
Performance improvement for persistent systems by AOP

Yasuhiro Aoki Sigeru Chiba
Tokyo Institute of Technology

aoki, chiba@csg.is.titech.ac.jp

Abstract
Efficient data retrieval from databases is a significant issue of the
design of persistent systems. We propose an aspect oriented per-
sistent system named AspectualStore. AspectualStore opens up its
data retrieval mechanism so that developers can customize it in an
aspect for performance optimization. The aspect controls the gen-
eration of SQL queries and minimizes the number of round-trips.
It can also apply the customization only when the dynamic be-
havior of data accesses matches given patterns. This customization
based on dynamic contexts is useful in practice and it needs aspect-
oriented programming. Traditional object-oriented programming is
not appropriate although it can manage the customization based on
static structures, such as customization for a particular class of data.

Categories and Subject Descriptors D.2.11 [Software Architec-
tures]: Domain-specific architectures

General Terms Languages, Design

Keywords Aspects, persistence, performance, databse

1. Introduction
In Java, application software accessing a relational database is of-
ten developed by using a persistent object system. Traditional per-
sistent systems such as EJB2 [14] transparently resolve impedance
mismatch between objects and relational database entities. Without
such a persistent system, developers must do cumbersome work for
resolving impedance mismatch. For example, developers have to
directly describe SQL strings, manually retrieve data from database
by JDBC [15], and program the map from a database record to an
object.

A persistent system transparently resolves impedance mis-
match. With a persistent system, developers have to do cumber-
some work except retrieving a root persistent object. When a pro-
gram accesses an object referred to by the root object, a persistent
system automatically generates SQL strings and retrieves a record
from a database and converts it into an object. For example, Fig-
ure 1 is a part of application program of a bibliography search
system. Since it is written with a persistent system, no description
for accessing a database is included in this code. The persistent
system implicitly retrieves necessary data from the database and
creates a persistent object when the program calls getAuthor() or
getTitle() on a persistent object Paper.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
Workshop SPLAT ’07 March 12-13, 2007 Vancouver, British Columbia, Canada.
Copyright c© 2007 ACM 1-59593-656-1/07/03. . . $5.00

However, the traversal of a persistent object graph from its root
object is often inefficient. A naive persistent system will send a
query to a database whenever one reference between objects is re-
solved. To avoid this problem, we propose an aspect-oriented per-
sistent system called AspectualStore. This system allows develop-
ers to customize it by an aspect so that the number of round-trips
to a database will be minimized. It enables various prefetching, de-
pending on dynamic contexts such as the path from the root object
to the target object. To do that, AspectualStore opens up its internal
data retrieval mechanism and thereby developers can extend As-
pectualStore to make various dynamic contexts accessible from an
aspect. Although traditional persistent systems allow customization
depending on static contexts, such as the class of accessed objects,
AspectualStore enables more flexible customization.

01 void showPaperList(List<Paper> papers) {
02 Iterator it = papers.iterator();
03 while(it.hasNext()) {
04 Paper p = (Paper)it.next();
05 show(p);
06 ...
07 }
08 }

10 void show(Paper p) {
11 Author a = p.getAuthor();
12 String title = p.getTitle();
13 String name = a.getName();
14 /* show p.title and a.name */}

Figure 1. Java code using a persistent system

2. Performance Improvement
Although persistent systems provide transparent mapping between
objects and relational databases, their execution performance is not
satisfactory in practice without appropriate hints or customization
given by developers. On the other hand, the hints that can be
given to traditional persistent systems are limited and hence it
has been difficult to achieve sufficient performance. For example,
traditional systems allow customizing the prefetching scheme for
a particular class of persistent objects. However, they do not allow
customization depending on dynamic contexts of data accesses.

For example, see the showPaperList(List) method in Figure 1
again. This method shows the author’s names and the titles of a col-
lection of papers. If the show(Paper) method called in the show-
PaperList(List) method causes a database round-trip for obtaining
the author’s name from the author table (because the paper table
includes only the author number), the while statement in show-
PaperList(List) would cause a large number of round-trips. This
is very inefficient. For example, when a Paper object is obtained

from the paper table, the Author object referred to by the Paper
object should be simultaneously prefetched from the author table.
This prefetching can be efficiently executed by the join between the
paper table and the author table. However, prefetching an Author
object whenever a Paper object is retrieved will consume a huge
memory space and make a serious performance impact. A large
number of unnecessary Author objects may be prefetched.

