
Predicate dispatch for Aspect-Oriented Programming
(Position paper)

Shigeru Chiba
Tokyo Institute of Technology
2-12-1 Ohkayama, Meguro-ku,

Tokyo 152-8552, Japan
www.csg.is.titech.ac.jp/˜chiba

Abstract
Developing a machine model natively supporting aspect-
oriented programming (AOP) is fruitful not only for imple-
menting interpreters and compilers for AOP languages but
also for understanding the essence of the AOP paradigm.
This position paper shows a machine model based on open
classes and predicate dispatch and it briefly describes a list
of predicates that are necessary for modeling AspectJ. This
machine model is useful for comparing AOP and object-
oriented programming (OOP) on a side-by-side basis. Our
initial observation is that AOP is a natural extension to OOP
with respect to language constructs.

1. Introduction
Early aspect-oriented programming (AOP) languages such
as AspectJ were implemented as a program translator into a
program (or machine code) written in a non-AOP language.
These days, several virtual machines that directly support
AOP such as Steamloom [2] have been developed but their
support is still limited [5]. This is partly because of the lack
of a good machine model with native support for AOP.

To develop such a machine model for AOP, Haupt and
Schippers proposed the concept of virtual join points [5] and
showed the delegation-based AOP model based on that con-
cept. In their paper, they presented similarity between join
points in AOP and method calls in object-oriented program-
ming (OOP) and AOP makes join points virtual as OOP
makes function calls virtual (if we follow the C++ termi-
nology). Here, join points are execution points in which two
pieces of code are connected statically or slightly dynami-
cally by the dynamic method dispatch of OOP. AOP gives

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
VMIL’08, October 19, 2008, Nashville, TN.
Copyright c© 2008 ACM 978-1-60558-384-6. . . $5.00

another kind of late-binding feature to the join points. The
delegation-based AOP model implements this virtualization
by inserting a proxy object into a message delegation chain.
In this model, all objects are prototype based and a method
dispatching mechanism is represented by message delega-
tion. Although a proxy can implement various kinds of ad-
vice, this model requires the delegation-chain mechanism to
be extended for supporting a new pointcut primitive. For ex-
ample, as shown in their paper, to support the cflow pointcut,
they had to introduce a new kind of delegation chain that is
effective only for a particular thread. Since the delegation
chain is a fundamental component of the prototype-based
object system, it should not be modified to support a new
pointcut primitive.

This paper presents another machine model for AOP. It
is still based on the concept of virtual join points but it uses
an extended version of predicate dispatch [4, 6] as the basic
mechanism. We believe that predicate dispatch is more in-
tuitive for implementing the virtual join points than the del-
egation chain. Presenting similarity between predicate dis-
patch and the pointcut-advice of AOP is not new. This fact
has been pointed out in a few papers [7, 1, 5]. The contri-
bution of this paper is to show what predicates are really
necessary for emulating pointcuts provided by AspectJ. We
believe that our model is also useful to understand AOP by
side-by-side comparison with OOP because predicate dis-
patch is a natural extension to the dynamic method dispatch
of OOP. It would be also possible to introduce good ideas,
such as the ambiguity property, for method dispatching in
OOP into AOP.

2. Basic constructs
In our model, objects are instances of classes, which can
consist of multiple modules as in open classes [3] and Hy-
per/J [8]. Suppose that we have the following class:

class Shape {
Position p;
Position getPos() { return p; }
void setPos(Position np) { p = np; }

}

Then we can define a complementary module that adds some
members to the Shape class. It would look something like
this:

class Updater refines Shape {
Display d;
void setDisplay(Display nd) { d = nd; }
void setPos(Position np) {
d.repaint();
// call a less-specific method with np.

}
}

This Updater class corresponds to an aspect in the sense of
AspectJ. We can define any number of classes that refine the
Shape class. Updater itself is not a complete class; it cannot
be instantiated. It is the name of a part of the declaration of
the Shape class.

The Updater class adds a field d and a method setDisplay.
These correspond to intertype declaration. Thus, at runtime,
the Shape class has not only p, getPos, and setPos but also
the added members d and setDisplay. An instance of the
original Shape class includes those added members even if
it is created by the code that does not expect the existence of
Updater at all.

