
A Fast Rejuvenation Technique for Server Consolidation with Virtual Machines

Kenichi Kourai

Tokyo Institute of Technology
2-12-1 Ookayama, Meguro-ku, Tokyo

152-8552, Japan
kourai@is.titech.ac.jp

Shigeru Chiba

Tokyo Institute of Technology
2-12-1 Ookayama, Meguro-ku, Tokyo

152-8552, Japan
chiba@is.titech.ac.jp

Abstract

As server consolidation using virtual machines (VMs)
is carried out, software aging of virtual machine monitors
(VMMs) is becoming critical. Performance degradation or
crash failure of a VMM affects all VMs on it. To counter-
act such software aging, a proactive technique called soft-
ware rejuvenation has been proposed. A typical example
of rejuvenation is to reboot a VMM. However, simply re-
booting a VMM is undesirable because that needs reboot-
ing operating systems on all VMs. In this paper, we pro-
pose a new technique for fast rejuvenation of VMMs called
the warm-VM reboot. The warm-VM reboot enables effi-
ciently rebooting only a VMM by suspending and resum-
ing VMs without accessing the memory images. To achieve
this, we have developed two mechanisms: on-memory sus-
pend/resume of VMs and quick reload of VMMs. The warm-
VM reboot reduces the downtime and prevents the perfor-
mance degradation due to cache misses after the reboot.

1. Introduction

The phenomenon that the state of software degrades with
time is known as software aging [16]. The causes of this
degradation are the exhaustion of system resources and data
corruption. This often leads to performance degradation of
the software or crash failure. Recently, software aging of
virtual machine monitors (VMMs) is becoming critical as
server consolidation using virtual machines (VMs) is being
widely carried out. Many VMs run on top of a VMM in
one machine consolidating multiple servers and aging of the
VMM directly affects all the VMs.

To counteract such software aging, a proactive tech-
nique called software rejuvenation has been proposed [16].
Software rejuvenation occasionally stops a running VMM,
cleans its internal state, and restarts it. A typical example
of rejuvenation is to reboot a VMM. However, operating

systems running on the VMs built on top of a VMM also
have to be rebooted when the VMM is rejuvenated. This
increases the downtime of services provided by the operat-
ing systems. It takes long time to reboot many operating
systems in parallel when the VMM is rebooted. After the
operating systems are rebooted with the VMM, their perfor-
mance is degraded due to cache misses. The file cache used
by the operating systems is lost by the reboot. Such down-
time and performance degradation are critical for servers.

In this paper, we propose a new technique for fast reju-
venation of VMMs called the warm-VM reboot. The ba-
sic idea is that a VMM preserves the memory images of
all VMs through the reboot of the VMM and reuses those
memory images after the reboot. The warm-VM reboot en-
ables efficiently rebooting only a VMM by using the on-
memory suspend/resume mechanism of VMs and the quick
reload mechanism of VMMs. Using the on-memory sus-
pend/resume mechanism, a VMM suspends VMs running
on it before it is rebooted. At that time, the memory images
of the VMs are preserved on main memory and they are not
saved to any persistent storage. The suspended VMs are
quickly resumed by directly using the preserved memory
images after the reboot. To preserve the memory images
during the reboot, the VMM is rebooted using the quick
reload mechanism without a hardware reset. The warm-VM
reboot can reduce the downtime of operating systems run-
ning on VMs and prevent performance degradation due to
cache misses because it does not need to reboot operating
systems.

To achieve this fast rejuvenation, we have developed
RootHammer based on Xen [9]. From our experimental re-
sults, the warm-VM reboot reduced the downtime due to
rebooting the VMM by 83 % at maximum. For compari-
son, when we simply used the suspend/resume mechanism
of the original Xen, the downtime was increased by 173 %.
After the warm-VM reboot, the throughput of a web server
was not degraded at all. When we did not use the warm-VM
reboot, the throughput was degraded by 69 % just after the

reboot of the VMM.
The rest of this paper is organized as follows. Section 2

describes the problems of current software rejuvenation of
VMMs. Section 3 presents a new technique for fast reju-
venation of VMMs and estimates the downtime reduced by
it. Section 4 explains our implementation based on Xen
and Section 5 shows our experimental results. Section 6
discusses the advantage of the warm-VM reboot in a clus-
ter environment. Section 7 examines related work and Sec-
tion 8 concludes the paper.

2. Software Rejuvenation of VMMs

As server consolidation using VMs is widely carried out,
software aging of VMMs is becoming critical. Recently,
multiple server machines are consolidated into one machine
using VMs. In such a machine, many VMs are running on
top of a VMM. Since a VMM is long-running software, it
is affected by software aging more largely than the other
components. For example, a VMM may leak its memory
by failing to release a part of memory. In Xen [9], the size
of the heap memory of the VMM is only 16 MB by default
in spite of the size of physical memory. If the VMM leaks
its heap memory, it would become out of memory easily.
Xen had a bug that caused available heap memory to de-
crease whenever a VM was rebooted [19] or when some
error paths were executed [11]. Out-of-memory errors can
lead performance degradation or crash failure of the VMM.
Such problems of the VMM directly affect all the VMs.

In addition to the aging of VMMs, that of privileged
VMs can also affect the other VMs. Privileged VMs are
used in some VM architectures such as Xen and VMware
ESX server [26] to help the VMM for VM management
and/or I/O processing of all VMs. They run normal oper-
ating systems with some modifications. For operating sys-
tems, it has been reported that system resources such as
kernel memory and swap spaces were exhausted with time
[13]. In privileged VMs, memory exhaustion easily occurs
because the typical size of the memory allocated to them is
not so large. Since privileged VMs do not run large servers,
they do not need a large amount of memory. For example,
Xen had a bug of memory leaks in its daemon named xen-
stored running on a privileged VM [15]. If I/O processing
in the privileged VM slows down due to out of memory, the
performance in the other VMs is also degraded. Since xen-
stored is not restartable, restoring from such memory leaks
needs to reboot the privileged VM. Furthermore, the reboot
of the privileged VM causes the VMM to be rebooted be-
cause the privileged VM strongly depends on the VMM.
For this reason, we consider such privileged VMs as a part
of a VMM and we do not count them as normal VMs.