To really improve performance, developers should be able to
specify customization, such as a prefetching scheme, depending on
dynamic contexts of application programs. For example, an Author
object should be prefetched only when a list of Paper objects is re-
trieved as the argument to the showPaperList(List) method. How-
ever, describing such customization in an object-oriented language
like Java would crosscut a program and decreases the readability of
the program.

3. Using AOP for improving performance
We propose an aspect-oriented persistent system named Aspectu-
alStore. To improve the performance of applications of Aspec-
tualStore, the developers can customize how AspectualStore re-
trieves persistent objects according to dynamic contexts of the ap-
plications. For example, persistent objects can be prefetched when
they are reached from the persistent root object along a particu-
lar path of object references. This customization is written in an
aspect-oriented language and thus it never scatters over the appli-
cation program. Since the performance concern is separated into
an aspect, the developers do not have to edit the original program
when they describe performance hints to fix the performance bot-
tlenecks found by, for example, performance profiling. To sup-
port customization depending on dynamic contexts, AspectualStore
opens up its internal structure. The developers can extend the inter-
nal structure by an aspect so that extra dynamic contexts necessary
for performance improvement will be recorded and visible at run-
time. Such extra contexts include which references have been nav-
igated from a persistent object, which method is being executed,
and which reference navigation causes a database round-trip.

3.1 Optimize the behavior of showPaperList(List)

Now we show how an aspect is used for optimizing the showPa-
perList(List) method in Figure 1. The performance problem of
showPaperList() was that a large number of database round-trip
may happen. To avoid this, we can customize the database accesses
during the execution of showPaperList(List). Figure 2 is an aspect
written in GluonJ [13, 10] for optimizing the behavior of show-
PaperList(List). This aspect means that the code block passed to
@Before as a String argument is executed just before showPa-
perList method is called. In the code block, which is a before ad-
vice, $1 represents the first argument to showPaperList. The type
of $1 is List<Paper> (see the line 01 in Figure 1). This code block
describes that AspectualStore must prefetch the title and name
fields of Author objects of each Paper object included in the ar-
gument to showPaperList.

It is also possible to write an aspect that automatically deter-
mines which fields of Author should be prefetched when the show-
PaperList method is called. Figure 3 is such an aspect. Since the
showPaperList method runs the while loop for printing the data of
each Paper object, the aspect records all the fields accessed from
a Paper object during the first iteration. Then it prefetches those
fields for the rest of the Paper objects by a single database query
before the second iteration starts. For example, because getAu-
thor() is called in the show method in Figure 1, the reference from
the Paper object to the Author object is recorded. Of course, we
here assume that the navigated references during the first iteration
will be also navigated during the rest of the iterations.

01 class PrefetchDefine {
02 @Before("{ Persistable p = $1;
03 Loader l = $1.getBody().getLoader();
04 l.addFetch(\"author.title\");
05 l.addFetch(\"author.name\");
06 l.load(); }")
07 Pointcut p1 =
08 Pcd.call("showPaperList(..)");
09 }

Figure 2. An aspect for optimizing showPaperList(List)

01 @Glue class PrefetchDefine {
02 /* Make an object for recording the names of
03 the fields causing database accesses. /*
04 @Refine
05 static class ContextDefine extends Context{
06 Set loadedFields = new HashSet();
07 int depth = 0;
08 ...}

10 /* Record the names of the fields that caused
11 database accesses in showPaperList(). */
12 @Before("{Context c = $2;
13 while(c.depth > 0){...}
14 c.addField($1);}")
15 Pointcut pc =
16 Pcd.call("...PersistentEntity#load(..)").
17 and.cflow("showPaperList(..)");