Note that the Updater also adds a method setPos, which
is also declared in Shape. It is an advice. In this model, ad-
vising a join point is represented by overriding a method.
The setPos method in Updater overrides the setPos method
in Shape as an around advice in AspectJ does. Although
we use the term override, the semantics of our overriding is
slightly different from the normal one. The two implementa-
tions of setPos method given by Updater and Shape belong
to the Shape class at runtime. However, since the implemen-
tation given by Updater overrides the other, it is invoked
when the setPos method is called on an instance of Shape.
No “multiple methods are applicable” error will be thrown.
This is the same as the behavior of an around advice with the
execution pointcut, which is invoked instead of the method
specified by that execution pointcut when it is called.

3. Predicate dispatch
Since AspectJ provides several pointcut designators, simple
method overriding is not sufficient to model AspectJ. Thus,
we introduce an extended version of predicate dispatch. In a
language supporting predicate dispatch, such as JPred [6], a
method declaration can include predicates and it is invoked
only when all the predicates are true. The original predicate
dispatch allows only predicates that take local contexts such
as parameter values and the receiver object (i.e. the this
variable in Java). For example, JPred provides a predicate
that becomes true if a parameter value is an instance of a
specific class. This restriction is necessary for modular type
checking and compilation.

However, since AOP is a paradigm for dealing with a
crosscutting concern, our model for AOP needs some pred-
icates that deal with non-local contexts. In other words, en-
abling method dispatch depending on non-local contexts is
a unique feature of AOP against OOP. For example, see the
following aspect in AspectJ:

aspect Logging {
around(): call(void HashMap.put(..))

&& within(WebApp)) {
System.out.println(

"WebApp updates a hash map");
proceed();

}
}

This typical logging aspect declares an advice that is invoked
when any method in the WebApp class calls the put method
on a HashMap object. If a method in other classes calls it, the
advice is not invoked but the original put method is invoked.

In our model, this advice is interpreted as a method over-
riding the put method in the HashMap class only when the
client object that calls put is an instance of WebApp. Hence
we need a predicate that checks the type of the client object,
which is part of non-local contexts. The aspect described by
using our model would be something like this:

class Logging refines HashMap {
void put(Object key, Object value)

when client instanceof WebApp {
System.out.println(

"WebApp updates a hash map");
proceed();

}
}

The expression following when is the predicate for the put
method. Here, client is a hidden parameter, which is avail-
able without explicit declaration. It refers to the client object
that calls the method.

Our model accepts a method with some predicates. The
method with predicates does not have to override another
method that has no predicates. For example, a method m
may have only the implementations with predicates; in cer-
tain runtime contexts, all the implementations for m might
be ineffective and thus a “message not understood” error
would occur because all their predicates are false. However,
we can modify our model to fit AspectJ’s semantics. In As-
pectJ, an advice always modifies the behavior of an existing
method. To implement this semantics in our model, we must
constrain all methods with predicates to override the default
method, which has the same name and signature but no pred-
icates.

The predicates available in our model is defined as the
following:

<predicates> := <predicate>

| <predicate> <op> <predicates>

<predicate> := <var> instanceof <type>

| <var> statically-instanceof <type>

| <var> running <method>

| !<predicate>

| (<predicate>)

<var> := this | client | client* | <parameter>

<op> := && | ||

As <var>, not only this (i.e. a callee object) and a call
parameter but also client is available to indicate the client
object that calls the method. Thus, instanceof predicates can
represent the same conditions that this, target, args, and
within pointcuts in AspectJ can do. statically-instanceof is
for the call pointcut in AspectJ. It checks the static type of
<var>, usually this. If the static type of the receiver object
is <type> at the client site, this predicate:

this statically-instanceof <type>

becomes true. The static types of client and the parame-
ters are always the same as their dynamic types. running
is for the withincode and cflowbelow pointcuts. It becomes
true if <var>, which is usually client or client*, is running
the specified <method>. client* represents any object con-
tained in the current call stack. Hence,

client* running <method>

becomes true only while the current thread of control is
executing the specified <method>. This corresponds to the
cflowbelow pointcut.

3.1 Exhaustiveness
The original predicate dispatch was carefully designed for
the exhaustiveness property. This property guarantees that
no “message not understood” error happens during run-
time. For example, the compiler of JPred [6] can modularly
check that this property is preserved. If predicate dispatch is
naively available, it is not obvious whether or not a program
has the exhaustiveness property because some methods may
have implementations effective only under certain runtime
conditions. If the compiler allows calling such a method, the
call would cause a “message not understood” (i.e. the called
method is not found) error when there is no implementation
effective for the calling contexts.