To counteract such software aging, a proactive tech-
nique called software rejuvenation has been proposed [16].

VMM

privileged
VM VM VM

OS OS OS

VM

OS

Figure 1. An assumed VM architecture.

Software rejuvenation occasionally stops a running VMM,
cleans its internal state, and restarts it. A typical example
of rejuvenation is to reboot a VMM. Since the state of long-
running software such as VMMs degrades with time under
aging conditions, preventive maintenance by software reju-
venation would decrease problems due to aging.

However, when a VMM is rejuvenated, operating sys-
tems on the VMs built on top of the VMM also have to be
rebooted. Operating systems running on VMs have to be
shut down to keep the integrity before the VMM terminates
the VMs. Then, after the reboot of the VMM, newly cre-
ated VMs have to boot the operating systems and restart all
services again.

This increases the downtime of services provided by op-
erating systems. First of all, many operating systems are
shut down and booted in parallel when the VMM is re-
booted. The time for rebooting each operating system is
proportional to the number of VMs because shutting down
and booting multiple operating systems in parallel cause re-
source contention among them. Unfortunately, the num-
ber of VMs that can run simultaneously is increasing due
to processor support of virtualization such as Intel VT [17]
and AMD Virtualization [3] and multi-core processors. In
addition, recent servers tend to provide heavy-weight ser-
vices such as the JBoss application server [18] and the time
for stopping and restarting services is increasing. Second,
shutting down operating systems, rebooting the VMM, and
booting operating systems are performed sequentially. The
in-between reboot of the VMM increases the service down-
time. The reboot of the VMM includes shutting down the
VMM, resetting hardware, and booting the VMM. In par-
ticular, a hardware reset involves power-on self-test by the
BIOS such as a time-consuming check of large amount of
main memory and SCSI initialization.

In addition, the performance of operating systems on
VMs is degraded after they are rebooted with the VMM.
The primary cause is to lose the file cache. An operating
system stores file contents in main memory as the file cache
when it reads them from storage. An operating system
speeds up file accesses by using the file cache on memory.
When an operating system is rebooted, main memory is ini-
tialized and the file cache managed by the operating system
is lost. Therefore, just after the reboot of the operating sys-

tem, the execution performance of server processes running
on top of it is degraded due to frequent cache misses. To fill
the file cache after the reboot, an operating system needs to
read necessary files from storage. Since modern operating
systems use most of free memory as the file cache, it takes
long time to fill free memory with the file cache. The size
of memory installable to one machine tends to increase due
to 64-bit processors and cheaper memory modules. Conse-
quently, more memory is allocated to each VM.

3. Fast Rejuvenation Technique

We claim that only a VMM should be rebooted when
only the VMM needs rejuvenation. In other words, reboot-
ing operating systems should be independent of rebooting
an underlying VMM. Although an operating system may be
rejuvenated occasionally as well as a VMM, the timing does
not always the same as that of the rejuvenation of a VMM. If
some operating systems do not need to be rejuvenated when
the VMM is rejuvenated, rebooting these operating systems
is simply wasteful.

3.1. Warm-VM Reboot

To minimize the influences of the rejuvenation of
VMMs, we propose a new technique for fast rejuvenation
called the warm-VM reboot. The basic idea is that a VMM
preserves the memory images of all the VMs through the
reboot of the VMM and reuses those memory images after
the reboot. The warm-VM reboot enables efficiently reboot-
ing only a VMM by using the on-memory suspend/resume
mechanism for VMs and the quick reload mechanism for
VMMs. A VMM suspends all VMs using the on-memory
suspend mechanism before it is rebooted, reboots itself by
the quick reload mechanism, and resumes all VMs using the
on-memory resume mechanism after the VMM is rebooted.

The on-memory suspend mechanism simply “freezes”
the memory image used by a VM as it is. The memory im-
age is preserved on memory through the reboot of the VMM
until the VM is resumed. This mechanism needs neither to
save the image to any persistent storage such as disks nor to
copy it to non-volatile memory such as flash memory. This
is very efficient because the time needed for suspend hardly
depends on the size of memory allocated to the VM. Even
if the total memory size of all VMs becomes larger, the on-
memory suspend mechanism can scale. At the same time,
this mechanism saves the execution state of the suspended
VM to the memory area that is also preserved through the
reboot of the VMM.

On the other hand, the on-memory resume mecha-
nism “unfreezes” the frozen memory image to restore the
suspended VM. The frozen memory image is preserved
through the reboot of the VMM by using quick reload. This

mechanism also needs neither to read the saved image from
persistent storage nor to copy it from non-volatile memory.
Since the memory image of the VM is restored completely,
performance degradation due to cache misses is prevented
even just after the reboot. At the same time, the saved ex-
ecution state of a VM is also restored. These mechanisms
are analogous to ACPI S3 state (Suspend To RAM) [2] in
that they can suspend and resume a VM without touching
its memory image on main memory.

