut is not semantically restricted to any particular
package, a special ”pointcuts” package may be introduced, with classes
to hold these global pointcuts.

Note that the term semantically scoped means a scope of a subjective design
feature. Pointcut interface enables class writers to do modular reasoning in
a class. However, it is also weak against the future refactoring.

2.9 Join Point Encapsulation

Restriction advice [17] identifies which joinpoints are encapsulated against
aspects. It specifies the join points that are not selectable for aspects. Al-
though it prevent aspects modifying classes, class writers have to anticipate
firstly which joinpoints are extensible for the future refactoring. This an-
ticipation seems to be difficult. Basically, there is no restriction in aspects
without a restriction advice. Therefore, it can be said that restriction ad-
vice is looser language mechanism than open modules are. Note that, open
modules initially expose no joinpoints.

Restriction advice is alike as other advices. It uses the pointcut language
to specify which joinpoints are restricted. Restriction advice can be declared
in AspectJ program. For example, next restrict advice hides all private
methods from aspects.

restrict() : call(private * *(..));

CHAPTER 2. PROPOSALS FOR MODULAR REASONING 25

After joinpoints are affected by restriction advices, the weaver applies other
aspects to classes. The procedure of the restriction is simple. It apply
restrict entity to other normal pointcuts. For example, let’s consider a piece
of advice that attempts to modify methods in aspect:

before() : call(* Figure+.*(..)) {...}

Because there is restriction advice that matches above advice, the weaver
does not allow this before advice to attach to the restricted joinpoints. The
weaver processes this advice effectively as follows.

before() : call(x Figure+.*(..)) && !call(private * *(..)) {...

2.10 Summary

To address obliviousness problem, several programming tools for AOP have
been developed. One of the most popular tools is AJDT, AspectJ Develop-
ment Tools of Eclipse IDE [29]. It automatically performs a whole-program
analysis and visualizes the crosscutting structures in the program according
to the result of the analysis. The developers do not have to manually per-
form a whole-program analysis any more. However, AJDT does not seem
to satisfy developers. Their claim is that they want to see static module
interfaces for understanding their programs. Here, the module interfaces
include the specifications of the behavior of the modules. Although AJDT
automatically performs a whole-program analysis while a developer is edit-
ing a program, the visualization by AJDT does not much help the developer
see the module interfaces. It does nothing except simply showing the join
points where modules are combined with aspects. Even worse, module in-
terfaces in AOP languages are never static or stable. It changes according
to the deployment of aspects. In this sense, the module interfaces in AOP
are essentially different from traditional ones.

Another approach to address the drawbacks of the obliviousness property
is to introduce language constructs into AOP languages. There have been
several constructs proposed on this approach: for example, open modules
[1, 25] and XPIs (crosscut programming interfaces) [9]. These approaches
have no need to analyse the whole program including aspects. Instead, devel-
opers declare a module interface for pointcuts. They must explicitly specify
selectable join points from external clients so that the fragile pointcut prob-
lem [16] can be avoided. The developers can take care of those selectable join
points when they modify the implementation of the module. A disadvantage

CHAPTER 2. PROPOSALS FOR MODULAR REASONING 26

of this approach is that developers must anticipate join points that will be
selected by aspects deployed in future. Anticipating all necessary join points
in advance is difficult. Otherwise, developers must manually update mod-
ule interface whenever new join points must be selectable. The approach
of AspectScope is to visualize currently selected join points and hence it
complements the approach of open modules and XPI. After an aspect has
been woven to a classe, focusing around the target method that are selected
by the advice, other methods that call it or are called by it are indirectly
affected by the advice. Therefore, the specification of these methods are also
changed along the extension of the advice.

In object-oriented programming, developers can do modular reasoning of
a method, only looking at the specifications of methods called by the method.
One of the good case examples is API (Application Program Interface).
Unlike AOP, the specification of a method does not change after compiling
or executing a program in OOP. Therefore, developers can write codes with
modular style.

Chapter 3

AspectScope

Although AJDT visualizes crosscutting structures in a program, it only in-
dicates where a crosscutting structure joins other structures, that is, it only
indicates join points in the source code. As we have seen in the previous
section, this visualization is not sufficient to help developers understand
crosscutting structures in their programs.

For better help, we have developed another programming tool for As-
pectJ. It is an Eclipse plugin named AspectScope. This tool visualizes cross-
cutting structures by showing how aspects affect the module interfaces in the
program. Like AJDT, the tool performs a global analysis of the deployment
configuration of aspects but it presents the result of the analysis from the
viewpoint of how the module interfaces of classes are extended by aspects.
Our tool performs projection to the methods that are indirectly affected by
aspects. Developers have no need to look at these methods implementations
to know the effects of aspects. This keeps the encapsulation rule of objects,
and helps developers with modular programming. We have an assumption
that AspectScope is effecive to modify the programs developed by AspectJ.

3.1 AspectScope editor

AspectScope editor displays the specification affected by aspects on the
method. For example, it displays the specification of setX method in Point
class like Figure 3.1. It tells that before advice in Contract aspect extends
the behavior of setX method with the javadoc comment of the before advice
in the pop-up window and with the arrow in the ruler of the editor.
AspectScope also display the aspect extentions on the methods that are
indirectly affected by aspects. Thus, AspectScope can reflect aspect effects

27

CHAPTER 3. ASPECTSCOPE 28

=/

public void setX(int nx) {
¥ = nx; void Point.setX{int nx)
}
Sets the horizontal position to a given argument

e Contract.before

* Sets the v the setvalue x should be no fewer than 0, nor more than 100

* to a given

Figure 3.1: The display by AspectScope

not only on the target method that is selected by the a pointcut but also on
the methods that are called by the target methods or that call the target
method along the method call graph of the target method. For example, a
call pointcut has an effect on both caller classes and callee classes [12]. An
advice designates the call pointcut as follows.

call(void Point.setX(int)) && wihtin(Line)

This pointcuts causes the extensions of setX method in Point class as well as
moveBy method in Line class that calls the setX method. Besides, moveBy
method in MultiLines class that calls the moveBy method in Line class is also
extended because of this pointcut (Figure 3.2). The most important issue is
that these extended specification must meet their each method abstraction
(the upside comments in Figure 3.2). The specification on setX method
meets its abstraction as shown bellow.

The set value <code>x</code> should be no fewer than 0, nor more than
100, only if the caller is Line

This specification can be actually seen in the the javadoc comment on setX
method in Figure 3.1. Note that this properly specified specification is wrong
with the caller method moveBy in Line class because moveBy method has
no way to know the meaning of x in this comment. In addition, the content
”only if the caller is Line” is clearly irrelevant to moveBy method that is the
caller method.