Unfortunately, our model does not enable static exhaus-
tiveness checks because a predicate may access client*,
which is never statically determined. On the other hand,
our modified model allows a compiler to statically check
that a given program preserves the exhaustiveness property.
Recall that we mentioned that, to make our model exactly fit
AspectJ’s semantics, we have to add an extra constraint to
our model. Since this modified model constrains a method
with predicates to override the default method, which does

not have predicates, any method has an implementation that
is always effective independently of runtime contexts. Thus,
the compiler can statically check exhaustiveness if all the
classes including aspect classes refining normal classes are
known to the compiler. Since our model adopts open classes,
the set of the methods available in a given class is not de-
termined unless all the modules contributing to that class (a
normal class and aspect classes refining it) are given.

To enable modular exhaustiveness checks, we must in-
troduce another language construct. For example, as eJava
[9] does, the client code must explicitly specify modules
that declare methods used by that client code. If the client
code uses the setDisplay method added by the aspect class
view.Updater to the original class model.Shape, it must in-
clude the following statement:

use view.Updater;

Then the compiler can understand that the setDisplay method
in the model.Shape class is declared in the source file of the
view.Updater class, which refines model.Shape. This en-
ables modular class-by-class compilation as the Java com-
piler does.

Note that the explicit import of modules via use state-
ment is not necessary when client code invokes an overrid-
ing method given by an aspect class. The compiler can per-
form modular exhaustiveness checks if the called method
is also declared in the original class or another aspect
class explicitly imported via use. Suppose that the refin-
ing class view.Updater overrides the setPos method in the
model.Shape class. The compiler can modularly perform
exhaustiveness check on the client code that will call the
setPos method whichever implementation will be invoked,
view.Updater’s or model.Shape’s.

3.2 Ambiguity
Another interesting property is ambiguity. If a program is
not ambiguous, a “multiple methods are applicable” error
never occurs during runtime. Ambiguity checking ensures
that there are no two methods that have the same name and
signature and also have predicates that become true in the
same runtime contexts.

Since AspectJ allows multiple advices modifying the be-
havior of the same join point, our model does not guarantee
that all programs preserve the ambiguity property. Two as-
pect classes refining the same normal class may override the
same method and their two overriding methods might be ef-
fective at the same time.

In AspectJ, programmers can explicitly specify the prece-
dence order among aspects. We can introduce a similar
mechanism into our model so that the ambiguity of method
dispatch will be resolved. Then a compiler will be able to
conservatively check that all necessary precedence order is
given.

We use predicates for representing the precedence order
among aspect classes. The most specific method among ef-

fective overriding methods is determined by using logical
implication relations among predicates. Note that the orig-
inal predicate dispatch also uses implication relations for
determining the most specific method. If two methods m1

and m2 are included in the effective methods for a method
call and m1’s predicate expression logically implies m2’s
predicate expression, then m1 is more specific method than
m2. For example, suppose that m1’s predicate expression is
p1 instanceof Rect and m2’s predicate expression is p1 in-
stanceof Shape, where p1 is the first parameter of m1 and
m2 and Rect is a subclass of Shape. Then m1 is more spe-
cific than m2 because, if p1 is an instance of Rect, then it is
always an instance of Shape.

We implement the precedence order by specializing this
algorithm for determining the most specific method. Let us
introduce a new predicate deploy. It takes one aspect class
name as a parameter. For example, deploy(Logging) is true
only when an aspect class named Logging is deployed. If
another aspect class Updater is also deployed and Logging
has higher precedence than Logging, then deploy(Logging)
logically implies deploy(Updater). The parameter of deploy
can be null. deploy(null) is logically implied by deploy(A)
for any aspect class A. In summary,

deploy(A) logically implies deploy(null) for any A.
deploy(A) logically implies deploy(B)

if A has higher precedence than B.

In our model, any method implicitly has a deploy predicate.
If the method is declared in an aspect class A , which refines
another class, then it has deploy(A). Otherwise, if it is de-
clared in a normal class, it has deploy(null). If two methods
m1 and m2 are effective and m1’s deploy logically implies
m2’s deploy, then m1 is a more specific method than m2

and hence m1 overrides m2. Other predicates are not used
to determine which method is more specific although it is
possible to enhance our model to use other predicates.

3.3 super andproceed

By introducing a deploy predicate, we could make our model
show similar behavior as AspectJ. However, to make our
model exactly emulate AspectJ’s semantics, we need more.

AspectJ has an algorithm for determining which advice
is first executed, that is, which method is the most specific.
However, this algorithm is not modular. Suppose that a class
Shape has a method setX. An aspect Logging declares an
advice α for calls to setX. There is another class Rect,
which is a subclass of Shape and overrides the method setX.
Calls to the method setX in Rect is advised by an advice
β declared in an aspect Updater. The aspect Logging has
higher precedence than Updater.