The quick reload mechanism preserves the memory im-
ages of VMs through the reboot of a VMM and furthermore
makes the reboot itself faster. Usually, rebooting a VMM
needs a hardware reset to reload a VMM instance, but a
hardware reset does not guarantee that memory contents are
preserved during it. In addition, a hardware reset takes long
time as described in the previous section. The quick reload
mechanism can bypass a hardware reset by loading a new
VMM instance by software and start it by jumping to its en-
try point. Since the software mechanism can manage mem-
ory during the reboot, it is guaranteed that memory contents
are preserved. Furthermore, the quick reload mechanism
prevents the frozen memory images of VMs from being cor-
rupted when the VMM initializes itself.

Although many VMMs provide suspend/resume mech-
anisms, they are not suitable to use for rejuvenation of
VMMs because they have to use disks as persistent storage
to save memory images. These traditional suspend/resume
mechanisms are analogous to ACPI S4 state (Suspend To
Disk), so-called hibernation. These mechanisms need
heavy disk accesses and they are too slow. On the other
hand, our on-memory suspend/resume mechanism does not
need to save the memory images to disks before the reboot
of a VMM. Our quick reload mechanism allows the VMM
to reuse the memory images on volatile main memory by
preserving them during the reboot.

3.2. Downtime Estimation

To estimate the downtime reduced by using the warm-
VM reboot, let us consider the usage model of software re-
juvenation. Usually the rejuvenation of a VMM (VMM re-
juvenation) is used with the rejuvenation of operating sys-
tems (OS rejuvenation). In general, the OS rejuvenation
is performed more frequently than the VMM rejuvenation.
For simplicity, we assume that each operating system is re-
juvenated by relying on the time elapsed since the last OS
rejuvenation, which is called time-based rejuvenation [12].
When the warm-VM reboot is used, the VMM rejuvenation
can be performed independently of the OS rejuvenation as
shown in Figure 2 (a). This is because the warm-VM reboot
does not involve the OS rejuvenation. On the other hand,
when a VMM is rejuvenated by a normal reboot, which we
call the cold-VM reboot in contrast to the warm-VM reboot,

OS rejuvenation

VMM rejuvenation

VMM rejuvenation

OS rejuvenation

(a) warm-VM reboot

(b) cold-VM reboot

α

time

time

Figure 2. The timing of two kinds of rejuvena-
tion. The rejuvenation of all but one operat-
ing system is omitted.

the VMM rejuvenation affects the timing of the OS rejuve-
nation as shown in Figure 2 (b) because the VMM rejuve-
nation involves the OS rejuvenation. The OS rejuvenation
after the VMM rejuvenation will be performed at fixed in-
tervals again.

When the warm-VM reboot is used, the downtime due
to the VMM rejuvenation is caused by suspending all VMs,
rebooting the VMM, and resuming all VMs. The increase
of the downtime is:

dw(n) = rebootvmm(n) + resume(n)

where n is the number of VMs, rebootvmm(n) is the time
needed to reboot a VMM when n VMs are suspended and
resumed, and resume(n) is the time needed to perform on-
memory suspend and resume of n VMs in parallel.

On the other hand, when the cold-VM reboot is used,
the downtime due to the VMM rejuvenation is caused by
shutting down all operating systems, resetting hardware, re-
booting a VMM, and booting all operating systems. The
increase of the downtime is:

dc(n) = resethw + rebootvmm(0) + rebootos(n)−
rebootos(1) × α

where resethw is the time needed for a hardware reset,
rebootos(n) is the time needed to shut down and boot n
operating systems in parallel, and α is a ratio of the time
elapsed until the VMM rejuvenation since the last OS reju-
venation to an interval between the OS rejuvenation (0 <
α ≤ 1). Since the OS rejuvenation is rescheduled after the
VMM rejuvenation, the number of the OS rejuvenation is
decreased by α in total although extra OS rejuvenation is
added by the VMM rejuvenation.

The downtime reduced by using the warm-VM reboot is
calculated by dc(n) − dw(n):

r(n) = resethw + rebootvmm(0) − rebootvmm(n)+
rebootos(n) − rebootos(1) × α − resume(n)

4. Implementation

To achieve the warm-VM reboot, we have developed
RootHammer based on Xen 3.0.0. Like Xen, a VM is called
a domain. In particular, the privileged VM that manages
VMs and handles I/O is called domain 0 and the other VMs
are called domain Us.

4.1. Memory Management of the VMM

The VMM distinguishes machine memory and pseudo-
physical memory to virtualize memory resource. Machine
memory is physical memory installed in the machine and
consists of a set of machine page frames. For each ma-
chine page frame, a machine frame number (MFN) is con-
secutively numbered from 0. Pseudo-physical memory is
the memory allocated to domains and gives the illusion of
contiguous physical memory to domains. For each physical
page frame in each domain, a physical frame number (PFN)
is consecutively numbered from 0.

The VMM creates the P2M-mapping table to enable do-
mains to reuse its memory even after the reboot. The P2M-
mapping table is a table that records mapping from PFN to
MFN for each domain. The size of our P2M-mapping table
is 2 MB for 1 GB of pseudo-physical memory. A new en-
try is added to this table when a new machine page frame
is allocated to a domain while an existing entry is removed
when a machine page frame is deallocated. These entries
are preserved after domains are suspended. Even when the
total size of pseudo-physical memory is larger than that of
machine memory due to using a ballooning technique [27],
this table can maintain the mapping properly.

4.2. On-memory Suspend/Resume Mechanism

When the operating system in domain 0 is shut down,
the VMM suspends all domain Us as in Figure 3. To sus-
pend domain Us, the VMM sends a suspend event to each
domain U. In the original Xen, domain 0 sends the event to
each domain U. One advantage of suspending by the VMM
is that suspending domain Us can be delayed until after the
operating system in domain 0 is shut down. The original
suspend by domain 0 has to be performed while domain 0
is shut down. This delay reduces the downtime of services
running in a domain U. When a domain U receives the sus-
pend event, the operating system kernel in the domain U
executes its suspend handler. In the handler, the kernel de-
taches all devices. We used the handler implemented in the
Linux kernel modified for Xen.