20 /* Do prefetching. */
21 @Refine
22 static class IteratorDefine
23 extends PersistentListIterator {
24 public PersistentEntity next(Context cxt) {
25 if(ctx.hasLoadedFields()) {
26 Loader loader = getLoader(cxt);
27 Collection fs = cxt.getLoadedFiels();
28 loader.addFetches(fs);
29 // make an SQL string and execute prefetch
30 loader.load();}
31 return super.next(cxt); }}}}

Figure 3. Further optimization of showPaperList(List)

To perform such prefetching based on profiling, we must ex-
tend the implementation of AspectualStore itself because the orig-
inal AspectualStore does not perform such profiling. The aspect in
Figure 3 first adds extra fields to the Context class, which is an
internal class of the implementation of AspectualStore (line 2-8).
The added fields are used for recording the field accesses during
the first iteration. The second part of the aspect is a before advice,
which records a field access whenever the load method in Persis-
tentEntity is called during the execution of showPaperList (line
10-17). The load method is an internal method of AspectualStore
and it is called to access a database for obtaining a field value of a
persistent object. The first argument ($1) to the load method is the
accessed field and the second argument ($2) is the current Context
object. The last part of the aspect is to modify the implementation
of the next method in the PersistentListIterator class. This method
is called at the line 4 in Figure 1. The modified next method per-
forms prefetching when it is called for the second iteration. It calls
the addFetches method to prefetch all the data that will be accessed
during the rest of the iterations (line 28).

Figure 4. difference between SQL strings

3.2 Features of AspectualStore
AspectualStore provides a useful mechanism for developers to re-
trieve persistent objects without directly writing an SQL string. It
also provides data structures for storing custom contexts of appli-
cation programs and the mechanism of load-time weaving for effi-
cient software development.

First, AspectualStore allows developers to optimize a database
query on demand without directly specifying a SQL string. Most
persistent systems statically generates SQL strings when the sys-
tems starts. The systems selects one of the generated SQL strings
whenever they access a database. On the other hand, Aspectual-
Store allows dynamically changing an SQL string. Developers can
switch multiple SQL strings to access the same database table. As-
pectualStore can generate an SQL string on demand.

Developers do not have to directly describe an SQL string when
they give a custom SQL string to AspectualStore. As we saw at
the line 4 and 5 in Figure 2, the developers have only to call the
addFetch method. Because AspectualStore maintains the current
navigation path, it can generate an appropriate SQL string. Sup-
pose that there are three database tables: a proceedings table, a
journals table, and a papers table (Figure 4). When we first obtain a
Proceedings object from the proceedings table and then obtain all
the papers included in that proceedings, we must select the papers
that have the proceedings identifier (proc id) of the Proceedings
object we first obtained. On the other hand, when we want to ob-
tain the papers included in a Journal object obtained from the jour-
nals table, we must select the papers that have the journal identifier
(journal id) of that journal. Because the proceedings identifier and
the journal identifier are different columns, we must use a different
SQL string. These annoying implementation details are maintained
by AspectualStore. Developers do not have to care about them.

Second, AspectualStore provides a Context object for every
persistent object and its collection. The Context object is used
for maintaining dynamic application contexts, which are neces-
sary for various query optimization. The dynamic contexts include
which references have been navigated from a persistent object,
which method is being executed, which reference navigation causes
database a round-trip, and so on. For example, the optimization for

Figure 5. Context objects

showPaperList(List) shown in Figure 3 used the dynamic contexts
for selecting the fields that should be prefetched. It extended the
Context object so that it would also record which fields were ac-
cessed during the first iteration of the while statement. Existing
persistent systems and aspect-oriented languages do not provide
direct accesses to such dynamic contexts related to data accesses
[4]. However, providing a Context object is a significant feature
of AspectualStore because AspectualStore is an AOP system for
persistent objects.

AspectualStore creates a distinct Context object for each per-
sistent object and its collection. Note that most persistent systems,
including AspectualStore, may reuse persistent objects among ses-
sions. Although the contents of a persistent object are shared among
sessions, a Context object is not (Figure 5). Hence, developers can
safely store session-specific data into a Context object. Aspectu-
alStore itself stores the navigation path of persistent objects into a
Context object and uses it for generating an SQL string on demand.