A line is represented by the begging point and the end point, and Line
class has the private field whose types are Point. Considering this feature of
Line class, the following specification is appropriate to it.

The horizontal position of both the starting point and the end point should
be no fewer than 0, nor more than 100

CHAPTER 3. ASPECTSCOPE 29

The horizontal
position of this line
should be no

. fewer than 0, nor
class MultiLines { more than 100.

private List lines;

The horizontal
. position of both the
void moveBy(int dx, int dy) { starting point and the

for (Iterator it = lines.iterator(); end point of should
it.hasNext();) be no fewer than 0,

((Line) it).moveBy(dx, dy); class Line { nor more than 100.
}} private Point p1, p2;

void moveBy(int dx, int dy) {
p1.setX(p1.getX() + dx);

The set value x
should be no

fewer than 0, nor

class Point { more than 100
} private int x, y;
} .

public void setX(int nx) {
X = nx;

}
}

call(void setX(int))

Figure 3.2: The call graph on setX method

This specification takes the phrase of the begging and end points insread of
x, and keeps the abstraction of moveBy method. The moveBy specification
of MultiLines class is as follows. The difference between caller moveBy and
callee moveBy is the comment of saying ”The horizontal positions of thie
line”.

The horizontal positions of this line should be no fewer than 0, nor mor than
100

These specifications suitable for the method abstractions should be written
by aspect writers when they define aspects. When they impelemnt an advice,
they must also consider the actual behavior of it for consistency of the
program.

3.2 comment aspect

AspectScope provides the feature to write the specification on a method
abstraction. We call this feature comment aspect. Developers can append
different javadoc comments on one method through comment apsect. The
methods specified by the comment aspect can be seen the effects in the
AspectScope editor. The display of arrows can be followed by the control

CHAPTER 3. ASPECTSCOPE 30

by the comment aspect.

aspect Contract {

/** @comment

* The set value <code>x</code> should be
no fewer than 0, nor more than 100
@throws lllegal ArgumentException

@comment (execution(void Line.moveBy(int, int)))
The horizontal positions of both the starting point and
the end point should be no fewer than more than 100
@throws lllegal ArgumentException

@comment (execution(void MultiLines.moveBy(int, int)))
The horizontal positions of the lines should be
no fewer than 0, no more than 100
@throws lllegalArgumentException

I I R R S G R

*/
before(int x) : execution(void Point.setX(int)) && args(x) {
if (x <0 100 < x)
throw new lllegalArgumentException();

Figure 3.3: The description of javadoc comments with @comment annotation

Note that the specifications on an advice cannot be always tracked back
the top of the call graph. The extent of one advice influence depends on the
each program architecture. Developers must estimate the applicable scope
of an advice. For example, developers will write the before advice comment
in Contract as shown in Figure 3.3. This comment has three @comment
annotations. The top @comment annotation will be shown on the advised
method that the pointcut designated. In this case, the top comment ”The
set value ...” is appended to setX method. This annotated comment needs
no control statements. Under second annotated comments, they have the
control statements that decide which methods should be appended them.
Developers can write pointcut logical expressions in this control sentence

CHAPTER 3. ASPECTSCOPE 31

like AspectJ pointcuts. The second and third comments have execution
statement.

execution(method pattern)

associates the javadoc comment under @comment with methods that fit in
the method pattern. In this case, the second comment is appended to moveBy
method in Line class, and the third one is associated with moveBy method
in MultiLines class.

There are other control statements such as within and caller. within state-
ment appends the comment on the methods that are in the target method
call graph and are defined in the patterns.

within(class pattern || method pattern)

For example, within(* csg.figures.*(..)) pattern associates methods that are
contained in the call graph of the advised method and in csg.figures pack-
age. caller control statement takes an integer number as its argument as
below. Developers will use this statement when they want to append the
same comment on several methods at the same degree in the method call
graph. It is useful for the methods that functions are very alike. These
control statements can also be combined with each other like ”caller(2) &&
(within(Line) || within(Point))”.

caller(int)

Besides, wild-cards can be written in the method patterns and the class
patterns in these control statements. ”*”, ”+”, and ”..” are now avail-
able. ”*” is the wild character. ”+” can be used to express subclasses of
the specified class name or interface name like Figure+. 7..” is the ellipsis
pattern and available between a package name and a sub-package names,
or a package name and a class name like csg..figures.Figure or csg..Figure.
”..” can omit no character, for example, csg..figures.Figure actually indicates
csg.figures.Figure. This wild-card rules are same as ones available in AspectJ
joinpoint patterns.

The figure editor program

Figure 3.2 only shows the call hierarchy until MultiLines class. Figure classes
including MultiLines are furthermore called in runtime through moveBy method

CHAPTER 3. ASPECTSCOPE 32

in Figure interface. The client class DrawApplication calls it as follows.

class DrawApplication implements
MouseListener, MouseMotionListener {
privae int x0, yO;
private Figure f;

public void mouseDragged(MouseEvent e) {
if (f == null)
return;
f.moveBy(e.getX() - x0, e.getY() - y0);

In mouseDragged method, moveBy method in Figure interface is called.
Therefore, aspect writers must write specifications about an advice for moveBy
method in Figure interface and mouseDragged method along these abstrac-
tions. First, for moveBy method in Figure interface, they will write a com-
ment that the horizontal degree should be from 0 to 100. For mouseDragged
method, they would write a comment that a mouse dragging are permitted
only inside the window display of this editor. Besides, they do not need a
mention about the exception handling because all exceptions that are pos-
sible to be thrown are caught in mouseDragged method.

aspect Contract {
/**

* @comment (execution(
* void Figure.moveBy(int, int)))
* The horizontal positions of the edges
* of this figure should be no fewer O,
* nor more than 100

* Othrows IllegalArgumentException
*

*

*

*

*

@comment (execution(
void DrawApplication.mouseDragged(
MouseEvent)))
The released position of the mouse

CHAPTER 3. ASPECTSCOPE 33

* dragging should be inside the window.

x/
before()
execution(void Point.setX(int))
&& args(x) {
}

A role as a debugging tool

Through AspectScope editor, a extended specification on a method can tell
developers the program bugs. For example, consider UpdateSignaling aspect
is defined as below. This aspect will update the display to redraw figures in
the drawing editor whenever figures changed or moved.

aspect UpdateSignaling {

/%%

* Qcomment (within(x figures.*x(..))

