A Dynamic Aspect-oriented System for OS Kernels

Yoshisato Yanagisawa Kenichi Kourai Shigeru Chiba Rei Ishikawa

Dept. of Mathematical and Computing Sciences, Tokyo Institute of Technology
{yanagisawa,kourai,chiba,rei }@csg.is.titech.ac.jp

Abstract

We propose a dynamic aspect-oriented system for operating sys-
tem (OS) kernels written in the C language. Unlike other similar
systems, our system named KLASY allows the users to pointcut not
only function calls but also member accesses to structures. This
feature helps the developers who want to use aspects for profiling
or debugging an OS kernel. To enable this, KLASY uses a modi-
fied C compiler for compiling an OS kernel. The modified compiler
produces extended symbol information, which enables a dynamic
weaver to find the memory addresses of join point shadows during
runtime. Since a normal C compiler produces only limited sym-
bol information, other dynamic aspect-oriented systems for C have
been able to pointcut only function calls. We have implemented
KLASY for Linux with the GNU C compiler. Our experiments re-
vealed that KLASY achieves sufficient execution performance for
practical use. Our case studies disclosed that KLASY is useful for
real applications.

Categories and Subject Descriptors D [3]: 4
General Terms Languages

Keywords Aspect-oriented Programming, Operating System, Dy-
namic AOP, Profiling and Debugging, Linux

1. Introduction

Tool support is a key component of efficient software development.
This is also true for the development of an operating system (OS)
kernel. To analyze the behavior of a kernel, profile the execution
performance, or fix a kernel bug, a kernel event logger or profiler
will be a powerful tool.

This paper discusses the use of aspect-oriented programming
(AOP) for debugging and profiling an OS kernel. It proposes
our aspect-oriented system called KLASY (Kernel-Level Aspect-
oriented SYstem), which helps kernel developers of Linux write an
aspect for producing trace messages for performance profiling or
debugging.

KLASY supports dynamic weaving of programs written in the
C language. Dynamic weaving is a crucial feature for helping
kernel development since compiling and rebooting an OS kernel
takes long time. If the developers had to recompile and reboot an
OS kernel whenever they modify aspects, for example, to measure
the elapsed time of a different code section, they would not use the
tool.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

GPCE’06 October 22-26, 2006, Portland, Oregon, USA.

Copyright (© 2006 ACM 1-59593-237-2/06/0010. .. $5.00.

KLASY has been implemented as a front end of Kerninst [28],
which is a system for modifying the binary of a running Linux ker-
nel. The users of Kerninst can insert “hook” code at an arbitrary
memory address for invoking another function, which prints a trace
message, for example. Although Kerninst provides basic mecha-
nisms that KLASY needs, it provides only low-level abstraction,
which is not convenient for profiling or debugging. The users must
manually calculate the memory address where hook code should
be inserted unless the address is the entry point of a function. They
must also calculate the memory address of a local variable if they
want to obtain the value of that variable in a function invoked by
hook code.

In this paper, we propose that AOP gives good abstraction for
kernel profiling and debugging. However, existing dynamic AOP
systems for the C language do not support as powerful functional-
ity as static AOP systems since compiled assembly code is far dif-
ferent from original source code. Their functionality is rather equal
to that of Kerninst although their abstraction is more convenient.
To address this problem, we have modified the gcc compiler so
that it will produce extended symbol information. KLASY exploits
this extended symbol information and thereby it provides pointcut
designators for selecting not only function execution but also mem-
ber accesses to structures. It also provides pointcut designators for
accessing local variables and target structures. This paper also de-
scribes limitations of our approach.

It is important that a member access can be identified as a join
point. Assume that developers want to investigate a performance
bottleneck of network I/O. To do that, the developers must obtain
time stamps at a number of places spread over the kernel. A naive
approach is to define a pointcut to enumerate all functions where
time stamps are recorded but this approach is error-prone even if a
wild card is used. A much simpler approach is to define a pointcut
for enumerating accesses to members of only a few structures
related to network I/O. For example, network I/O functions in
the Linux kernel commonly use the sk_buf structure. Other kernel
subsystems such as a scheduler and a virtual file system also use
such a particular data structure.

In the rest of this paper, Section 2 mentions existing technol-
ogy for kernel profiling. Section 3 presents KLASY. Section 4 re-
ports the results of our experiments and mentions overheads due to
KLASY. Section 5 presents related work and Section 6 concludes
this paper.

2. Kernel Profiling

OS kernels are never mature products. Improving them is still a
hot topic [21, 30, 25, 19]. For example, developers of Linux and
FreeBSD are still actively developing new schedulers. They are
discussing techniques for reducing overheads of system calls. A
new idea of prefetching algorithm was recently proposed [13].
Redhat Inc. has released the TUX web server, which uses a tuned
OS kernel for HTTP service [24].

