
A Dissertation Submitted to Department of Mathematical and
Computing Sciences, Graduate School of Information Science

and Engineering, Tokyo Institute of Technology
In Partial Fulfillment of the Requirements for the Degree of

Doctor of Science in Mathematical and Computing Sciences

A Study of Dynamic Weaving for

Aspect-Oriented Programming

Yoshiki Sato Dissertation Chair:
Shigeru Chiba

December 2005,
Copyright (C) 2005 Yoshiki Sato. All Rights Reserved.

Abstract
The previous implementations of dynamic weaving in AOP (Aspect-
Oriented Programming) systems have drawbacks although it is receiving
growing interests in both the academia and the industry. Typical dy-
namic weaving techniques are divided into two kinds of levels in terms of
granularity of aspect weaving: a class-level and an object-level weaving.
Either of weaving techniques also has each problem: serious performance
penalties and the version barrier, respectively.

To provide an efficient, fine-grained, dynamic weaving mechanism at
the class-level and object-level by addressing these problems, this thesis
proposes new two mechanisms at each weaving level. One is a selective,
just-in-time, aspect weaving mechanism for efficient class-level dynamic
AOP, which seeks the performance improvement of weaving an aspect,
executing an advice code, and the performance of normal execution. The
other is the new concept for loosely-separated namespaces to enabling
fine-grained object-level dynamic weaving, which can securely and effi-
ciently relax the version barrier between namespaces.

Acknowledgments
I would like to express my deep gratitude to my supervisor, Shigeru
Chiba (Tokyo Institute of Technology). I also profoundly thank Naoki
Kobayashi (Tohoku University), Atushi Igarashi (Kyoto University),
and Michiaki Tatsubori (IBM Tokyo Research Laboratory), who greatly
helped me write this thesis. Hidehiko Masuhara (University of Tokyo)
and Kenichi Kourai (Tokyo Institute of Technology) gave me valuable
comments. Akihiko Tozawa (IBM Tokyo Research Laboratory) and
Akira Koseki (IBM Tokyo Research Laboratory) gave me a plenty of
advice when I belonged to IBM Tokyo Research Laboratory in 2003.
The thesis committees reviewed the submitted version of this thesis and
the final version reflects their comments. The committees are organized
by Professor Shigeru Chiba, Professor Satoshi Matsuoka, Professor Et-
suya Shibayama, Professor Masataka Sassa, Professor Ken Wakita, and
Professor Takuo Watanabe.

I also deeply thank Takayasu Ito (now Ishinomaki Senshu Univer-
sity), who was my supervisor at Tohoku University from 1998 to 2000,
Norio Shiratori (Tohoku University) and Tetsuo Kinoshita (Tohoku Uni-
versity), who were my supervisors at Tohoku University from 2000 to
2002, and Nobuyuki Ichiyoshi (Mitsubishi Research Institute) and Ya-
suyuki Shirai (Mitsubishi Research Institute), who gave support to me
for writing this thesis at Mitsubishi Research Institute in 2005.

My colleagues in CSG (Chiba Shigeru Group) at Tokyo Institute of
Technology, Daisuke Yokota (now Sony Corporation), Muga Nishizawa,
Kiyoshi Nakagawa (now NEC Corporation), Masahiro Matsunuma (now
NTT Comware Corporation), Yutaka Sunaga (now NTT Data Corpora-
tion), and Yoshisato Yanagisawa, colleagues at Tohoku University, Takuo

i

ii

Suganuma, Shigeki Sugiura (now Tohoku Gakuin University), Tatsuhiko
Sugiyama (now Unicus Corporation), Gen Kitagata, Masahiro Watan-
abe (now NTT Comware), Masataka Motegi (now Fujitsu Laboratory),
Takahiro Uchiya, Kuniaki Kawabata (now IBM Japan), Satoshi Utsumi
(now Advantest Corporation), Hidenari Ohwada (now NTT Corpora-
tion), Masahiro Shimada (now Fujitsu Corporation), Kenji Ejima (now
Matsushita Electric Industrial Corporation), Hiroshi Hamada (now Fu-
jitsu Corporation), Nobuyasu Saito (now Oki Electric Industry Corpora-
tion) must have given me an indirect but great influence on my way of
thinking.

Finally, from the bottom of my heart, I want to thank my family, my
sister, Terumi Sato, and friends, especially Mayuko Sasaki, for support
and care during my years of study.

This thesis was financially supported by the CREST program of
Japan Science and Technology Corp.

Yoshiki Sato
December 2005

Contents

1 Introduction 1

2 Dynamic Weaving in AOP 9
2.1 Practical Benefits . 10

2.1.1 Class-level and Object-level Dynamic Weaving . . . 10
2.1.2 Rapid Prototyping — Logging, Debugging, and Pro-

filing . 12
2.1.3 Adaptive Software — Caching and Prefetching of

Query Results . 15
2.1.4 DI + AOP — Dynamic Aspect Injection 17

2.2 Problems of Ordinary Techniques 19
2.2.1 Static Code Translation 20
2.2.2 Hot Deployment 21

2.2.2.1 Hot Deployment for Class-level Weaving . 21
2.2.2.2 Hot Deployment for Object-level Weaving 23
2.2.2.3 The Version Barrier 26

2.3 Summary . 34

3 A Selective, Just-In-Time Weaver 36
3.1 Wool . 37

3.1.1 An overview of Wool 37
3.1.2 Just-in-time hook insertion 38

3.1.2.1 As a breakpoint 39
3.1.2.2 As a method call 40

3.1.3 Aspect in Wool 42
3.1.3.1 Aspect 43

CONTENTS iii

CONTENTS iv

3.1.3.2 Pointcut 44
3.1.3.3 Advice 45
3.1.3.4 Inter-type Declaration 46

3.1.4 Control of the weaver 47
3.1.5 Implementation of just-in-time hook insertion 48

3.1.5.1 Scan classes 49
3.1.5.2 Insert hooks as breakpoints 49
3.1.5.3 The programmer selects the most suitable

method 49
3.1.5.4 Execute using the debugger 50
3.1.5.5 Embed the hook and call the advice . . . 50

3.1.6 Taking care of activation frames 51
3.2 Related Work . 52
3.3 Experimental Results . 54

3.3.1 Preliminary Experiment 54
3.3.1.1 Debug mode 54
3.3.1.2 Two kinds of hooks 54

3.3.2 Wool measurements 55
3.4 Summary . 58

4 Loosely-Separated Namespaces 59
4.1 Sister Namespaces . 61

4.1.1 Version Compatibility 62
4.1.2 Creating Sister Namespaces 65
4.1.3 Sister-supported Type Checking 66
4.1.4 Sister Loader Constraint 69
4.1.5 Schema Compatible Loading 71

4.2 Discussion . 73
4.2.1 Canceling JIT Compilations 73
4.2.2 Eager Notifications of Version Incompatibility 73

4.3 An Abstract Model of the Sister Namespace 74
4.3.1 The languages P 75
4.3.2 Execution . 78

4.3.2.1 Evaluation 79
4.3.2.2 Resolution 80
4.3.2.3 Loading 82

4.4 Experimental Results . 85
4.4.0.4 Baseline performance 85
4.4.0.5 Cost of loading classes into sister namespaces 85

CONTENTS v

4.4.0.6 Cost of the checkcast instruction 86
4.5 Related Work . 90
4.6 Summary . 91

5 A Dynamic Aspect Injection Container 92
5.1 An Aspect in Wooler . 93

5.1.1 An XML configuration 94
5.1.2 An advice class . 95

5.2 Aspect weaving across sister namespaces 97

6 Conclusion 99

Bibliography 103

List of Figures
1.1 An information technology map in 2004 published by JISA

(Japan Information Technology Services Industry Associa-
tion). The circle size represents how much the system in-
tegrators have adopted or will adopt the corresponding tech-
nology. 2

1.2 Trade-off between runtime flexibilities and costs in program-
ming languages. This thesis is positioned as the breakthrough
for that trade-off. 6

2.1 Class-level dynamic aspect weaving. 11
2.2 Object-level dynamic aspect weaving. 11
2.3 A typical iteration on developing and maintaining software. 12
2.4 A method including codes for caching the query results in

database accesses (line 2–5, 7–8). 16
2.5 A method including codes for invalidating the cached data

(line 2). 16
2.6 Appropriate aspects, in which various caching strategies are

modularized, are woven into the running program as the client
changes. 17

2.7 Static code translation. 21
2.8 Redeploying a component by a class loader does not care

about existing objects. 22
2.9 The version barrier. 24
2.10 The AopProxy object intercepts all method calls to the

BusinessTask component. 25

LIST OF FIGURES vi

LIST OF FIGURES vii

2.11 The BusinessTask component composed with
CacheAspect1 can be used as the IBusinessTask

type. 26
2.12 A subclass of the BusinessTask class such as the

BusinessTask$1 class and the BusinessTask$2 can
be dynamically generated with an aspect such as the
CacheAspect1 aspect and the CacheAspect1 aspect. . . 27

2.13 Passing the session cache from one WAR component to an-
other. 28

2.14 A parent EAR class loader is used for sharing class types
between WAR1 and WAR2. The rounded box represents a
namespace for the J2EE component. The overlapping part
means the overlapped namespace. 28

2.15 The JBoss application server based on the unified class loader
architecture makes a parent-child relationship between the
communicating components. 29

2.16 All inter-component communications are realized by a remote
call. 29

2.17 The Eclipse help system must run as a separate process. . 31
2.18 The Xerces archives are loaded in duplicate for the Eclipse

help system and the infocenter. 32
2.19 Loading all components by a class loader breaks the isolation

of each namespace. 32
2.20 Delegating the Xerces archives to the web component class

loader breaks the isolation of the help system. 33

3.1 Two time-frames for hook insertion. 38
3.2 Tons of context switches are caused for frequently executed

advice. 41
3.3 Well-balanced hooks as a breakpoint and a method call. . 42
3.4 An aspect does not affect activation frames. 51
3.5 An aspect does not affect activation frames. 52
3.6 Elapsed time [ms] of jess. The results show the averages of

every 10 times. The first results are the same as shown in
table 3.7. Although the results in AspectJ include the time
of aspect weaving (8,180 [ms]) and restarting the JVM, these
are illustrated just for reference. 57

LIST OF FIGURES viii

4.1 Downloaded applets, deployed servlets and EJBs can work
on the same process of the JVM without violating with each
other. 61

4.2 The notation CLi
Ld

represents a class type, where C denotes
the name of the class, Ld denotes the class’s defining loader,
and Li denotes the loader initiated class loading. An inclusion
relation represents a parent-child relationship. For example,
the class loader L1 is a parent of both L2 and L2’. And
the classes A, B, C, and the system classes are visible in the
namespaces L2, L2’, L3, L3’, L4, and L4’. In this figure, the
sister namespace L3 and L3’ have a sister relationship. . . 67

4.3 Pseudo code for enhanced type checking for sister names-
paces. A type check is the determination of whether a value
of one type, hereafter the right-hand side (RHS) type , can
legally be converted to a variable of a second type, hereafter
the left-hand side (LHS) type. If so, the RHS type is said to
be a subtype of the LHS type and the LHS type is said to be
a supertype of the RHS type. 68

4.4 Downcast enforced by the bridge-safety property satisfied be-
tween namespaces. 69

4.5 Because of Schema compatible class loading, both of the
sister version of a class have the same layout of the TIB. . 72

4.6 The syntax of expressions 76
4.7 Contexts . 79

5.1 The AOP proxy is defined as a subtype implementing the
component interface in the left, as a subclass extending the
component class in the center, and as a sister class of the
component class in the right. 98

List of Tables
2.1 Static code translation and hot deployment. 35

3.1 Comparison of the three approaches. Wool is a hybrid of the
last two techniques, which are using breakpoint-based exe-
cution and dynamic code translation. Each column indicates
the degree of the efficiency of using that approach. 39

3.2 Methods in Pointcut for identifying a set of join points. . . 45
3.3 Parameter names for accessing the context of current join

point. 47
3.4 Available methods in Wool for the control of Wool. 48
3.5 The overhead for SPECjvm98 in the debug mode of Sun

Java2 SDK 1.4. 55
3.6 Hooks as breakpoints and method calls in Wool. 55
3.7 Elapsed time [ms] of jess. The result in AspectJ is 114.8

ms just for reference. 56
3.8 The numbers of translated classes, inserted hooks, and point-

cut test. The numbers in parenthesis represents the compar-
ison to AspectJ. 58

4.1 A set of version compatible changes derives from two-way
binary compatibility . 63

4.2 Java binary compatibility 64
4.3 SPECjvm98 benchmark results on both our JVM and the

unmodified JVM. 86
4.4 Total loading time using an ordinary class loader and a sis-

ter class loader. All classes are sequentially loaded by the
loadClass() method. 87

LIST OF TABLES ix

LIST OF TABLES x

4.5 Total execution time of the type check by checkcast . . . 89

5.1 Parameter names for accessing the context of current join
point. 96

Chapter

1
Introduction

In computer science, the concept of Separation of Concerns [25] proposed
by Dijkstra in the early 1970’s has still been a long-cherished desire, or
dream, for both developers and researchers. Underlying this concept is
a general one that enables us to break the complexity of a problem into
loosely-coupled, easier to solve, subproblems. These subproblems can be
composed relatively easier to yield a solution to the original problem. In
developing a software system, the separation of concerns enables us to fo-
cus our attention upon some subprograms from one aspect’s point of view
without caring much about other irrelevant aspects. Modularizing soft-
ware systems could enhance their quality in terms of understandability,
reusability, maintainability, and availability. Such modularized subpro-
grams are called subroutines, procedures, functions, methods, modules,
structures, classes and components, which depend on a programming di-
alect, the granularity of a subprogram, and the role of a subprogram
against the whole program. The research history about programming
languages can be seen as a perpetual quest for ideal modularization.
There have been a number of programming paradigm, to say nothing
of Object-oriented Programming (OOP), aimed at concrete separation
of concerns, including Subject-oriented [39] Programming, Generative
Programming [13], Adaptive Programming [68], Feature-oriented Pro-

INTRODUCTION 1

gramming [73], Intentional Programming [17], and Aspect-oriented Pro-
gramming [49].

Figure 1.1. An information technology map in 2004 published by JISA
(Japan Information Technology Services Industry Association). The circle
size represents how much the system integrators have adopted or will adopt
the corresponding technology.

Aspect-oriented Programming (AOP) [49] has been proposed espe-
cially for practicing the concept of Advanced Separation of Concerns,
i.e. Separation of Crosscutting Concerns, for ever-complicating enter-
prise software systems used for infrastructual business operations and
services. AOP allows us to modularize crosscutting concerns as aspects
although widely spreading programming language and techniques such
as OOP and the design patterns does not elegantly modularize them.
Regardless of low attention in the computer industry from the informa-
tion technology map illustrated in Figure 1.1, AOP is actually becoming
an indispensable technology in developing software systems without in-
forming most green developers. From the standpoint of this thesis, the
essential property of AOP is inserting pieces of code into software sys-

INTRODUCTION 2

tems externally although advanced mechanisms such as the reusability
of aspects, the independent scope of crosscutting concerns, or reflection
functionalities are preferably needed. In that standpoint, a great num-
ber of recent enterprise systems support an AOP functionality in various
forms (e.g., pointcut/advice, XML/interceptor, or mouse click/scribbled
code) to provide a disparate range of functionalities. These software sys-
tems contain various crosscutting concerns and expose them , such as
logging, debugging and profiling information about particular intended
parts and testing them, accessing databases, communicating with other
systems over networks, performing data caching and prefetching for per-
formance tune-up, and autonomically following user and environmental
preferences. These functionalities normally scatter a bunch of tangled
code concerning each function and crosscut the boundary between mod-
ules. Separating crosscutting concerns in AOP can give quality modules
that are independent from the rest of modules and thus can be easily
reused for other purposes. These reusable modules include not only a
refined existing module but also a crosscutting concern. Currently, AOP
is mostly realized as an extension of OOP, and implemented by using a
program transformation technology that can compose an aspect into the
program statically.

Motivating Problem

More recently, practical demands are being made of dynamic weaving in
aspect-oriented programming systems [68, 69, 6, 72, 71]. Unlike ordinary
AOP, an AOP system that supports the dynamic weaving mechanism al-
lows dynamically weave (compose) and unweave (decompose) an aspect
into/from a program. Therefore, pointcuts and advice are changeable
during runtime. According to the AOP alliance [2], pointcuts and advice
are essential and indispensable elements for AOP, and an aspect is com-
posed of a set of combinations of these elements. The former is used for
identifying the set of operations in the program, called join points, such
as method calls, field accesses, instance creation, and exception handling,
the latter is a piece of code executed at the identified join points.

Dynamic weaving techniques are typically classified at two kinds of
levels: “class-level” weaving and an “object-level” weaving, each of which
is used for a different purpose. A class-level dynamic weaving technique
facilitates the behavior of whole application software changing globally
and continuously when we attempt to update, develop, and maintain

INTRODUCTION 3

that software. This is because that system composes an aspect with
classes involving their all present and future instances. On the other
hand, an object-level dynamic weaving technique can easily change the
behavior of a part of application software locally and temporarily at
runtime. This system allows for aspects that can adapt the behavior of
an instance of that application to follow the specific runtime environment
and requirements.

The most typical technique for implementing class-level dynamic
weaving is based on static code translation although it is not efficient.
This approach statically inserts pieces of code, which we call hooks, into
all join points, and these hooks determine at runtime whether or not
there is associated advice to be activated at each join point, in contrast
to the static weaving approach like AspectJ [48]. These runtime checks
imply serious performance overhead although they are necessary since
dynamic weaving allows turning advice on and off during runtime.

Another technique employing class loaders is a valuable for object-
level dynamic weaving but a sweeping approach. The functionalities of
object-level AOP are provided by most of today’s Java-based application
middleware such as J2EE servers, O/R mapping frameworks, and DI
(Dependency Injection) containers [35]. A simple implementation of such
an AOP system would use multiple class loaders, each of which loads a
different version of a class woven with a different aspect. Creating a
new class loader, and thereby loads a program woven with a new aspect,
we might as well dynamically weave that aspect into the program as
deploy (install) that program into the application middleware without
restarting them. However, this implementation approach does not work
because instances of those versions of a class type are not compatible
because of the version barrier. The version barrier is a mechanism that
prevents an instance of a version of a class type from being assigned
to a variable of another version of that class type. In Java, if a class
definition (i.e. class file) is loaded into different namespaces created by
different class loaders, different versions of the class type are created and
regarded as distinct types. If two class definitions with the same class
name are loaded by different loaders, two versions of the class type are
created and they can coexist while they are regarded as distinct types.
Therefore, the running application including all related classes have to be
discarded with the class loader that loads the application, and thus the
service would once be suspended. The jobs that the old application did
may also be discarded. This coarse-grained aspect weaving is practically

INTRODUCTION 4

inconvenient.

Solution by this thesis

To provide an efficient, fine-grained, dynamic weaving mechanism at the
class-level and the object-level by addressing each problem mentioned
above, this thesis proposes new two mechanisms respectively. The for-
mer one is a “pure” Java and efficient class-level aspect weaving mech-
anism that seeks the improvement of weaving an aspect, executing an
advice code, and the performance of normal execution. The latter one
is a “dirty” Java but efficient object-level aspect weaving mechanism
including an enhancement of the JVM (Java Virtual Machine). This
mechanism lifts the fetters of the Java’s portability, however, it allows
us to enjoy dynamic weaving functionalities under the existing popular
frameworks of class loaders and Java Reflection APIs.

The proposition for the class-level aspect weaving is a selective, just-
in-time, aspect weaver for Java called Wool [75], which exploits our new
implementation technique for addressing the performance problem of
static code translation. Wool inserts hooks into loaded classes at run-
time just in time when the programmer directs the program to start
using an aspect. All existing instances follows the change of their class
type. Wool allows the programmers to select from two implementation
techniques the best one for each join point. The first one is to insert
the hooks as breakpoints handled through the debugger interface of the
JVM. The other one is to produce a program in which the hooks are
embedded as method calls and reload that new program into the JVM.

For enabling fine-grained object-level aspect weaving, the next mech-
anism proposed in this thesis includes a novel concept and design of
loosely-separated namespaces in Java called sister namespaces [74]. Sis-
ter namespaces can relax the version barrier between applications loaded
by different class loaders. An instance can be carried beyond the version
barrier between sister namespaces even if the class type of that instance
is composed with a different aspect between these namespaces.

Position of this thesis

The position of this thesis in the research history of programming lan-
guages is that it provides the mechanisms for elevate the runtime flexibil-
ity of statically typed languages without forgetting the research results

INTRODUCTION 5

��������� 	�
���������

����������� ����� � �����! #"!$� �!��%�&��#%#"�'
(*)�+�, , -.+�, /�021#3 425607(�86, 9�0: 8�;<, 07=�>2?�@#0 : @�-2A�B7C�0 :7D�:E�F (!G�;<3 5<-�02H!+2I.+7(�G7;<3 5.-

J �7���#� ����� � �K�7�! 6"�$� ���6%�&���%#"�'
L*M�+60�N�B�; -2; +�C�0 : +24<G<+�,O 0 O6P.P 07Q�3 9<9786, 0R 1#02B2G.+�)�, 07A7+247/<86, , 0H�+2I.+60 O�S

TVUXW�Y

��������� 	�

Z\[
�]�� ^_� [� ���
`� a\b�c�d�egf h

i#j`k j h�l*f m�c

n l�d�l�f h
i#j`k j h�l*f m�c

T`o*p �q �� � " T �#� �r"UXW_Y
TVs�p ��$ T �#� �r"UXW_YT J �7�6��� �t W_Y

T ����������� �t W�Y

uwvyx�vuwvyx�v

z#{ z#|#}�~�� z

� � |!���7�����

Figure 1.2. Trade-off between runtime flexibilities and costs in program-
ming languages. This thesis is positioned as the breakthrough for that
trade-off.

on the implementation techniques of reflection and MOP (Meta Object
Protocol). The programming languages have trade-off between runtime
flexibilities and costs as illustrated in Figure 1.2. Typically, statically
typed languages have performance advantages compared to dynamically
typed languages since the necessary runtime type checks are statically
done in statically typed languages. Due to that property, statically typed
languages have less runtime flexibility than dynamically typed languages.
In the research domain of reflection and MOP, there were numerous re-
searchers trying to add runtime power to the statically typed languages
as much as dynamically typed languages have. However, most of real
applications of those days did not require that much runtime power,
and to make matters worse, it causes non-negligible runtime overheads.
The static implementation of AOP was born in academia against the
background of that history. Despite of that historical background, static
implementation of AOP becomes a target of criticism especially from
industry. Some developers claim that static AOP is too strict and not
enough for developing modern application software as composed of dis-
tributed and dynamically plugged software components such as J2EE.
Then, most dynamic implementations of AOP appeared in industry are

INTRODUCTION 6

going back to the old days in disregard of history. This thesis takes into
account the lessons learned from the past and present cases and then
realizes dynamic AOP with deep attention on the runtime costs.

The structure of this thesis

From the next chapter, this thesis presents pragmatic and technological
background, and details of the proposed mechanisms. The structure of
the rest of this thesis is as follows:

Chapter 2: Dynamic Weaving

This chapter discusses real needs and benefits of a dynamic weaving
mechanism in AOP environment. We illustrates that dynamic weav-
ing features are significantly helpful in both development and operation
phases.

Also, this chapter overviews existing techniques that can enable dy-
namic weaving mechanisms. We introduce several programming tech-
niques and languages that can dynamically extend programs. Then, we
introduce some pure Java approaches such as static code translation. Fi-
nally, we introduce dirty Java approaches that extends the existing JVM
for enabling dynamic weaving features.

Chapter 3: A Selective, Just-in-Time, Weaver

To address the performance problem discussed in the previous chapter,
we first propose a selective, just-in-time, aspect weaver called Wool. We
explain the design, implementation issues, and performance measure-
ments of Wool.

Chapter 4: Loosely-separated Namespace

Then, we propose a novel concept and design of namespaces called sis-
ter namespaces for addressing the problem of the version barrier, which
prevents us from developing a fine-grained dynamic weaving mechanism
in Java. We also show performance measurements and a model of the
sister namespace.

INTRODUCTION 7

Chapter 5: A Dynamic Aspect Injection Container

We introduce a dynamic aspect injection container called Wooler, which
enables object-level dynamic weaving mechanism. This container is based
on the idea of the DI (Dependency Injection) container. A major break-
through in injecting aspects into the running program can be realized by
employing the mechanism of the sister namespace.

Chapter 6: Conclusion

Finally, we conclude this thesis in Chapter 6. We present contributions
and limitations of this thesis and future directions.