* Signals the <code>Display</code>

* to update a shape changes.

*/
after()

call(void Figure+.moveBy(int,int)); {
Display.update() ;
}

The classes defined in the figures package can be modified these spec-
ifications by within control statement. Then, some developer newly define
Arrow class that represents an arrow. As shown below, Arrow class has a
private field tri which type is Triangle. MoveBy method calls this tri field,
and tri also calls moveBy method in Triangle class.

public class Arrow implements Figure {
private Point pl, p2;
private Triangle tri;

public void moveBy(int dx, int dy) {
tri.moveBy(dx, dy);
pl.setX(pl.getX() + dx);
pl.setY(pl.getY() + dy);

CHAPTER 3. ASPECTSCOPE 34

id moveBy(int dx, int dv) {

OVEHynid Arrow.moveBylint dx, int dv)
tZ(y
Y (Y Moves this arrow by dx along the x axis and dy along the y axis

tZ (1 pisplayUpdate.after
t¥ (Y Signals the Diaplay to update a figure changes.

DisplayUpdate.after
Sighals the Displayto update a figure changes.

Press 'F2' for focus

Figure 3.4: The extended comment by DisplayUpdate

p2.setX(pl.getX() + dx);
p2.setY(p2.getY() + dy);
}
}

Unfortunately, the program has got a bug. When an arrow drawn in the
editor moves, the display flickers. In addition to moveBy method in Dis-
playUpdate class, another moveBy method in Triangle clss is called, and the
after advice executes the display update second time.

AspectScope tells this bug to show the moveBy method specification in
Arrow class (Figure 3.4). The pop-up comment display twice the same com-
ment of after advice in UpdateSignaling, and indicates that update method
eventually executes twice.

Developers who uses AJDT may have trouble in finding this bug. Al-
though a mark is put on moveBy method in Triangle class, no mark is put on
moveBy method in Arrow class. Therefore, developers cannot find moveBy
method in Arrow class is extended by the same advice. To confirm this ex-
tension, they have to find classes that call moveBy method in Arrow class,
and it is hard to do.

3.3 comment advice

We build an special advice named comment in AspectJ language. If a method
has no comment, comment advice can weave an comment on it. Developers
often put no comment on priavte methods or even other methods. Note that
aspects in AspectJ can weave advices in even private methods. Therefore, if
an advice extends the private method behavior, its influence can reach up-
per methods in the call graph. The syntax of comment advice is as follows.

CHAPTER 3. ASPECTSCOPE 35

/** the comment of a target method */
comment() : execution(method pattern) {}

A comment advice can designate only execution pointcut, and weaves a com-
ment written on it. The comment on comment advice will be reserved for the
target method. This advice weaves the comments on methods that matches
method pattern. Note that these woven comments can be seen through the
AspectScope editor. Like other normal advices, if comment advice is deleted,
the comment is unwoven from the target method. Following is the exam-
ple of how comment advice is used. The getDistance method are woven a
comment ” Returns the distance between ...” on it.

VA
* Qcomment
* Returns the distance between this line
* and the point.
*/
comment ()
execution(int Line.getDistance(Point)) {}

In case developers want to write the comment that is for the comment advice
itself, following syntax will work. The upper comment is appended on the
comment advice itself, and lower one is for the target method which the
execution pointcut selects.

J*

* This comment is for the advice itself.

* @comment
*

*/

comment() : execution(method pattern) {}

This comment is for the woven method.

Although a comment advice does not allow any codes in its body, we
plan to enrich the syntax utility. For example, it lets developers write more
constraint rules in it. In chapter 6, we will detail the use for future works.

CHAPTER 3. ASPECTSCOPE 36

@ Point implements Shape
femintx
bem inty
El-2 void setXint}
| B2 extended by advice
=0 UpdateSignaline after : executiontvoid Pointseti(int))

Figure 3.5: The outline view presents the effect of the execution pointcut.

@ Paint implements Shape
o int x
o inty
—| -4 ywoid setHiint
- o extended by advice
= UpdateSienaling.after: callbvoid Pointsetylinth)

Figure 3.6: The outline view presents the effect of the call pointcut.

3.4 Outline Viewer

AspectScope has an outline viewer so that developers can easily find which
method specifications are canged in programs. If developers attempt to
find the changes of specififcations, they do not need to look at the method
implementations '. We’ll show the current features in the outline viewer of
AspectScope. As an example, UpdateSignaling aspect is defined as follows.
Display.update method updates the editor display whenever a figure is moved.

aspect UpdateSignaling {
after() : execution(void Point.setX(int)) {
Display.update();

3.4.1 The execution and call pointcuts

If an UpdateSignaling aspect includes an after advice associated with a point-
cut execution(void Point.setX(int)), then the outline view indicates that the
setX method in the Point class is extended by the after advice in the Up-
dateSignaling aspect (Figure 3.5).

LAt thie time, AspectScope does not reflect an advice influence into all methods in
their call graphs though we plan to add this feature

CHAPTER 3. ASPECTSCOPE 37

Note that even if the pointcut that the after advice is associated with
is not execution but call, for example, call(void Point.setX(int)), then the
outline view shown does not change except the description of the pointcut
(Figure 3.6). AspectScope abstracts away from differences between call and
execution because module interfaces affected by aspects are interesting con-
cerns. AspectScope considers that the advice associated with either pointcut
extends the behavior of the callee-side method. In AspectJ, both pointcuts
select method calls. However, the join points (or join point shadow) selected
by a call pointcut are method-call expressions at the caller side while the
join points selected by an execution pointcut are the bodies of the specified
methods at the callee (or target) side. Hence, for example, the advice as-
sociated with a call pointcut can obtain a reference to not only the target
object but also the caller object. On the other hand, the advice associated
with an execution pointcut cannot obtain such a reference.

Despite this difference, AspectScope uses the outline view of the callee
side to indicate the extension by the call pointcut. Since the goal is to display
the module interfaces affected by aspects, AspectScope must project the
extension to a module interface, which is the outline view of the callee side
in OOP. On the other hand, AJDT reflects this difference because it shows
join points. If developers would like to look at the join points, AspectScope
now has no difference in its view. Therefore, we plan to make the difference
between the target method that a pointcut selects, and methods that have
the indirect influence from an advice.