Developers who want to execute performance tuning of OS ker-
nels need a good performance profiler for OS kernels. They need
an appropriate tool set for identifying performance bottlenecks and
eliminating them. A naive approach to do that is to manually mod-
ify the source code of the OS kernel so that it will include code frag-
ments for measuring execution time of various code sections. This
approach, however, needs modifying, recompiling, and rebooting a
kernel whenever the code fragments for measuring execution time
is changed. Note that recompiling and rebooting an OS kernel of-
ten take non-negligible time. Manually editing source code to insert
and remove measuring code is error-prone. Developers might for-
get to remove a few code fragments and thereby make a serious
trouble. When they remove measuring code, they might wrongly
remove statements irrelevant to the measurement.

Another approach is to use a kernel profiler. Developers do
not have to directly edit the source code of the kernel only for
performance profiling. A typical profiler such as LKST [17] can
produce a trace log that records when a kernel event specified at
compile time occurs. It automatically edits source code to produce
a trace log according to the users’ specification. Unfortunately,
the flexibility of this approach is low; the users must statically
determine the kernel events that can be recorded in a trace log
when they occurs. They cannot measure the execution time of code
sections that were not specified at compile time. This is a serious
problem because the code sections that they want to measure will
change during a session of performance tuning.

2.1 Kerninst

An on-line kernel instrumentation tool such as Kerninst [28] solves
this problem. It allows the users to modify a running OS kernel
so that a given function will be called when the thread of control
reaches the specified machine address. Since it directly replaces
several machine instructions of the running kernel, the users do
not have to reboot the kernel. This feature is significantly useful
because unexpected performance behavior that developers want to
investigate often occurs a long time after a kernel is booted. A
reboot-less tool improves the productivity of kernel development.

However, since Kerninst was not a tool dedicated to kernel
profiling, the abstraction provided by Kerninst is a quite low level.
Kerninst provides only limited capability for kernel profiling. Thus
using Kerninst for performance profiling is a complicated task.

Suppose that we want to print a log message with a time stamp
when inode_change_ok() function is called. The log message in-
cludes the value of i_uid member of local variable inode declared
in that function. If we use Kerninst, we first define a function for
printing a log message:
void print_log() {

struct timeval tv;

void *ebp;

int uid;

__asm__ __volatile__("movl %%ebp, %0"

uid = ((struct inode *)ebp[11])->i_uid;

/* ebp[11] is inode */

do_gettimeofday (&tv);

printk("inode.i_uid: %d at %d.%ld\n",

uid, tv.tv_sec, tv.tv_usec);

}

This function is compiled as a kernel module and dynamically
loaded into the kernel address space. Note that the value of the local
variable inode is obtained by ebp[11], where ebp holds the value of
the ebp register when the inode_change_ok() function is running.
11 is the offset of inode in the stack frame. It must be manually
calculated from the memory layout of a stack frame.

Then we use Kerninst to insert a machine instruction at the be-
ginning of the inode_change_ok() function so that this print_log()
function will be invoked.

"=r"(ebp)) ;

kapi_manager kmgr;

void insert_hook() {
kapi_module kmod;
kapi_function ifunc, pfunc;
kapi_vector<kapi_point> entries;
kapi_vector<kapi_snippet> args;
kapi_call_expr hook;

kmgr.attach("localhost", 32770);

kmgr . findModule ("kernel", &kmod) ;
kmod.findFunction("inode_change_ok", &ifunc);
ifunc.findEntryPoint (&entries) ;
kmgr.findModule ("profiler", &kmod);
kmod.findFunction("print_log", &pfunc);

hook = kapi_call_expr(pfunc.getEntryAddr(), args);

kmgr . insertSnippet (hook, entries[0]);
}

This program is compiled and run as a user process. It first connects
to the Kerninst manager process and requests to modify the kernel
code. Then it finds the addresses of the entry points of the two
functions inode_change_ok() and print_log(). Finally, it inserts
a code snippet “hook” so that inode_change_ok() will first call
print_log().

The program above looks simple because Kerninst provides a
mechanism for finding the address of the entry point of a func-
tion. However, if we want to print a log message in the middle of
that function, we must manually calculate the address where the
hook code is inserted and then we must pass that address to in-
sertSnippet() instead of entries[0]. Kerninst only helps us find the
addresses of the entry and exit points of a function. It can also re-
port the entry address of every basic block but we have to manually
identify which statements in a source file each basic block corre-
sponds to.

2.2 Aspect-oriented programming

Although Kerninst provides basic mechanisms for kernel profiling,
it is a general-purpose system for extending a running kernel and
thus the functionality of Kerninst is not sufficient for profiling. The
most serious problem is that we must know how kernel source code
is compiled into machine instructions; we must manually calculate
an address where we want to print a log message and where the
value of a variable we want to inspect is stored. We need a front-
end system of Kerninst that provides higher-level abstraction than
Kerninst.

We propose to use aspect-oriented programming (AOP) as such
a higher-level abstraction since it is widely known as an excellent
paradigm for logging and profiling. If we use an AOP system,
profiling code can be described as a module separated from the
kernel source files. That separate module is called aspects. An
aspect consists of pointcuts and advices. An advice is a language
construct similar to a function. It is invoked when the thread of
control reaches execution points specified by a pointcut. A pointcut
is a composition of several predicates; it selects execution points
that match those predicates. Those execution points are also called
Jjoin points. To bind an advice with a target program at the execution
points specified by a pointcut is called weaving. It is normally part
of a compilation process or a program-transformation process after
compilation.