Finally, AspectualStore provides the mechanism of load-time
weaving for making software development efficient. All aspects
are woven into AspectualStore when AspectualStore is loaded at
the start-up time. Associating a Context class to a persistent class
is also executed at load time. The weaving is done at the Java
bytecode level. Our implementation of AspectualStore uses Javas-
sist [12, 11] for the bytecode-level weaving. In case that Aspectu-
alStore is running on top of the Tomcat servlet server [2], a custom
class loader provided by AspectualStore must be used for load-time
weaving.

4. Discussion
4.1 Preserving the original behavior
Since AspectualStore opens up its internal structure, developers
can freely customize the implementation of AspectualStore. This
means that, in principle, developers can alter the semantics of
the behavior of AspectualStore. However, the customization by an
aspect should preserve the original semantics of AspectualStore
and its application program.

For example, see Figure 6. This program retrieves some pro-
ceedings and prints only the AOP papers among the papers in that
proceedings. Thus, the best optimization is to retrieve only AOP pa-
pers when it makes a List<Paper> object by the getPapers method
(line 2). Retrieving non-AOP papers is redundant because we know

01 Proceeding prc = ...;
02 List<Paper> papers = prc.getPapers();
03 Iterator<Paper> it = papers.iterator();
04 while(it.next()) {
05 Paper p = it.next();
06 if (p.getGenre().equals("AOP") {
07 // show Paper details
08 ...
09 }
10 }

Figure 6. Print only AOP papers

that only the AOP papers are accessed in the while statement (line
4-10). However, an aspect implementing this best optimization is
dangerous and fragile. We may modify the while statement in fu-
ture so that other kinds of papers will be accessed.

To avoid this problem, if an aspect specifies that only AOP
papers should be retrieved, AspectualStore issues two SQL queries.
The first query retrieves only the primary keys of all the Paper
objects. Then it issues the second SQL query and retrieves all the
properties of only the Paper objects whose genre is AOP. Note that
a Paper object is created for each primary key although the field
values of non-AOP Paper objects are empty and retrieved later on
demand. The size of papers (line 2) is equal to the number of the
papers included in the proceedings. It is not equal to the number of
the AOP papers.

Although issuing two SQL queries is less efficient than a man-
ually optimized program using JDBC, the optimization by an As-
pectualStore aspect is safer. Because an aspect is often separately
maintained, preserving the program semantics is important to avoid
serious bugs in future evolution.

4.2 Related Work
There are many researches for improvement performance of appli-
cations on persistent systems. O/R mapping frame works such as
Hibernate [6] and Cayenne [3] provide APIs to customize retrieval
root object or set of root objects. At least in principle, efficient data
retrieval is realized by adding all persistent objects which may be
necessary in the application to the root object. For Example, Fig-
ure 7 is a java code using Hibernate for optimizing Figure 1. De-
velopers can retrieve in a lump sum all objects which are used in
application by writing a query string (line 2-6). But this way is not
realistic. Because it is difficult for developers to determine exactly
what related objects should be prefetched. Modularity and user in-
teraction may interfere with these analyses. In contrast, developers
using AspectualStore can instruct persistent objects or collections
when they are reached from the persistent root object.

Developers using AspectualStore improve performance of ap-
plications by aspect description. But there are many researches
to improve performance of applications automatically. Aspectual-
Store has extra work to describe aspects for optimization. Instead
of this, AspectualStore supports more flexible optimization than
automatic optimization. Most of automatic optimization approach
prefetches objects according to only persistent objects behavior. In
contrast optimization by aspect can consider about other factors
such as method calls. In addition, a benefit of optimization by as-
pect is adding optimization to applications as needed. In the Au-
tomatic optimization, if developers are not satisfied the result of
performance tests, there is no way to optimization. Optimization
by aspect can realize more detail optimization.

context-controlled prefetch [8] prefetches data depending on
access patterns of persistent objects. For example, when a field of a