After the operating system in a domain U executes the
suspend handler, it issues the suspend hypercall to the
VMM, which is like a system call to the operating system.
In the hypercall, the VMM freezes the memory image of

1. suspend
 event

3. suspend
 hypercall

domain U

kernel

0 1 2 3 4 5MFN: ...

machine memory

1 4 3

0 1 2

MFN:
PFN:

...

5. save
 domain state

4. freeze

2. suspend
 handling

VMM

domain 0

Figure 3. On-memory suspend of a domain U.

the domain on memory by reserving it. The VMM does
not release the memory pages allocated to the domain but
it maintains them using the P2M-mapping table. This does
not cause out-of-memory errors because the VMM is re-
booted just after it suspends all domain Us. Next, the VMM
saves the execution state of the domain to the memory pages
that is preserved during the reboot of the VMM. The exe-
cution state of a domain includes execution context such as
CPU registers and shared information such as the status of
event channels. In addition, the VMM saves the configu-
ration of the domain, such as devices. The memory space
needed for saving those is 16 KB.

After the VMM finishes suspending all domain Us, the
VMM is rebooted without losing the memory images of do-
main Us by using the quick reload mechanism, which is
described in the next section. Then, after domain 0 is re-
booted, it resumes all domain Us. First, domain 0 creates a
new domain U, allocates the memory pages recorded in the
P2M-mapping table to the domain U, and restores its mem-
ory image. Next, the VMM restores the state of the domain
U from the saved state. The operating system kernel in the
domain U executes the resume handler to re-establish the
communication channels to the VMM and to attach the de-
vices that were detached on suspend. Finally, the execution
of the kernel is restarted.

4.3. Quick Reload Mechanism

To preserve the memory images of domain Us during the
reboot of a VMM, we have implemented the quick reload
mechanism based on the kexec mechanism [21] provided in
the Linux kernel. The kexec mechanism enables a new ker-
nel to be started without a hardware reset. Like kexec, the
quick reload mechanism enables a new VMM to be started
without a hardware reset. To load a new VMM instance into
the current VMM, we have implemented the xexec system
call in the Linux kernel for domain 0 and the xexec hyper-
call in the VMM.

When the xexec system call is issued in domain 0, the
kernel issues the xexec hypercall to the VMM. This hyper-
call loads a new executable image consisting of a VMM, a
kernel for domain 0, and an initial RAM disk for domain
0 into memory. When the VMM is rebooted, the quick
reload mechanism first passes the control to the CPU used
at the boot time. Then, it copies the executable loaded by
the xexec hypercall to the address where the executable im-
age is loaded at normal boot time. Finally, the mechanism
transfers the control to the new VMM.

When the new VMM is rebooted and initialized, it first
reserves the memory for the P2M-mapping table. Based on
the table, the VMM reserves the memory pages that have
been allocated to domain Us. Next, the VMM reserves
the memory pages where the execution state of domains is
saved. The latest Xen 3.0.4 also supports the kexec facility
for its VMM, but it does not have any support to preserve
the memory images of domain Us while a new VMM is ini-
tialized.

5. Experiments

We performed experiments to show that our technique
for fast rejuvenation is effective. For a server machine, we
used a PC with two Dual-Core Opteron processors Model
280, 12 GB of PC3200 DDR SDRAM memory, a 36.7 GB
of 15,000 rpm SCSI disk (Ultra 320), and gigabit Ethernet
NICs. We used the RootHammer VMM and, for compari-
son, the original VMM of Xen 3.0.0. The operating systems
running on top of the VMM were Linux 2.6.12 modified for
Xen. One physical partition of the disk was used for a vir-
tual disk of one VM. The size of the memory allocated to
domain 0 was 512 MB. For a client machine, we used a
PC with dual Xeon 3.06 GHz processors, 2 GB of memory,
and gigabit Ethernet NICs. The operating system was Linux
2.6.8.

5.1. Performance of On-memory Suspend/Resume

We measured the time needed for tasks before and af-
ter the reboot of the VMM: suspend or shutdown, and re-
sume or boot. We ran a ssh server in each VM as a ser-
vice provided to the outside. We performed this experi-
ment for (1) our on-memory suspend/resume, (2) Xen’s sus-
pend/resume, which uses a disk to save the memory images
of VMs, and (3) simple shutdown and boot.

First, we changed the size of memory allocated to a sin-
gle VM from 1 to 11 GB and measured the time needed
for pre- and post-reboot tasks. Figure 4 shows the results.
Xen’s suspend/resume depended on the memory size of a
VM because this method must write the whole memory im-
age of a VM to a disk and read it from the disk. On the other
hand, our on-memory suspend/resume hardly depended on

0 2 4 6 8 10
memory size of a VM (GB)

0

50

100

150

200

el
ap

se
d

tim
e

(s
ec

)

Xen’s suspend
OS shutdown
on-memory suspend

0 2 4 6 8 10
memory size of a VM (GB)

0

50

100

150

200

el
ap

se
d

tim
e

(s
ec

)

Xen’s resume
OS boot
on-memory resume

(a) pre-reboot task (b) post-reboot task

Figure 4. The time for pre- and post-reboot
tasks when the memory size of a VM is
changed.

0 2 4 6 8 10
number of VMs

0

50

100

150

200

250

el
ap

se
d

tim
e

(s
ec

)

Xen’s suspend
OS shutdown
on-memory suspend

0 2 4 6 8 10
number of VMs

0

50

100

150

200

250

el
ap

se
d

tim
e

(s
ec

)

Xen’s resume
OS boot
on-memory resume

(a) pre-reboot task (b) post-reboot task

Figure 5. The time for pre- and post-reboot
tasks when the number of VMs is changed.

the memory size because this method does not touch the
memory image of a VM. When the memory size was 11
GB, it took 0.08 seconds for suspend and 0.9 second for re-
sume. These are only 0.06 % and 0.7 % of Xen’s suspend
and resume, respectively.