3.4.2 The within and cflow pointcuts

The within, withincode, cflow, and cflowbelow pointcuts select join points
within a specified region. For example, the within pointcut selects only
the join points included in the specified class. call(void *.setX(int)) &&
within(Line) selects method calls from the Line class to setX declared in any
class. The selected join points are method-call expressions contained in the
body of a method in the Line class. The within pointcut restricts the caller
methods.

If the call pointcut is combined with the within pointcut, AspectScope
interprets that the associated advice conditionally extends the behavior of
the callee method. This is also true for the combination of call and cflow,
set and within, and so forth. For example, if an UpdateSignaling aspect
includes an after advice associated with a pointcut call(void Point.setX(int))
&& within(Line), then the outline view indicates that the setX method in
the Point class is conditionally extended by the after advice (Figure 3.7).

CHAPTER 3. ASPECTSCOPE 38

@ Point implements Shape
o intx
g ity
—|-a void setEiint
- o extended by advice anly if the caller iz Line
=2 |pdateSienaling.after O : .

Figure 3.7: A conditional extension by the within pointcut (the red underline
was drawn by the authors)

@ Paint implements Shape
—- 49 int x
- o extended by advice
=3 UpdateSignalingbeforeC: getlint Pointad
+-#2 ity

Figure 3.8: There is a before advice associated with the get pointcut.

Since the pointcut includes within(Line), the outline view shows that the
behavior of setX is conditionally “extended by advice only if the caller is
Line”. The developers can see that the behavior of setX remains original if
it is called from other classes than Line. If the combined pointcut is cflow,
the outline view will show something like “extended if the thread is in the
control flow of ...”

3.4.3 Other pointcuts and Inter-type declarations

The presentation of the get and set pointcuts in the outline view is similar
to the call pointcut. In AspectJ, the join points selected by get and set
pointcuts are field-access expressions at the accessor side (i.e. the caller
side). Hence, AJDT shows an arrow icon at the line where the field is
accessed. However, AspectScope interprets that an advice associated with
a get or set pointcut extends the behavior of the target field. Figure 3.8
is an outline view presented by AspectScope. It illustrates the influence of
an UpdateSignaling aspect that contains a before advice associated with a
pointcut get(int Point.x). Note that an arrow icon is shown below the x field
in the Point class (i.e. at the target side) because the advice extends the
behavior of the x field.

An aspect may include an intertype declaration. The methods and the
fields appended by intertype declarations are also shown in the outline view.

CHAPTER 3. ASPECTSCOPE 39

@ Point implements Shape
—- @ int distance{Paint)
o appended by inter—type declaration
o intx
B inty

Figure 3.9: An intertype declaration of the distance method

@ Paint implements Shape
o int x
o inty
—| -4 ywoid setHiint
- o extended by advices {precedence given?
= UpdateSienalinebefore : ..
=3 Loggingbepectbefore D :

Figure 3.10: Two advices extend the setX method.

For example, Figure 3.9 indicates that an intertype declaration appends the
distance method to the Point class.

If more than one advice extends a method or a field in an existing class,
the outline view lists all the advices. If precedence rules are given by de-
clare precedence, the multiple advice bodies extending the same method or
field are listed in the execution order satisfying the given precedence rules
(Figure 3.10).

3.5 Summary

In this section, we proposed a programming tool for AspectJ named As-
pectScope. AspectScope provides its editor for looking at modular inter-
faces extended by aspects, and developers can append an advice comment
on a method for the feature of comment aspect. Besides, if a method has
no comment, comment advice can be helpful. AspectScope is the only tool
to do modular reasoning in AspectJ.

Chapter 4

Implementation Issues

4.1 Extended AJDT and JDT Parser

We extended AJDT implementation with AspectJ (Figure 4.1). AJDT
mainly consists of three projects, that is, org.aspectj.ajde, org.eclipse.ajdt.core,
and org.eclipse.ajdt.ui. The org.aspectj.ajde contains an aspectj compiler
(ajc) and jdt parser for eclipse IDE. This project modifies AspectJ syntax
to normal jdt syntax. For example, an advice and named pointcut are con-
verted to a normal method in Java. Since an advice is anonymous, there
is no difference betwwen advices. Therefore, when there are more than two
advices, they are renamed such as ”after()#2”. The org.eclipse.ajdt.core
receives the ajc weaving information from the org.aspectj.ajde, and then
makes the core model of AJDT. This model has the information about all
the crosscutting structures which advices extend methods and what meth-
ods are extended. The org.eclipse.ajdt.ui handles the view part. In AJDT
editor, arrows are displayed which indicates the adivce extension like Figure
2.3.

4.1.1 Org.eclipse.ajdt.core

We took advantage of aspect-oriented programming, and extended the ex-
isting codes with aspects so that these codes will not be changed. The main
purpose is to modify the original core model along with our purpose, that is,
one-to-one relation between an advice and a method should be transformed
one-to-many relations between an advice and methods that are in the a call
graph. Therefore, AspectScope first obtains the one-to-one relation from
the existing model. Then the tool searchs for the call hierarchies of the
target method and associates these methods with an advice for each. Af-

40

CHAPTER 4. IMPLMENTATION ISSUES 41

ter associating methods with an advice, AsepectScope next associates each
comment of an advice with these methods. Finally, AspectScope puts back
the modified model to the existing model.

The main aspect that intercept the existing org.eclipse.ajdt.core is AJ-
ModelConverter aspect. This aspect gets the one-to-one relation from AJPro-
jectModel class. With the basis of the target method information, As-
pectScope find its call hierarchies. To find them, this tool uses the search
engine provided as the jdt libraries. The search engine is mainly used in the
call hierarchy view of eclipse IDE. Concretely, the part of the implementa-
tions is as follows.

SearchEngine searchEngine = new SearchEngine();
IJavaSearchScope defaultSearchScope =
CallHierarchy.getDefault () .getSearchScope();
boolean isWorkspaceScope = SearchEngine.createWorkspaceScope ()
.equals(defaultSearchScope) ;
IJavaSearchScope searchScope = isWorkspaceScope 7
getAccurateSearchScope(defaultSearchScope, member)
: defaultSearchScope;

SearchPattern pattern = SearchPattern.createPattern(member,
IJavaSearchConstants.REFERENCES,
SearchUtils.GENERICS_AGNOSTIC_MATCH_RULE) ;

searchEngine.search(pattern, new SearchParticipant[] {
SearchEngine.getDefaultSearchParticipant ()},
searchScope,
searchRequestor, null);

return searchRequestor.getCallers();

After searching for the call graph, AspectScope append each method
to the prepared comments of an advice. The comment parser parses all
comments that are annotated @comment, and evaluates the entities of the
constraint condition such as within(*..figures.Figure+).