INTRODUCTION 8

Chapter

2
Dynamic Weaving in AOP

Dynamic weaving is not a special concept but a form of the practice of
AOP. A dynamic weaving mechanism just allows an aspect being bound
to the program at runtime. That mechanism is similar to the dynamic
method binding mechanism of OOP, which is also called polymorphism.
Dynamic binding in the object-oriented world has two forms; static and
dynamic. Statically typed dynamic binding is found in languages such
as Java (abstract and interface methods), C++ (virtual functions), and
Eiffel (redefinition). An actual method is dynamically selected among
the methods that override the virtual methods in each derived classes
depending on the dynamic type of the object. The runtime selection of
methods among all classes is another case of dynamic binding, found in
dynamically typed languages such as CLOS, Self, and Smalltalk. Any
operations on an object are dynamically bounded to that object. Dy-
namic aspect weaving (binding) is considered to bind the crosscutting
operations to objects at the same time dynamically.

Due to the historical reasons, dynamic weaving mechanism tends to
be seemed a special concept now. In fact, it is not surprising because
most of current AOP systems for statically typed languages such as C++
and Java compose an aspect with the program statically; they are based
on static weaving. The fundamental design for implementing AOP have

DYNAMIC WEAVING IN AOP 9

Practical Benefits

been inspired by the results of a study on reflection, or MOP (Meta
Object Protocol) [50], for statically typed languages. These researches
contributed to enhance statically typed languages as flexible as the dy-
namically typed language. However, then scientists noticed the fact that
most applications at that time did not require such runtime flexibilities,
and then they inclined toward the improvement of a runtime efficiency in
return for a flexibility [78, 92, 63, 61, 59]. Consequently, the developers of
AOP systems for statically typed languages select a static design aimed
to improve runtime performance rather than the flexibility.

The age changes, and a more dynamic and flexible mechanism has
come to be requested from various applications. In the rest of this chap-
ter, we first show motivating examples that require a more flexible, dy-
namic, AOP system. Then, we describe existing techniques for enabling
dynamic weaving and problems of them.

2.1 Practical Benefits

Dynamic weaving is not just a mechanism that sounds fascinating but
useless in practice. It is a necessary mechanism especially, if an as-
pect implements a non-functional concern cutting across several modules
and the requirement of the functionality dynamically changes at runtime.
Non-functional concerns are additional features such as transactions, dis-
tribution, security, and logging. On the other hand, the role of functional
concerns is to implement a solution independently of the specific charac-
teristics of the execution environment. Thus, non-functional concerns are
not directly involved with the core logic of the application and thus they
are not mandatory for the application software to provide the minimum
service.

2.1.1 Class-level and Object-level Dynamic Weaving

Typically, there are two levels of approaches in employing dynamic weav-
ing mechanisms for a real application, which levels are class-level and
object-level. Each of these approaches has a different benefit and thereby
mostly applies a different purpose. A class-level dynamic weaving allows
composing an aspect with a set of classes. Since it affects all present and
future objects, it can dynamically change the behavior of whole applica-
tion software globally and continuously (Figure 2.1). It is useful for an

DYNAMIC WEAVING IN AOP 10

Practical Benefits

application that requires several runtime changes spreading among that
application. On the other hand, an object-level dynamic weaving allows
composing an aspect with a particular set of objects. This kind of dy-
namic systems can change the behavior of a part of application software
locally and temporarily at runtime (Figure 2.2). It is useful for an appli-
cation, in which various crosscutting concerns are switched to follow the
specific runtime environment and requirements.

�������

�	� ��
�

���� � ���

� �	�
��
���� ����

Figure 2.1. Class-level dynamic aspect weaving.

�������

�	� ��
�
 �	� ��
�

���� � ���

� �	�

�
��
���� ���

Figure 2.2. Object-level dynamic aspect weaving.

The rest of this section shows practical benefits using either or
both levels of dynamic weaving mechanism for separating/coupling non-
functional concerns from/with running application programs.

DYNAMIC WEAVING IN AOP 11

Practical Benefits

2.1.2 Rapid Prototyping — Logging, Debugging, and

Profiling

The first benefit of a dynamic weaving mechanism, especially class-level,
is that a developer can partially change an executed program during
debugging without a time-consuming process of halting the runtime sys-
tem, recompiling the program and restarting the system again. Since
the developing iteration is annoying (Figure 2.3), this functionality espe-
cially provided by class-level systems is useful for rapid prototyping in the
development process. This can shorten the lead time of the edit-deploy-
run cycle of software development. Given a large amount of incremental
changes and bug fixes which often need to be done during large software
system development, this feature can dramatically improve the efficiency
of development comparing to development with a static AOP system.

�������

�	��
����� �

� ������� ���
������ ����� �!�
"�# ��$%�&�'� �!�

(�)�*�+&,.- /0*!132
4)657/089,.-)�*6:!2

;%< ����= ; �

Figure 2.3. A typical iteration on developing and maintaining software.

Profiling a performance of software (or logging, debugging) is a good
example showing that a dynamic weaving mechanism is useful. It is rec-
ognized as a non-functional concern that can be well modularized using
AOP [24][31]. Since the code fragments for collecting profiling informa-
tion tend to be spread over the whole program, they should be modular-
ized into an aspect. As an example of aspects, this chapter presents a

DYNAMIC WEAVING IN AOP 12

Practical Benefits

sample profiling aspect described in AspectJ: an implementation of AOP
as an extension to Java. The ProfileOperation aspect:

¤
1 public abstract aspect Pro f i l eOpe ra t i on {
2 protected Timer t imer = new Timer () ;
3 protected int count = 0 ;
4
5 abstract pointcut operat i on () ;
6
7 pointcut t imedentry () :
8 opera t i on () && ! cflowbelow (opera t i on ()) ;
9

10 before () : t imedentry () {
11 t imer . s t a r t () ;
12 count++;
13 }
14
15 after () : t imedentry () {
16 t imer . stop () ;
17 }
18
19 public Time elapsedTime () {
20 return t imer . getTime () ;
21 }
22
23 public int operationCount () {
24 return count ;
25 }
26 }§£ ¢

is defined as an abstract aspect. This aspect is a reusable module that
encapsulates profiling concerns by defining pointcuts and advice. There
are two advice, before() and after(), declared in the aspect for turning
on and off the timer. To profile the elapsed time of an operation, these
two advice are called at join points identified by the pointcut named
timedentry(). Join points in AOP are execution points such as method
calls, field accesses, instance creation, and exception handling. The
timedentry() pointcut specifies a set of join points identified by the

DYNAMIC WEAVING IN AOP 13

Practical Benefits

operation() pointcut defined as an abstract pointcut. Implementing
the operation() pointcut in the subaspect of the ProfileOperatin as-
pect as follows:

¤
1 public aspect Pro f i l ePa in tOpera t i on
2 extends Pro f i l eOpe ra t i on {
3 pointcut operat i on () :
4 ca l l (public void Figure+. pa int (. .)) | |
5 ca l l (public void Figure+. r epa in t (. .))) ;
6 }§£ ¢

we can easily profile the elapsed time of painting operations performed
by calling the methods paint() and repaint() declared in the Figure

class as following:

¤
Pro f i l ePa in tOpera t i on . aspectOf () . elapsedTime () ;£ ¢
Note that adding the identifier + at the end of a class name makes the
ProfilePaintOperation aspect weave with all subclasses of the Figure

class. If we want to change the profiling points to other operations such
as moving operations, the ProfilingOperation aspect can be reused as
follows:

¤
1 public aspect Prof i leMoveOperat ion
2 extends Pro f i l eOpe ra t i on {
3 pointcut operat i on () :
4 ca l l (public void Figure+.move (. .)) ;
5 }§£ ¢

Consequently, profiling concerns are well modularized into an aspect in
AOP although they cut across the boundary of modules in OOP.

However, the performance profiling implemented on static AOP sys-
tems is not useful from the programmatic viewpoint. Suppose that the
software is a Web-based business application, which must run 24 hours a
day. Our scenario is that we first run the software without profiling code
and, once it shows performance anomaly, perhaps under heavy load, we

DYNAMIC WEAVING IN AOP 14

Practical Benefits

insert profiling code. The profiling code should be inserted without shut-
ting down the software since the anomaly may be due to the workload up
to that point. If the software is restarted, all the internal data structures
are reset and hence the information necessary for analyzing the anomaly
would be lost. Furthermore, we would need to interactively plug and
unplug various kinds of profiling code until solving the anomaly. Each
profiling code would cut across different execution points for collecting
different profiling information. We thus need dynamic weaving mecha-
nism. Although we could use large profiling code that collects all the
information, it would imply serious performance impacts. We should use
minimal profiling code at a time for reducing performance impacts. To
satisfy these requirements, dynamic weaving is a good solution.

2.1.3 Adaptive Software — Caching and Prefetching of

Query Results

The next benefit of dynamic weaving mechanisms, both class-level and
object-level, is that we can develop services dynamically adapting in re-
sponse to changes in the environment and requirements of clients. Since
various degrees of runtime adaptabilities are needed, both class-level and
object-level dynamic weaving mechanisms are useful for modularizing
and switching these cross cutting concerns about runtime changes. For
example, a security concern on which generality leads to fragile scat-
ters related operations around the whole program. An adaptable aspect
including various levels of security operations provides the flexible appli-
cation, which can dynamically change its security policies depending on
the client. Moreover, they allows an adaptable distributed GUI (Graphi-
cal User Interface) application, which can changes its configuration such
as a deployment, a resolution, a bit rate, to suit it to each environment
(e.g., DesktopPC, Laptop, PDA, i-mode).

Adaptable response caching of query results for a network and a
database accesses in a web application is also a good example to show
the usefulness of dynamic weaving. The implementation of the response
cache includes not only caching the results of method calls (Figure 2.4)
but also invalidating the cached results (Figure 2.5) that scatter in the
software.
Since the response cache is a non-functional and crosscutting concern,
it cannot be modularized with object-oriented programming; AOP is

DYNAMIC WEAVING IN AOP 15

Practical Benefits

1: public String getQuote(String name) {
2: Cache caches = session.getCaches();
3: if (caches.containsKey(name)) {
4: result = (String) caches.get(name);
5: } else {
6: result = db.query(”getQuote”, name);

7: caches.put(result);
8: }
9: return result;

10: }

Figure 2.4. A method including codes for caching the query results in
database accesses (line 2–5, 7–8).

1: public void updateQuotePrice(String name) {
2: invalidate(name);

3: Object result = db.query(”updateQuote”, name);
4: }

Figure 2.5. A method including codes for invalidating the cached data (line
2).

necessary [76].
Dynamic weaving enables efficient implementation of adaptable

cache, and the class-level one suits for determining the global policy; the
object-level one, for the local adaptation. To make the response cache
adaptable, the software must be able to dynamically switch a number
of aspects at the class-level or the object-level, in which various strate-
gies are modularized, as the runtime environment changes (Figure 2.6).
Yagoub et al. reported that there is no universal caching strategy that is
optimal for all web applications and all the configurations [93]. For exam-
ple, if the cache provided by an aspect shows a low hit ratio, the software
should switch that aspect to another. If only part of the cache shows a
high hit ratio, the software should remove the aspects that do not pro-
vide that part of the cache. The traditional object-oriented techniques
like Design Patterns never modularize such a crosscutting concern, and
still less switch it at runtime. Also, static weaving does not even work
in this example. If we use static weaving, all the caching aspects must

DYNAMIC WEAVING IN AOP 16

Practical Benefits

be statically woven in advance. Note that they are woven at different
join points and hence, whenever the program execution reaches one of
the join points, they must dynamically examine whether every cache is
turned on or off. This runtime check causes a serious performance over-
head. On the other hand, if we use dynamic weaving, only the activated
aspects can be woven to avoid the runtime check.

��������� 	�

�� �����������������

� ��	������ �� �����
�� �����������������

�! �"$#� &%�'

(*) %$+�, -.#

/.0�/21�3

4 3657/�1

Figure 2.6. Appropriate aspects, in which various caching strategies are
modularized, are woven into the running program as the client changes.

2.1.4 DI + AOP — Dynamic Aspect Injection

At last, object-level dynamic weaving mechanism could well work with
a lightweight application container framework such as Spring [23], As-
pectwerkz [44], HiveMind [4], PicoContainer [70], and Seasar [88]. These
lightweight containers do not provide enterprise services but manage only
dependencies of a collection of objects. A key feature of these containers
is dependency injection (DI), or IoC (Inversion of Control) [35]. It is a
programming technique for reducing the dependency among components
and thereby enables loosely-coupled components, which reusability are
highly improved. If a component includes sub-components, reusing only
that component as is independently of those sub-components is often dif-
ficult. The idea of dependency injection is to move the code for instanti-
ating sub-components from the program of a component to a component

DYNAMIC WEAVING IN AOP 17

Practical Benefits

framework, which makes instances of sub-components specified by a sep-
arate configuration file (usually an XML file) and automatically stores
them in the component. For example, suppose that the program of that
component is as following:

¤
pub l i c class BusinessTask {

Database db ;

public void setDB(Database db) {
db = db ;

}

public Object query (S t r ing s q l) {
return db . query (s q l)

}
.

}§£ ¢
Note that this component contains an object of the Database interface
as a sub-component. Using a lightweight container, the db field need not
to be initialized in the constructor of the BusinessTask class as follows:

¤
public BusinessTask (int type) {

switch (type) {
case ORACLE: db = new Oracle () ; break ;
case MySQL: db = new MySQL() ; break ;
case PgSQL: db = new PgSQL () ; break ;
}

}£ ¢
It is initialized (or injected) by a factory method provided by the
lightweight container supporting dependency injection. Thus, a
BusinessTask object must not be constructed by the new operator. De-
pendency injection loosens the connection between BusinessTask and
database classes. It enables us to reuse BusinessTask without modifica-
tion even if we must switch a database accessor to MockDB for unit testing.
For example, the code snippet below constructs a MyBusinessTask ob-

DYNAMIC WEAVING IN AOP 18

Problems of Ordinary Techniques

ject:

¤
Resource r e s = new ClassPathResource (” task . xml”) ;
BeanFactory f = new XmlBeanFactory (r e s) ;
BusinessTask task = (BusinessTask) f . getBean (” task ”) ;£ ¢
Here, ApplicationContext is provided by a component framework. The
getBean method constructs an instance of BusinessTask and initial-
izes the value of the db field. It constructs an object implementing the
Database interface and assigns it to the db field. This initialization is
executed according to an XML configuration file task.xml.

The so-called DI + AOP containers generate synergistic effect for the
developers of component-based applications since both reduce depen-
dency among components. It is natural because DI and AOP share the
same goal, which is to reduce dependency among components for better
reusability [19]. The developers can inject dependency and compose an
aspect in the same manner and obtain the initialized components from
the container, specifying dependency and aspects between components
by a separate configuration file (usually an XML file).

2.2 Problems of Ordinary Techniques

This section explains problems of ordinary techniques for implementing
dynamic weaving in the AOP system. Typical implementations of object-
based AOP systems, including both static and dynamic AOP, insert hooks
at a number of join points such as method calls, field access, instance
creation, and exception handling. If the program execution reaches join
points, the inserted hook intercepts it and executes a piece of advice code
if it is included in a set of join points identified by pointcuts.

In most AOP systems that provide static weaving mechanism, a hook
is usually implemented as inlined hooking code, in which pieces of aspects
are directly embedded into a base program by static translations of source
code or bytecode. However, several join points cannot be uniquely deter-
mined by the conditional pointcuts, such as this, target, args, and cflow.
Such a set of join points depends on the current execution context and
changes dynamically. Thus, hooking code must be embedded into poten-
tial join points with conditional statements, which examine if the advice

DYNAMIC WEAVING IN AOP 19

Problems of Ordinary Techniques

should be executed in the execution context.
Generally, an AOP system that provides dynamic weaving mechanism

must examine whether any advice should be executed at every join point
when the execution of a program passes that point. For dynamic weaving,
all the join points are dependent on the execution context, since the set
of join points are specified at runtime. Furthermore, the set of join points
changes dynamically. Thus, the check whether or not the system should
execute advice must continue after the join point has been specified.

In this section, the following three techniques are explained:

• Static code translation.

• Hot deployment for class-level weaving.

• Hot deployment for object-level weaving.

The first two techniques are mainly used for class-level dynamic weav-
ing. Static code translation is a naive approach and has a performance
drawback. Hot deployment is a popular but a sweeping approach, since
dynamic weaving is done at the component level. The hot deployment
mechanism is also used for enabling object-level dynamic weaving. It has
a drawback caused by the version barrier explained deeply in the last of
this section.

2.2.1 Static Code Translation

There exists a well-known approach that enables every join point in a
class or an object to be checked at runtime, and which is supported by
static code translation of application programs. For example, JAC [69]
and Handiwrap [6] support the dynamic weaving mechanism using a
static code translation approach, in which a compiler (or a translator)
inserts minimal hooks for all potential join points (Figure 2.7). They
translate the code of a program to a version with inserted hooks. The
translation is performed by the source-to-source or binary-to-binary, dur-
ing compilation or class loading. Most AOP systems also use static code
translation and this is more or less appropriate to their purpose because
most intercepted join points are identified statically.

Static code translation does not cause much of a performance penalty
in advice execution, while involving some overhead in normal operations
with no woven aspect. The execution of advice is fast since an inserted

DYNAMIC WEAVING IN AOP 20

Problems of Ordinary Techniques

compilation
or translation

aspect

need_advice();
need_advice();
need_advice();
need_advice();
need_advice();
need_advice();
need_advice();
need_advice();
need_advice();
need_advice();
need_advice();
need_advice();

pointcut

Figure 2.7. Static code translation.

hook is represented as just a method call. However, even if no aspects
are woven, all checks whether or not the system should execute advice is
performed. This results in unnecessary method calls or verbose indirec-
tion of object references, which involves overhead in normal operations
that cannot be ignored.

Popovici et al. [71] and Bockisch et al. [9] have implemented a Just-
In-Time (JIT) aspect compiler based on the IBM Jikes RVM [5]. Their
JIT compiler inserts hooks at all potential join points only at the time of
the first just-in-time compilation. Thus, their work can be regarded as a
static code translation approach mentioned above. They avoided adding
options to the JIT compiler that could recompile bytecode since that
would increase the complexity of the JIT compiler support too much.
They reported they could limit the overhead due to the hooks since their
hooks are implemented using native code, not Java byte code. Unfor-
tunately, the JIT compiler approach is irreconcilable with recent high-
performance runtime technologies like Sun’s HotSpot(TM) technology or
the IBM JIT compiler [90], which involves the mixture of a JIT compiler
and interpreter.

2.2.2 Hot Deployment

2.2.2.1 Hot Deployment for Class-level Weaving

Most of application servers, either commercial (e.g., Websphere [8], We-
blogic [43]) or open-source (e.g., JBoss [56], Tomcat [14], Geronimo [3]),

DYNAMIC WEAVING IN AOP 21

Problems of Ordinary Techniques

provide a kind of the dynamic weaving functionality based on Java class
loaders. Some AOP environments such as Aspectwerks [44], Spring [23],
and Seasor2 [88] also adopt it. Although class loaders prevent loaded
classes being reloaded, they allow redeploying an application component
on the same process of the JVM. This mechanism is especially called the
hot deployment functionality in the application server domain, which en-
ables software components to be plugged and unplugged without restart-
ing application servers. An application component can be dynamically
customized with an aspect on a per-component basis. If a code transla-
tor composes an aspect with the application program during deployment,
loading, or compile time, loading a modified version of that application
component by using a new class loader seems to enable dynamic aspect
weaving at the class-level.

However, some existing objects are discarded if the old application
component is redeployed by using the new class loader. These old ob-
jects can not keep existing in the process of the JVM as well as not
being composed with an aspect (Figure 2.8). This is because the old
classes are discarded together with that class loader. This is remarkably
inconvenient in practice. For example, we can not profile a performance
of application software once it runs. Furthermore, it is considered a
component-level approach rather than class-level. We can not easy-to-
use that component-level dynamic weaving mechanism for shortening
the lead time of the edit-deploy-run cycle of software development.

�������

�	� ��
�

���� � ���

� �	�

�� ��
�� ���

Figure 2.8. Redeploying a component by a class loader does not care about
existing objects.

DYNAMIC WEAVING IN AOP 22

Problems of Ordinary Techniques

2.2.2.2 Hot Deployment for Object-level Weaving

With all coarseness of component-level aspect weaving, some AOP sys-
tems adopt the hot deployment mechanism for object-level dynamic
weaving. Unlike the case of class-level weaving, a class loader is used
as just a factory of the objects that are composed with an aspect. For
example, the following pieces of code show the weaving process:¤
ClassLoader l oade r = new CustomClassLoader (. . .) ;
byte [] mod i f i edClas s

= weaver . compose (”BookMall” , ” Sess ionCache ”) ;
Class c = loade r . load (modi f i edClas s) ;
BookMall mall = (BookMall) c . newInstance () ;£ ¢
Creating a custom class loader, putting the caching concern on the
BookMall class using an aspect weaver, loading the modified version of
the BookMall class into the different namespace from that of the running
application, the users can get an object of the new BookMall object,
which contains a session caching concern. A namespace is a map from
the class names to the class definitions. A set of classes included in the
same component joins 1 its own namespace and thus naming conflicts
between components can be avoided. Moreover, a component can be
dynamically and individually updated to be composed with an aspect
without restarting the whole execution environment.

However, the running application can not deal with the mall object
due to the strict separation of namespaces in Java, ironically called the
version barrier (Figure 2.9). The version barrier is a mechanism that
prevents an object of a version of a class from being assigned to a variable
of another version of that class. In Java, if a class definition (i.e. class
file) is loaded by different class loaders, different versions of the class
are created and regarded as distinct types. If two class definitions with
the same class name are loaded by different loaders, two versions of the
class are created and they can coexist while they are regarded as distinct
types. The version barrier is a mechanism for guaranteeing that different
versions of a class are different types. Regarding two versions as distinct
types is significant for performance reasons. If not, advantages of being a
statically typed language would be lost. Therefore, Java’s class loaders,

1A class joining a namespace means it is being loaded by the class loader that
creates the namespace.

DYNAMIC WEAVING IN AOP 23

Problems of Ordinary Techniques

which play a central role in runtime flexibility of Java, does not readily
underlie the object-level dynamic weaving mechanism in AOP.

��� �����
��� �����

�
	����� ���
������� ����� ���

�����������

�

� �� "!���������!�#
��$%!�����!�&('�)*� � ��&�!�$�#

+-,�.%/�0 1�243�5�.�.�0 ,�.

� �� 6!���������!�7
��$%!�����!�&*'�)(� � ��&�!�$�7

Figure 2.9. The version barrier.

Then, the DI + AOP containers recommend us to use an interface
type as the type of a variable that can refer to instances of multiple
versions of a class even if each version is composed with a distinct as-
pect. The underlying mechanism is especially called the AOP proxy
in the container framework community. The sequence diagram for the
AOP proxy is shown in Figure 2.10 and the intuitive class diagram
is shown in Figure 2.11. In fact, the AopProxy class implements the
IBusinessTask interface and dispatches all method calls to the actual
BusinessTask object. This mechanism is based on the Strategy Pat-
tern and the Template Method Pattern. The key technique is
to load the BusinessTask class and the same name class but composed
with CacheAspect1 into separate namespaces. The latter version of that
class can be dynamically loaded, and thus the cache strategy can be
dynamically changed. In fact, the AOP proxy class works between the
IBusinessTask interface and the BusinessTask classes. In Java 1.3, the
Dynamic Proxy API [80] has been introduced to facilitate users employ-
ing this technique easily. However, this technique requires programmers
to define an interface type for every multi-versioned class and access in-
stances of the class through the interface type.

Some of the DI + AOP containers do not force us to define a com-
ponent class as an interface type, however, the component becomes a
non-POJO (Plain Old Java Object). These containers implicitly gen-

DYNAMIC WEAVING IN AOP 24

Problems of Ordinary Techniques

���������	� �
����� ���	�� ���
�����	�������

�����������	���

������ � �
!#" ��� ���$� ���������$% &�' (�	� ($() � (�*

+ ��� & ����� !-, �	� � + %

.-. �������	�$��/#/

� �	��0�� ! %

� �	��0�� ! %

 � � � * � !#1 �	�	0���� " ��� ��� � �� ���	%

Figure 2.10. The AopProxy object intercepts all method calls to the
BusinessTask component.

erates a subclass of that component using a bytecode engineering tools
such as CGLIB [15], BCEL [57], and Javassist [18] as shown in Fig-
ure 2.12. The generated subclass is composed with an aspect and loaded
into the container framework at runtime. For example, a subclass of
the BusinessTask class, the BusinessTask$1 class, is dynamically com-
posed with the CacheAspect1 class. Thus, the component needs not to
be declared as an interface type. For example, even if the BusinessTask

component is declared as a regular class type in the code snippet as shown
below, the container framework can generate the multiple version of the
BusinessTask class while composing various aspects with the generated
subclasses of it:

¤
BeanFactory f a c t o r y

= new ClassPathXmlApplicationContext (” task . xml”) ;
BusinessTask cs

= (BusinessTask) f a c t o r y . getBean (” task ”) ;£ ¢
However, the generated subclass must override all methods declared in
the extending component. It means that the component must not be

DYNAMIC WEAVING IN AOP 25

Problems of Ordinary Techniques

��������� 	�
����������
���
���
����������
��� ����
���

!#"%$%&('�'

)%*+-, . " +�+ /10+�2
'�3�"�4 "�5�6 7�8:9
6 0 6 7-"�8�9

)%*+�, . " ++ /10+;2
';3�";4�";5�6 7�8�9
6 0 6�7-"�8�9

<1= >-? @1A B�C�D;@�E

F G
HI J
K L M
J
HN
O

Figure 2.11. The BusinessTask component composed with
CacheAspect1 can be used as the IBusinessTask type.

declared as a final class and each declared method must not be declared
as a private method. That component is no longer a POJO.