Next, we measured the time needed for pre- and post-
reboot tasks when multiple VMs were running in parallel.
We fixed the size of memory allocated to each VM to 1 GB
and changed the number of VMs from 1 to 11. Domain 0 is
not included in the number. Figure 5 shows the results. All
the three methods depended on the number of VMs. When
the number of VMs was 11, on-memory suspend/resume
needed only 0.04 seconds for suspend and 4.2 seconds for
resume. These were 0.02 % and 2.7 % of Xen’s suspend and
resume, respectively. The result also shows that the time for
the boot largely increases as the number of VMs increases.

0 2 4 6 8 10
number of VMs

0

100

200

300

400

500

av
er

ag
e

do
w

nt
im

e
(s

ec
)

saved-VM reboot
cold-VM reboot
warm-VM reboot

0 2 4 6 8 10
number of VMs

0

100

200

300

400

500

av
er

ag
e

do
w

nt
im

e
(s

ec
)

saved-VM reboot
cold-VM reboot
warm-VM reboot

(a) ssh (b) JBoss

Figure 6. The downtime of ssh and JBoss
when the number of VMs is changed.

5.2. Effect of Quick Reload

To examine how fast the VMM is rebooted by using the
quick reload mechanism, we measured the time needed for
rebooting the VMM. We recorded the time when the exe-
cution of a shutdown script completed and when the reboot
of the VMM completed. The time between them was 11
seconds when we used quick reload whereas it was 59 sec-
onds when we used a hardware reset. Thus, the quick reload
mechanism speeded up the reboot of the VMM by 48 sec-
onds.

5.3. Downtime of Networked Services

We measured the downtime of networked services when
we rejuvenated the VMM. We rebooted the VMM while
we repeated sending packets from a client host to the VMs
in a server host. We measured the time from when a net-
worked service in each VM was down and until it was up
again after the VMM was rebooted. We performed this ex-
periment for (1) the warm-VM reboot, (2) the reboot using
Xen’s suspend/resume (saved-VM reboot), and (3) the re-
boot by shutdown/boot (cold-VM reboot). We fixed the size
of memory allocated to each VM to 1 GB and changed the
number of VMs from 1 to 11.

First, we ran only a ssh server in each VM and measured
its downtime during the reboot of the VMM. Figure 6 (a)
shows the downtime. The downtime by the saved-VM re-
boot highly depended on the number of VMs. When the
number was 11, the downtime was 429 seconds in average.
At the same number of VMs, the downtime by the warm-
VM reboot was 42 seconds and only 9.8 % of the saved-
VM reboot. In addition, the downtime by the warm-VM re-
boot hardly depended on the number of VMs. On the other
hand, the downtime by the cold-VM reboot was 157 sec-
onds when the number of VMs was 11. This was 3.7 times

longer than the warm-VM reboot.
After we rebooted the VMM using the warm-VM reboot

or the saved-VM reboot, we could continue the session of
ssh thanks to TCP retransmission, even if a timeout was set
in the ssh server. However, if a timeout was set to 60 sec-
onds in the ssh client, the session was timed out during the
saved-VM reboot. From this point of view, the downtime
for one reboot should be short enough. When we used the
cold-VM reboot, we could not continue the session because
the ssh server was shut down.

Next, we ran a JBoss application server [18] and mea-
sured its downtime during the reboot of a VMM. JBoss is a
large server and it takes more time to start than a ssh server.
We used the default configuration of JBoss. Figure 6 (b)
shows the downtime. The downtime by the warm-VM re-
boot and the saved-VM reboot was almost the same as that
of a ssh server because these reboot mechanisms resumed
VMs and did not need to restart the JBoss server. On the
other hand, the downtime by the cold-VM reboot was larger
than that of a ssh server because the cold-VM reboot needed
to restart the JBoss server. When the number was 11, the
downtime was 241 seconds. This was 1.5 times longer than
that of a ssh server. This means that the cold-VM reboot in-
creases the service downtime according to running services.

Let us consider the availability of the JBoss server when
the number of VMs is 11. As an example, we assume that
the OS rejuvenation is performed every week and the VMM
rejuvenation is performed once per four weeks. According
to our experiment, the downtime due to the OS rejuvenation
was 33.6 seconds. For the cold-VM reboot, we assume that
the expected value of α in Section 3.2 is 0.5. Under these
assumptions, the availability is 99.993 %, 99.985 %, and
99.977 % for the warm-VM reboot, the cold-VM reboot,
and the saved-VM reboot, respectively. The warm-VM re-
boot achieves four 9s although the others achieve three 9s.
This improvement of availability is important for critical
servers.