4.1.2 Org.eclipse.ajdt.ui

The main purpose of the extension of this project is to show the pop-up
display for the method specifications that are extended by the aspects. To
show pop-up display, a newly defined class have to inherit
org.eclipse.jdt.internal.ui.text.java.hover.JavadocHover class, and override getH-
overInfo method. In AspectScope implementation, getHoverlnfo method gets

CHAPTER 4. IMPLMENTATION ISSUES

[extend

AspetScope editor
|

aspect]

ed ajde }

jdt model

original join point info

ajdt.core

extended model info

Figure 4.1:

source code

aspectscope.core

-searching call hierarchies
- specifying comments

aspectscope.ui

-showing the extended
specification on a method

AspectScope

Overview of AspectScope

modified view

CHAPTER 4. IMPLMENTATION ISSUES 43

the crosscutting structure from the modified org.eclipse.ajdt.core. AJProjectModel
class as shown below. The following getRelations method is the inter-typed
method defined in AJProjectModelConverter aspect.

public String getHoverInfo(ITextViewer textViewer,
IRegion hoverRegion) {

Collection col = AJProjectModel.getRelations();

4.1.3 Org.aspectj.ajde

We have to modify the JDT parser to introduce comment advice in the editor
build in eclipse IDE. To implement jdt parser, we use the jikspg [13] that is
the parser generator. Jikespg accepts as input an description for a language
grammer and produces text files that is necessary for a parser such as jdt
parser. We used the version 1.5 of jikspg. The grammer is LALR(1). A part
of grammer file java_1_5.g ! is described as follows.

$Terminals
comment

AJSimpleNameNoAround -> ’comment’
AspectBodyDeclaration -> BasicAdviceDeclaration

BasicAdviceDeclaration ::= BasicAdviceHeader MethodBody
/.$putCase consumeBasicAdviceDeclaration(); $break ./
/:$readableName AdviceDeclaration:/

BasicAdviceHeader ::= BasicAdviceHeaderName
FormalParameterListopt
MethodHeaderRightParen
ExtraParamopt
MethodHeaderThrowsClauseopt
>:’ PseudoTokens

/.$putCase consumeBasicAdviceHeader(); $break ./

I The existing grammer file and other related files can be available from a cvs server of
aspectj.org [2]

CHAPTER 4. IMPLMENTATION ISSUES 44

/:$readableName AdviceHeader:/

BasicAdviceHeaderName ::= Modifiersopt ’comment’ ’(’
/.$putCase consumeCommentHeaderName(); $break ./
/:$readableName CommentHeaderName:/

FormalParameterListopt ::= $empty

/.$putcase consumeFormalParameterListopt(); $break ./
FormalParameterListopt -> FormalParameterList
/:$readableName FormalParameterList:/

FormalParameterList -> FormalParameter

FormalParameterList ::= FormalParameterList ’,’ FormalParameter
/.$putCase consumeFormalParameterList(); $break ./
/:$readableName FormalParameterList:/

MethodHeaderRightParen ::= ’)°
/.$putCase consumeMethodHeaderRightParen(); $break ./
/ :$readableName):/

ExtraParamopt ::= ’Identifier’ ’(’ FormalParameter ’)’
/.$putCase consumeExtraParameterWithFormal(); $break ./
/:$readableName ExtraParam:/

ExtraParamopt ::= ’Identifier’ ’(’)’
/.$putCase consumeExtraParameterNoFormal(); $break ./
/:$readableName ExtraParam:/

MethodHeaderThrowsClauseopt ::= $empty
MethodHeaderThrowsClauseopt -> MethodHeaderThrowsClause
/:$readableName MethodHeaderThrowsClause:/

MethodHeaderThrowsClause ::= ’throws’ ClassTypelList
/.$putCase consumeMethodHeaderThrowsClause(); $break ./
/:$readableName MethodHeaderThrowsClause:/

Modifiersopt ::= $empty
/. $putCase consumeDefaultModifiers(); $break ./
Modifiersopt ::= Modifiers

/.$putCase consumeModifiers(); $break ./

CHAPTER 4. IMPLMENTATION ISSUES 45

/:$readableName Modifiers:/

PseudoTokens ::= PseudoToken
PseudoTokens ::= ColonPseudoToken
/:$readableName type pattern or pointcut expression:/

PseudoTokens ::= PseudoTokens ColonPseudoToken
/ .$putCase consumePseudoTokens(); $break ./

PseudoTokens ::= PseudoTokens PseudoToken
/.$putCase consumePseudoTokens(); $break ./

PseudoTokensNoColon ::= PseudoToken

PseudoTokensNoColon ::= PseudoTokensNoColon PseudoToken
/.$putCase consumePseudoTokens(); $break ./

/:$readableName allowable token in pointcut or type pattern:/

ColonPseudoToken ::= ’:’

/.$putCase consumePseudoToken(":"); $break ./

/:$readableName any allowable token in pointcut or type pattern, except ’:’:/
PseudoToken ::= Javaldentifier

/.$putCase consumePseudoTokenIdentifier(); $break ./
/:$readableName allowable token in pointcut or type pattern:/

PseudoToken ::= ’(’
/.$putCase consumePseudoToken("("); $break ./

PseudoToken ::= ’)°
/ .$putCase consumePseudoToken(")"); $break ./

PseudoToken ::= ’.’
/.$putCase consumePseudoToken("."); $break ./

PseudoToken ::= ’%’
/.$putCase consumePseudoToken("*"); $break ./

PseudoToken ::= ’+’
/.$putCase consumePseudoToken("+"); $break ./

CHAPTER 4. IMPLMENTATION ISSUES 46

File Explanation

javaAction.java | It contains consumeRule method in Parser class
that manipulates the semantic action.

javadcl.java It is used to generate resource files.

javasym.java It contains field declarations that will be the part of
TerminalTokens class.

javadef.java It contains field declarations that can be

ParserBasicInformation class.

Table 4.1: The necessary files for build a jdt parser

These putCase, break, and readableName are macros. For example, put-
Case is defined as following, and is extended as a part of the swithc-statement.

$putCase
/.
case $rule_number : if (DEBUG) {
System.out.println("$rule_text"); //$NON-NLS-1%
}
i

After compiling the grammer file, several files are generated as listed in Ta-
ble 4.1. These files are used to replace these contents with the existing codes
in org.aspectj.org.eclipse.jdt.internal.compiler.parser package. The javaAc-
tion.java defines the new consumeRule method that shuld be replaced the
existing one in Parser class. The javadcl.java is used to generate the resource
files that are the binary files and handles lexer function. UpdateParserFiles
2 class generates twenty four resource files which names are parser<n>.rsc
, with n equals to 1 to 24. To generates resources files, follwoing command
line is run. The second program argument ”javahdr.java” is acceptable even
if it is an empty file.