2.2.2.3 The Version Barrier

The rest of this section presents two example problems actually caused
by the version barrier, which developers often encounter when develop-
ing a component-based application in Java. In fact, a number of Java
developers have reported a problem imposed by the version barrier.

J2EE components Most J2EE platforms, either commercial (e.g., Web-
sphere, Weblogic) or open-source (e.g., JBoss, Tomcat), support both
the development and the deployment of pluggable component archives
(EJB-JARs, WARs, and EARs). A Web Application Archive (WAR file)
is used to deploy a web-based application. This file can contain servlets,
HTML files, Java Server Pages (JSPs), and all associated images and re-
source files. An Enterprise Application Archive (EAR file) may contain
one or more Enterprise JavaBeans (EJBs) and WARs. The functional-
ity of the so-called hot deployment enables such J2EE components to
be plugged and unplugged at runtime without restarting the application
servers. Thus, a J2EE application can be dynamically customized on
a per-component basis. This dramatically improves the productivity of
software development. For enabling hot deployment, each component
joins a distinct namespace, loaded by a distinct class loader.

DYNAMIC WEAVING IN AOP 26

Problems of Ordinary Techniques

������� ���	�
��������
��� �������
�	�����
�����	�������

� ����� �	�

���
��� �����
���������� �
�	� �	���	�������!�
�
�	���������

���
��� �����
����
����� "
��� ���������������
�����	�������

$
%& '
() *
'
%+
,

$
%& '
() *
'
%+
-

Figure 2.12. A subclass of the BusinessTask class such as the
BusinessTask$1 class and the BusinessTask$2 can be dynamically
generated with an aspect such as the CacheAspect1 aspect and the
CacheAspect1 aspect.

However, the version barrier makes it impossible to pass instances
of each version of a class across the boundary of J2EE components, or
namespaces. Such instances are typically caches, cookies, or session ob-
jects or beans. For example, consider the following scenario. An instance
of the Cart class must be passed between servlets included in different
web application archives (that is, from the BookMall included in one web
archive, WAR1, to the OnlineBank in another web archive, WAR2). The
class file of the Cart class is packaged into a Java Archive (JAR) file, and
identical copies of that JAR file reside in the WEB-INF/lib directories in
each web archive. Thus, each class loader loads the Cart class separately.
Figure 2.13 illustrates the implementation of these servlets: BookMall

puts an instance of Cart into the session cache and OnlineBank pulls
that instance out of the cache. When casting it from Object to Cart,
the JVM will throw a ClassCastException. Since the Cart class refer-
enced by the BookMall class is a distinct type from the type referenced
by the OnlineBank class, the version barrier prevents assignment of that
instance to the variable cart in the OnlineBank class by throwing a cast
error in advance.

Some readers might think the delegation model of class loaders in Java
is a solution to the problem above. These WAR components can share
the same version of a class if they delegate the loading of that class to
their common parent, such as the EAR class loader (Figure 2.14). In fact,
the typical J2EE platform has such a common parent loader. Child class

DYNAMIC WEAVING IN AOP 27

Problems of Ordinary Techniques

BookMall.select()

SessionCache cache
= session.getCache();

cart = new Cart();
cart.put(item);
cache.add(”cart”, cart);

runs in a servlet in WAR1.

⇐⇒

OnlineBank.estimate()

SessionCache cache
= session.getCache();

Object object = cache.get(”cart”);
cart = (Cart) object;

runs in a servlet in WAR2,
and throws a ClassCastException.

Figure 2.13. Passing the session cache from one WAR component to
another.

loaders can have their parent loader load a class if they want to share the
same version of that class. In the case of J2EE, the SystemClassLoader

is the parent of all EAR class loaders and an EAR class loader is, in
turn, the parent of all WAR class loaders included in that EAR. However,
the solution using a parent class loader tightly couples several irrelevant
J2EE components together. Such coarse-grained composition decreases
the maintainability and availability of all related software components.
For example, consider the two components DVDStore and Pizzeria: the
former models an online 24-hour DVD store and the latter models an
online home delivery pizzeria available from hours 10 to 21. If both
of these components share the above-mentioned application component
including Cart and if this component is packaged into Pizzeria, then
undeploying Pizzeria for maintenance stops the service by DVDStore.
Since DVDStore must run 24 hours a day, it is almost impossible to decide
the maintenance schedule of Pizzeria.

������� �����
	� ���

������
����� ��������� � �

Figure 2.14. A parent EAR class loader is used for sharing class types
between WAR1 and WAR2. The rounded box represents a namespace
for the J2EE component. The overlapping part means the overlapped
namespace.

To solve this problem, the JBoss application server provides the uni-
fied class loader (UCL) architecture [55] for sharing across components

DYNAMIC WEAVING IN AOP 28

Problems of Ordinary Techniques

across the J2EE components. A collection of UCLs acts as a single class
loader, which places into a single namespace all the classes to be loaded.
All classes are loaded into the shared repository and managed by this
repository. However, this architecture disables different J2EE compo-
nents with the same name (Figure 2.15).

�������

�	��
�
�������

�	��
��
����� ��������� ���

Figure 2.15. The JBoss application server based on the unified class loader
architecture makes a parent-child relationship between the communicating
components.

Another technique, considered a last resort, is using the Java Seri-
alization API to exchange objects between different J2EE components
through a byte stream, which is the referred to as Call-by-Value (Fig-
ure 2.16). Typical J2EE platforms adopt this approach for inter-EAR
communications. However, even if an EAR wants to transfer an object to
another EAR deployed in the same container (or JVM), it must execute a
remote call. This remote call is a waste of I/O resources and it decreases
the overall performance. Although the Local Interface mechanism intro-
duced in EJB2.0 allows communications between components without
remote calls (Call-by-Reference), these components must be packaged
together in the same archive.

�������

�	��
�

�������

����
��

�����������
����� �

Figure 2.16. All inter-component communications are realized by a remote
call.

DYNAMIC WEAVING IN AOP 29

Problems of Ordinary Techniques

The similar problem occurs in the case of object-level dynamic weav-
ing in the J2EE platform. For example, the following aspect:¤
public aspect Sess ionCache {

Cart Customer . ca r t = new Cart () ;

pointcut s e l e c t () :
ca l l (public void BookMall . s e l e c t (Item)) ;

before (Item item) : s e l e c t () && args (item) {
ca r t . put (item) ;

}

public Cart get (S t r ing key) {
return ca r t ;

}
}§£ ¢
represents the caching concern, which is removed from the BookMall class
in figure 2.13. For example, the following pieces of code seem to allow
object-level dynamic weaving::¤
ClassLoader l oade r = new CustomClassLoader (. . .) ;
byte [] mod i f i edClas s

= weaver . compose (”BookMall” , ” Sess ionCache ”) ;
Class c = loade r . load (modi f i edClas s) ;
BookMall mall = (BookMall) c . newInstance () ;£ ¢
Creating a custom class loader, putting the caching concern on the
BookMall class using an aspect weaver, loading the modified version of
the BookMall class into the different namespace from that of the running
application, the users can get an object of the new BookMall object.
However, the running application can not deal with the mall object due
to the version barrier.

Eclipse plug-in framework The Eclipse platform [86], an integrated devel-
opment environment for Java, can be considered as a component system
due to its advanced plug-in framework. A plug-in module can contain all
sorts of resources, including code and documentation. A plug-in module

DYNAMIC WEAVING IN AOP 30

Problems of Ordinary Techniques

must also contain sufficient information for the platform to incorporate
the code or documentation into itself. The plug-in framework allows
us to easily add, update and remove discrete portions of the contents.
In addition, since a separate class loader (called a plug-in class loader)
is created for each plug-in module, each plug-in module has its unique
namespace and is dynamically deployable.

However, the Eclipse plug-in framework has a structural problem due
to the version barrier. For example, consider the Eclipse help system
plug-in module [38]. It is a useful plug-in module that allows users to de-
velop and deploy professional-quality, easy-to-use, and searchable online
documentation. The Eclipse help system can be used as an infocenter,
which is an application implemented as a web component and accessible
from a web browser. However, to be used as an infocenter, the current
Eclipse help system needs to run on a separate process from the process
of the web server (Figure 2.17). The web server must make new pro-
cesses for the help system and the minimum Eclipse system, and then
the web server must dispatch all requests to the help system. Thus, every
communication for dispatching requests from the web server to the help
system is a remote call, which involves marshalling all passed instances.

��� �����	�
������� �
����� � � ������� �������

��� ����� �
�!"���� �
����� � � ���#�$� ������!

��� ����� �
�%&���� �
����� � � �����$� ������%

'
#(*) � �+
#,-�+.
�0/�1&243�56/

7�8 9;:=<?>=@BADCFE;G�H?EB9I>J9
<=9KCFE�LNM;>IEO@I<#P P 9

Figure 2.17. The Eclipse help system must run as a separate process.

A real problem of the example above is that, no matter which names-
pace the help system joins, all instances must be marshaled and unmar-
shaled with performance penalties to avoid trouble due to the version
barrier when they are passed between the web server and the help sys-
tem. This is true even if the help system is run on the same process as the
web server. Suppose that the help system runs on the same JVM as the
infocenter, and both the help system and the infocenter use the Apache
Xerces [85] archive, which contains an XML parser in the WEB-INF/lib

DYNAMIC WEAVING IN AOP 31

Problems of Ordinary Techniques

���������	����
����
�������� ������������� �! �"� #%$�$&��$���'%(�)

*,+�-/.1032

465�7 298&-
:<;!=">	? 4!4,@ ? *BA�C

D �6�FEG$1H�$�
��6I

J .�K L M 7 8ON%+P+12
: N%+P+121Q RS0&T�CU +�+12 7 23TV0�M

: TV2PQ RS0�T9C
U +�+32 7 21TV0PM
: TW21Q R�0�T9C

XZY�[9\"Y�]

X^Y�[�\�Y�]

Figure 2.18. The Xerces archives are loaded in duplicate for the Eclipse
help system and the infocenter.

�����������

	�
������������
�

Figure 2.19. Loading all components by a class loader breaks the isolation
of each namespace.

directory. If the help system joins a namespace independent of the names-
pace of the infocenter (Figure 2.18), the version barrier does not allow the
instances of an XML parse tree to be exchanged between the help sys-
tem and the infocenter, since the copies of the Xerces archive are loaded
in duplicate and then different versions of the tree-node class types are
created for each archive. If the help system joins the same namespace as
the infocenter by deploying as a WAR file into the WEB-INF/lib direc-
tory (Figure 2.19), the XML parse tree can be exchanged between the
two components. However, this obviously breaks the isolation of the help
system from the infocenter. For example, several core components of the
Eclipse platform must also be loaded together with the help system, and
these core components cause naming conflicts with the infocenter. Fur-
thermore, all the components must be redeployed together when some

DYNAMIC WEAVING IN AOP 32

Problems of Ordinary Techniques

���������
	�����	�

����������� ����� � ����� �
�!���

" 	$#&%('�)�'���	$*

+-,�.�/0,�1

Figure 2.20. Delegating the Xerces archives to the web component class
loader breaks the isolation of the help system.

of the components are redeployed for maintenance. Finally, if the help
system joins a descendant namespace of the infocenter (Figure 2.20), del-
egating the Xerces archives to the parent class loader also allows sharing
the Xerces archives. However, it ends up breaking separated namespaces,
too.

Extending assignment compatibility The problems illustrated above can
be solved if the algorithm for computing assignment compatibility in the
Java programming language is extended to include version conversions
between different versions of a class type. Here, the version conversion
means a conversion from a version of a class type to any other version of
that class type. If this conversion is chosen in the context of assignment,
casting, and method invocation conversions such as widening and nar-
rowing conversions, instances could be easily passed across the version
barrier 2. For example, this extension of assignment compatibility would
allow assignments between different versions of a class type. Thus, a com-
ponent would be able to pass instances into and from another component,
even if both components load and define that class type separately. The
OnlineBank class in Figure 2.13 would not throw a cast error. Moreover,
the Eclipse platform would not need to care about where and how many
Xerces libraries are available in the current execution environment.

2If two class types have assignment compatibility with each other, one type can
be converted to the other type in the context of not only assignment conversions but
also casting and method invocation conversions.

DYNAMIC WEAVING IN AOP 33

Summary

However, naively relaxing the version barrier by extending the as-
signment compatibility causes a serious security problem. For example,
a program may access a non-existing field or method and then crash the
JVM. In fact, the version barrier of Sun JDK 1.1 was wrongly relaxed,
and thus it had a security hole known as the type-spoofing problem, first
reported by Saraswat [91]. This security hole had been solved by the
loader constraint scheme [51], which rather strengthens the version bar-
rier. To avoid this security problem while relaxing the version barrier,
it would be necessary to have runtime type checking, as is found in dy-
namically typed languages such as CLOS, Self, and Smalltalk. In such
languages, since a variable is not statically typed, any type of instance
can be assigned to it. For security, several interpreters for dynamically
typed languages perform runtime type checks, called guard tests, so that
an exception can be thrown at runtime if a non-existing method or field
is accessed. A drawback of this approach is that it requires frequent run-
time type checks, which implies non-negligible performance degradation,
whereas the JVM performs these runtime type checks. Another tech-
nique is to perform runtime type checks at every assignment operation,
such as the aastore Java bytecode instruction, which is used for storing
an object reference in an array object. This operation verifies that the
stored object is type-safe. However, this approach also causes perfor-
mance degradation, since the JVM must perform a type-check for not
only aastore but also for a large number of other assignment instruc-
tions.

2.3 Summary

This chapter illustrated practical benefits of dynamic weaving in AOP
and currently known techniques for enabling it. We showed three mo-
tivating examples, rapid prototyping, adaptive software, and aspect in-
jection, and two well-known techniques, static code translation and hot
deployment.

Through this chapter, we have seen that the class-level and the object-
level dynamic weaving mechanisms are effectively used for a different
purpose. The class-level dynamic weaving mechanism is useful for an
application that requires several runtime changes spreading among that
application; the object-level dynamic weaving mechanism, for an applica-
tion that contains various crosscutting concerns to be switched to follow

DYNAMIC WEAVING IN AOP 34

Summary

the specific runtime environment and requirements.
Table 2.1 summarizes the features of the two techniques. Both of

them allow implementing the class-level and the object-level dynamic
weaving mechanisms. However, the static code translation technique
causes non-negligible performance penalties while the regular execution
with no woven aspect. The overheads become more serious in the case of
object-level dynamic weaving mechanisms due to the heavyweight hooks
involving look-ups of appropriate objects. The hot deployment tech-
nique employing class loaders is a valuable but sweeping approach for
the class-level dynamic weaving mechanism. It requires all classes and
those existing objects within a woven component are once abandoned
even for one woven class. Furthermore, the version barrier forces devel-
opers to follow the complicate manner while adopting this technique for
object-level dynamic weaving mechanisms.

Table 2.1. Static code translation and hot deployment.
Class-level Object-level

aspect weaving aspect weaving
Static code translation © 4
Hot deployment 4 ©

In the following chapter, we propose new two mechanisms for address-
ing efficient, fine-grained, dynamic weaving mechanisms at the class-level
and the object-level, respectively. The former allow selective, just-in-
time, aspect weaving for enabling efficient class-level dynamic weaving,
the latter one can relax the version barrier between namespaces for effi-
cient object-level dynamic weaving.

DYNAMIC WEAVING IN AOP 35

Chapter

3
A Selective, Just-in-Time, Weaver

This chapter presents Wool [75], which is a selective, just-in-time, aspect
weaver for Java. The previous implementations of class-level dynamic
weaving techniques suffered from serious performance penalties. This
chapter presents our new efficient class-level dynamic weaving technique
in Java for addressing the underlying problem. This system called Wool
is a hybrid of two approaches. When a new aspect is woven in, the
programmers can select to reload into the JVM a modified class file
in which hooks for executing advice are statically embedded, or they
can insert hooks as breakpoints in the JVM. Since the two approaches
have different performance characteristics, the programmers can select
the best one for each join point.

Recently, practical demands are being made of dynamic aspect-
oriented programming (AOP [49]) systems [68, 69, 6, 72, 71]. Unlike
static weaving in AOP, a dynamic weaving mechanism allows dynami-
cally weaving and unweaving an aspect into/from a program. Moreover,
advice and pointcuts are changeable during runtime. These dynamic fea-
tures extend the application domains of aspect-oriented programming.
Dynamic weaving can make development cycles shorter [24] and it al-
lows for aspects that can adapt the behavior of application software at
runtime to follow the changes of the runtime environment and require-

A SELECTIVE, JUST-IN-TIME WEAVER 36

Wool

ments [7, 32, 76].
The most typical technique for implementing class-level dynamic

weaving mechanisms is based on static code translation although it is not
efficient. This approach statically inserts pieces of code, which we call
hooks, into all join points, and these hooks determine at runtime whether
or not there is associated advice to be activated at each join point, in
contrast to static weaving in AspectJ [48]. These runtime checks imply
serious performance overhead although they are necessary since dynamic
weaving allows turning advice on and off during runtime.

This chapter presents our Java-based dynamic AOP system called
Wool, which exploits our new implementation technique for addressing
the performance problem mentioned in Chapter 2. Wool inserts hooks
into a program at runtime just in time when the programmer directs
the program to start using an aspect. Wool allows the programmers
to select from two implementation techniques the best one for each join
point. The first one is to insert the hooks as breakpoints handled through
the debugger interface of the Java virtual machine (JVM). The other one
is to produce a program in which the hooks are embedded as method calls
and reload that new program into the JVM. These two techniques do not
require a custom JVM, but work with the standard JVM.

The rest of this chapter is organized as follows. Section 3.1 presents
our new implementation technique for class-level dynamic weaving. It
also shows an overview of the current implementation of Wool. Sec-
tion 3.2 compares Wool to other AOP systems. Section 3.3 presents the
results of our experiments. We conclude this chapter in section 3.4.

3.1 Wool

We developed Wool, which inserts hooks into the program on demand,
in Java. Since the hooks are inserted after all of the intercepted join
points are specified, Wool does not insert unnecessary hooks. This section
presents the details of our new dynamic AOP system Wool and shows
how it enables efficient class-level dynamic weaving.

3.1.1 An overview of Wool

Wool is implemented as a Java library that provides dynamic weaving
functionality, consisting of APIs to write aspects, a weaver to compose

A SELECTIVE, JUST-IN-TIME WEAVER 37

Wool

aspects with programs, and a subsystem for accepting a request for weav-
ing from the outside of the running program.

Wool allows the aspect to be woven either locally, from within an
application running on the same JVM, or remotely when sent to the
subsystem of Wool. The following code shows how the aspect is woven
in by Wool.

¤
WlAspect azpect = WlAspect . forName (” Pro f i l eAspe c t ”) ;
Wool wool = Wool . connect (” l o c a l h o s t ” , 5432) ;
wool . weave (azpect) ;£ ¢
In a locally woven case, the aspect instance azpect is created in the run-
ning program. The weaver instance wool is connected to the subsystem
of Wool. Weaving runs immediately after the method weave() is called.
Alternatively in a remotely woven case, the aspect instance is actually
created and recomposed outside of the JVM in which it will be woven.
It is then serialized and sent over the network to the subsystem of Wool
in the target JVM.

3.1.2 Just-in-time hook insertion

Wool adopts a hybrid approach so that the programmers can choose a
suitable hook at a join point considering the entire cost, and which hooks
are breakpoints or method calls. In Wool, just-in-time hook insertion is
done in two time-frames at runtime, as shown in Figure 3.1.

���������	�
������� ����� � � ���
���
����� ���� ! "�����#���$�
���

%�& ')(+*�,)'�-/. 0�1)2 3 4')(+*�,)'�-/. 0�1)2 3 4')(+*�,)'�-/. 0�1)2 3 4')(+*�,)'�-/. 0�1)2 3 4

Figure 3.1. Two time-frames for hook insertion.

A SELECTIVE, JUST-IN-TIME WEAVER 38

Wool

The strategy for deciding at the hooked join point whether advice is
executed or embedded into the program is simple. All of the hooks are
represented as breakpoints first. At each hooked join point, there are
alternative ways, one is executing pieces of advice by using the debugger
and the other is embedding hooks into the program using dynamic code
translation. If the hooked join point using a breakpoint is judged likely
to be intercepted again and again in the future, and if the degradation
it causes is estimated to be higher than that caused by dynamic code
translation, such a hook should be embedded into the program instead of
executing the advice by using the debugger. After the hook is embedded,
the breakpoint at the join point is removed.

A comparison of the implementation techniques of dynamic weaving
mechanisms is shown in Table 3.1. Wool is a hybrid of the last two
techniques. Unlike static code translation, both of the two techniques
that Wool adopts do not insert any unnecessary hooks (Column 1 in
Table 3.1).

Table 3.1. Comparison of the three approaches. Wool is a hybrid of the last
two techniques, which are using breakpoint-based execution and dynamic
code translation. Each column indicates the degree of the efficiency of
using that approach.

Static code Breakpoint-based Dynamic code
translation execution translation

frequently executed © × ©
advice
rarely executed × © ×
advice
hook insertion © 4 ×

(statically)
normal operation × © ×
without aspect × © ©

3.1.2.1 As a breakpoint

The first hook insertion method, which we call breakpoint-based execu-
tion, where all the hooks are inserted as breakpoints, which are set at
runtime through standard debugger interface in Java called JPDA (Java

A SELECTIVE, JUST-IN-TIME WEAVER 39

Wool

Platform Debugger Architecture) [82]. The JPDA allows a programmer
to register requests for execution events inside a JVM and controls exe-
cution for each event notification. These breakpoints are set for all join
points specified by a pointcut. If the thread of control reaches one of the
breakpoints, it switches to the debugger thread and the advice associated
with that join point (breakpoint) is run. Using JPDA doesn’t require the
modification of the runtime system.

The execution overhead due to breakpoint is not a serious problem
since the HotSpot (TM) VM that comes with the Java 2 SDK 1.4 runs
a program together with a just-in-time compiler even if any breakpoints
are set. In addition, hooks in the form of breakpoints can be inserted
into programs so quickly (Column 3 in Table 3.1). Although programs
must be run in a debug mode, it doesn’t cause much performance penalty
under normal operations without active advice (Column 4 in Table 3.1).

For frequently executed advice, the overheads for breakpoint-based
execution are not negligible (Column 1 in Table 3.1). The large number of
context switches to execute the advice causes the overhead, since advice
has to be executed separately in the debugger process (Figure 3.2).

3.1.2.2 As a method call

The second hook insertion method, which we call dynamic code trans-
lation: To reduce the overhead caused by context switches, a frequently
invoked join point expressed as a breakpoint is replaced with a modified
method in which the hooks are directly embedded as shown in Figure 3.3.
The method body is modified at the bytecode level so that a bytecode
sequence for executing the advice is embedded at the join points con-
tained in the method body. At the breakpoint, all join points specified
by the pointcut are identified, so hooks can be statically embedded into
the programs without garbage (unnecessary) hooks as in other static-
code-translation-based dynamic weaving mechanisms.

The runtime replacement of bytecode is done using the hotswap mech-
anism [26] of the JPDA. The hotswap mechanism allows a new class to
be reloaded at runtime while under the control of a debugger. The actual
reloading isn’t performed immediately when the static code translation is
completed, because the cost of such a translation is very large. If there is a
method that should be replaced with a hook embedded method, dynamic
code translation is forked, the breakpoint-based execution continues un-
til the translation is finished. Therefore, the dynamic code translation

A SELECTIVE, JUST-IN-TIME WEAVER 40

Wool

� � � � � � � � � � 	

Figure 3.2. Tons of context switches are caused for frequently executed
advice.

stops the application thread for a short time and uses the translation
time effectively. After replacing the method, the thread of control does
not stop at the join points contained in the method body. The hooks are
embedded into the program as simple method calls, and therefore the
advice execution is much faster than using the debugger (Column 1 in
Table 3.1).

Dynamic code translation is not efficient under certain circumstances.
It causes only a single context switch to embed hooks into the program.
However, the cost of the translation and the hotswap performed for every
crosscut class is relatively high if advice is rarely executed (Column 2 and
3 in Table 3.1). In this case, dynamic code translation is just unnecessary
as most of hooks are in the static code translation approach in section 2.2.