5.4. Downtime Analysis

To examine which factors reduce downtime in the warm-
VM reboot, we measured the time needed for each op-
eration when we rebooted the VMM. At the same time,
we measured the throughput of a web server running on a
VM. We repeated sending requests from a client host to the
Apache web server [4] running on a VM in a server host by
using the httperf benchmark tool [20]. We created 11 VMs
and allocated 1 GB of memory to each VM. We rebooted
the VMM and recorded the changes of the average through-
put of 50 requests. We performed this experiment for the
warm-VM reboot and the cold-VM reboot. Figure 7 shows
the results. We executed the reboot command in domain 0
at time 20 seconds in this figure. We superimposed the time

0

100

200

300

re
qu

es
ts

/s
ec

0 20 40 60 80 100 120 140 160 180 200 220
elapsed time (sec)

0

100

200

300

re
qu

es
ts

/s
ec

(a) warm-VM reboot

(b) cold-VM reboot

dom0 shutdown

dom0 boot

dom0 shutdown

domU suspend VMM boot
domU resume

domU shutdown

hardware reset

VMM boot

dom0 boot domU boot

Figure 7. The breakdown of the downtime due
to the VMM rejuvenation.

needed for each operation during the reboot onto Figure 7.
As shown in the previous section, the on-memory sus-

pend/resume mechanism provided by the warm-VM re-
boot reduced the downtime largely. The total time for on-
memory suspend/resume was 4 seconds, but that for shut-
down and boot in the cold-VM reboot was 63 seconds. In
addition, the warm-VM reboot reduced the time for a hard-
ware reset from 43 to 0 second. Also, the fact that the warm-
VM reboot can continue to run a web server until just before
the VMM is rebooted was effective for reducing downtime.
A web server was stopped at time 34 seconds in the warm-
VM reboot while it was stopped at time 27 seconds in the
cold-VM reboot. This reduced downtime by 7 seconds. For
the warm-VM reboot, the VMM is responsible for suspend-
ing VMs and it can do that task after domain 0 is shut down.

In both cases, the throughput was restored after the re-
boot of the VMM. The throughput in the cold-VM reboot
was degraded during 8 seconds. This was due to misses of
the file cache. We examine this performance degradation in
detail in the next section. The throughput in the warm-VM
reboot was also degraded during 25 seconds after the reboot.
This is not due to cache misses but an implementation prob-
lem of Xen. When Xen created new VMs simultaneously,
the network performance was degraded for a while.

5.5. Performance Degradation

To examine performance degradation due to cache
misses, we measured the throughput of operations with file
accesses in a VM before and after the reboot of a VMM.
To examine the effect of the file cache, we measured the
throughput of the first- and second-time accesses. We allo-
cated 11 GB of memory to one VM. First, we measured the
time needed to read a file of 512 MB. In this experiment,
all the file blocks were cached on memory. We performed
this experiment for the warm-VM reboot and the cold-VM
reboot. Figure 8 (a) shows the result. When we used the

1st 2nd 1st 2nd
0

200

400

600

800

1000

1200

re
ad

 th
ro

ug
hp

ut
 (

M
B

/s
)

warm-VM reboot
cold-VM reboot

1st 2nd 1st 2nd
0

50

100

150

200

th
ro

ug
hp

ut
 (

re
qu

es
ts

/s
ec

)

warm-VM reboot
cold-VM reboot

before reboot after reboot before reboot after reboot

(a) file reads (b) web access

Figure 8. The throughput of file reads and
web accesses before and after the reboot.

cold-VM reboot, the throughput just after the reboot was de-
graded by 91 %, compared with that just before the reboot.
On the other hand, when we used the warm-VM reboot, the
throughput just after the reboot was not degraded. This im-
provement was achieved by no miss in the file cache even
when a file was accessed at the first time after the reboot.

Next, we measured the throughput of a web server before
and after the reboot of a VMM. The Apache web server
served 10,000 files of 512 KB, all of which were cached
on memory. In this experiment, 10 httperf processes in a
client host sent requests to the server in parallel. All files
were requested only once. Figure 8 (b) shows the results.
When we used the warm-VM reboot, the performance just
after the reboot was not degraded, compared with that just
before the reboot. When we used the cold-VM reboot, the
throughput just after the reboot was degraded by 69 %.

5.6. Applying to Our Model

From our experimental results when we ran 11 VMs, we
can get the functions used in our model in Section 3.2:

rebootvmm(n) = −0.55n + 43
resume(n) = 0.43n− 0.07
rebootos(n) = 3.8n + 13
boot(n) = 3.4n + 2.8
resethw = 47

Using these functions, we can get the function of the down-
time reduced by using the warm-VM reboot:

r(n) = 3.9n + 60 − 17α

Since r(n) is always positive under α ≤ 1, the warm-VM
reboot can always reduce the downtime in our configura-
tion.

total
throughput

m*p

(m-1)p

time

warm-VM reboot

cold-VM reboot

live migration

Figure 9. The total throughput in a cluster en-
vironment. m is the number of hosts and p is
the throughput of each host.

6. Cluster Environment

Software rejuvenation is naturally fit with a cluster envi-
ronment as described in the literature [7, 25]. In a cluster
environment, multiple hosts provide the same service and
a load balancer dispatches requests to one of these hosts.
Even if some of the hosts are rebooted for the rejuvena-
tion of the VMM, the service downtime is zero. However,
the total throughput of the service is degraded while some
hosts are rebooted. The warm-VM reboot can mitigate the
performance degradation by reducing the downtime of re-
booted hosts.

Migration of VMs can be also used in a cluster environ-
ment to reduce the total cost. Unlike the warm-VM reboot,
live migration [8] in Xen and VMotion in VMware [26]
achieve negligible service downtime by using two hosts
when a VMM is rejuvenated. Before the VMM is rebooted,
it transfers the memory images of all VMs running on it to
a destination host without stopping the VMs. After that, the
VMM repeats transferring the changes in the memory im-
ages from the previous transmission until the changes be-
come small. Finally, the VMM stops the VMs and transfers
the changes and the execution state of the VMs. If we use
live migration in a cluster environment, that destination host
for migration can be shared among the remaining hosts.