> java UpdateParserFiles javadcl.java javahdr.java

These newly generated resource files should be moved to org.aspectj.org.
eclipse.jdt.internal.compiler.parser package.

%is is also available from the cvs of [2]

Chapter 5

Evaluation

5.1 A case study with an web-based information
system

To evaluate the usefulness of AspectScope, we used it for browsing the source
program of the health watcher program [8], which is web application server
for customer complaints written by the third party. This web server is im-
plemented in two aspect oriented language, CaesarJ [22] and AspectJ. We
used the AspectJ program for our evaluation. The program is written in As-
pectJ and it consists of 692 classes (9,591 lines) and 25 aspects (1,989 lines).
We can classify these aspects into six groups, design patterns, persistent
systems, transactions, exception handlings, and loggings.

5.1.1 Design Patterns

The health watcher program uses the design pattern [7] in aspect oriented
programming [11]. Concretely, an observer pattern, a command pattern, a
factory pattern, and state pattern are built in.

In observer pattern, The registeration of observers and the notification of
the observers are crosscutting structures, and are implemented as an aspect.
For example, following advice extends seventeen method behaviors.

after(Subject subject):
call(* Subject+.set*(..))
&& this(CommandServlet+)
&& target(subject) {
Iterator iter =
getObservers(subject) .iterator();

47

CHAPTER 5. EVALUATION 48

while (iter.hasNext()) {
updatelbserver (subject,
((Observer)iter.next()));

One of the extended methods is setPassword method in UpdateEmploy-
eeData. When this method is called, the advice will be executed to notify
observers. The setPassword is invoked in executeCommand method in the
same UpdateEmployeeData class as showing below.

public class UpdateEmployeeData
extends CommandServlet {
public void executeCommand(CommandReceiver
receiver) {
Employee employee = null;
String newPassword = ...;

// the joinpoint caught by the advice
employee.setPassword (newPassword) ;

}
}

Thelocal variable employee is only called in executeCommand method. This
executeCommand method is invoked at runtime through the call to exe-
cuteCommand method in Command interface. Therefore, the hierarchical
structure of the call graph is only one-tier.

As shown below, developers should append the advice javadoc comment
reflected on setPassward method in UpdateEmployeeData class which is the
caller class.

Calls < code>updateObserver< /code> after setting the new password of the
employee to update the Observer.

Besides, the following javadoc comment is essential for ecexuteCommnd method.
The newPassword is a local variable in executeCommand method, and this

commend must not been saied that a password will be modified.

Updates the information of the employees by calling < code>update Observer< /code>.

CHAPTER 5. EVALUATION 49

About the other design patterns, developers will have to add comments
along the hierarchical structure of these own call graphs as in Table 5.1 and
Table 5.2. As shown in Table 5.2, the observer aspects need callee class
extensions because these advices designate call pointcuts. Note that a call
pointcut intercepts a call to a target method. However, AspectScope can
extend the callee class specifications using comment aspect. To keep mod-
ular reasoning, AspectScope shows the extended module interface without
distinguishing a call pointcut and a execution pointcut.

In the command pattern, the hierarchical structure is one-tier in the same
way of invoking the interface method in the observer pattern. In the state
pattern, developers will must write comments for the nine-tier methods.
The factory pattern in this program has no advice while it has inter-type
declarations.

aspect patterns | method extensions | one | two | three | six | nine
Observer 17 17 0 0 0 0
Command 3 3 0 0 0 0
Factory 0 NA|NA| NA |NA| NA
State 15 14 13 10 9 2

Table 5.1: The numbers of extended comments that developers will have to
add for upper methods in the call graph

aspect patterns | one
Observer 17
Command 0
Factory NA
State 0

Table 5.2: The numbers of extended comments that developers will have to
add for lower methods in the call graph

5.1.2 Logging

As we detail in Section 2.4 of chapter 2, the Logging code does not influence
a program semantics (Clifton el.al. call them spectators), and developers
may not always have to prepare comments for extended method by logging.

CHAPTER 5. EVALUATION 50

HWLoggin aspect logs the invocation of a constructor when a constructor
of HealthaWatcherFacade class is called. One of the caller class of this con-
structor is getlnstance method in HealthWatcherFacade class as described
below.

public synchronized static
HealthWatcherFacade getInstance() {
if (singleton == null)
singleton = new HealthWatcherFacade();
return singleton;

¥

When developers add an advice comment on getlnstance method, following
statements may be adequate.

Configures the logging before returning the instance

Table 5.3 represents the number of hierarchical structure about which HWLog-
ging aspect extends. In this loggin, there is no advice using call pointcut,
and developers do not need the callee side extension of a specification. ”()”
indicates that they have no necessity of writing advice specifications.

Aspect method extension | one | two
HWLogging 2 (2) | (1)

Table 5.3: The number of extended comments that developer have to add
for the logging aspect

5.1.3 Exception Handling

We found aspects which execute exception handlings. ExceptionHandling-
Precedence is the aspect which defines the precedence of other aspects. De-
velopers will not need to reflect the advice specifications on target meth-
ods in the three aspects except HWPresistenceExceptionHandler. For exam-
ple, around advice in HWDistributionExceptionHandler aspect designates the
pointcut shown below.

execution(
* HWServlet+.dox (HTTPServletRequest, HTTPServletResponse))
&& args(.., response)

CHAPTER 5. EVALUATION 51

An advice that uses this pointcut extends doGet method in HttpServlet
class. The doGet method is invoked when HTTP GET request is sent, and
developers will not need to write the advice specification for this doGet
method.

aspects me* | one | four | six | seven | nine

0 0 0 0
5 5
0 0
0 0 0 0

HWDistributionExceptionHandler
HWPeRsistenceExceptionHandler
HWTransactionExceptionHandler
HWUpdateObserverExceptionHandler
ExceptioHandlingPrecedence

o W
S N

S U O

NA | NA |NA| NA | NA

Table 5.4: The numbers of extended comments that exception handling
aspects extend for upper methods in the call graph

aspects one
HWnDistributionExceptionHandler 0
HWPeRsistenceExceptionHandler 2
HWTransactionExceptionHandler 0
HWUpdateObserverExceptionHandler | 0
ExceptioHandlingPrecedence NA

Table 5.5: The number of extended comments that exception handling as-
pect extend for lower methods in the call graph

5.2 Experiment

This section reports the results of our experiment to measure the cost of
obtaining and modifying cross-cutting structures in AspectScope. The ma-
chine we used for experiment is Core Duo L2500 processor(1.83GHz), 1.5GB
memory, Windows Vista. The IDE is Eclipse 3.2, and our Modifed projects
is org.aspectj.ajde 1.5.3, org.eclipse.ajdt.core 1.4.1, and org.eclipse.ajdt.ui
1.4.1.