If the setX method is called on an instance of Rect, then
the advice α is first executed because Logging has the high-
est precedence. If α calls proceed, then the advice β is next
executed. After that, the method setX in Rect is executed. If

setX calls super.setX, then the advice α is executed again,
and finally the setX in Shape is executed. The order of speci-
ficity for each method is α, β, Rect.setX, α (again), and
Shape.setX. Note that the advice α is executed twice. Al-
though α advises the setX method in the super class, it is
executed for the call to the method in the subclass and it is
executed again for the call on super.

To emulate this behavior, our model also has to support
both super and proceed to invoke a less specific method:

• proceed(p1, p2, ...)
This invokes a less specific method with parameters p1,
p2, ... The order of specificity is determined by deploy
predicates and declaring classes. This is usually used by
methods in aspect classes.

• super.<method>(p1, p2, ...)
This calls the same method on the same instance with
using the super class as the dynamic type of that instance.
This is usually used by methods in normal classes.

For the example above, the setX method in Rect should
call super.setX(newX) in our model. The setX methods in
the aspect classes Logging and Updating should call pro-
ceed(newX). Then the behavior of a call to setX on an in-
stance of Rect is the same as in AspectJ.

4. Concluding remarks
This paper presents an AOP machine model based on open
classes and predicate dispatch. This model leads us to re-
gard AOP as a natural extension to OOP. The paper argued
that the language constructs of AOP are fairly equivalent to
an extended version of predicate dispatch and thereby it is
possible to directly compare AOP with other OOP-based
programming paradigms. The contribution of this paper is
to show what predicates are really necessary for emulating
pointcuts provided by AspectJ. The original predicate dis-
patch allows only predicates that take local contexts such
as parameter values and the receiver object. This restriction
is for modular type checking and compilation. On the other
hand, to emulate pointcuts, we had to allow predicates that
deal with non-local contexts such as the client object. This is
necessary for modularizing crosscutting concerns. A draw-
back of this fact is that modular type checking and compila-
tion is sacrificed.

The presented work is still at a very early stage and this
paper shows only a very rough sketch of the machine model.
A lot of work remains. Our model does not support pattern
matching or several pointcuts such as if, handler, set, or get.
It does not support aspect instances.

References
[1] Bockisch, C., M. Haupt, and M. Mezini, “Dynamic Virtual

Join Point Dispatch.” Workshop on Software Engineering
Properties of Languages and Aspect Technologies (SPLAT
’06), 2006.

[2] Bockisch, C., M. Haupt, M. Mezini, and K. Ostermann,
“Virtual machine support for dynamic join points,” in Proc. of
Int’l Conf. on Aspect-Oriented Software Development (AOSD
2004), pp. 83–92, 2004.

[3] Clifton, C., G. T. Leavens, C. Chambers, and T. Millstein,
“MultiJava: modular open classes and symmetric multiple
dispatch for Java,” in Proc. of ACM Conf. on Object-Oriented
Programming Systems, Languages, and Applications, pp. 130–
145, ACM Press, 2000.

[4] Ernst, M., C. Kaplan, and C. Chambers, “Predicate Dispatch-
ing: A Unified Theory of Dispatch,” in ECCOP ’98: Proc. of
the 12th European Conference on Object-Oriented Program-
ming, pp. 186–211, Springer-Verlag, 1998.

[5] Haupt, M. and H. Schippers, “A Machine Model for Aspect-
Oriented Programming,” in ECOOP 2007 – Object-Oriented
Programming, vol. 4609 of LNCS, pp. 501–524, 2007.

[6] Millstein, T., “Practical predicate dispatch,” in Proc. of ACM
Conf. on Object-Oriented Programming Systems, Languages,
and Applications, pp. 345–364, ACM, 2004.

[7] Orleans, D., “Separating behavioral concerns with predicate
dispatch, or, if statement considered harmful,” in Workshop on
Advanced Separation of Concerns in Object-Oriented Systems
at OOPSLA ’01, 2001.

[8] Ossher, H. and P. Tarr, “Hyper/J: multi-dimensional separation
of concerns for Java,” in Proc. of the Int’l Conf. on Software
Engineering (ICSE), pp. 734–737, 2000.

[9] Warth, A., M. Stanojević, and T. Millstein, “Statically scoped
object adaptation with expanders,” in Proc. of ACM Conf.
on Object-Oriented Programming Systems, Languages, and
Applications, pp. 37–56, 2006.