A SELECTIVE, JUST-IN-TIME WEAVER 41

Wool

� � ��� � � � � � 	
 �

� � � � � � � � � 	
 �� � � � � � � � � 	
 �
� � � � � � � � � 	
 �� � � � � � � � � 	
 �
� � � � � � � � � 	
 �� � � � � � � � � 	
 �
� � � � � � � � � 	
 �� � � � � � � � � 	
 �

� � � � � � � � � 	
 �� � � � � � � � � 	
 �� � � � � � � � � 	
 �� � � � � � � � � 	
 �� � � � � � � � � 	
 �� � � � � � � � � 	
 �

� � ��� � � � � � 	
 �� � ��� � � � � � 	
 �� � ��� � � � � � 	
 �� � ��� � � � � � 	
 �

� � ��� � � � � � 	
 �� � ��� � � � � � 	
 �

� � ��� � � � � � 	
 �� � ��� � � � � � 	
 �� � ��� � � � � � 	
 �� � ��� � � � � � 	
 �� � ��� � � � � � 	
 �� � ��� � � � � � 	
 �

� � ��� � � � � � 	
 �� � ��� � � � � � 	
 �� � ��� � � � � � 	
 �� � ��� � � � � � 	
 �

� � ��� � � � � � 	
 �� � ��� � � � � � 	
 �

� � ��� � � � � � 	
 �� � ��� � � � � � 	
 �
� � ��� � � � � � 	
 �� � ��� � � � � � 	
 �

� � ��� � � � � � 	
 �� � ��� � � � � � 	
 �

� � ��� � � � � � 	
 �� � ��� � � � � � 	
 �

� � ��� � � � � � 	
 �� � ��� � � � � � 	
 �� � ��� � � � � � 	
 �� � ��� � � � � � 	
 �
� � � � � � � � � 	
 �� � � � � � � � � 	
 �

� � � � � � � � � 	
 �� � � � � � � � � 	
 �

Figure 3.3. Well-balanced hooks as a breakpoint and a method call.

3.1.3 Aspect in Wool

Wool provides the programmers with APIs to define an aspect in Java.
It does not provide a special aspect language for easily writing an aspect,
which is different from the languages such as AspectJ or any others that
are intended to enhance flexibility and abstraction. Using these APIs, an
aspect can be instantiated in the Java program. Therefore, the aspect
can be composed and changed by a program dynamically. This means
that pointcuts and advice can be reconstructed while the target program
runs.

The following fragment of a program is a sample profiling aspect
described in Java with Wool APIs:

¤
1 public class Pro f i l eAspe c t extends WlAspect {
2 Timer t imer = new Timer () ;

A SELECTIVE, JUST-IN-TIME WEAVER 42

Wool

3 int count = 0 ;
4
5 public void po i n t c u t p a i n t c a l l () {
6 Pointcut p
7 = Pointcut . methodCall (”∗” , ”Figure+” , ” pa int ” , ”∗”) ;
8 a s s o c i a t e (p , ” ente r ” , WlAdvice .BEFORE) ;
9 a s s o c i a t e (p , ” e x i t ” , WlAdvice .AFTER) ;

10 }
11
12 public void ente r () {
13 t imer . s t a r t () ;
14 count++;
15 }
16
17 public void e x i t () {
18 t imer . stop () ;
19 }
20 }§£ ¢

Here, the class ProfileAspect inherited from WlAspect is used for profil-
ing the bottleneck of a program. In particular, the above example is spec-
ified by the Pointcut object for profiling the method call that belongs to
the subclasses of the Figure class and named paint. A method prefixed
with pointcut like pointcut paintcall() is called by the weaver at
the time an aspect is actually woven into a program. This aspect inserts
before advice and after advice to measure the elapsed time and the num-
ber of the method calls. The enter() method and the exit() method
are inserted as before and after advice, respectively. Advice in Wool
is associated by using the method associate() inherited by the class of
WlAspect.

3.1.3.1 Aspect

The first step in the use of Wool is to create a WlAspect object repre-
senting an aspect defined by programmers. This step is for creating the
aspect and makes it accessible from a program. In an aspect of Wool,
the programmers can define it in the following two ways:

• Define the subclass of WlAspect, or

A SELECTIVE, JUST-IN-TIME WEAVER 43

Wool

• Add advice to the scratch object of WlAspect.

The subclass of WlAspect represents an encapsulation of crosscutting
concerns. Programmers can define aspect variables in it, which are ac-
cessed from advice or aspect methods or inter-type declarations1 such as
timer and count shown in the above example. In addition, it contains
initial weaving advice described in the method weave(), inherited from
WlAspect. It is called on the return from the weaver at the time an
aspect is actually woven into a program. It is only by using the method
weave() that the programmers can insert advice into a program in the
subclass of WlAspect.

To construct and reconstruct an aspect object dynamically, Wool pro-
vides another way to create it from scratch. This feature is useful because
an aspect, which is the intercepted join point identified by the pointcut
or the operation defined by advice, can be formed according to the be-
havior of the running program. To do this, a WlAspect object must be
created as follows:

¤
WlAspect azpect = WlAspect . sc ratchAspect () ;
azpect . a s s o c i a t e (pointcut , advice , WlAdvice .BEFORE) ;£ ¢
The created object azpect represents an empty aspect that has no advice
or inter-type declaration although the method associate() associates
advice to the aspect later. If new advice is added to a non-empty aspect
like the class ProfileAspect, advice inserted by using the associate()

method is left as it is, and the new advice is just added as extra advice.
The added advice is not immediately reflected in the program. In

Wool, advice is synchronized with the program only by the method
weave() or unweave(). Thus, the behavior of a running program is
changed only when those methods are called.

3.1.3.2 Pointcut

Wool provides several methods for identifying the set of join points by
using the Pointcut class. The Pointcut class has some static methods
to identify a set of join points and some methods to be used for some

1An Inter-type declaration (formerly called the introduction) is an element for
AOP, which cut across classes and their hierarchies.

A SELECTIVE, JUST-IN-TIME WEAVER 44

Wool

logical operations. For example, the method methodCall() identifies a
call to the method with four String arguments. Those arguments are
used for indicating a modifier, a method name, a declared class, and a
signature. Table 3.2 lists several methods in Pointcut.

Table 3.2. Methods in Pointcut for identifying a set of join points.

static Pointcut methodCall(String, String, String, String)

identify a call to the method.

static Pointcut methodExecute(String, String, String,

String)

identify an execution of the method.

static Pointcut fieldGet(String, String, String)

identify a read of the field.

static Pointcut fieldSet(String, String, String)

identify a write of the field.

static Pointcut instanceCreate(String, String, String)

identify a creation of the instance.

static Pointcut exceptionHandle(String)

identify a handling of the exception.

static Pointcut within(String)

identify any join point defined in the class.

Pointcut and(Pointcut)

perform an AND operation.

Pointcut or(Pointcut)

perform an OR operation.

3.1.3.3 Advice

Advice is represented as an ordinary method in Wool. In AOP, advice
consists of a pointcut and an advice body. The associate() method in the

A SELECTIVE, JUST-IN-TIME WEAVER 45

Wool

WlAspect class associates a Pointcut object with a method as advice.
Thus, the advice is easily changed and modified at runtime. In addition,
that method takes as a parameter a kind of advice, such as before and
after advice.

The following method shows how to obtain reflective information
about the current join point for the advice to use:

¤
public void e x i t (Figure $ ta rge t) {

t imer . stop () ;
out . p r i n t l n (” Paint ing ” + $ta rge t . getName () +

” takes ” + timer . getElapsedTime () +
” [ms] ”) ;

}£ ¢
We can access the this object for the current join point by naming a
method parameter $this. Since the hooks are specialized for the type
of each joinpoint, the runtime context bound to the advice body can be
minimum. This optimization is derived from the study of optimization
techniques in [20] and [12]. Similar to this() pointcut of AspectJ, advice is
not invoked if the type of a method parameter is different from the object
at the identified join point. We can also use all reflective information by
using $joinpoint as a parameter. Mainly, this object is used to obtain
certain dynamic information such as the currently executing object or
the target object or the arguments. The current version of Wool doesn’t
support obtaining more reflective information such as data structures
of the class for the sake of efficiency. However, such an optimization
technique as partial evaluation [58] offers the possibility of efficiently
providing rich reflective information for programs, since it can statically
pack that information only into the advice that requires them. Table 3.3
lists several parameter names for accessing the context of the current join
point.

3.1.3.4 Inter-type Declaration

Although the limitations of the JPDA prevent Wool from implementing
an inter-type declaration directly, it is easy to implement it indirectly.
When a class is replaced with a new one, the JPDA restricts the new one
to changing the schema like fields and the hierarchy like subclasses or

A SELECTIVE, JUST-IN-TIME WEAVER 46

Wool

Table 3.3. Parameter names for accessing the context of current join point.

$this

access the this object in the current join point.

$target

access the target object in the current join point.

$arg1, $arg2, ...

access the argument object in the current join point.

$joinpoint, $jp

access the execution context in the current join point. The
type of that parameter must be Joinpoint.

the interfaces and class modifiers and method modifiers, and to deleting
methods. Thus, the inter-type declaration itself is restricted with the
JPDA. However, the introduced method or field is actually referred to
only from the advice code. Therefore, by adding a hidden map or a
list for the inter-type declaration to all of the classes at load-time, then
making the advice code use the hidden variable, Wool can allow for the
addition of class elements.

3.1.4 Control of the weaver

Wool provides an optional function for programmers to control the be-
havior of a weaver. This function operates at the time when an aspect
actually weaves the program, in other words, when the effect of an as-
pect appears in the running program. In AOP systems that support the
dynamic weaving mechanism, the timing of the weaving is important be-
cause there is a non-determinacy when an aspect is woven from a remote
JVM and there is a necessity to care for a paired advice in relation to
the activation frames.

This function is implemented by delegating methods related to the
weaving operation from Wool to the programmer. A programmer can
control Wool by overriding the methods of WlAspect, specifically hook()

and initWeave(). The object of Wool is passed to the programmer

A SELECTIVE, JUST-IN-TIME WEAVER 47

Wool

through those two methods as a parameter. Thus, by implementing
the weaving operation by hand with several provided methods, the pro-
grammer can control Wool and take care of paired advice using dynamic
information. Again, the programmer can select the method of hook in-
sertion as described below in detail. Table 3.4 lists the available methods
through the object of Wool.

Table 3.4. Available methods in Wool for the control of Wool.

void advice(Joinpoint)

execute advice associated with the join point.

void embedHook(Joinpoint, Pointcut or String, optional
boolean)

embed hooks into the program by using dynamic code trans-
lation. Second optional parameter triggers undocking the
translation thread.

int countActivationFrame(String)

count the number of activation frames in the context the
intercepted program is running in.

void filterClass(String, boolean)

restrict the loaded classes to be affected by an aspect.

3.1.5 Implementation of just-in-time hook insertion

We present the implementation issues of just-in-time hook insertion by
describing the details of weaving step-by-step. The order of the weaving
process in Wool is:

(1) Scan classes.

(2) Insert hooks as breakpoints.

(3) The programmer selects the most suitable method.

(4)-1 Execute using the debugger, or

A SELECTIVE, JUST-IN-TIME WEAVER 48

Wool

(4)-2 Embed the hook and call the advice.

Following are the details of each step.

3.1.5.1 Scan classes

After Wool is attached to the target program, the application threads ex-
cept for the threads like the garbage collection and JIT compiler threads
are suspended for a while. Wool scans all of the loaded classes and finds
out the join points specified by any pointcut. The method initWeave()

is called just before this scan. For example, if some classes are filtered
by the method filtering() in initWeave() as follows:

¤
public class Pro f i l eAspe c t {

public void initWeave (Wool wl)
throws WoolException {

wl . f i l t e r C l a s s (”ˆ java . ∗ | ˆ sun .∗ ” , fa l se) ;
}

}§£ ¢
those classes are excluded from the scanning.

3.1.5.2 Insert hooks as breakpoints

Wool sets breakpoints to specify each join point in a set of filtered
classes. In order to set the breakpoint, Wool use the subclasses of Hook
(CallHook, GetHook, etc.) included in the wool.hook package that is
implemented using the class BreakpointRequest in JPDA. At the same
time, pieces of any advice represented as a closure is associated with the
join point through the objects of Hook. Finally, all of the threads that
Wool has suspended are resumed.

3.1.5.3 The programmer selects the most suitable method

When any thread of the target program reaches the first join point, it is
intercepted by Wool. Wool calls the method hook(). A programmer can
avoid the executing advice that join point for the paired advice by over-
riding the method hook() in the subclass of WlAspect. Wool gives pro-
grammers dynamic information about the join point through the object

A SELECTIVE, JUST-IN-TIME WEAVER 49

Wool

of the functions using Joinpoint(CallJoinpoint, GetJoinpoint, etc.)
included in the wool.joinpoint package, which are all implemented us-
ing the class BreakpointEvent. At the same time, the programmer
can select whether to activate dynamic code translation by the method
embedHook() or to execute the advice by the method advice():

¤
Pointcut p = Pointcut . methodCall (

” pub l i c ” , ”FigureElement ” , ” pa int ” , ”∗”) ;
public void hook (Wool wl , Jo inpo int $jp)

throws WoolException {
i f (wl . countActivationFrame (”main”) > 0) {

wl . adv ice ($jp) ; // breakpo int−based execu t i on
} else {

wl . embedHook($jp , p) ; // dynamic code t r a n s l a t i o n
}

}£ ¢
This fragment of a program means that if there is no activation frame at
the join point on the thread named main, the advice associated with the
joinpoint joinpoint is activated. Otherwise, dynamic code translation
is performed. The method embedHook() takes the object of Pointcut or
the name of the class as a parameter.

3.1.5.4 Execute using the debugger

There are two cases when the debugger executes advice. One is that the
method hook() is not overridden, which is the default case. The other
is that the method advice() is called in an overriding hook(). Just
by calling the method advice(), the appropriate advice associated with
that join point is executed.

3.1.5.5 Embed the hook and call the advice

When the method embedHook() is called, Wool creates a hook for the
class to be installed using Javassist [18], which is a load-time bytecode
modification tool, and calls the method redefineClass(), which is de-
clared in the class VirtualMachine in JPDA, to replace it with the new
one. During the translation and replacement, the intercepted program

A SELECTIVE, JUST-IN-TIME WEAVER 50

Wool

allowed to resume execution. The advice is executed by the debugger
substituting the advice as required until the replacement is completed.

Once dynamic code translation has been executed, the control of Wool
will not return to the aspect program for the sake of efficiency. Not to
adopt dynamic code translation or to insert hooks per thread it is better
to continue breakpoint-based execution because hooks can be embedded
anytime under the control of Wool.

3.1.6 Taking care of activation frames

Using just-in-time hook insertion, there is an exceptional case that we
have to treat in a special way when substituting a method in which hooks
are embedded. This is when the execution of some advice involves a join
point contained in the method currently being executed. For example,
suppose that a draw method in a rectangle class is currently being ex-
ecuted and the activation frame associated with that method is on the
execution stack. After the class file of the rectangle class is reloaded with
the hotswap mechanism, however, the execution of the draw method with
that activation frame on the stack is still being performed according to
the definition of the draw method given by the old class file. Thus, the
hooks contained in the new class file are not effective for that execution.
The hooks are effective only for the execution of the draw method started
after the reloading as shown in Figure 3.4. However, the draw method
might recursively call itself after the class file. To avoid this problem,
dynamic code translation is automatically delayed, instead breakpoint-
based execution is performed on the activation frame until the activation
frame is popped from the stack.

��� �����	��
�����������
� ������������� ��
�����������
� � �!�����!��� ��
����	������� "$#&%�'$")(�* +�,.- /10"$#&%�'$")(�* +�,.- /10243�5�5�687�9;: <>=?6A@ 7�B

6�CD6�E;3 9�6�F
G 9�HI6 G�J @K7�BL9�@ MN6

Figure 3.4. An aspect does not affect activation frames.

We also have to be careful with the execution of a pair consisting of
before and after advice woven at the same join point. If that pair is woven

A SELECTIVE, JUST-IN-TIME WEAVER 51

Related Work

accidentally while the method containing that join point is executed, only
the after advice will be executed at the end of that execution. The before
advice will not be executed since the method execution had already been
started as shown in Figure 3.5. This behavior might cause a problem if
the after advice depends on the results of the before advice. For example,
the before advice might record the current time and the after advice can
use that value to compute the elapsed time. In this case, after advice
must not be executed if the corresponding before advice was not executed.
To solve this problem, our technique allows the programmers to select the
behavior in that case using the dynamic information at the join point.

��� �����	��
�����������
� ������������� ��
������������

� ��� ��������� ��
�����������

!�"$#$%'&�(�)+*�, -�%

.0/�102�3 3�/04

!	"$#5%'&�(�)'*', -5%
6 %5"57�&$%8(�)'*�, -5%
.0/�102�3 3�/04

Figure 3.5. An aspect does not affect activation frames.

3.2 Related Work

First, the mechanism of our just-in-time weaver is much similar to that
of the HotSpot VM [81]. Both mechanisms allow switching two kinds of
the execution mode considering the whole execution cost, the HotSpot
VM has the interpreter and the just-in-time compilation mode; our just-
in-time weaver the debugger and the dynamic code translation mode.
However, the HotSpot VM does not need to take care of the semantics
of a running application such as activation frames and statically typed
operations. It would not be changed before and after just-in-time com-
pilations. On the other hand, we think the just-in-time aspect weaver
should take care of activation frames and perform type-checks equal to
the bytecode verifier for statically typed programs including advice code,
and then provide the mechanism for it to the programmers. Wool pro-
vides it as mentioned in section 3.1.6 and section 3.1.3.

In the rest of this section, we discuss some AOP implementations

A SELECTIVE, JUST-IN-TIME WEAVER 52

Related Work

related to our work, and compare them to Wool. Most current AOP im-
plementations are based on code translation performed by a preprocessor
at compile-time or by an extended classloader at load-time of the classes.
Two extreme dynamic weaving mechanisms have already proposed excep-
tions to static code translation, where hooks consist of all-breakpoints or
all-methodcalls. Both of these systems have drawbacks in their program
execution performance. Wool can avoid these performance penalties by
taking a suitable approach for each join point according to the program-
mer’s specification.

An earlier version of AspectJ [48] pre-processes the source code of the
aspects and produces a base Java program used to generate a pure Java
program that includes woven aspects within it. Even though it only sup-
ports static weaving, AspectJ is a typical compiler-based AOP system.
Since it is a static AOP system, whether to weave the advice at a join
point is determined at compilation time. Also, the advice activity never
changes during the runtime in AspectJ. This is sometimes a problem for
faster development cycles [24] and for adaptable aspects [7, 32, 76].

Several researchers have addressed the problem of compile-time weav-
ing by shifting the timing of aspect weaving to later stages. Approaches
using bytecode-modification tools such as BCA [47] and Javassist [18]
use a customized Java class loader to allow weaving at load-time. Exten-
sions of a just-in-time (JIT) compiler like OpenJIT [66] allow weaving
at the time of dynamic compilation by the JIT compiler. These are use-
ful for faster development cycles. With these approaches, however, the
chance of composition of an aspect with a program is restricted to only
one time, at load-time or at dynamic compilation. In order to allow the
dynamic activity of advice code, we need some tricks like runtime class
evolution [34] to decompose the aspects from a program. We employed
the hotswap mechanism of the JPDA for that in Wool.

PROSE [72] uses the JVM debugger interface called JPDA to insert a
hook as a breakpoint, which is same as Wool when it inserts only hooks
as breakpoints. They report that the execution of advice is too slow
in their system to be acceptable. However, we think this approach is
useful in limited cases. For example, when a system administrator must
recover from system failure as soon as possible, a lightweight diagnosis
aspect could be helpful. Meanwhile, when Wool inserts all of the hooks
as method calls, this is the same as our previous work [21]. Our experi-
ment has shown that dynamic code translation and class hotswapping im-
pose heavy costs in execution time. However, dynamic compilation may

A SELECTIVE, JUST-IN-TIME WEAVER 53

Experimental Results

amortize such costs in the long term. Although Steamloom [9] supports
replacement of a loaded class with the aspect woven class by modifying
the IBM Jikes RVM, it does provide selective hooks to programmers.

3.3 Experimental Results

This section first shows the result of our preliminary experiments vali-
dating the fundamental of Wool approach basing in a debug mode and
combining two hooking means in Wool. After that, it reports the re-
sult of our application benchmark which compares Wool to other imple-
mentation approaches to dynamic AOP systems. We performed all the
experiments on the Sun Java 2 SDK v1.4.2 HotSpotTM Client VM with
Linux kernel 2.4.25, which were running on a Pentium4 1.9GHz processor
with 1GB memory.

3.3.1 Preliminary Experiment

3.3.1.1 Debug mode

Wool forces application programs run in the debug mode but it is not
a major problem with Java 2 SDK 1.4. Although [72] reported that
this overhead is too large to use the JPDA for implementing a dynamic
weaving mechanism, this overhead has been significantly reduced by us-
ing Java 2 SDK 1.4. We measured the overhead incurred by a debug
mode to show that Wool adopts a realistic method. Table 3.5 summa-
rizes the relative execution time of the SPECjvm98 [79] benchmarks in
the debug mode of Sun Java 2 SDK 1.4. The observed performance loss
is less than 5%.

3.3.1.2 Two kinds of hooks

To demonstrate the differences of the two kinds of hooks, the breakpoint
and the method call, we compared the performance of a join point hooked
by a breakpoint with the same one using a method call, both using Wool.
In these measurements, the join point was an empty method call, and
the advice was empty. These measurements involved 10,000 iterations.
The results of these micro-measurements are shown in Table 3.6.

A SELECTIVE, JUST-IN-TIME WEAVER 54

Experimental Results

Table 3.5. The overhead for SPECjvm98 in the debug mode of Sun Java2
SDK 1.4.

Benchmark overhead

200 check 103.52 %
201 compress 99.18 %
202 jess 104.64 %
209 db 101.54 %
213 javac 100.82 %
222 mpegaudio 101.33 %

Breakpoint hooking takes approximately 700 times longer than
method-call hooking on average. The elapsed time for breakpoint hook-
ing varies widely depending on the implementation of the process sched-
uler used in the experimental environment because a breakpoint must be
intercepted by a debugger process. Consequently, once a hook is inserted
as a method call, it brings about a large performance improvement. The
average time of the hook as a method call shown in Table 3.6 does not
include the time elapsed during dynamic code translation in order to
measure the pure elapsed time for the hook as a method call.

Table 3.6. Hooks as breakpoints and method calls in Wool.
Measurement Average Minimum Maximum Hook insertion

breakpoint 9.956[ms] 9[ms] 103[ms]
method call 14.3[us] 435[ms]

3.3.2 Wool measurements

To demonstrate the effectiveness of the proposed just-in-time hook in-
sertion, we compared the overhead of Wool with other techniques. We
picked the jess benchmark program from the SPECjvm98 benchmarks
and measured the execution time of the program with one of the input
data called monkey banana. The jess benchmark is the Java Expert
Shell System based on NASA’s CLIPS expert shell system, which has
over 10,000 lines of code and 140 classes.

A SELECTIVE, JUST-IN-TIME WEAVER 55

Experimental Results

We provided a before advice code which does nothing and let it woven
into all the public method bodies in the jess program. The methods
woven an advice code exists 163 and totally called 87,457 times. For
comparison, we measured the execution time of the program with the
advice woven varying the underlying systems to the one with static code
translation stated in Chapter 2, the one only with dynamic code transla-
tion, the one only with breakpoint-based hooks, and Wool. For making
use of Wool’s hybrid approach, we implemented a simple profiler using
Wool APIs as follows:

¤
public void hook (Wool wl , Jo inpo int $jp)

throws WoolException {
wl . adv ice ($jp) ;
Class c l a z z =

((Execut ionJo inpo int) $jp) . method () . dec lar ingType () ;
i f (map . increment (c l a z z) > 10)

wl . embedHook($jp , c l a z z . getName ()) ;
}£ ¢

This means that if a class is being frequently intercepted, the hooks are
embedded into this class dynamically. Using this simple profiler and
adjusting the threshold, the method for hook insertion was automati-
cally and suitably selected without requiring in-depth knowledge of the
application.

Table 3.7. Elapsed time [ms] of jess. The result in AspectJ is 114.8 ms
just for reference.

Static code Dynamic code Breakpoint- Wool
trans. trans. based exec. (hybrid)

pointcut 0 3,454.8 3,468.0 3,452.0
hook insertion 0 1,961.8 0 1,065.4
execution 4,488.8 580.2 140,945.0 783.8
elapsed time 4,488.8 5,995.8 144,413.0 5,301.2

Table 3.7 lists the results of the benchmark execution. The total
time consists of the pointcut time (elapsed time for scanning classes),
the hook insertion time (elapsed time for runtime code translation and

A SELECTIVE, JUST-IN-TIME WEAVER 56

Experimental Results

� � �

� � � �

� � � � �

� � � � � � �
� � � � � � � � 	

��
��
�� �
� �
�� �
��

��� � � � � � � � � !"! � # $&% ' � � (� � % � � �) % � % � !"! � # $&% ' � � (� � % � � � * (+ $! % ,

Figure 3.6. Elapsed time [ms] of jess. The results show the averages
of every 10 times. The first results are the same as shown in table 3.7.
Although the results in AspectJ include the time of aspect weaving (8,180
[ms]) and restarting the JVM, these are illustrated just for reference.

hotswapping) and the execution time (the rest of the elapsed time). Fig-
ure 3.6 illustrates the results of the averages on every 10 times execu-
tion. Table 3.8 lists the numbers of translated classes, inserted hooks,
and executed pointcut tests, for each hook implementation approach.
These results show that Wool ran long-lived dynamic AOP application
as fast as AspectJ after all hooks are embedded into the application.
This is because Wool avoided inserting unnecessary hooks. The static
code translation inserted hooks into the program 17 times as many as
Wool, and thus resulted in 12 times more pointcut tests. Thereby causes
the static code translation 18% faster than Wool at the first execution,
although it resulted in 38 times slower than Wool before long. In the
case of the first benchmark execution, Wool was about 12% faster than
dynamic code translation and about 96% faster than breakpoint-based
execution. This is because Wool allowed switching the breakpoint and
method call implementations at every join point. The results for dy-
namic code translation show that compiling extra 61 (76 - 15) classes did
not improve the performance against Wool. The compilation cost 896.4
(1961.8 - 1065.4) msec. whereas the execution time was reduced by only

A SELECTIVE, JUST-IN-TIME WEAVER 57

Summary

Table 3.8. The numbers of translated classes, inserted hooks, and pointcut
test. The numbers in parenthesis represents the comparison to AspectJ.