Figure 5.1 illustrates the time until a tool gets all the cross-cutting struc-
tures, that is, which advice extends methods and which method is extended
by advices. This averaged time is obtained by executing 100 times for each.
An before advice extends moveBy methods in figure classes, and the javadoc

CHAPTER 5. EVALUATION 52

comment on its advice is :

Vs
* @comment
* An after advice signals the < code > Display < /code >
* to update whenever a figure changes.

* @comment (execution(void run(..)))
*

Y/

Since the hierarchical structures of these call graphss are each one-tier, the
comment consists of two annotated comments. The pointcut declaration is:

execution(void moveBy(int, int))

and moveBy method are defined in four classes, Line, Point, Triangle, and
Arrow. Besides, moveBy methods in these classes are all called in a client
class. In AJDT, it takes 34.48(ms) to calculate cross-cutting structures. On
the other hand, in AspectScope, it takes 2864(ms). From the result of this
experiment, AspectScope assumes to consume a lot of time to compute call
graphs and to parse the constrained condition on annotation.

3500
3000
2500

2000
B AJDT

H AspectScope

ms

1500
1000

500

Figure 5.1: Calculations of cross-cutting structures

We then measured the actual time of computing call graphs and paring
comments. Figure 5.2 illustrates the averaged time of these computation by
executing 100 times. It takes 2707(ms) to obtain call graphs, and 31.46(ms)
to parse comments. Getting call graphs information is intensive cost, and

CHAPTER 5. EVALUATION 53

we have to improve the implementation to calcuate the call graphs.

3000
2500

2000

» M Call hierarchy
g 1500 B Comment parser

1000

500

Figure 5.2: Comprising data of calcuations in AspectScope

5.3 Summary

From this case study, we found that developers will need to write advice
specificationson on the caller methods in most aspects. Advices in this
program usually extend methods until three or four-tier in the hierarcical
structure of the call graphs. This is in larger part due to that interface
methods interve the call graphs.

Chapter 6

Future work

6.1 Modularization of comments

AspectScope now let developers write several javadoc comment on one ad-
vice with simple enumeration. However, since these comment are not modu-
larized, they are very fragile to a modification of a program. The better way
to write comments may be modularising per each call graph. For example,
following is call graphs spreading from setX method. When setX method is
extended by an aspect, all specifications of methods in the call graphs will
be also extended.

Multilines.moveBy(int, int) Arrow.moveBy(int, int)
| |
Line.moveBy(int, int) Triangle.moveBy(int, int)
\ /

Point.setX(int)

With the feature of comment aspect, an advice can have several javadoc
comments that are reflected on the methods as follows:

/**
* @comment (execution(void Line.moveBy(int, int)))
* The advice comment reflected on Line.moveBy
* along its abstraction
*
* .
*/
after ()

54

CHAPTER 6. FUTURE WORK 55

This way of appending comments on an advice are fragile and inelegant.
The modular style of comment will be written separately from an advice as
described below. These modules should be generated automatically by the
tool. Developers only write comments on each method.

/**x The advice comment on Point.setX */
ModuleO: module(Point.setX(int)) {
}

/**
* The advice comment reflected on
* Line.moveBy along its abstraction
*/
Modulel: module(Line.moveBy(int, int)) {
ModuleO;
b

VAL . Y/

Module2: module(Triangle.moveBy(int, int)) {
ModuleO;

3

[xx .. %/

Module3: module(MultiLines.moveBy(int, int)) {
Modulel;

}

[xx .. x/

Module4: module(Arrow.moveBy(int, int)) {
Module?2;

}

Each module has its own comment that represents an advice comment for
this module, and contains other modules that is called in that module. In
AspectJ, an advice such as after is anonymous. Therefore, the challenge is
how these modules connet with a particular advice. We will have to extend
the advice syntax in AspectJ. In addition, we will have to decide the syntax
rule when aspects extend the same join point.

CHAPTER 6. FUTURE WORK 56

6.2 comment advice control

In chapter 3, we discuss that AspectScope can work as a debugging tool
with an example of the Observer aspect pattern. AspectScope editor shows
the same advice comment to make developers know the redundant updates.
On the other hand, as shown below, moveBy method in Line class also shows
developers being extended by Contract aspect though this extension is harm-
less.

The horizontal positions of this line should be no fewer than 0, nor more
than 100
The horizontal positions of this line should be no fewer than 0, nor more
than 100

In such a case, AspectScope will have to control the comment display. One
possible way is that comment advice can have a control syntax as following.
The display of moveBy method in Line class is aggregated by this comment
advice. In this constraint statement, an advice have to designate a named
pointcut to specify which extension display is redundant.

comment() : execution(void Line.moveBy(int, int)) {
aggregate : Contract.preCondition();
}

Chapter 7

Concluding Remarks

This thesis has disscussed a programming tool for AspectJ, named As-
pectScope. AspectScope performs a whole-program analysis of AspectJ
programs and visualizes the result so that developers can understand their
program behavior with local reasoning. It displays the module interfaces ex-
tended by aspects under current deployment. A unique idea of AspectScope
is to reflect an aspect specification even on the methods that are indirectly
influenced by an aspect. Developers can append several specifications on an
advice by the feature of comment aspect, and can control the advice spec-
ifications to the extent necesary to each program. When a method has no
comment, the newly defined comment advice allows developers to append a
comment to it. The effect of weaving a comment advice can be seen through
the AspectScope editor.

This notion of AspectScope enables expressing the effects of aspects
through module interfaces. Developers thereby do AOP by using their OOP
experiences of modular programming, in particular, modular extensions to
classes by virtual classes [21], mixin-layers [27], nested inheritance [23, 24],
and so on.

o7

Bibliography

1]

Jonathan Aldrich. Open modules: Modular reasoning about advice.
In ECOOP 2005 - Object-Oriented Programming, LNCS 3586, pages
144-168. Springer-Verlag, 2005.