Let us consider a cluster environment that consists of m
hosts to estimate the total throughput of the cluster. When
we let p be the throughput of each host, the total through-
put is m · p when all hosts are running. Figure 9 illustrates
the changes of the total throughput with time, based on our
experimental results. During the rejuvenation of a VMM
in one host, the total throughput is decreased to (m − 1)p
because the rejuvenated host cannot provide any services.
When we use the warm-VM reboot, the degradation of the
total throughput lasts only for a short period. The period
is the same as the downtime in the rejuvenated host and it
was 42 seconds in our experimental environment. The total
throughput is restored to m · p soon after the rejuvenation.

However, when we use the cold-VM reboot, which is a nor-
mal reboot of a VMM, the degradation of the total through-
put lasts for a longer period. In our experimental environ-
ment, the period was 241 seconds when we created 11 VMs
and ran JBoss. In addition, the total throughput is degraded
to (m − δ)p (0 ≤ δ ≤ 1) for a while after the rejuvenation
due to cache misses. In our experiment of Section 5.5, δ
was 0.69.

On the other hand, when we use live migration, the total
throughput is (m − 1)p even when no hosts are being mi-
grated because one host is reserved as a destination host for
migration. This is m−1

m of the total throughput in a cluster
environment where migration is not used. This is critical if
m is not large enough. While one host performs live migra-
tion, the total throughput is (m− 1.12)p, which is led from
the report that the degradation of the Apache web server
was 12 % during live migration [8]. This degradation of the
total throughput is estimated to last for 17 minutes when we
run 11 VMs, each of which has 1 GB of memory. This is
calculated from the report that the time needed for migra-
tion was 72 seconds when only one VM with 800 MB of
memory was run [8]. This period of performance degrada-
tion is much longer than those in the warm-VM reboot and
the cold-VM reboot. Although these reported values are not
measured in our experimental environment, the trend would
not be changed.

According to these analyses, the warm-VM reboot is
more useful in a cluster environment than live migration. It
can reduce performance degradation by reducing the down-
time of rejuvenated hosts. On the other hand, for services
that cannot be replicated to multiple hosts, live migration
is still useful. It can reduce downtime by using alternative
host as a spare.

7. Related Work

Microreboot [6] enables rebooting fine-grained applica-
tion components to recover from software failure. If reboot-
ing a fine-grained component cannot solve problems, mi-
croreboot recursively attempts to reboot a coarser-grained
component including that fine-grained component. If re-
booting a finer-grained component can solve problems, the
downtime of the application including that component can
be reduced. Microreboot is a reactive technique, but proac-
tively using it allows micro-rejuvenation. Likewise, micro-
kernel operating systems [1] allow rebooting only its sub-
systems implemented as user processes. Nooks [24] en-
ables restarting only device drivers in the operating system.
Thus, microreboot and other previous proposals are fast re-
boot techniques for subcomponents. On the other hand, the
warm-VM reboot is a fast reboot technique for a parent
component while the state of subcomponents is preserved
during the reboot.

In this paper, we have developed mechanisms to rejuve-
nate only a parent component when the parent component
is a VMM and the subcomponents are VMs. Checkpoint-
ing and restart [23] of processes can be used to rejuvenate
only an operating system. In this case, the parent compo-
nent is an operating system and the subcomponents are its
processes. This mechanism saves the state of processes to a
disk before the reboot of the operating system and restores
the state from the disk after the reboot. This is similar to
suspend and resume of VMs, but suspending and resuming
VMs are more challenging because they have to deal with a
large amount of memory. As we showed in our experiments,
simply saving and restoring the memory images of VMs to
and from a disk are not realistic. The warm-VM reboot is a
novel technique that hardly depends on the memory size by
preserving the memory images.

To speed up suspend and resume using slow disks, sev-
eral techniques are used. On suspend, VMware [26] incre-
mentally saves only the modification of the memory image
of a VM to a disk. This can reduce accesses to a slow disk
although disk accesses on resume are not reduced. Win-
dows XP saves compressed memory image to a disk on hi-
bernation (Suspend To Disk). This can reduce disk accesses
not only on hibernation but also on resume. These tech-
niques are similar to incremental checkpointing [10] and
fast compression of checkpoints [22]. On the other hand,
the warm-VM reboot does not need any disk accesses.

Instead of using slow hard disks for suspend and resume,
it is possible to use faster non-volatile RAM disks such as
i-RAM [14]. Since most of the time for suspend and resume
is spent to access slow disks, RAM disks can speed up the
access. However, such non-volatile RAM disks are much
more expensive than hard disks. Moreover, it takes time
to copy the memory images from main memory to RAM
disks on suspend and copy them from RAM disks to main
memory on resume. The warm-VM reboot needs neither
such a special device nor extra memory copy.

Recovery Box [5] preserves only the state of an operat-
ing system and applications on non-volatile memory and re-
stores them quickly after the operating system is rebooted.
Recovery Box restores the partial state of a machine lost
by a reboot while the warm-VM reboot restores the whole
state of VMs lost by a reboot. In addition, Recovery Box
speeds up a reboot by reusing the kernel text segment left
on memory. This is different from our quick reload mecha-
nism in that Recovery Box needs hardware support to pre-
serve memory contents during a reboot.

To mitigate software aging of domain 0, Xen provides
driver domains, which are domain Us that enable running
device drivers. Device drivers are one of the most error-
prone components. In a normal configuration of Xen, de-
vice drivers are run in domain 0 and the rejuvenation of de-
vice drivers needs to reboot domain 0 and the VMM. Driver

domains enable localizing the errors of device drivers in do-
main Us and rebooting the domains without rebooting the
VMM. Thus, using driver domains reduces the frequency of
the rejuvenation of the VMM. However, when the VMM is
rebooted, driver domains as well as domain 0 are rebooted
because driver domains cannot be suspended. Therefore,
the existence of driver domains increases the downtime.