Static code Dynamic code Breakpoint- Wool
trans. trans. based exec. (hybrid)

translated 149 76 0 15
classes (196%) (100%) (20%)
inserted 2,815 163 163 163
hooks (1727%) (100%) (100%) (100%)
execution 1,077,338 87,457 87,457 87,457
times (1231%) (100%) (100%) (100%)

203.6 (783.8 - 580.2) msec. The breakpoint-based execution caused very
large performance degradations because of over 87,000 context switches.

3.4 Summary

This chapter presented a new dynamic aspect weaver called Wool, which
makes it possible to implement efficient, class-level, dynamic weaving
mechanisms. Wool is implemented in Java without modifying the existing
runtime system. It integrates a technique using breakpoints provided by
the debugger interface of the JVM and a technique using the hotswap
mechanism, which allows us to reload a class file that has already been
loaded. This selective functionality is delegated to programmers with
dynamic information about the target program. Furthermore, it provides
a framework for taking care of activation frames by controlling the timing
of the aspect weaving.

Our experiments showed Wool runs dynamic AOP application 38
times faster than an AOP system using static code translation approach
under a certain circumstance. This is because Wool avoids inserting
unnecessary hooks. Moreover, the experiment showed. Wool is about
12% faster than dynamic code translation, and about 96% faster than
breakpoint-based execution. This is because Wool allows programmers to
select the most suitable hooking means at each joinpoint from breakpoint
or method call implementation.

A SELECTIVE, JUST-IN-TIME WEAVER 58

Chapter

4
Loosely-separated Namespaces

This chapter introduces a novel concept for Java namespaces, called sister
namespaces [74], to address the problem of object-based dynamic weaving
techniques due to the version barrier. The version barrier is a barrier that
prevents Java class loaders from being a feasible method for implementing
object-level dynamic weaving mechanisms. Sister namespaces can relax
the version barrier between components even if each of these components
is composed with a distinct aspect. The main purpose of this chapter
is to provide a mechanism for relaxing the version barrier, while still
allowing type-safe instance accesses between components with negligible
performance penalties in regular execution.

Practically all modern programming environments allow developers
to utilize some kind of component system (e.g., JavaBeans [33], EJB [60],
CORBA [67], .NET/DCOM/ActiveX [64], Eclipse plug-ins [77]). A com-
ponent system allows programmers to develop a component-based ap-
plication, which can be developed and then deployed per component.
Most of the component systems for Java adopt a single class loader per
component, and thereby create a unique namespace for each application
component. A namespace is a map from the class names to the class
definitions. A set of classes included in the same component joins 1 its

1A class joining a namespace means it is being loaded by the class loader that

LOOSELY-SEPARATED NAMESPACES 59

own namespace and thus naming conflicts between components can be
avoided. Moreover, a component can be dynamically and individually
updated without restarting the whole execution environment.

One significant drawback of such component systems for Java is the
difficulty for components to communicate across class loader bound-
aries in the Java Virtual Machine (JVM) [40, 53, 30, 41]. In fact,
such communication is well known to frequently cause a cast error
ClassCastException or a link error LinkageError. Most of the link
errors are just bugs; an error is caused when a class is wrongly loaded
by both parent and child loaders [45]. These bugs can be easily avoided
if developers are careful. However, cast errors are extremely difficult to
avoid since this problem is caused by the strict separation of namespaces,
ironically called the version barrier. The version barrier is a mechanism
that prevents a version of a class type from being converted to another
version of that specific class type. For instance, it restricts an instance
of the former type to be assigned to the variable of the latter type.

In Java, a class type is uniquely identified at runtime by the com-
bination of a class loader and a fully qualified class name. If two class
definitions with the same class name are loaded by different loaders, two
versions of that class type are created and they can co-exists, although
they are regarded as distinct types. This mechanism allows Java ap-
plets, Java Servlets, and EJBs working on the same process of the JVM
without naming conflicts 4.1. The version barrier is a mechanism for
guaranteeing that different versions of a class are regarded as different
types. This guarantee is significant for performance reasons. If different
versions of a class were not regarded as different types, the advantages
of being a statically typed language would be lost. Moreover, if the same
class definition (i.e., class file) is loaded by different class loaders, dif-
ferent versions of that class are created and regarded as distinct types.
Therefore, if two components load the same class file individually, one
component cannot pass an instance of that class type to the other.

This chapter presents our novel concept of namespaces in Java, which
we call sister namespaces, and the design of that mechanism. Sister
namespaces can relax the version barrier between application compo-
nents. An instance can be carried beyond the version barrier between
sister namespaces if the type of that instance is compatible between these
namespaces. The mechanism of sister namespaces is implemented by ex-

creates the namespace.

LOOSELY-SEPARATED NAMESPACES 60

Sister Namespaces

��� ��� ������ ��� ���

�����
	�����
�
���
�����

���������������

����� �! ���

"#��$�% �'&)(*,+
�-��.0/ ��12$ ��* ��* 3�! 465�768�9':5);�8

9�8 :5�<�5-=�> ?�@

A ��12/'��3

"#����*�% �,��	�(*,+
��$�$�% ��3�!

B � ��C
� ���ED�% ��3

Figure 4.1. Downloaded applets, deployed servlets and EJBs can work on
the same process of the JVM without violating with each other.

tending the type checker and the class loader of the JVM.
The rest of this chapter is organized as follows. Section 4.1 presents

the design and implementation of the sister namespace. Section 4.2 dis-
cusses a few implementation issues. Section 4.4 presents the results of
our experiments. Section 4.5 compares the sister namespace mechanism
to other related work. Section 4.6 concludes this chapter.

4.1 Sister Namespaces

We propose sister namespaces, which can relax the version barrier be-
tween namespaces. Different versions of a class type that join sister
namespaces can be assignment compatible with each other if these ver-
sions have differences while still preserving the version compatibility. Our
challenge is to relax the version barrier while keeping type-safe instance
accesses efficient. In this section, we first define extended assignment
compatibility, which is based on Java binary compatibility [29] (Sec-
tion 4.1.1). Next, we show the sister-supported type checker, which
takes the central role in relaxing the version barrier for sister names-
paces (Section 4.1.3). The type checker blocks illegal objects when they
move across the version barrier, and thus no subsequent extra check is
needed for these objects. This is enabled because it is prohibited for a
namespace to become a sister of its parent or child namespace. In addi-
tion, we present the sister loader constraint (Section 4.1.4) and then the
schema class loading scheme (Section 4.1.5). They prevent eager class
loading and type inconsistencies, respectively.

LOOSELY-SEPARATED NAMESPACES 61

Sister Namespaces

We implemented the sister namespaces on the IBM Jikes Research
Virtual Machine (RVM) [5]. The extensions to the Jikes RVM are only
the sister-namespace API, a sister-supported class loader, and a sister-
supported type checker. The Java API is provided as an extension to
the existing java.lang.ClassLoader in the GNU Classpath libraries.
These extensions consist of several core classes of the Jikes RVM such as
class and object representations.

4.1.1 Version Compatibility

This section provides the definition of version compatibility, which se-
curely extends the assignment compatibility between different versions
of a class type. We define two versions of a class type, Cver1 and Cver2, as
assignment compatible with each other if Cver1 is version compatible with
Cver2 and vice versa. A class type Cver2 is version compatible with Cver1

if all the class types that could previously link with Cver1 and work with
an instance of Cver1 without errors are able to also correctly work with
instances of Cver2 without other assignment compatibility rules such as a
subtyping relation. Thus, if Cver1 and Cver2 are version compatible, then
an instance of Cver1 can be securely converted to the type Cver2 when
it is assigned to a variable of Cver2 and vice versa. Here, being secure
means that every operation on Cver2 is applicable to the instance of Cver1

without errors; any method call, field access, or type casting applied to
the variable does not fail.

Figure 4.1 shows the differences that programmers are permitted to
make between two versions of a class while preserving version compati-
bility between two versions. The following summarize the differences:

• Differences of declared static members such as a static field, a static
method, a constructor, or an initializer.

• Differences of the implementation of instance members, such as an
instance method.

The differences are derived from the study of the binary compatible
changes mentioned in the Java language specification [37].

Version compatibility is based on the idea of binary compatibility; it
means that an instance rather than a class can work with the binary of an-
other version of the class type. Java binary compatibility defines a set of
changes that developers are permitted to make to a package or to a class

LOOSELY-SEPARATED NAMESPACES 62

Sister Namespaces

Table 4.1. A set of version compatible changes derives from two-way binary
compatibility
changes class interface field

abstract × n/a n/a
final × n/a ×
static n/a n/a ×

(○ private)
transient n/a n/a ○
synchronized n/a n/a n/a
accessibility × × ×
adding/removing n/a n/a ×
including static (○ private)
body n/a n/a n/a

method constructor initializer

abstract × n/a n/a
final × n/a n/a
static × n/a ○

(○ private)
transient n/a n/a n/a
synchronized ○ n/a n/a
accessibility × × n/a
adding/removing × × ○
including static (○ private,native) (○ private)
body ○ ○ ○

or interface type while preserving the compatibility with the preexisting
binaries (Table 4.2). A change to a class type is binary compatible with
preexisting binaries if preexisting binaries that previously linked without
errors will continue to link without recompiling. Version compatibility
defines differences between two versions of a class type that preserve the
binary compatible property between an instance of one version and the
binary of the other version. Unlike the original binary compatibility, the
version compatibility allows any change to static members since static
member accesses are irrelevant to instances. Version compatibility deals
with the compatibility between an instance and the binary of another ver-
sion of that class type. Therefore, to be version compatible, two versions

LOOSELY-SEPARATED NAMESPACES 63

Sister Namespaces

of a class type must have the same set of private members, although the
implementations of those members may differ. This is a difference from
the binary compatibility, which allows the two versions to have a different
set of private members. Since a private member can be accessed from
not only this instance but also from other instances of another version
of that class type, version compatibility requires that the two versions
have the same set of private members.

Table 4.2. Java binary compatibility

changing to class interface field method constructor initializer

abstract ×1 n/a n/a ×2 n/a n/a
non-abstract ○ n/a n/a ○ n/a n/a
final ×3 n/a ×4 ×3 n/a n/a
non-final ○ n/a ○ ○ n/a n/a
static, n/a n/a ×5 n/a ○
non-static
transient, n/a n/a ○ n/a n/a n/a
non-transient
synchronized, n/a n/a n/a ○ n/a n/a
non-synchronized
strengthening ×6 n/a
accessibility.
weakening ○ ○ ○ ○ ○ n/a
accessibility.
addition, or n/a n/a ○ ○ ○ ○
override,overload,
changing
throws clause.
removal, or n/a n/a ×7 ×8 ○
changing parameters,
returntypes.
method body n/a n/a n/a ○ ○ ○
changing type Reordring type hierarchy with no member lost.9

hierarchy.

LOOSELY-SEPARATED NAMESPACES 64

Sister Namespaces

4.1.2 Creating Sister Namespaces

A sister namespace is a first-class entity, but it is created implicitly when
a class loader is instantiated with a class loader given as a parameter.
The ClassLoader class provides the new constructor as follows:

¤
protected ClassLoader (ClassLoader parent ,

ClassLoader s i s t e r)£ ¢
The class loader obtained from this constructor becomes a sister class
loader of the class loader specified by the parameter sister. The latter
class loader also becomes a sister of the former one. These two sister
class loaders construct their own sister namespaces; the version barrier
between them is relaxed if the version compatibility is satisfied. The
sister class loaders must not have a parent-child relationship. This rule
is significant for the efficient type checking we describe later. If the
sister class loaders have such a relationship, the construction of the sister
namespaces fails. In this chapter, if a version of a class type is loaded
earlier (or later) than other versions, it is called a younger (or older) sister
version of that class type. This young-old relationship is independent of
the creation order of the sister class loaders.

In the case described in Section 2.2.2.3, the application programmers
can exchange instances between two namespaces for WAR1 and WAR2
if they are sister namespaces. Each namespace can contain a different
version of the type of the exchanged instance. WAR1 and WAR2 must
be loaded by the class loaders created as follows:

¤
ClassLoader ear = new EARClassLoader () ;
ClassLoader war1 = new WARClassLoader (ear) ;

1InstantiationError
2AbstractMethodError
3VerifyError
4IllegalAccessError
5IncompatibleClassChangeError, but ○ if the member is private.
6IllegalAccessError, but ○ if the class is loaded by the bootstrap or the system

class loader.
7NoSuchFieldError, but ○ if the field is private.
8NoSuchMethodError, but ○ if the field is private or native.
9VerifyError, if some of the members are lost.

LOOSELY-SEPARATED NAMESPACES 65

Sister Namespaces

ClassLoader war2 = new WARClassLoader (ear , war1) ;£ ¢
The ear, war1, and war2 are instances of the ClassLoader class. The
third new operation creates sister namespaces for WAR1 and WAR2.
Both war1 and war2 have the same parent class loader ear. In gen-
eral, application programmers of components, such as Applets, Servlets,
Eclipse plug-ins, and EJB, do not have to be aware of namespaces or
class loaders. These are implicitly managed by the application middle-
ware. Creating sister namespaces by using the ClassLoader constructor
above is the work of middleware developers. A sister namespace can
make another plain namespace its sister on demand. Since the sister re-
lationship is transitive, if a namespace becomes a sister of a namespace
and then it becomes a sister of another namespace, all three namespaces
become sisters of each other. Programmers can incrementally create a
new namespace and make it another sister of the other sister names-
paces. This feature would be useful in cases of incremental development
processes and routine maintenance work.

Note that all class types defined by a sister class loader can be version
compatible with the corresponding sister version of that class type, even
if the loading of these class types are initiated by the child class loaders.
An initiating class loader, which initiates the loading of a class type,
does not have to actually load a class file. Instead, it can delegate to
the parent class loader. The class loader that actually loads a class
file and defines that type is called a defining class loader of that type.
This delegation mechanism is used for sharing the same version of class
type between the initiating and defining class loaders. In Figure 4.2, if
two sister namespaces are created between class loaders L3 and L3’, the
classes F and H can be version compatible with F’ and H’, respectively.
The pairs E and E’ or G and G’ are not compatible with each other since
they are defined by other class loaders.

4.1.3 Sister-supported Type Checking

The version barrier is relaxed by a type checker that considers the sister
namespaces. In Java programs, most bytecode instructions such as the
method invocation instructions invokevirtual and invokenonvirtual,
and field access instructions such as getfield and putfield are stati-
cally typed. These instructions do not perform dynamic type checking.

LOOSELY-SEPARATED NAMESPACES 66

Sister Namespaces

���
���

������ 	
���
������

�����
�����

��� ��

����� ������
��� �"!"#�$���%�&!"# $

��'

�%(

))*,++
--.�//

021 $3#%�54 1%6 #7 6 8 1 �"� 8 9:1%; #�<>=

�%(?� @A @AB�CC

D) D)E ++ FG FH
I�JJ

KL KMNPOO
Q)R ++ S

T
S
UV,WW

XZY []_^�`
`�^ba c]_Y d�e%[�fgY h

Figure 4.2. The notation CLi
Ld

represents a class type, where C denotes the
name of the class, Ld denotes the class’s defining loader, and Li denotes the
loader initiated class loading. An inclusion relation represents a parent-child
relationship. For example, the class loader L1 is a parent of both L2
and L2’. And the classes A, B, C, and the system classes are visible in
the namespaces L2, L2’, L3, L3’, L4, and L4’. In this figure, the sister
namespace L3 and L3’ have a sister relationship.

Therefore, these instructions as they are can work correctly with any
version of class type if they are version compatible. On the other hand,
several instructions such as instanceof, checkcast, invokeinterface,
athrow, and aastore entail dynamic type checking. The type checking
by those instructions must be enhanced if the version barrier is relaxed
so that version compatible instances can be passed between sister names-
paces. The algorithm of enhanced type checking for sister namespaces is
shown in Figure 4.3. After the regular type checks are performed, and
if they fail (line 2), the extra checks are executed (lines 3–6). First, a
sister relationship is examined (line 3). If the left-hand side class type
(LHS) and the right-hand side class type (RHS) have a sister relationship,
then the type checker determines whether one class type has undergone
the schema compatible loading process against the other type (line 4).
Schema compatible loading is introduced later.

Note that these extra checks for sister namespaces are executed only
after the regular type checks fail. Since typical programs do not fre-
quently cause type errors, this enhancement for the built-in type checker

LOOSELY-SEPARATED NAMESPACES 67

Sister Namespaces

implies no performance penalties as long as instances are not passed be-
tween sister namespaces.

1: if LHS is a subtype of RHS then true
2: else if LHS is not a subtype of RHS then
3: if LHS is a sister type of RHS &&
4: LHS is version compatible with RHS

then true
5: else false
6: end
7: end

Figure 4.3. Pseudo code for enhanced type checking for sister namespaces.
A type check is the determination of whether a value of one type, hereafter
the right-hand side (RHS) type , can legally be converted to a variable of a
second type, hereafter the left-hand side (LHS) type. If so, the RHS type
is said to be a subtype of the LHS type and the LHS type is said to be a
supertype of the RHS type.

The sister-supported type checker only prohibits a version incom-
patible instance from being passed between sister namespaces. A version
incompatible class can join each of the sister namespaces if an instance of
that version stays within the namespace. To avoid the security problem
described in Section 2.2.2.3 (naively relaxing the assignment compati-
bility), sister namespaces must detect a version incompatible instance
being passed between sister namespaces. This detection is executed by
only the checkcast instruction. In other words, the detection is not
executed by other instructions for method invocation, field access, and
assignment. This is mainly due to the design of sister namespaces, which
must not have a parent-child relationship between them. This rule brings
the bridge-safety [91] property to all classes included in the sister names-
paces. This property guarantees that an instance of a class type is al-
ways examined by the checkcast instruction when it is passed between
sister namespaces. It must be first upcast to a type loaded by the com-
mon parent class loader of the two sister class loaders, and then it must
be downcast before it is assigned to the class type loaded by the sister
class loader at the destination. For example, when an instance of Cart
is passed, it will be first upcast to a super class of Cart, such as the
Object class, and then downcast to another version of the Cart class
(Figure 4.4). Therefore, the checkcast instruction is always executed

LOOSELY-SEPARATED NAMESPACES 68

Sister Namespaces

when the instance is downcast to Cart.

������� �����
	

���������������������

� ���

������� �������

��� �!�#"%$'&����)(�*��

+�, -�.0/21
13/)4 5�.!, 6�7�-!8), 9

:<;�=?>A@�BDCFE

Figure 4.4. Downcast enforced by the bridge-safety property satisfied be-
tween namespaces.

To implement the sister-supported type check, we modified the
VM DynamicTypeCheck class in the Jikes RVM. We extended that class
and the TIB (Type Information Block) for fast type checking to con-
sider sister relationships. The original TIB holds several arrays of type
identifiers. For example, the arrays of extended superclass types and of
implemented interface types are stored in the TIB for fast type checking
without looking up the whole type hierarchy [10][11]. Similarly, the ex-
tended TIB holds two arrays of sids. The sid is the identifier of a sister
relationship. The two arrays are of the sids of the extended superclasses
and the sids of the implemented interfaces. The sid of a class can be
obtained from a VM Class object representing that class. We extended
the VM Class class to hold the sid of the class.

4.1.4 Sister Loader Constraint

A straightforward implementation of the sister-supported type checker
requires eager class loading. Even if the sister-supported type checker
verifies that the type of an instance is version compatible, that instance
cannot be fully trusted. The instance may contain a version incompatible
instance as a field value or return it as a result of a method execution.
That is, the untrusted instance may relay an incompatible instance. Since
an instance is type checked only when it is downcast, the types of the
instance that may be relayed must also be type checked at the same time.

LOOSELY-SEPARATED NAMESPACES 69

Sister Namespaces

Therefore, the type checker verifies all the class types occurring in the
class definition of that instance, such as parameter types2, return types,
and field types. It also recursively verifies the class types occurring in the
definitions of those types. However, if this recursive type check is naively
implemented, all the related classes would have to be eagerly loaded.
This eager loading is practically unacceptable, since the advantages of
the dynamic features of Java would be lost. The sister-supported type
checker must be able to work with the scheme of lazy class loading. Note
that the original class loading mechanism of Java is based on lazy class
loading.

To examine version compatibility while enabling lazy class loading,
the JVM maintains a set of sister loader constraints, which are dynami-
cally updated when the sister-supported type checker works. If the type
checker finds a class type that must be verified but has not been loaded
yet, the JVM does not eagerly load that class; instead, it records a sister
loader constraint. For example, if the type checker attempts to verify
that a version of class C is version compatible with another version C ′,
but C or C ′ has not been loaded yet, the JVM records as a constraint that
C must be version compatible with C ′. This constraint is later verified
when C or C ′ is loaded. If the type checker detects that this constraint
is not satisfied, it throws a LinkageError. While the type checker is ver-
ifying that constraint, if it finds another class type that must be verified
but is not loaded, a new sister loader constraint is recorded. If the type
checker finds a class type that must be verified and has been already
loaded, it recursively verifies that class type at the same time. Note that
every constraint is verified only once. The result of the verification is
recorded to avoid further verification.

In summary, the JVM needs to maintain the invariant: Each class
type co-existing in the namespace satisfies all the sister loader constraints.
The invariant is maintained as follows:

Every time a new class joins a sister namespace, the JVM verifies
whether that class type will violate an existing sister loader con-
straint.

If the class type being loaded violates an existing sister loader con-
straint, loading that class type fails since that class type is un-

2If a parameter type is not version compatible, an incompatible instance may be
sent back without type checking to the namespace that has sent the instance of the
class type including that parameter type.

LOOSELY-SEPARATED NAMESPACES 70

Sister Namespaces

trusted in the namespace. If there is no constraint referring to
that class type, the JVM loads that class type, although that class
type might be version incompatible. It is verified later when a new
constraint referring to that class type is recorded.

Every time a new sister loader constraint is recorded, the JVM verifies
whether that constraint is satisfied with the class types that have
been already loaded.

If a class type that has already been loaded does not satisfy a newly
recorded constraint, loading the class type that starts the type
checking process producing the new constraint is untrusted and
hence the loading is aborted. If any class types needed for verifying
that constraint have not been loaded, the verification is postponed
until those classes are loaded. Otherwise, if all the class types
needed for the verification have been loaded and the constraint is
successfully verified, the constraint is removed from the record.

For efficient verification of constraints, we added an array of flags
to VM Class. Each flag indicates whether the version of the class type
represented by a VM Class object has been recursively type checked with
another sister version. The flag is true only if the two versions of the
class type are version compatible and if the type checker has verified
that those two versions never relay a version incompatible instance. Since
there might be multiple sisters, the VM Class object holds an array of
the flags, each of which indicates the result of the type check with each
sister version. The JVM uses these flags for executing a recursive type
check only once.

4.1.5 Schema Compatible Loading

Even if two versions of a class type satisfy the version compatibility,
these instances may have schema incompatibility. This means that the
layout of the internal type information blocks (TIBs) may not be identical
between the two versions of the class type. The TIB holds fields and
function pointers to a corresponding method body. The order of the TIB
entries depends on the JVM or compilers; it does not depend on the order
of the member declarations in a source file or a class file. Thus, even if
two versions of a class type have version compatibility, the layout of the
TIBs may not be identical.

LOOSELY-SEPARATED NAMESPACES 71

Sister Namespaces

The sister-supported class loader guarantees that layouts of the TIBs
are identical between two versions of a class type if the class types are
version compatible (Figure 4.5). Since the JVM uses a constant index
into the TIB when it accesses a field or a method, the JVM cannot
correctly execute the bytecode if the layouts of the TIBs are not identical
between compatible versions of the class type. Therefore, when the class
loader loads a younger version of a class type, the JVM constructs the
TIB of that version of the class so that the layout of the TIB is identical
to that of the TIB of an older version of the class. This loading process
is called schema compatible loading. Note that this process is given up
against the incompatible class type that has no binary compatibility with
the older sister version of that class type. This result is employed by the
JVM to quickly examine whether a class type is trusted or not.