AspectJ Organization. AspectJ. http://www.eclipse.org/aspectj/.

Curtis Clifton and Gary T. Leanvens. Spectators and Assistants: En-
abling Modular Aspect-Oriented Reasoning. Technical report, Iowa
State University, 2002.

Curtis Clifton and Gary T. Leavens. Observers and Assistants: A
Proposal for Modular Aspect-Oriented Reasoning. In FOAL 2002, 2002.

Wesley Coelho and Gail C. Murphy. Presenting crosscutting structure
with active models. In AOSD ’06: Proceedings of the 5th interna-
tional conference on Aspect-oriented software development, pages 158—
168, New York, NY, USA, 2006. ACM.

Robert E. Filman and Daniel P. Friedman. Aspect-Oriented Program-
ming is Quantification and Obliviousness. Technical report, 2000.

Erich Gamma, Richard Helm, Ralph Johnson, and John M Vlissides.
Design Patterns. Addison-Wesley, 1994.

Phil Greenwood, Thiago Bartolomei, Eduardo Figueiredo, Marcos
Dosea, Alessandro Garcia, Nelio Cacho, Claudio Sant Anna, Sergio
Soares, Paulo Borba, Uira Kulesza, and Awais Rashid. On the Impact
of Aspectual Decompositions on Design Stability: An Empirical Study.
In ECOOP 2007 - Object-Oriented Programming, LNCS 4609, pages
176-200. Springer-Verlag, 2007.

William G. Griswold, Macneil Shonle, Kevin Sullivan, Yuanyuan Song,
Nishit Tewari, Yuanfang Cai, and Hridesh Rajan. Modular Software

58

BIBLIOGRAPHY 59

Design With Crosscutting Interfaces. In IEEE Software, vol.23, pages
51-60, 2006.

[10] S. Gudmundson and G. Kiczales. Addressing practical software devel-
opment issues in aspectj with a pointcut interface, 2001.

[11] Jan Hannemann and Gregor Kiczales. Design pattern implementation
in java and aspectj. In OOPSLA ’02: Proceedings of the 17th ACM
SIGPLAN conference on Object-oriented programming, systems, lan-
guages, and applications, pages 161-173, New York, NY, USA, 2002.
ACM.

[12] Michihiro Horie and Shigeru Chiba. An Outline Viewer for AspectJ
Programs. TOOLS EUROPE 2007, 2007.

[13] IBM. Jikes Parser Generator. http://www.alphaworks.ibm.com /formula/JikesPG.

[14] Gregor Kiczales, Erik Hilsdale, Jim Hugunin, Mik Kersten, Jef-
frey Palm, and William G. Griswold. An overview of aspectj. In
ECOOP 2001 - Object-Oriented Programming: 15th European Con-
ference, LNCS 2072, pages 327-353. Springer-Verlag, 2001.

[15] Gregor Kiczales and Mira Mezini. Aspect-oriented programming and
modular reasoning. In ICSFE ’05: Proceedings of the 27th international
conference on Software engineering, pages 49-58, New York, NY, USA,
2005. ACM Press.

[16] Christian Koppen and Maximilian Stoerzer. PCDiff: Attacking the
Fragile Pointcut Problem. In Furopean Interactive Workshop on As-
pects in Software (EIWAS’04), 2004.

[17] David larochelle, Karl Scheidt, and Kevin Sullivan. Join Point Encap-
sulation. In Workshop on Software-engineering Properties of Lnaguages
for Aspect Technologies(SPLAT) 2003, 2003.

[18] Gary T. Leavens, Albert L. Baker, and Clyde Ruby. JML: A notation
for detailed design. In Haim Kilov, Bernhard Rumpe, and Ian Sim-
monds, editors, Behavioral Specifications of Businesses and Systems,
pages 175-188. Kluwer Academic Publishers, 1999.

[19] Gary T. Leavens, Albert L. Baker, and Clyde Ruby. Preliminary design
of jml: a behavioral interface specification language for java. SIGSOFT
Softw. Eng. Notes, 31(3):1-38, 2006.

BIBLIOGRAPHY 60

[20]

[21]

[24]

H. Masuhara, G. Kiczales, and C. Dutchyn. Compilation semantics of
aspect-oriented programs, 2002.

Mira Mezini and Klaus Ostermann. Integrating independent compo-
nents with on-demand remodularization. In OOPSLA ’02: Proceedings
of the 17th ACM SIGPLAN conference on Object-oriented program-
ming, systems, languages, and applications, pages 5267, New York,
NY, USA, 2002. ACM.

Mira Mezini and Klaus Ostermann. Conquering aspects with caesar. In
AOSD ’03: Proceedings of the 2nd international conference on Aspect-
oriented software development, pages 90-99, New York, NY, USA, 2003.
ACM.

Nathaniel Nystrom, Stephen Chong, and Andrew C. Myers. Scalable
extensibility via nested inheritance. In OOPSLA ’04: Proceedings of
the 19th annual ACM SIGPLAN conference on Object-oriented pro-

grammang, systems, languages, and applications, pages 99-115, New
York, NY, USA, 2004. ACM.

Nathaniel Nystrom, Xin Qi, and Andrew C. Myers. J&: nested inter-
section for scalable software composition. In OOPSLA ’06: Proceed-
ings of the 21st annual ACM SIGPLAN conference on Object-oriented
programming systems, languages, and applications, pages 21-36, New

York, NY, USA, 2006. ACM.

Neil Ongkingco, Pavel Avgustinov, Julian Tibble, Laurie Hendren,
Oege de Moor, and Ganesh Sittampalam. Adding open modules to
AspectJ. In AOSD ’06: Proceedings of the 5th international conference
on Aspect-oriented software development, pages 39-50, New York, NY,
USA, 2006. ACM.

Awais Rashid. Aspects and Evolution: The Case for Versioned Types
and Meta-Aspect Protocols, 2006.

Yannis Smaragdakis and Don Batory. Mixin layers: an object-oriented
implementation technique for refinements and collaboration-based de-
signs. ACM Trans. Softw. Eng. Methodol., 11(2):215-255, 2002.

Friedrich Steimann. The paradoxical success of aspect-oriented pro-
gramming. SIGPLAN Not., 41(10):481-497, 2006.

The Eclipse Foundation. Aspect] Development Tools(AJDT).
http://www.eclipse.org/ajdt.

BIBLIOGRAPHY 61

[30] Elcin Recebli Wolfson. Pure aspects. Master’s thesis, Oxford University,
2005.