8 Conclusion

In this paper, we proposed a new technique for fast re-
juvenation of VMMs called the warm-VM reboot. This
technique enables only a VMM to be rebooted by using
the on-memory suspend/resume mechanism and the quick
reload mechanism. The on-memory suspend/resume mech-
anism performs suspend and resume of VMs without ac-
cessing the memory images. The quick reload mechanism
preserves the memory images during the reboot of a VMM.
The warm-VM reboot can reduce the downtime and prevent
the performance degradation just after the reboot. We have
implemented this technique based on Xen and performed
several experiments to show the effectiveness. The warm-
VM reboot reduced the downtime by 83 % at maximum and
kept the same throughput after the reboot.

One of our future directions is to empirically evaluate the
reduction of performance degradation by using the warm-
VM reboot in a cluster environment. Another direction is to
enable privileged VMs to be rebooted without the reboot of
the VMM and to be suspended.

References

[1] M. Accetta, R. Baron, W. Bolosky, D. Golub, R. Rashid,
A. Tevanian, and M. Young. Mach: A New Kernel Founda-
tion for UNIX Development. In Proceedings of the USENIX
1986 Summer Conference, pages 93–112, 1986.

[2] Advanced Configuration and Power Interface Specification.
http://www.acpi.info/.

[3] AMD. AMD64 Virtualization Codenamed ”Pacifica” Tech-
nology: Secure Virtual Machine Architecture Reference
Manual, 2005.

[4] Apache Software Foundation. Apache HTTP Server Project.
http://httpd.apache.org/.

[5] M. Baker and M. Sullivan. The Recovery Box: Using Fast
Recovery to Provide High Availability in the UNIX Environ-
ment. In Proceedings of the Summer USENIX Conference,
pages 31–44, 1992.

[6] G. Candea, S. Kawamoto, Y. Fujiki, G. Friedman, and
A. Fox. Microreboot – A Technique for Cheap Recovery.
In Proceedings of the 6th Symposium on Operating Systems
Design and Implementation, pages 31–44, 2004.

[7] V. Castelli, R. Harper, P. Heidelberger, S. Hunter, K. Trivedi,
K. Vaidyanathan, and W. Zeggert. Proactive Management of
Software Aging. IBM Journal of Research & Development,
45(2):311–332, 2001.

[8] C. Clark, K. Fraser, S. Hand, J. Hansen, E. Jul, C. Limpach,
I. Pratt, and A. Warfield. Live Migration of Virtual Ma-
chines. In Proceedings of the 2nd Symposium on Networked
Systems Design and Implementation, pages 1–11, 2005.

[9] B. Dragovic, K. Fraser, S. Hand, T. Harris, A. Ho, I. Pratt,
A. Warfield, P. Barham, and R. Neugebauer. Xen and the
Art of Virtualization. In Proceedings of the Symposium on
Operating Systems Principles, pages 164–177, 2003.

[10] S. Feldman and C. Brown. IGOR: A System for Program
Debugging via Reversible Execution. In Proceedings of
the Workshop on Parallel and Distributed Debugging, pages
112–123, 1989.

[11] K. Fraser. Xen changeset 11752. Xen Mercurial reposito-
ries.

[12] S. Garg, Y. Huang, C. Kintala, and K. Trivedi. Time and
Load Based Software Rejuvenation: Policy, Evaluation and
Optimality. In Proceedings of the 1st Fault Tolerance Sym-
posium, pages 22–25, 1995.

[13] S. Garg, A. Moorsel, K. Vaidyanathan, and K. Trivedi. A
Methodology for Detection and Estimation of Software Ag-
ing. In Proceedings of the 9th International Symposium on
Software Reliability Engineering, pages 283–292, 1998.

[14] GIGABYTE Technology. i-RAM. http://www.
gigabyte.com.tw/.

[15] V. Hanquez. Xen changeset 8640. Xen Mercurial reposito-
ries.

[16] Y. Huang, C. Kintala, N. Kolettis, and N. Fulton. Soft-
ware Rejuvenation: Analysis, Module and Applications. In
Proceedings of the 25th International Symposium on Fault-
Tolerant Computing, pages 381–391, 1995.

[17] Intel Corporation. Intel Virtualization Technology Specifica-
tion for the IA-32 Intel Architecture, 2005.

[18] JBoss Group. JBoss Application Server. http://www.
jboss.com/.

[19] M. Kanno. Xen changeset 9392. Xen Mercurial repositories.
[20] D. Mosberger and T. Jin. httperf: A Tool for Measuring

Web Server Performance. Performance Evaluation Review,
26(3):31–37, 1998.

[21] A. Pfiffer. Reducing System Reboot Time with kexec.
http://www.osdl.org/.

[22] J. Plank, J. Xu, and R. Netzer. Compressed Differences: An
Algorithm for Fast Incremental Checkpointing. Technical
Report CS–95–302, University of Tennessee, 1995.

[23] B. Randell. System Structure for Software Fault Tolerance.
IEEE Transactions on Software Engineering, SE-1(2):220–
232, 1975.

[24] M. Swift, B. Bershad, and H. Levy. Improving the Relia-
bility of Commodity Operating Systems. In Proceedings of
the 19th Symposium on Operating Systems Principles, pages
207–222, 2003.

[25] K. Vaidyanathan, R. Harper, S. Hunter, and K. Trivedi.
Analysis and Implementation of Software Rejuvenation in
Cluster Systems. In Proceedings of the 2001 ACM SIGMET-
RICS International Conference on Measurement and Mod-
eling of Computer Systems, pages 62–71, 2001.

[26] VMware Inc. VMware. http://www.vmware.com/.
[27] C. Waldspurger. Memory Resource Management in

VMware ESX Server. In Proceedings of the 5th Symposium
on Operating Systems Design and Implementation, pages
181–194, 2002.