�����������
	���
��� �������������������� �����
 "! ���������

���������"�
	#�%$
���"�&��������� �����
 "! ������������ �����

')(*%+-,
,�*/.1032�*
4%576

43576
')(*%+-,
,�*/.1032�*

8�9 :-;=<->
8�9 :-;�?�>
8�9 :-;�@A>

')(*%+-,
,�*/.1032�*
43576

')(*%+-,
4%5�6

,�*/.1032�*

BDCFEHGJILK-MON
POQ

Figure 4.5. Because of Schema compatible class loading, both of the sister
version of a class have the same layout of the TIB.

In the Jikes RVM, a TIB is constructed during the execution of the
resolve method in VM Class. The resolve method is invoked during
the class resolution process by the VM ClassLoader class, an instance of
which represents a class loader. The resolve method has been extended
to perform the schema compatible loading.

LOOSELY-SEPARATED NAMESPACES 72

Discussion

4.2 Discussion

4.2.1 Canceling JIT Compilations

Just-In-Time (JIT) compiled code sometimes needs to be canceled since a
devirtualized method call does not correctly refer to a method declared in
a sister version of the class type. Recent optimizing JIT compilers [42, 81]
perform the devirtualization optimization that transforms not only a final
and a static method but also a virtual method call to a static method. For
a given virtual call, the compiler determines whether or not the call can
be devirtualized by analyzing the current class hierarchy. If the method
can be devirtualized and its code size is small enough, the compiler inlines
the method. Therefore, if the type of an instance is converted to a sister
version of that class type, the JVM would continue to invoke the original
inlined code instead of the real method of that instance. This is because
the JIT compiler does not consider sister namespaces; method bodies
might be different among sister versions of the same class type.

To avoid this problem, the JIT compiler must cancel devirtualization
when a new sister version of a class type is loaded. Fortunately, most
optimizing JIT compilers have an efficient cancellation mechanism for
dynamic class loading. Since a whole class hierarchy cannot be stati-
cally determined in Java, JIT compilers can dynamically replace [81] or
rewrite [42] inlined code. This is performed when a new subclass is loaded
and the subclass overrides a method that has not been overridden by the
other subclasses. The JIT compiler that supports sister namespaces also
cancels devirtualization when version compatibility is verified and a new
sister version of a class type is available.

4.2.2 Eager Notifications of Version Incompatibility

Version incompatibility checks between sister versions of a class type
may eagerly throw a cast error before any incompatible class types ac-
tually co-exist in one namespace. For example, if the type checker de-
tects that a class type may relay a version incompatible instance, it
throws a cast error. This eager notification strategy is similar to the
loader constraint scheme [51]. The JVM prohibits different versions of
a class type from even being loaded if the JVM encounters an oper-
ation that relays instances from one namespace to the other. If the
JVM has already loaded these versions of the class, the JVM throws a

LOOSELY-SEPARATED NAMESPACES 73

An Abstract Model of the Sister Namespace

link error. However, except for the loader constraint scheme, verifica-
tion of compatibility and error notification are not performed at load-
ing time but are done later by the linker, while the linker resolves the
constant pool items (e.g., NoSuchMethodError, IllegalAccessError,
IncompatibleClasChangeError). If a Java program includes binary in-
compatibility, it continues to run until it actually executes an illegal
operation caused by that incompatibility. This lazy verification and no-
tification are useful in practice.

However, we have adopted the eager strategy for avoiding perfor-
mance penalties due to version compatibility checks. To delay notifica-
tions of incompatibility as long as the program continues to run without
errors, a number of guard tests must be embedded into the incompatible
class. In Java, once the JVM executes a method invocation or a field
access, the operation is linked with the call site and replaced with effi-
cient code that does not perform type checking anymore. Therefore, the
guard tests must be embedded for verifying version compatibility after
the version incompatibility is found. It requires the JIT compiler to re-
compile the code that refers the incompatible class type. Moreover, the
guard tests imply the non-negligible performance overhead mentioned in
Section 2.2.2.3; thus, we do not delay the notifications of incompatibility.

4.3 An Abstract Model of the Sister Namespace

This section extends a model of Java dynamic linking and verifica-
tion [27]. We consider language P , which stands for loaded, verified
and prepared programs. We describe execution in terms of expressions
e, states σ, loaded code P3, version compatible sisters V, a set of trusted
sisters D, and a set of trusted but not loaded sisters C. It has the general
form:

e, σ, PP′, V, C, D ; e′, σ′, PP′, VV′, CC′, CD′

thus describing that the expression may be rewritten, the state may
be modified, code may be loaded, the version compatible sisters may
be added, and some of the set of loaded and non-loaded sisters may be
trusted – the terms PP’, VV’, CC’, DD’ indicate concatenation of P, V,C,
D.

3We do not describe verification and preparation of the loaded code, and thus the
loading process includes verification and preparation in our model.

LOOSELY-SEPARATED NAMESPACES 74

An Abstract Model of the Sister Namespace

4.3.1 The languages P
The language P presents an abstract view of the Java bytecode. For
simplicity, we only consider classes, subclasses, assignment, method over-
loading and inheritance, field inheritance and hiding. All methods have
one argument – multiple arguments can be encoded through objects.

Expressions Figure 4.6 containes the syntax of expressions in P program.
Field acceses and instance or class method calls, corresponding to byte-
code instructions such as getfield, putfield and invokevirtual, has the form
e1[t1,t2].f, where t1 is the class containing the field definition, and t2 the
type of that field. Instance method calls have the form e1[t1,t2,t3].m(e2),
where t1 is the class containing the method definition, t2 is the type of
the method’s argument, and t3 is the result type.

The only types we consider are classes and int. We do not deal with
subtyping introduced through interfaces. Values are either integers, or
addresses of objects. Addresses are represented by positive numbers and
are denoted by α, α′etc; the null pointer is denoted by 0. Values, whether
they stand for addresses or for integers, are denoted by β, β′etc.

Language for loaded, verified and prepared code, P We describe the pro-
gram P through functions that lookup the superclasses, fields and meth-
ods of a class.

Definition 1 A tuple (P , T ,Mff ,Fff ,Me, P∅) is a language for loaded,
verified and prepared code, iff

• P is a set.

• T is a function, T : ld × P −→ Id ∪ {ε}.

• M is a function, M : Id × Id × Typ × Typ × P −→ Expr ∪ {ε}.

• Fff is a function, Fff : Id × Id × Typ × P −→ Offs ∪ ErrOffs.

• Mff is a function, Mff : Id × Id × Typ × Typ × P −→ Offs ∪
ErrOffs.

LOOSELY-SEPARATED NAMESPACES 75

An Abstract Model of the Sister Namespace

e ∈ Expr ::= e[t,t,t].m(e) method call
| v = e assignment
| new c object creation
| this receiver
| v variable
| β integer value
| (t) e cast
| NllPErr | LoadErr null-pointer err., load err.
| IncVerErr incompatible class err.
| CasErr | VerCasErr cast err., version cast err.

v ::= e[t, t].f field access
| z parameter

t ∈ Typ ::= c | int class, integer
φ ∈ Offs ::= 1 | 2 | . . . offsets
χ ∈ ErrOffs ::= −1 member undefined

| −2 type of wrong kind
| −3 type undefined

α ∈ Addr ::= 0 | φ address
β ∈ Val ::= α | −1 | −2 | . . . value
c ∈ Id c class names
m, f, z ∈ Id m method names, f field names

Figure 4.6. The syntax of expressions

• Me is a function, Me : Offs × Id × P −→ Expr ∪ {ε}.

• P∅ ∈ P , ∀t ∈ Id : T (t,P∅) = ε.

• for any P1, P2 ∈ P , their concatenation, P1P2, gives a further
element of P , with:

– T (t,P1P2) = T (t,P1) if T (t,P1) 6= ε, T (t,P2) otherwise.

– M(m,c,t2,t3,P1P2) = M(m,c,t2,t3,P1) if T (c,P1) 6= ε,
M(m,c,t2,t3,P2) otherwise.

– Fff (f,c,t,P1P2) = Fff (f,c,t,P1) if T (c,P1) 6= ε,
Fff (f,c,t,P2) otherwise.

– Mff (m,c,t2,t3,P1P2) = Mff (m,c,t2,t3,P1) if T (c,P1) 6= ε,
Mff (m,c,t2,t3,P2) otherwise.

LOOSELY-SEPARATED NAMESPACES 76

An Abstract Model of the Sister Namespace

– Me(φ,c,P1P2) = Me(φ,c,P1) if T (c,P1) 6= ε,
Me(φ,c,P2) otherwise.

P∅ indicates the empty program in P, and ε indicates lookup of a
non-existing entity. T (t,P) is intended to return the direct superclass
of t, if t is declared as a clsas in P. M(m,c,t2,t1,P) is intended to re-
turn the body of method m defined in class c, with result type t1 and
argument type t2, or ε if no such method is found. Fff (f,c,t,P) and
Mff (m,c,t2,t1,P) are intended to return the offset of field f defined in
class sf c with type t, or the offset of method m defined in class c with
argument type t2 and return type t1. Me(φ,c,P) looks up the method
body in class c using offset φ. Note, that M(m,c,t2,t1,P) does not con-
tain (6⊃) M(m,c’,t2,t1,P), Fff (f,c,t,P) 6⊃ Fff (f,c’,t,P), Mff (m,c,t2,t1,P)
6⊃ Mff (m,c’,t2,t1,P), Me(φ,c,P) 6⊃ Me(φ,c’,P), if T (c,P)=c’.

We define functions to collect all fields and methods in P .

Definition 2 For P∈ P , c∈Id with T (c,P)=c’, we define:

• Ts(P) = {t | T (t,P)6= ε}.

• Ss(c,P) = c’,Ss(c’,P).

• Fsig(c,P) = {(t f) | Fff (f,c,t,P)>0}.

• Flay(c,P) = {(t f φ) | Fff (f,c,t,P)=φ}.

• Msig(c,P) = {(m t1 t2 e) | e = M(m,c,t1,t2,P)6= ε}.

• Mlay(c,P) = {(m t1 t2 φ) | Mff (m,c,t1,t2,P)=φ}.

Ts(P) is intended to return the all classes loaded, verified and prepared
in P. Ss(c,P) is intended to return the all super classes of class c as a list.
Fsig(c,P) and Msig(c,P) are intended to return a set of the tuple of field
f defined in class c with type t, or a set of the tuple of method m defined
in class c with argument type t1, return type t2 and body e. Flay(c,P)
and Mlay(c,P) are intended to return a set of the tuple of field f defined
in class c with type t and offset φ, or a set of the tuple of method m
defined in class c with argument type t1, return type t2 and offset φ.

LOOSELY-SEPARATED NAMESPACES 77

An Abstract Model of the Sister Namespace

Lemma 1 For programs L, L1, L2,∈ P:

• Ts(P1)∩Ts(P2) = ∅ ⇒ P1P2 = P2P1

• Ts(P2)⊆Ts(P1) = ∅ ⇒ P1P2 = P1

4.3.2 Execution

This section describes the execution model defined in terms of a rewrit-
ing relationship, consisting of expression e, store σ, loaded code P,
version compatible sisters V, a set of trusted sisters D, and a set
of trusted but not loaded sisters C. Thus, execution has the form
e, σ, PP′, V, C, D ; e′, σ′, PP′, VV′, CC′, CD′. In order to define the con-
cept of a sister relationship, version compatibility and a trusted relation-
ship between class types, we describe some judgements and functions:

• P ` c ≤clss c’
– c is a subclass of c’ in context of P.

• ` P ¦a

– The subclass relationship in P is not cyclic.

• ` P ¦sups

– P contain all supertypes of types defined in P.

• S ⊂ Id × Id
– t1 S t2 means t1 and t2 have a sister relationship with each other.

• t1
vc
= t2

– t1 and t2 are version compatible with each other, and thus, the
layout of both classes are identical.

• P,V,C,D ` t1 ∼
tr

t2 ⇀ C’,D’

– t1 and t2 are trusted with each other in context P,V,C,D, that is,
both classes never return instances of a version incompatible class.

So as to give a more concise description of the rewrite semantics, and
also, to distinguish between routine rewrite rules, and those particular to
Java implementation, we introduce three kinds of contexts in Figure 4.7.
Expression contexts, < . =exp, are filled with a sub-expression; their

LOOSELY-SEPARATED NAMESPACES 78

An Abstract Model of the Sister Namespace

execution propagates execution to this sub-expression, as in rule Prop-
agate. Null-contexts, < . =nll, when filled with 0, raise an exception
when executed as in rule Null Pointor. Type contexts, < . =typ, are
filled with a type name; their execution causes the type to be loaded,
verified and prepared if the type is not part of the loaded code, as in
rules Load, Load Error and Loading Violation.

< . =exp ::= < . = [t, t, t].m(e) the receiver of a method call
| α[t, t, t].m(< . =) the argument of a method call
| < . = [t, t].f the receiver of a field access
| < . == e the left-hand side variable
| v =< . = the right-hand side variable
| (t) < . = the casting variable

< . =nll ::= < . = [t, t, t].m(e) the receiver of a method call
| < . = [t, t].f the receiver of a field read
| < . = [t, t].f = β the receiver of a field write

< . =typ ::= α[< . =, t, t].m(β) the type of a calling method
| α[< . =, t].f the type of a accessing field
| new < . = the type of a creating instance
| (< . =)α the type of a casting instance

Figure 4.7. Contexts

We now study the five components of execution. Note, that the five
components are disjoint, if a rule from one component is applicable, then
no rule from another component is applicable.

4.3.2.1 Evaluation

Evaluation is the part of execution, and it comprises:

Propagate – Propagate execution at the receiver and then the argu-
ment of a method call, at the receiver of a field access and to the
left hand and right hand sides of an assignment.

e, σ, P, V, C, D ; e, σ′, P′, V′, C′, D′

[e]exp, σ, P, V, C, D ; [e′]exp, σ′, P′, V′, C′, D′

Variable Access – Accessing variable or addresses.

LOOSELY-SEPARATED NAMESPACES 79

An Abstract Model of the Sister Namespace

z a variable
z, σ, P, V, C, D ; σ(z), σ, P, V, C, D

Variable Assignment – Assigning to variables.

z = β, σ, P, V, C, D ; β, σ[z 7→ β], P, V, C, D

Null Pointer – Throwing the NllPErr exception when attempting to
call a method, access field, or assign to field of 0.

[0]nll, σ, P, V, C, D ; NllPErr, σ, P, V, C, D

New – Creating new objects of already loaded class c (c ∈ Ts(P)),
initializing the declared fields with 0.

c ∈ T s(P)
α new in σ
Flay(c, P) = {(t1 f1 φ1), . . . , (tn fn φn)}
σ′ = σ[α 7→ c, α + φ1 7→ 0, . . . , α + φn 7→ 0]
new c, σ, P, V, C, D ; α, σ′, P, V, C, D

4.3.2.2 Resolution

Resolution describes the process of resolving references to fields or meth-
ods. It corresponds to the bytecode instructions such as getfield, putfield,
invokevirtual.

Field Access – Field access has the form α[t1, t2].f . The off-
set of that field is determined using Fff (f,t1,t2,P), and if found
(Fff (f,t1,t2,P)=φ), then it is used to calculate the address of that
field (α + φ). – here the actual class of the receiver is used (σ(α))

Fff (f, t1, t2, P) = φ
α[t1, t2].f, σ, P, V, C, D ; σ(α + φ), σ, P, V, C, D
α[t1, t2].f = β, σ, P, V, C, D ; β, σ[α + φ 7→ β], P, V, C, D

Method Call – Method call has the form α[t1, t2, t3].m(β).
The offset is determined using Mff (m,t1,t2,t3,P), and if found

LOOSELY-SEPARATED NAMESPACES 80

An Abstract Model of the Sister Namespace

(Mff (m,t1,t2,t3,P)=φ), then it is used to select the method body
from the lookup table of the class of α through Me(φ,σ(α),P). –
here the actual class of the receiver is used (σ(α)).

Mff (m, t1, t2, t3, P) = φ
Me(φ, σ(α), P) = e
y1, y2 are fresh variables in σ
e′ = e[y1/x, y2/this]
σ′ = σ[y1 7→ β, y2 7→ α]
α[t1, t2, t3].m(β), σ, P, V, C, D ; e′, σ′, P, V, C, D

Cast – Cast has the form (t)α. The apparent type of the casting object
changes to the target type t, if it is already loaded and the actual
type of the casting object (σ(α)) is a subclass of the target type t.

t ∈ T s(P)
P ` σ(α) ≤ t
(t)α, σ, P, V, C, D ; α, σ, P, V, C, D

Cast Error – Throwing the CasErr exception if the actual type of the
casting object (σ(α)) is not a subclass of the target type t and has
no sister class.

t ∈ T s(P)
P 6` σ(α) ≤ t
t 6 S t′

(t)α, σ, P, V, C, D ; CasErr, σ, P, V, C, D

Version Cast – This rule describes the version checking situations
when Cast and Cast Error rule are not applicable: if the actual
type of the casting object (σ(α)) is a subclass of the target’s sister
class t’ and these sister classes are trusted with each other.

t ∈ T s(P)
P 6` σ(α) ≤ t
t S t′

σ(α) ≤ t′

P, V, C, D ` t ∼
tr

t′ ⇀ C′, D′

(t)α, σ, P, V, C, D ; α, σ, P, V, C′, D′

LOOSELY-SEPARATED NAMESPACES 81

An Abstract Model of the Sister Namespace

Version Cast Violation – Throwing the VerCasErr exception if the
actual type of the casting object (σ(α)) is a subclass of the target’s
sister class t’ but these sister classes are not trusted with each other.

t ∈ T s(P)
P 6` σ(α) ≤ t
t S t′

σ(α) ≤ t′

P, V, C, D 6` t ∼
tr

t′ ⇀ C′, D′

(t)α, σ, P, V, C, D ; VerCasErr, σ, P, V, C′, D′

4.3.2.3 Loading

Load – Loading is required when a type context, < t =typ, is executed
for a type t which has not been loaded yet. That is, when a new
object of class t is create, or a when a field of class t is accessed,
or when a method from class t is called. For the sake of simplicity,
the loading process includes verification and preparation of loaded
classes. If loading is successful (P’=load(t, P) 6= P∅), then execu-
tion continues with the loaded code augmented by P’. A load func-
tion load(t, P) returns class definitions for t and all its superclasses
except for those already defined in P, provided that no class cir-
cularity was encountered; otherwise it returns P∅. A set of version
compatible sister classes in the program including the newly loaded
classes is recorded (V’ = {(c1, c2) | c1 ∈ Ts(PP’), c2 ∈ Ts(P’), c1 S
c2, c1

vc
= c2 }). Note, that the version incompatible classes are just

recorded, then verified while determining the trusted relationship.
Then, the sister loader constraints for the loaded sister classes are
determined (P,V,Ci,Di ` ci1 ∼

tr
ci2 ⇀ Ci+1,Di+1).

e =< t =typ

t /∈Ts(P), ` P¦sups

P’=load(t, P) 6= P∅

V′ ={(c1, c2)|c1 ∈ Ts(PP′), c2 ∈ Ts(P
′), c1 S c2, c1

vc
= c2}

{(c11, c12), . . . , (cn1, cn2)} = C ∩ {T s(PP′) × T s(PP′)}4

P, V, Ci, Di ` ci1 ∼
tr

ci2 ⇀ Ci+1, Di+1 ∀i ∈ 1 . . . n

e, σ, P, V, C1, D1 ; e, σ, PP′, VV′, Cn+1, Dn+1

LOOSELY-SEPARATED NAMESPACES 82

An Abstract Model of the Sister Namespace

Determining version compatibility, through the judgement t1
vc
= t2,

and a trusted relationship, through the judgement P,V,C,D ` t1 ∼
tr

t2 ⇀

C’,D’ are described below:

(1) t
vc
= t

(2)5

T (c1, P) = c′1 T (c2, P) = c′2
c′1

vc
= c′2

Flay(c1, P) = {(t1 f1 φ1), . . . , (tn fn φn)}
Flay(c2, P) = {(t′1 f1 φ1), . . . , (tn fn φn)}
Mlay(c1, P) = {(t11 t12 m1 φ1), . . . , (tm1 tm2 mm φm)}
Mlay(c2, P) = {(t′11 t′12 m1 φ1), . . . , (t

′
m1 t′m2 mm φm)}

c1
vc
= c2

(3) P, V, C, D ` t ∼
tr

t ⇀ C, D

(4)
(c1, c2) 6∈ Ts(PP′) × Ts(PP′)
P, V, C, D ` c1 ∼

tr
c2 ⇀ C ∪ {(c1, c2)}, D

(5)
(c1, c2) ∈ D
P, V, C, D ` c1 ∼

tr
c2 ⇀ C, D

(6)

(c1, c2) ∈ ({Ts(PP′) × Ts(PP′)}\D) ∩ V
C1 = C\{(c1, c2)}, D1 = D ∪ {(c1, c2)}
Ss(c1, P) = t1, . . . , tp Ss(c2, P) = t′1, . . . , t

′
p

P, V, Ci, Di ` ti ∼
tr

t′i ⇀ Ci+1, Di+1 ∀i ∈ 1 . . . p

Fsig(c1, P) = {(t1 f1), . . . , (tq fq)} Fsig(c2, P) = {(t′1 f1), . . . , (t
′
q fq)}

P, V, Cp+j, Dp+j ` tj ∼
tr

t′j ⇀ Cp+j+1, Dp+j+1 ∀j ∈ 1 . . . q

Msig(c1, P) = {(t11 t12 m1), . . . , (tr1 tr2 mk)}
Msig(c2, P) = {(t′11 t′12 m1), . . . , (t

′
r1 t′r2 mk)}

P, V, Cp+q+k, Dp+q+k ` tk1 ∼
tr

t′k1 ⇀ Cp+q+k+1, Dp+q+k+1 ∀k ∈ 1 . . . r

P, V, Cp+q+r+h, Dp+q+r+h ` th2 ∼
tr

t′h2 ⇀ Cp+q+r+h+1, Dp+q+r+h+1 ∀h ∈ 1 . . . s

P, V, C, D ` c1 ∼
tr

c2 ⇀ Cp+q+r+s+1, Dp+q+r+s+1

1Actually {(c11, c12), . . . , (cn1, cn2)} = {(c1, c2)|c1 S c2}∩C∩(T s(PP′) × T s(PP′))
but C ⊂ {(c1, c2)|c1 S c2}.

5The model in this section does not support overloading. All class members are
uniquely identified only by their names.

LOOSELY-SEPARATED NAMESPACES 83

An Abstract Model of the Sister Namespace

The rule (2) describes version compatibility between classes. Classes
c1 and c2 are version compatible if the both superclasses are version
compatible, and then those class layouts are compatible with each other.
It means that schema compatible class loading is performed against both
c1 and c2. The constraint for c1 and c2 are recorded when either or both
of the classes are not loaded as in rule (4), and if both have been loaded,
those classes are trusted with each other without recording the constraint
as in rule (5). The rule (6) describes that the verification of the trusted
relationship for c1 and c2 propagates over all types of the superclasses,
fields, method arguments, and method results. When either of those
classes has not been loaded, the constraint of that pair is recorded, if
they are not version compatible with each other, they can trust each
other.

Loading determines the object layout (TIB) including method lookup
tables. We describe the requirements of the loading function as following
definition, i.e., load(t,P) is a loading function if (2a) it allocates distinct
offsets to fields, (2b) preserves field offsets from superclasses, (2c) pre-
serves method offsets from superclasses, (2d) all valid offsets lead to a
method body either defined for that class in P, or inherited from a su-
perclass.

Definition 3 A function load : Id×P −→ P iff:
`P¦a, load(c,P) = P’ 6= P∅ ⇒

1. c ∈ Ts(P’) \ Ts(P)

2. T (c,P) = c’ ⇒
∀ f,f’,t,t’,t1,t2,m :

(a) Fff (f,c,t,P’) = Fff (f’,c,t’,P’) > 0 ⇒ f=f’,t=t’.

(b) Fff (f,c’,t,PP’) > 0 ⇒ Fff (f,c’,t,PP’) = Fff (f,c,t,P’).

(c) Mff (m,c’,t2,t1,PP’) > 0 ⇒ Mff (m,c’,t2,t1,PP’) =
Mff (m,c,t2,t1,P’).

(d) Mff (m,c,t2,t1,P’) = φ ⇒ Me(φ,c,P’) 6= ε, or
Mff (m,c’,t2,t1,PP’) = φ.

Load Error – Throwing the LoadErr exception if loading is not suc-
cessful.

LOOSELY-SEPARATED NAMESPACES 84

Experimental Results

t /∈T s(P)
< t =typ, σ, P, V, C, D ; LoadErr, σ, P, V, C, D

Loading Violation – Throwing the IncVerErr exception if the sister
loader constraints for the loaded sister classes are not satisfied, that
is, the sister classes are not trusted with each other.

t /∈Ts(P), ` P¦sups

P’=load(t, P) 6= P∅
{(c11, c12), . . . , (cn1, cn2)} = C ∩ {T s(PP′) × T s(PP′)}
¬∃Ci+1, Di+1.(P, V, Ci, Di ` ci1 ∼

tr
ci2 ⇀ Ci+1, Di+1)

< t =typ, σ, P, V, C1, D1 ; IncVerErr, σ, P, V, Cn+1, Dn+1

4.4 Experimental Results

This section reports the results of our performance measurements. We
performed all the experiments on the IBM Jikes Research Virtual Ma-
chine 2.3.2 with Linux kernel 2.4.25, which were running on a Pentium4
1.9GHz processor with 1GB memory. Both the Jikes RVM and our mod-
ified RVM were compiled to use the baseline compiler for building the
boot image with the semi-space garbage collector.