01 // HQL description
02 String query = "FROM Proceeding p
03 LEFT JOIN FETCH p.papers
04 LEFT JOIN FETCH p.papers.author
05 WHERE ...";
06 Query q = session.createQuery(query);
07 // retrieve root objects
08 Proceeding p = q.load();

...
10 List papers = p.getPapers();
11 // show papers
12 showPaperList(papers);

Figure 7. Java code using Hibernate

persistent object which is an element of a collection is retrieved, [8]
prefetches fields of all elements includes in that collection. But [8]
has a dread of depth-first-search. AUTOFETCH [1] automatically
prefetches by traversal profiling. By profiling traversals on query
results, AUTOFETCH determines which objects added persistent
root objects. PrefetchGuide[16] dynamically prefetches by access
logs on persistent objects. But these approaches don’t consider
about applications which include user interactions.

There are many researches for prefetch. ObjectStore [5, 9]
prefetches objects by the page. When an object is retrieved in a
page, all objects in the same page is retrieved. This approach is use-
ful only when many objects in same page is used. Curewitz et al.
proposed using data compression algorithms to prefetch data [7].
These approaches are useful only when the identical objects are
used repeatedly.

5. Conclusion
We proposed an aspect-oriented persistent system named Aspec-
tualStore. It is important for improving performance of applica-
tions on persistent systems to retrieve data from databases. To im-
prove the performance of applications on AspectualStore, develop-
ers could customize how to retrieve persistent objects, depending
on dynamic contexts of the applications. Since the customization of
concern was separated in an aspect, developers could give perfor-
mance hints separately without editing the original program when
they found performance bottlenecks by performance profiling. To
support customization depending on dynamic contexts, Aspectual-
Store opened up its internal structure so that developers could ex-
tend it by an aspect and made necessary dynamic contexts available
at runtime.

References
[1] Ali Ibrahim, William R. Cook. Automatic prefetching by traversal

profiling in object persistence architectures. In European Conference
on Object-Oriented Programming (ECOOP), Jun. 2006.

[2] Apache Software Foundation. Apache tomcat. http://tomcat.
apache.org/.

[3] Apache Software Foundation. Cayenne. http://incubator.
apache.org/cayenne/.

[4] Awais Rashid, Ruzanna Chichyan. Data-oriented aspect. In Asian
Workshop on Aspect-Oriented Software Development (AOAsia), Sept.
2006.

[5] Charles Lamb, Gordon Landis, Jack Orenstein, Dan Weinreb. The
objectstore database system. Communications of the ACM, 34:50–63,
1991.

[6] JBoss, Inc. Hibernate. http://www.hibernate.org/.

[7] Kenneth M. Curewitz, P. Krishnan, Jeffrey Scott Vitter. Practical
prefetching via data compression. In Proceedings of International
Conference on Management of Data, pages 257–266, May. 1993.

[8] Philip A. Bernstein, Shankar Pal, David Shutt. Context-based prefetch
for implementing objects on relations. In Proceedings of the 25th
International Conference on Very Large Data Bases, 1999.

[9] Progress Software Corporation. Objectstore. http://www.
progress.com/realtime/products/objectstore/.

[10] Shigeru Chiba. Gluonj. http://www.csg.is.titech.ac.jp/
projects/gluonj/.

[11] Shigeru Chiba. Javassist home page. http://www.csg.is.
titech.ac.jp/~chiba/javassist/index.html.

[12] Shigeru Chiba. Load-time structural reflection in java. In Proceedings
of the European Conference on Object-Oriented Programming, pages
313–336, Jun. 2000.

[13] Shigeru Chiba, Rei Ishikawa. Aspect-oriented programming beyond
dependency injection (ecoop). In European Conference on Object-
Oriented Programming, pages 121–143, July. 2005.

[14] Sun Microsystems, Inc. Ejb. http://java.sun.com/products/
ejb/.

[15] Sun Microsystems, Inc. Jdbc. http://java.sun.com/javase/
technologies/database/.

[16] Wook-Shin Han, Yang-Sae Moon, Kyu-Young Whang. Prefetchguide:
capturing navigational access patterns for prefetching in client/server
object-oriented/object-relational dbmss. Information Sciences,
152:47–61, 2003.