4.4.0.4 Baseline performance

To measure the baseline performance, we ran the SPECjvm98 [79] bench-
marks on both our JVM and the unmodified JVM. The problem sizes of
all the benchmarks were 100 (maximum). Table 4.3 lists the results. The
numbers are the average execution time for 20 repetitions. The baseline
overhead due to the sister namespace was negligible.

4.4.0.5 Cost of loading classes into sister namespaces

We measured the time for loading classes with a plain class loader or
a sister class loader. This experiment shows the performance penalty
incurred by the sister class loader, which executes schema compatible
loading and verifies the version compatibility between classes. We took
nine application programs, listed in Table 4.4, to measure the total load-
ing time. The loading process includes delegating to the parent class

LOOSELY-SEPARATED NAMESPACES 85

Experimental Results

Table 4.3. SPECjvm98 benchmark results on both our JVM and the un-
modified JVM.

Benchmark Program Jikes RVM Sister-supported SVM
(JRVM) JRVM (SVM) /JRVM

201 compress 47.293 ms 46.218 ms 97.7%
202 jess 40.258 ms 38.726 ms 96.2%
205 raytrace 22.704 ms 23.404 ms 103.1%
209 db 65.628 ms 67.075 ms 102.2%
213 javac 54.698 ms 57.759 ms 105.6%
222 mpegaudio 29.344 ms 29.210 ms 99.5%
227 mtrt 25.812 ms 24.563 ms 95.2%
228 jack 28.372 ms 28.047 ms 98.9%

Total 314.109 ms 315.002 ms 100.3%

loader, searching for a class file in a specified classpath, and resolving,
initializing, and instantiating that class type in the JVM. All loading
processes are iterated 20 times. The results show that the performance
penalty varied among those applications from around 14% to 67%. The
penalties mostly depended on the number of declared methods and fields.
Thus, the largest application showed the largest overhead.

4.4.0.6 Cost of the checkcast instruction

Finally, we measured the execution time for version checking compared
with the ordinary type checking. The sister-supported type checking in-
cludes not only the ordinary checkcast operation but also the checking
of trusted instances. We ran a program that executes the checkcast

instruction for every class included in a given application, and then we
measured the total execution time of all the checkcast instructions.
Both experiment programs ran after all the classes had been loaded and
then the version compatibility of all the classes was verified. We suc-
cessively ran the program twice; the execution time of the second run
indicates the execution time of checkcast after the version compatibil-
ity of all the possibly relayed classes is verified during the first run. Some
of the first checks also make use of the results of previous verifications.

Table 4.5 lists the results. The results are the average of 10,000 it-
erations. The total execution time of the first checks was from about

LOOSELY-SEPARATED NAMESPACES 86

Experimental Results

Table 4.4. Total loading time using an ordinary class loader and a sis-
ter class loader. All classes are sequentially loaded by the loadClass()
method.

Program Total loading time sister
(No. of classes) plain namespace sister namespace /plain

JDOM (72 classes) 328 ms 382 ms 116.5%
Crimson (144 classes) 569 ms 696 ms 122.3%
jaxen (191 classes) 802 ms 919 ms 114.6%
dom4j (195 classes) 1,308 ms 1,487 ms 113.7%
SAXON (351 classes) 1,749 ms 2,113 ms 120.8%
XT (466 classes) 1,223 ms 1,422 ms 116.3%
XercesJ 1 (579 classes) 2,495 ms 3,046 ms 122.1%
XercesJ 2 (991 classes) 4,144 ms 6,177 ms 149.1%
XalanJ 2 (1,548 classes) 12,884 ms 15,290 ms 166.6%

��� ��� � ��� 	
	�� � ��� ��� � � � ��� � �� �

� ���
	���� �

�����

��� �

� � �

	�	�� �

�����

�
� � �

� �����

��� � �
�

� ���
� ���
� ���
� ���
� �����
� � ���
� � ���
� � ���

� � !�"$# % & '�() *,+ - . / *10) '�2 +43�5 6�!�786�9:6 / % ; / (�=<>6�/ % ; / (�@?A6 - B - * �@?

CED�FHG�I�J=K�L M
N N�O�N PRQ�O
S T�O
M
U�N�V WYX

Z\[^]`_badcfehg>ikjmlYihnpokq

JDOM [87] : A simple Java representation of an XML document, version 1.0
Crimson [83] : A Java XML parser included with JDK 1.4 and greater, version 1.1.3
jaxen [89] : An XPath engine, version 1.0.
dom4j [62] : The flexible xml framework for Java, version 1.5.2
SAXON [46] : An XSLT and XQuery processor, version 6.5.3
XT [52] : A fast, free implementation of XSLT in java, version 20020426a
XercesJ 1 : The Xerces Java Parser 1.4.4.
XercesJ 2 : The Xerces2 Java Parser 2.6.2.
XalanJ 2 [84] : An XSLT processor for transforming XML documents, version 2.6.0.

LOOSELY-SEPARATED NAMESPACES 87

Experimental Results

10 to 40 times slower than the ordinary checkcast operation. This is
because the sister-supported type checker traverses all possibly relayed
class types. Since each application has a different number of possibly
relayed classes, the relative performance varies for each application. On
the other hand, the second checks included only around 160% overhead
compared to the ordinary checkcast operation. Note that this overhead
is incurred only when checkcast examines the type of an instance com-
ing from another sister namespace. The overhead is negligible in regular
cases. It is the case that we use an interface type for adopting the del-
egation technique as described in section 2.2.2.3 (Figure 2.14 and 2.18).
Note that adopting the delegation technique decreases the maintainabil-
ity and availability of all related software components as mentioned that
section.

We also compared the execution time of the type check with the time
for marshalling and unmarshalling several XML data objects. Remember
that the most harmless practice for the inter-component communication
described in Chapter 2 is using a remote call, which passes an object by
means of the call-by-value. This practice lets us avoid the problem of
the version barrier, but it implies overhead due to the marshalling and
unmarshalling for parameter passing. On the other hand, sister names-
paces also let us avoid the problem, and it implies extra overhead only
due to the type check. We measured the execution time for marshalling
and unmarshalling DOM objects created by XercesJ 2.6.2 from 33 XML
files taken from the Eclipse help system, which includes the Platform,
Workbench, JDT, Plug-in and PDE document plug-ins. The overall file
size was about 400KB. The measured execution time was 3 million times
larger than the execution time of the ordinary checkcast operation. Of
course, actual inter-component communication using a remote call would
spend much more time for the network data transportations. Therefore,
this result shows the sister namespace is a significantly faster solution
compared to the solution of passing objects by a remote call.

1It is the case that we delegate an interface type to the parent class loader for
exchanging the instances of two versions of a class type. This approach requires the
passing objects to be cast to the target type from that interface type.

LOOSELY-SEPARATED NAMESPACES 88

Experimental Results

Table 4.5. Total execution time of the type check by checkcast

Program checkcast1 Sister namespaces Relative performance
(No. of classes) [us] 1st [us] 2nd [us] 1st 2nd

JDOM 33.3 1,205.7 53.7 3,721% 261.3%
(72 classes)
Crimson 69.0 1,659.7 112.6 2,505% 263.1%
(144 classes)
jaxen 89.2 1,573.1 139.8 1,864% 256.7%
(191 classes)
dom4j 109.7 4,371.7 185.8 4,085% 269.3%
(195 classes)
SAXON 295.7 5,141.3 499.8 1,839% 269.0%
(351 classes)
XT 381.5 4,505.8 698.7 1,281% 283.1%
(466 classes)
XercesJ 1 644.4 7,824.3 1,041.3 1,314% 261.5%
(579 classes)
XercesJ 2 1,158.6 11,534.6 1,798.0 1,096% 255.1%
(991 classes)
XalanJ 2 1,650.6 22,627.8 2,696.2 1,471% 263.3%
(1,548 classes)

�
�����
� �����
� �����
�������
�������
�������
�������
�	�����

�� �	�� � � ��� � ��� � � � ��� � ��� ���! !"��	#$"�%&"!� � ' � �
)(*"�� � ' � �
,+-"!� . � �
,+

/103254�687,9�: ;=<�<�>	< ?@<!A�B CED F)G8HIB CED

LOOSELY-SEPARATED NAMESPACES 89

Related Work

4.5 Related Work

In the object database community, several schema evolution techniques
such as schema or class versioning [22, 1] have been studied. These
techniques allow multiple co-existing versions of a schema or a class. In-
stances are evolved when passing through the version barrier into the
modified application or other applications. Using such evolvable object
databases is a workable alternative for component-based applications.
However, our work concentrates on programming environments, espe-
cially where runtime overheads due to schema evolution must be severely
minimized.

There have been other research activities tackling the version bar-
rier problem in the programming language and environment community.
Most of the previous research regarded the version barrier as a temporal
boundary between old and new components and thus focused on dynamic
software updates or evolution. That is, multiple versions of the same class
type could not simultaneously co-exist in the running program. There-
fore, our problems were not directly addressed. In this research area,
the main topic is which existing object should be adapted to an updated
version of the class type and how and when. For example, the work on
the hotswapping of classes falls into this category. Malabarba et al. [53]
modified the JVM to make a class reloadable at runtime so that all ex-
isting objects can be updated incrementally. The JPDA (Java Platform
Debugger Architecture) [82] and the java.lang.instrument package of
the Java2 SDK5.0 provide the restricted hotswap functionality, whereby
existing instances can be considered as the new version of the class type
without being updated. Hjalmtysson and Gray [40] implemented dy-
namic classes in C++ by using templates. Users can selectively update
some but not all objects with the help of wrapper (or proxy) classes and
methods. Hnětynka et al. [41] proposed the renaming approach using a
bytecode manipulation tool. A class loader using this renaming approach
allows the reloading of a class, although it renames that class.

Our work mainly focuses on the spatial version barriers among mul-
tiple components. An older version of a class type remains after a new
version is loaded. Dynamic type changes such as predicate classes [16],
reclassifying objects [28], and wide classes [54] may allow relaxing of the
spatial version barrier, since multiple class members can be implicitly
merged by the explicit composition operation. Type-based hotswapping
proposed by Duggan et al. [30] is similar to our work but classified into

LOOSELY-SEPARATED NAMESPACES 90

Summary

the same category as the above systems. The .NET counterparts of the
Java class loaders are application domains, which are used to load and
execute assemblies and can run in a single process. However, they adopt
the call-by-value semantics on inter-component communication between
application domains using the .NET Remoting Framework. Of course,
dynamically typed languages, such as CLOS, Self, and Smalltalk, provide
more flexible mechanisms for allowing types to be changed at runtime.
However, our challenge is relaxing only the version barrier in the strictly
typed object-oriented world with negligible performance penalties. Our
contribution is that we have provided a simple mechanism for relaxing
the version barrier, which has been confusing Java programmers because
of the complicated semantics.

4.6 Summary

This chapter presented the design and implementation of loosely-
separated sister namespaces in Java. Combining multiple namespaces as
sister namespaces can relax the version barrier between them. It thereby
allows an instance to be assigned to a different version of that class type
in that sister namespace. This mechanism was implemented on the IBM
Jikes RVM for evaluation of the performance overhead. Our experiment
showed that, once an instance passes into the sister namespace across the
version barrier, all instances of that class type can go back and forth be-
tween the sister namespaces with significantly low performance overhead.
Our experiment also demonstrated that the execution performance has
only negligible overhead unless an instance is passed across the version
barrier.

In the previous chapter, we have explained a class-level dynamic AOP
system named Wool. It allows weaving aspects with a program at run-
time by using the hotswap mechanism of the standard debugger interface
called JPDA (Java Platform Debugger Architecture) [82]. The version
compatible changes shown in this chapter are almost the same as that
supported by the JPDA. Therefore, using sister namespaces will provide
an object-level dynamic system while keeping the equivalent flexibility
to Wool.

LOOSELY-SEPARATED NAMESPACES 91

Chapter

5
A Dynamic Aspect Injection

Container

This chapter describes a dynamic aspect injection container based on
sister namespaces, which enables object-level dynamic weaving. Object-
level dynamic weaving mechanisms can dynamically compose an aspect
with a particular set of objects, not classes. This kind of dynamic weav-
ing mechanisms can change the behavior of a part of application software
locally and temporarily at runtime. The mechanism of the sister names-
pace can allow an instance being carried beyond the version barrier be-
tween namespaces even if each version of that class type is woven with a
distinct aspect. Thus, an aspect can be dynamically injected into compo-
nents across the namespace by passing an instance of the woven version
of a class. The injection mechanism can be realized by an extension to
a sort of DI (Dependency Injection) containers, which can reduce the
dependency among components and thereby improving the reusability of
components.

Key features of recent modern component frameworks such as
Spring [23], Aspectwerkz [44], HiveMind [4], PicoContainer [70], and
Seasar [88] are DI [35] and AOP. In other words, most of the DI con-
tainers support AOP. The so-called DI + AOP containers generate syn-
ergistic effect for the developers of component-based applications since

A DYNAMIC ASPECT INJECTION CONTAINER 92

An Aspect in Wooler

both reduce dependency among components. The developers can inject
dependency and compose an aspect in the same manner and obtain the
initialized components from the container, specifying dependency and
aspects between components by a separate configuration file (usually an
XML file).

Although the component frameworks, mostly in Java, adopt a sophis-
ticated mechanism for supporting dynamic weaving, it is not perfect. In
the most container frameworks, an aspect is not composed with a compo-
nent itself but the subclass of that component, especially called the AOP
proxy. The developers can deal with the AOP proxy as the apparent
component. Since the class file of the AOP proxy is secretly generated
by using a bytecode engineering tools such as CGLIB [15], BCEL [57],
and Javassist [18], the actual component can be dynamically replaced
with the new proxy composed with a different aspect 1. However, this
mechanism requires the developers to design the apparent component
class to be implemented or extended in the future. For example, if the
apparent component class is declared as a regular class type, it must not
be final and the declared methods must not be private for being overrid-
den by the AOP proxy. On the other hand, if the apparent component
is declared as an interface, the developers have to define an interface
type for every component and access instances of the class through the
interface type. That component is no longer a POJO (Plain Old Java
Object).

This chapter introduces a dynamic aspect injection container named
Wooler, which enables object-level dynamic weaving. Wooler can dynam-
ically inject aspects into components by passing woven objects across the
sister namespace. The rest of this chapter explains the design and im-
plementation of the dynamic aspect injection container Wooler.

5.1 An Aspect in Wooler

An aspect in Wooler is represented as a regular component, which is
composed of an XML configuration and an advice class. The XML con-
figuration is used for describing dependency among components including
aspects. The advice class includes advice methods that are invoked at
the specified join points of components.

1The AOP proxy may just redirect method calls for the apparent component to
the actual component.

A DYNAMIC ASPECT INJECTION CONTAINER 93

An Aspect in Wooler

5.1.1 An XML configuration

To describe dependency among components including aspects, an XML
configuration is a better approach than providing a specific language
extension. It is not used just for connecting components from outside
the component-based application. It can work as keys of components
including aspects. The following is an example XML configuration for
dependency injection:¤
<beans>

<bean id=” ta sk f a c t o r y ” c l a s s=”wooler . ProxyFactoryBean”>
<property name=”proxyTargetClass ”>

<value>t rue</ value>
</ property>
<property name=” ta rg e t ”>

<r e f l o c a l=” task ”/>
</ property>

</bean>
<bean id=” l oga spe c t ” c l a s s=”LogAspect” method=” log ”/>

</beans>§£ ¢
An application reads this configuration when it creates application com-
ponents:

¤
Resource r e s = new ClassPathResource (” task . xml”) ;
BeanFactory f = new XmlBeanFactory (r e s) ;
BusinessTask task
= (BusinessTask) f . getBean (” t a s k f a c t o r y ” , ” l oga spe c t ”) ;£ ¢
The XML configuration includes no dependency between the task com-
ponent and the logaspect aspect. Instead, the application explicitly
takes the names of the component and the aspect. Thus, the logaspect

can be easily composed with a different component:

¤
BusinessTask newtask
= (BusinessTask) f . getBean (”newtask” , ” l oga spe c t ”) ;£ ¢
The task component and the newtask component compose with the

A DYNAMIC ASPECT INJECTION CONTAINER 94

An Aspect in Wooler

same logaspect component. It means that the logaspect aspect can
modularize the cross cutting concern lying between the task component
and the newtask component. The developers need not manage the map
of the aspect objects including aspect fields. Wooler, of course, provides
the way for explicitly describing dependency between a component and
an aspect:

¤
<bean id=” ta sk f a c t o r y ” c l a s s=”wooler . ProxyFactoryBean”>

<property name=” i n t e r c e p t o r ”>
<value>l o ga spe c t</ value>

</ property>
</bean>£ ¢
To filter some messages into the aspect, the developers can specify a

message pattern as follows:

¤
<bean id=” l oga spe c t ” c l a s s=”LogAspect” method=” log ”>

<property name=” pattern ”>
<value>.∗ get .∗</ value>

</ property>
</bean>£ ¢

This property can serve as pointcut designators in AspectJ. Then, the
method calls against the task component and beginning with get are
dispatched to the log method of the logaspect component.

5.1.2 An advice class

An advice body is described as a method body declared in an advice
class. The advice class in Wooler is the same as that of Wool mentioned
chapter 3, which is a normal class as following:

¤
1 class LogAspect {
2 public void l og (MethodInvocation mi) {
3 i f (mi . getMethod () . getName () . s tartsWith (” get ”)) {
4 . . .
5 }
6 }

A DYNAMIC ASPECT INJECTION CONTAINER 95

An Aspect in Wooler

7 }§£ ¢
The log() method is invoked at the execution points specified by the
XML configuration as mentioned before. Moreover, the following method
is also supported to efficiently obtain reflective information about the
current join point for the advice to use:¤
public void l og (BusinessTask $ th i s) {

out . p r i n t l n (”This ob j e c t i s ” + $ th i s) ;
}£ ¢
We can access the this object for the current join point by naming a
method parameter $this. Similar to this() pointcut of AspectJ, advice is
not invoked if the type of a method parameter is different from the object
at the identified join point. We can also use all reflective information
by using $thisJoinpoint as a parameter. Mainly, this object is used
to obtain certain dynamic information such as the currently executing
object or the target object or the arguments. Table 5.1 lists several
parameter names for accessing the context of the current join point.

Table 5.1. Parameter names for accessing the context of current join point.

$this

access the this object in the current join point.

$target

access the target object in the current join point.

$arg1, $arg2, ...

access the argument object in the current join point.

$thisJoinpoint

access the execution context in the current join point. The
type of that parameter must be Joinpoint.

In some DI containers, for intercepting the execution of a program,
the aspect has to override or implement the interceptor class such as

A DYNAMIC ASPECT INJECTION CONTAINER 96

Aspect weaving across sister namespaces

MethodInterceptor and FieldInterceptor provided by the container
framework:

¤
1 class LogInte rceptor implements MethodInterceptor {
2 public Object invoke (MethodInvocation mi)
3 throws Throwable {
4 i f (mi . getMethod () . getName () . s tartsWith (” get ”)) {
5 . . .
6 }
7 }
8 }§£ ¢

Since this interceptor model allows us a sort of meta programming using
plenty of the dynamic information, it may be enough in practice. How-
ever, this interceptor model is an old-fashioned approach. The compli-
cate meta programming has annoyed a number of developers up to now.
And it is not good in terms of the execution performance for reifying an
execution context at every interception.

5.2 Aspect weaving across sister namespaces

Although Wooler compose an aspect class with the AOP proxy as usual,
the proxy class is not a subclass or a subtype of the component class but
a sister class of that one. Wooler first creates a sister class loader of the
class loader of the target component, and then generates the AOP proxy
including some advice invocations following the XML configuration. The
proxy class, generated by using a bytecode engineering tool, are loaded
into the sister namespace at runtime. Since the AOP proxy becomes a
sister of the component class, an object of the AOP proxy can be injected
to the running application and regarded as that component mentioned
in chapter 4. Pseudo code for aspect weaving in Wooler is following:

¤
BusinessTask task
= (BusinessTask) f . getBean (” t a s k f a c t o r y ” , ” l oga spe c t ”) ;

public Object getBean (St r ing prop , S t r ing aspect)
throws Exception {

A DYNAMIC ASPECT INJECTION CONTAINER 97

Aspect weaving across sister namespaces

. . .
l oade r = Thread . currentThread . getContextLoader () ;
s i s t e r = new ClassLoader (l oade r . getParent () , l oade r) ;
byte [] proxy = t r a n s l a t o r . weave (prop , xml , a spect) ;
Class c = s i s t e r . load (proxy) ;
return c . newInstance () ;

}£ ¢
Figure 5.1 illustrates the AOP proxy in the Wooler compared to the
ordinary designs.

���������	��
 ������
�����	�
 � � ��
 ���

��������� �!���#"$��%
&(' !�)*!�+-,.0/21
,$0,.3!�/21

4�5687 9�:�6�60;�<�6�=
>�? :�@�:0A�B�C�DFE
B<0B�C8:�DFE

G3H I�J K�L M N�O�K8P

G�G�H QSR�T K8QUK8I�J V�P�P

W X
YZ [
\] ^
[
Y_

4�5�6�7 9�:06�6�;�<6�=
>�? :�@�:�AB�C�DFE
B�<�B0C8:�DFE

4�5687 9�:�66�;�<6�=�`ba
>�? :�@�:�AB�C�DFE
B�<�B0C8:�DFE

G�G8K�c�J K8I0d�V0P8P

4�5�6�7 9�:066�;�<�6�=
>�? :�@�:�AB0C�D-E
B�<�B0C8:�DFE

4�5�6�7 90:�66�;�<6�=
>�? :�@�:�AB0C�D-E
B�<�B0C8:�DFE

G�G8V0H VJ K�L P�P

O�e�H T dSI0N8QfK�V0R0N�OK
R�N8L K�I�J3I0N�QgK�V0R0N0O�K V0H VJ K�L�I�N8QfK�V�R�N�O�K

Figure 5.1. The AOP proxy is defined as a subtype implementing the
component interface in the left, as a subclass extending the component
class in the center, and as a sister class of the component class in the
right.

Unlike ordinary container frameworks, Wooler imposes no restriction
on the component class. This is because the sister classes have only to
satisfy version compatibility. The version compatible changes include
differences of static members such as static methods, constructors, and
initializers and differences of instance members such as instance methods.
Therefore, the component class need not be defined as an interface or a
non-final class, and the declared methods can be defined as static or
private ones. Of course, Wooler can replace the AOP proxy at runtime
by recreating the sister namespace against the target component as long
as the version compatibility between sister classes is maintained.

A DYNAMIC ASPECT INJECTION CONTAINER 98

Chapter

6
Conclusion

This thesis has discussed dynamic AOP weaving mechanisms, focusing
on efficiency and granularity. The mechanisms presented in this thesis
enable efficient class-level dynamic weaving and fine-grained object-level
dynamic weaving. Thus, it will propel AOP to the realistic option for
the today’s software developers, who have a strong desire for a solution
to create high quality software.

Contributions

The contributions by this thesis are summarized as follows:

• This thesis proposed a selective, just-in-time, aspect weaving mech-
anism for enabling efficient class-level dynamic weaving. This
mechanism allows an aspect weaver and its user to insert suitable
hooks into the running program in consideration of the overall per-
formance of the application. This will contribute to the designers
of virtual machines and just-in-time compilers for supporting AOP,
or for a pure aspect-oriented programming language.

• Then this thesis proposed the novel concept and design for loosely-
separated namespaces to address the problem of the version bar-

CONCLUSION 99

rier, and enabling fine-grained object-level dynamic weaving. This
mechanism can relax the version barrier between namespaces while
keeping type-safety, efficiency, and laziness of the Java class loader.
This also brings a brilliant settlement to component frameworks
seeking loosely-coupled components. This will also contribute to
the designers of a new specific programming language aimed for
loosely-coupled components.

• Furthermore, this thesis proposed a dynamic aspect injection mech-
anism for realizing an object-level dynamic weaving based on the
previous two mechanisms. It emerged that the existing lightweight
container frameworks does not excellently support dynamic weav-
ing only by exploitation of subtyping or subclassing. And this
strongly demonstrated usefulness of the loosely-separated names-
pace in practice.

Limitations

The limitations of this thesis and dynamic AOP itself are summarized as
follows:

Inter-type declarations Aspects in AspectJ can declare members (fields,
methods, and constructors) that are owned by other types. These are
called inter-type members (formerly called the introductions). The mech-
anisms proposed in this thesis do not support this language constructs.
Since the JVM does not allow changing the class schema at runtime,
inter-type declarations are not directly realized. However, the inter-type
members are always accessed from advice code and thus these members
actually need not to be declared other types. Therefore, the inter-type
members are enough to be declared in an aspect if the scope of these
members is properly managed. For example, field access code described
in an inter-type method need to be properly redirected to a field declared
the corresponding owned type.

Aspects in AspectJ can also declare that other types implement new
interfaces or extend a new class. Wool and Wooler do not support this
mechanism. It is also difficult for dynamic AOP itself, since implement-
ing this kind of runtime type changes in statically typed object-oriented
languages causes large performance penalties.

CONCLUSION 100

Around advice Current implementation of Wool does not support dynamic
weaving of around advice. When Wool runs at the breakpoint-based ex-
ecution mode, the running program always returns to the intercepted
execution point after the inserted advice code is executed. That is, Wool
can not skip or cancel the currently executed method by popping the cor-
responding execution frame. To realize around advice in Wool, we must
enhance the JPDA implementation to be able to control the executing
program with keeping the semantics of that program.

On-time weaving The dynamic weaving processes depend on the thread
or the OS scheduler, since dynamic weavers always begin working af-
ter the target program runs. Suppose that multiple weavers are trying
to compose distinct aspects with the identical class in parallel, the or-
der of woven aspects depends on the thread scheduler although AspectJ
provides the precedence mechanism to control the order of advice execu-
tions. Suppose that dynamic weavers affect multiple processes as well as
threads, which enables so-called inter-process aspects [65]. It is difficult
to compose an aspect with all threads or processes following universal
conveniences. If do that, it may cause a deadlock, and the weaving pro-
cess may never start. Therefore, dynamic AOP systems including Wool
and Wooler need to provide high abstractions to monitor the target pro-
gram and control the weaver.

Future directions

Possible future directions of this thesis are following:

Adaptive aspect weaving Our first version of Wool requires the program-
mers to make decisions about the hooks. This manual selection has a
high probability of producing good results. However, sometimes the pro-
grammer does not know the best combination of hooks as breakpoints
and as method calls. In the future, we will implement a sophisticated
profiler like that of the HotSpot VM [81] to automatically select the most
appropriate hooks.

Soundness of the sister namespace Currently, we just formalized an ab-
stract model of the sister namespace. We need to explore soundness of

CONCLUSION 101

the sister namespace. Then, we also examine this issue with respect to
the Java security architecture [36].

Apply to the production VM The mechanisms proposed by this thesis need
to apply the production VM and work in the real world. Although our
just-in-time aspect weaver is implemented on the Sun JVM, it accesses
the JVM indirectly using that debugger interface. Meanwhile loosely-
separated namespaces are implemented on the research VM of IBM. Most
of the production VMs equip various kinds of optimization mechanisms in
the crown of information science, toward just-in-time compilation includ-
ing inlining and devirtualization, lock and memory management. Our
mechanisms must not forbid those optimizations. We should confirm it
by exposing them to the real world such as the BEA’s JRockit VM cite-
jrockit.

Implement dynamic aspect injection container Unfortunately, a dynamic
aspect injection container named Wooler has not been implemented yet
because it is easy-to-prepare. However, container frameworks require not
only high throughput for processing requests but also high scalability. In
fact, modern component frameworks such as a J2EE server deal with a
vast number of clients simultaneously. On the other hand, we did not
assume that an enormous number of sister namespaces is co-exists at the
same time. Therefore, Wooler should be implemented, widely-used and
enhanced; if it has improper scalability in practice.

CONCLUSION 102

Bibliography
[1] Andrea H. Skarra and Stanley B. Zdonik. The Management of

Changing Types in an Object-Oriented Database. In Proceedings
of the Conference on Object-Oriented Programming Systems, Lan-
guages, and Applications (OOPSLA’86), volume 11 of SIGPLAN
Notices 21, pages 483–495, Portland, Oregon, nov 1986.

[2] AOP Alliance. Aop alliance (java/j2ee aop standards). http://

aopalliance.sourceforge.net/, 2002.

[3] Apache Software Foundation. Apache Geronimo. available at: http:
//geronimo.apache.org/, 2003.

[4] Apache Software Foundation. HiveMind. available at: http://

jakarta.apache.org/hivemind/, 2005.

[5] B. Alpern and C. R. Attanasio and J. J. Barton and M. G. Burke and
P Cheng and J.-D. Choi and A. Cocchi and S. J. Fink and D. Grove
and M. Hind and S. F. Hummel and D. Lieber and V. Litvinov and
M. F. Mergen and T. Ngo and J. R. Russell and V. Sarkar and M.
J. Serrano and J. C. Shepherd and S. E. Smith and V. C. Sreedhar
and H. Srinivasan and J. Whaley. The Jalapeno Virtual Machine.
IBM System Journal, 39(1):211–238, feb 2000.

[6] Jason Baker and Wilson Hsieh. Runtime Aspect Weaving Through
Metaprogramming. In 1st International Conference on Aspect-
Oriented Software Development, pages 86–95, 2002.

BIBLIOGRAPHY 103

[7] Bo Noerregaard Joergensen and Eddy Truyen and Frank Matthijs
and Wouter Joosen. Customization of Object Request Brokers by
Application Specific Policies. In Middleware 2000 conference, 2000.

[8] Bob Cancilla and Kevin Postreich. IBM Websphere Application
Server Express: Pathways to Success on the Web. Midrange Com-
puting, 2004.

[9] Christoph Bockisch, Michael Haupt, Mira Mezini, and Klaus Oster-
mann. Virtual Machine Support for Dynamic Join Points. In In-
ternational Conference on Aspect-Oriented Software Development,
2004.

[10] Bowen Alpern and Anthony Cocchi and David Grove. Dynamic
Type Checking in Jalapeño. In Java Virtual Machine Research and
Technology Symposium, 2001.

[11] Bowen Alpern and Anthony Cocchi and Stephen J. Fink and David
Grove and Derek Lieber. Efficient Implementation of Java Inter-
faces: Invokeinterface Considered Harmless. In Proceedings of the
2001 ACM SIGPLAN Conference on Object-Oriented Programming
Systems, Languages and Applications (OOPSLA 2001), number 11
in SIGPLAN Notices, vol.36, pages 108–124, Tampa, Florida, USA,
nov 2001. ACM.

[12] Mathias Braux and Jacques Noyé. Towards Partially Evaluating Re-
flection in Java. In Proceedings of the 2000 ACM SIGPLAN Work-
shop on Partial Evaluation and Semantics-Based Program Manipu-
lation (PEPM ’00), 2000.

[13] Johan Brichau, Kim Mens, and Kris De Volder. Building Compos-
able Aspect-Specific Language with Logic Metaprogramming. In
Generative Programming and Component Engineering - Generative
Programming and Component Engineering, LNCS 2487, pages 93–
109. Springer-Verlag, 2002.

[14] Budi Kurniawan and Paul Deck. How Tomcat Works: A Guide To
Developing Your Own Java Servlet Container. Brainysoftware.Com,
2004.

[15] cglib. Code Generation Library. available at: http://cglib.

sourceforge.net/, 2002.

BIBLIOGRAPHY 104

[16] Craig Chambers. Predicate Classes. In ECOOP’93 - Object-Oriented
Programming, 7th European Conference, volume 707 of Lecture
Notes in Computer Science, pages 268–296, Kaiserslautern, Ger-
many, jul 1993. Springer-Verlag.

[17] Charles Simonyi. The Death of Computer Languages, The Birth
of Intentional Programming. In Technical Report MSR-TR-95-52,
Microsoft Research, 1995.

[18] Shigeru Chiba. Load-time structural reflection in Java. In ECOOP
2000, LNCS 1850, pages 313–336. Springer-Verlag, 2000.

[19] Shigeru Chiba and Rei Ishikawa. Aspect-oriented programming be-
yond dependency injection. In Proceedings of the ECCOP 2005 -
Object-Oriented Programming: 19th European Conference, volume
3586 of Lecture Notes in Computer Science, pages 121–143, Glasgow,
UK, jul 2005.

[20] Shigeru Chiba and Muga Nishizawa. An Easy-to-use but Efficient
Java Bytecode Translator. In Second International Conference on
Generative Programming and Component Engineering (GPCE’03),
Erfurt Germany, September 2003.

[21] Shigeru Chiba, Yoshiki Sato, and Michiaki Tatsubori. Using
HotSwap for Implementing Dynamic AOP Systems. In 1st Workshop
on Advancing the State-of-the-Art in Run-time Inspection, July,
2003, Darmstadt, Germany held in conjuction with ECOOP 2003,
July 2003.

[22] Stewart M. Clamen. Type Evolution and Instance Adaptation. Tech-
nical Report CMU-CS-92–133, Carnegie Mellon University School of
Computer Science, Pittsburgh, PA, 1992.

[23] Craig Walls and Ryan Breidenbach. Spring in Action. Manning
Publications, 2005.

[24] Jonathan Davies, Nick Huismans, Rory Slaney, Sian Whiting,
Matthew Webster, and Robert Berry. Aspect Oriented Profiler. In
2nd International Conference on Aspect-Oriented Software Develop-
ment, 2003.

[25] Edsger Wybe. Dijkstra. A Discipline of Programming. Prentice Hall
(Sd), 1976.

BIBLIOGRAPHY 105

[26] Mikhail Dmitriev. Towards flexible and safe technology for runtime
evolution of java language applications. In Proceedings of the Work-
shop on Engineering Complex Object-Oriented Systems for Evolu-
tion, in association with OOPSLA 2001 International Conference,
pages 14–18, Tampa Bay, Florida, USA, October 2001.

[27] Sophia Drossopoulou. An Abstract Model of Java Dynamic Linking
and Loading. In Types in Compilation, volume 2071 of Lecture Notes
in Computer Science, pages 53–84, Montreal, Canada, September
2000. Springer.

[28] Sophia Drossopoulou, Ferruccio Damiani, Mariangiola Dezani-
Ciancaglini, and Paola Giannini. Fickle : Dynamic Object Re-
classification. In ECOOP 2001 - Object-Oriented Programming, 15th
European Conference, volume 2072 of Lecture Notes in Computer
Science, pages 130–149, Budapest, Hungary, jun 2001. Springer.

[29] Sophia Drossopoulou, David Wragg, and Susan Eisenbach. What is
Java Binary Compatibility? In Proceedings of the 1998 ACM SIG-
PLAN Conference on Object-Oriented Programming Systems, Lan-
guages & Applications (OOPSLA ’98), pages 341–361, Vancouver,
British Columbia, Canada, oct 1998.

[30] Dominic Duggan. Type-Based Hot Swapping of Running Modules.
In Proceedings of the Sixth ACM SIGPLAN International Confer-
ence on Functional Programming (ICFP ’01), volume 10 of SIG-
PLAN Notices 36, pages 62–73, Florence, Italy, oct 2001. ACM.

[31] Easy Software Foundation. ajProfiler - easy java profiler. http:

//http://ajprofiler.sourceforge.net/, 2002.

[32] Eddy Truyen and Bo Norregaard Jrgensen and Wouter Joosen. Cus-
tomization of Component-based Object Request Brokers through
Dynamic Configuration. In Technology of Object-Oriented Lan-
guages and Systems, 2000.

[33] Robert Englander. Developing Java Bean. O’Reilly and Associates,
Inc., 1997.

[34] Huw Evans and Peter Dickman. Zones, Contracts and Absorbing
Changes: An Approach to Software Evolution. In Proceedings of the
1999 ACM SIGPLAN Conference on Object-Oriented Programming

BIBLIOGRAPHY 106

Systems, Languages & Applications (OOPSLA), number 10 in SIG-
PLAN Notices vol.34, pages 415–434, Denver, Colorado, USA, nov
1999. ACM.

[35] Martin Fowler. Inversion of Control Containers and the De-
pendency Injection pattern. http://www.martinfowler.com/

articles/injection.html, 2004.

[36] Li Gong, Gary Ellison, and Mary Dageforde. Inside Java2TM Plat-
form Security: Architecture, API Design, and Implementation 2nd
Edition. Addison-Wesley, Boston, Mass., 2003.

[37] James Gosling, Bill Joy, Guy Steele, and Gilad Bracha. The Java
Language Specification Second Edition. Addison-Wesley, Boston,
Mass., 2000.

[38] Kari L. Halsted and James H. (Jamie) Roberts. Eclipse help system:
an open source user assistance offering. In Proceedings of the 20st
annual international conference on Documentation, SIGDOC 2002,
pages 49–59, Toronto, Ontario, Canada, oct 2002. ACM.

[39] William Harrison and Harold Ossher. Subject-Oriented Program-
ming (A Critique of Pure Objects). In Object-Oriented Program-
ming, Systems, Languages, and Applications., pages 411–428, 1993.

[40] Gı́sli Hjálmtyśson and Robert Gray. Dynamic C++ Classes: A
lightweight mechanism to update code in a running program. In
Proceedings of the USENIX Annual Technical Conference, New Or-
leans, Louisiana, 1998. USENIX.

[41] Petr Hnětynka and Petr Tůma. Fighting Class Name Clashes in Java
Component Systems. In Modular Programming Languages, Joint
Modular Languages Conference, JMLC 2003, volume 2789 of Lecture
Notes in Computer Science, pages 106–109, Klagenfurt, Austria, aug
2003. Springer.

[42] Kazuaki Ishizaki, Motohiro Kawahito, Toshiaki Yasue, Hideaki Ko-
matsu, and Toshio Nakatani. A study of devirtualization techniques

for a JavaTM Just-In-Time compiler. In Proceedings of the 2000
ACM SIGPLAN Conference on Object-Oriented Programming Sys-
tems, Languages & Applications (OOPSLA 2000), number 10 in

BIBLIOGRAPHY 107

SIGPLAN Notices, vol.35, pages 294–310, Minneapolis, Minnesota,
USA, oct 2001. ACM.

[43] Jon Mountjoy and Chugh Avinash and Brett McLauglin. Weblogic:
The Definitive Guide. Oreilly & Associates Inc, 2004.

[44] Jonas Bonér, Alexandre Vasseur. AspectWerkz - Plain Java AOP.
available at: http://aspectwerkz.codehaus.org/, 2002.

[45] JUnit FAQ. Why do I get an error (ClassCastException or Link-
ageError) using the GUI TestRunners? available at: http://

junit.sourceforge.net/doc/faq/faq.htm, 2002.

[46] Michael Kay. SAXON The XSLT and XQuery Processor. available
at: http://saxon.sourceforge.net/, 2001.

[47] Ralph Keller and Urs Hëlzle. Binary Component Adaptation. In
ECOOP’98 - Object-Oriented Programming, LNCS 1445, pages 307–
329. Springer-Verlag, 1998.

[48] Gregor Kiczales, Erik Hilsdale, Jim Hugunin, Mik Kersten, Jeffrey
Palm, and William G. Griswold. An overview of AspectJ. In ECOOP
2001, LNCS 2072, pages 327–353. Springer-Verlag, 2001.

[49] Gregor Kiczales, John Lamping, Anurag Menhdhekar, Chris
Maeda, Cristina Lopes, Jean-Marc Loingtier, and John Irwin.
Aspect-oriented programming. In Proceedings European Confer-
ence on Object-Oriented Programming, volume 1241, pages 220–242.
Springer-Verlag, Berlin, Heidelberg, and New York, 1997.

[50] Gregor Kiczales, Jim Des Rivieres, and Daniel Bobrow. The Art of
the Metaobject Protocol. The MIT Press, 1991.

[51] Sheng Liang and Gilad Bracha. Dynamic Class Loading in the Java
Virtual Machine. In Proceedings of OOPSLA’98, Proceedings of the
1998 ACM SIGPLAN Conference on Object-Oriented Programming
Systems, Languages & Applications, number 10 in SIGPLAN No-
tices, vol.33, pages 36–44, Vancouver, British Columbia, Canada,
oct 1998. ACM.

[52] Bill Lindsey. XT. available at: http://www.blnz.com/xt/, 2002.

BIBLIOGRAPHY 108

[53] Scott Malabarba, Raju Pandey, Jeff Gragg, Earl Barr, and J. Fritz
Barnes. Runtime Support for Type-Safe Dynamic Java Classes. In
Proceedings of ECOOP 2000 - Object-Oriented Programming, 14th
European Conference, volume 1850 of Lecture Notes in Computer
Science, pages 337–361. Springer-Verlag, jun 2000.

[54] Manuel Serrano. Wide Classes. In Proceedings of the ECCOP’99
- Object-Oriented Programming, 13th European Conference, volume
1628 of Lecture Notes in Computer Science, pages 391–415, Lisbon,
Portugal, jun 1999. Springer-Verlag.

[55] Francisco Reverbel Marc Fleury. The JBoss Extensible Server. In
ACM/IFIP/USENIX International Middleware Conference, volume
2672 of Lecture Notes in Computer Science, pages 344–373, Rio de
Janeiro, Brazil, jun 2003. Springer.

[56] Mark Fleury and Scott Stark and Norman Richards. JBoss4.0 - The
Official Guide. Sams, 2005.

[57] Markus Dahm. Byte Code Engineering with the BCEL API. In
Technical Report 8-17-98, Freie Universit at Berlin, Institut f ur
Informatik, 2001.

[58] Hidehiko Masuhara, Gregor Kiczales, and Chris Dutchyn. A Com-
pilation and Optimization Model for Aspect-Oriented Programs. In
Compiler Construction, 12th International Conference, CC 2003,
Held as Part of the Joint European Conferences on Theory and Prac-
tice of Software, ETAPS 2003, Warsaw, Poland, April 7-11, 2003,
Proceedings, volume 2622 of Lecture Notes in Computer Science,
pages 46–60. Springer, apr 2003.

[59] Hidehiko Masuhara and Akinori Yonezawa. Design and partial eval-
uation of meta-objects for a concurrent reflective language. In Pro-
ceedings of the ECCOP’98 - Object-Oriented Programming, 12th Eu-
ropean Conference, volume 1445 of Lecture Notes in Computer Sci-
ence, pages 418–439, Brussels, Belgium, jul 1998.

[60] Vlada Matena and Beth Stearns. Applying Enterprise JavaBeansTM :
Component-Based Development for the J2EETM Platform. Pearson
Education, 2001.

BIBLIOGRAPHY 109

[61] Mathias Braux and Jacques Noyé. Towards Partially Evaluating Re-
flection in Java. In Proceedings of the 2000 ACM SIGPLAN Work-
shop on Partial Evaluation and Semantics-Based Program Manipu-
lation (PEPM ’00), number 11 in SIGPLAN Notices vol.34, pages
2–11, Boston, Massachusetts, USA, jan 2000. ACM.

[62] Metastaff, Ltd. dom4j: the flexible xml framework for Java. available
at: http://www.dom4j.org/, 2001.

[63] Michael Golm and Jürgen Kleinöder. Jumping to the Meta Level:
Behavioral Reflection Can Be Fast and Flexible. In Proceedings of
Meta-Level Architectures and Reflection, Second International Con-
ference, Reflection’99, volume 1616 of Lecture Notes in Computer
Science, pages 22–39. Springer-Verlag, 1999.

[64] Adam Nathan. .NET and COM: The Complete Interoperability
Guide. Sams, 2002.

[65] Muga Nishizawa, Shigeru Chiba, and Michiaki Tatsubori. Remote
pointcut: a language construct for distributed AOP. In Proceedings
of the 3rd International Conference on Aspect-Oriented Software De-
velopment, AOSD 2004, Lancaster, UK, March 22-24, 2004, pages
7–15. ACM, 2004.

[66] Hirotaka Ogawa, Kouya Shimura, Satoshi Matsuoka, Fuyuhiko
Maruyama, Yukihiko Sohda, and Yasunori Kimura. OpenJIT Fron-
tend System: an implementation of the reflective JIT compiler fron-
tend. In ECOOP 2000, LNCS 1850. Springer-Verlag, 2000.

[67] OMG. The Common Object Request Broker: Architecture and Spec-
ification. Revision 2.0. OMG Document, 1995.

[68] Doug Orleans and Karl Lieberherr. DJ: Dynamic adaptive pro-
gramming in Java. In In Reflection 2001: Meta-level Architectures
and Separation of Crosscutting Concerns, LNCS 2192, pages 73–80.
Springer-Verlag, 2000.

[69] Renaud Pawlak, Lionel Seinturier, Laurence Duchien, and Gèrard
Florin. JAC: A flexible framework for AOP in Java. In Reflection
2001, pages 1–24, 2001.

[70] PicoContainer Organization. PicoContainer. available at: http:

//www.picocontainer.org/, 2003.

BIBLIOGRAPHY 110

[71] Andrei Popovici, Gustavo Alonso, and Thomas Gross. Just in Time
Aspects: Efficient Dynamic Weaving for Java. In 2nd International
Conference on Aspect-Oriented Software Development, pages 100–
109, 2003.

[72] Andrei Popovici, Thomas Gross, and Gustavo Alonso. Dynamic
Weaving for Aspect-Orinented Programming. In 1st International
Conference on Aspect-Oriented Software Development, pages 141–
147, 2002.

[73] Christian Prehofer. Feature-Oriented Programming: A Fresh Look
at Objects. In ECOOP’97 - Object-Oriented Programming, 11th
European Conference, Jyväskylä, Finland, June 9-13, 1997, Pro-
ceedings, volume 1241 of Lecture Notes in Computer Science, pages
419–443. Springer, Jun 1997.

[74] Yoshiki Sato and Shigeru Chiba. Loosely-separated ”Sister” Names-
paces in Java. In Proceedings of the ECCOP 2005 - Object-Oriented
Programming: 19th European Conference, volume 3586 of Lecture
Notes in Computer Science, pages 49–70, Glasgow, UK, jul 2005.

[75] Yoshiki Sato, Shigeru Chiba, and Michiaki Tatsubori. A Selective,
Just-In-Time Aspect Weaver. In Second International Conference on
Generative Programming and Component Engineering (GPCE’03),
pages 189–208, Erfurt Germany, September 2003.

[76] Marc Segura-Devillechaise, Gilles Muller Jean-Marc Menaud, and
Julia L. Lawall. Web Cache Prefetching as an Aspect: Towards a
Dynamic-Weaving Based Solution. In 2nd International Conference
on Aspect-Oriented Software Development, pages 110–119, 2003.

[77] Sherry Shavor, Jim D’Anjou, Scott Fairbrother, Dan Kehn, John
Kellerman, and Pat McCarthy. The Java Developer’s Guide to
Eclipse. Addison-Wesley, 2003.

[78] Shigeru Chiba. A Metaobject Protocol for C++. In Proceedings
of the OOPSLA’95, Tenth Annual Conference on Object-Oriented
Programming Systems, Languages, and Application, number 10 in
SIGPLAN Notices, vol.30, pages 285–299, Austin, Texas, USA, oct
1995.

BIBLIOGRAPHY 111

[79] Spec - The Standard Performance Evaluation Corporation.
SPECjvm98. http://www.spec.org/osg/jvm98/, 1998.

[80] Sun Microsystems. Dynamic Proxy Classes. available
at: http://java.sun.com/j2se/1.3/docs/guide/reflection/

proxy.html, 1999.

[81] Sun Microsystems. The Java HotSpot Performance Engine Archi-
tecture. available at: http://java.sun.com/products/hotspot/

whitepaper.html, 1999.

[82] Sun Microsystems. JavaTM Platform Debugger Architectuer.
available at: http://java.sun.com/j2se/1.4/docs/guide/jpda,
2001.

[83] The Apache XML Project. Crimson Java Parser. available at: http:
//xml.apache.org/crimson, 2000.

[84] The Apache XML Project. Xalan Java XSLT Processor. available
at: http://xml.apache.org/xalan-j, 2002.

[85] The Apache XML Project. Xerces2 Java Parser. available at: http:
//xml.apache.org/xerces2-j, 2002.

[86] The Eclipse Foundation. Eclipse.org. homepage: http://www.

eclipse.org/, 2001.

[87] The JDOMTM Projec. JDOM. available at: http://www.jdom.

org/, 2000.

[88] The Seasar Foundation. Seasar - DI Container with AOP. available
at: http://www.seasar.org/, 2004.

[89] The Werken Company. jaxen: universal java xpath engine. available
at: http://jaxen.org/, 2001.

[90] Toshio Suganuma and Takeshi Ogasawara and Mikio Takeuchi and
Toshiaki Yasue and Motohiro Kawahito and Kazuaki Ishizaki and
Hideaki Komatsu and and Toshio Nakatani. Overview of the IBM
Java Just-In-Time Compiler. IBM Systems Journals, 39(1):175–193,
2000.

BIBLIOGRAPHY 112

BIBLIOGRAPHY

[91] Vijay Saraswat. Java is not type-safe. www.research.att.com/
∼vj/bug.html, 1997.

[92] Ian Welch and Robert Stroud. Kava - Using Bytecode Rewriting
to add Behavioural Reflection to Java. In USENIX Conference on
Object-Oriented Technology, 2001.

[93] Khaled Yagoub, Daniela Florescu, Valerie Issarny, and Patrick Val-
duriez. Caching Strategies for Data-Intensive Web Sites. In Proceed-
ings of the 24th International Conference on Very Large Databases
(VLDB), Cairo Egypt, sep 2000.

BIBLIOGRAPHY 113