Although AOP is a good paradigm, existing AOP systems are
not satisfactory. First, an AOP system we need is a dynamic AOP
system, which can dynamically weave an aspect. As Kerninst does,
the AOP system must be able to attach and detach a profiling
aspect to a running kernel without rebooting it. There are several
dynamic AOP systems for the C language but they support only
limited kinds of join points. They do not provide significantly better
functionality than Kerninst. For example, TOSKANA [11] allows
users to select only function execution as join points. Arachne [10]

allows users to select not only function calls but also accesses to
global variables and arbitrary memory blocks. However, any of
them does not enable selecting member accesses to structures.

In OS kernels, a number of structures are passed to transfer a
collection of data between functions. To trace such a data flow,
developers must be able to select member accesses by pointcuts.
Tracing how transferred data is used is not a simple task if only
function execution can be selected as join points. Moreover, struc-
tures are often used to implement a polymorphism-like mechanism
in OS kernels. They are used as substitutes for classes available in
C++ and Java. Some members of structures are function pointers
to a method, that is, a function specialized for a particular type of
structure. The network I/O system, the virtual file system, device
drivers, and so on are implemented with this technique. Therefore,
developers would want to use pointcuts selecting member accesses
to such function pointers so that they can trace a call graph. A sim-
ilar result could be obtained by describing pointcuts that select all
possible function executions belonging to the call graph. However,
selecting member accesses to the structures used in a target subsys-
tem is simpler and easier.

Another limitation of existing dynamic AOP systems for the
C language is a mechanism for context exposure. AOP systems
have a mechanism for passing context information of a join point
to an advice. For example, if a join point is function execution,
function arguments can be passed to an advice. Arachne [10] allows
an advice to access a return value and global variables as well.
However, existing AOP systems for the C language do not allow
an advice to local variables visible at a join point. Exposing local
variables at a join point to an advice might not be an appropriate
design with respect to modularization but it is often necessary for
profiling.

3. KLASY: Kernel Level Aspect-oriented System

As we have shown above, existing AOP systems are not appropriate
for profiling and debugging OS kernels. We propose our dynamic
AOP system named KLASY (Kernel Level Aspect-oriented SYs-
tem) for profiling and debugging OS kernels written in the C lan-
guage. Unlike other similar systems, KLASY enables pointcutting
member accesses to structures and provides better accessibility to
context information at join points. KLASY thereby provides better
usability than Kerninst; the users of KLASY do not have to manu-
ally calculate memory addresses.

An aspect for KLASY is written in C although it includes XML-
like tags. Figure 1 is an example program. It can be compiled and
woven by the klasy command at any time during runtime. For ex-
ample,

% klasy weave inode_trace.klasy

this weaves the aspect in the file inode_trace.klasy into the OS ker-
nel. After this aspect is woven, it prints a log message when the
i_uid member of the inode structure is accessed within the function
body of inode_change_ok(). Unlike the example in Section 2.1,
this aspect prints a log message not when the execution of in-
ode_change_ok() starts but whenever the i_uid member is accessed
in inode_change_ok().

An aspect is surrounded by the aspect tag. The import tag spec-
ifies the header files that are necessary to compile an advice body.
When an advice body is compiled, two header files linux/kernel.h
and linux/module.h are implicitly included. Other header files can
be included by using the import tag.

The advice body is a code fragment written in the C language
and it is surrounded by the before (or after) tag. KLASY does not
support an around advice but it is not a serious drawback since an
aspect in KLASY is for profiling and it rarely needs around advice,

<aspect>
<import>linux/time.h</import>
<advice>
<pointcut>
access(inode.i_uid) AND
within_function(inode_change_ok) AND
target (inode_value) ;
</pointcut>
<before>
struct inode *i = (struct inode *)inode_value;
struct timeval tv;
do_gettimeofday (&tv) ;
printk("inode.i_uid: %d at %d.%1ld\n",
i->uid, tv.tv_sec, tv.tv_usec);
</before>
</advice>
</aspect>

Figure 1. An aspect written in KLASY (inode_trace.klasy)

which is mainly used to execute a function at a join point only if
necessary. In an advice body, several characters must be escaped
since an aspect is tagged in XML. For example, angle brackets
(< and >) must be replaced with &It; and >, respectively. The
ampersand & must be &. In an advice body, a special variable
pc is available. It represents the current value of the program
counter, that is, the memory address of the machine instruction
selected by a pointcut.

The advice body follows a pointcut definition surrounded by
the pointcut tag. KLASY currently provides seven pointcut des-
ignators: execution, access, within_file, within_function, target,
local_var, and argument. The execution pointcut identifies func-
tion executions as join points. access identify both read and write
member accesses as join points. Wild cards % are available in these
pointcuts. Since * represents a pointer type in the C language, wild
cards are not * but %.

If a join point selected by a pointcut is a member access, the
target pointcut is available. It sets a given variable to a pointer
to the structure that is accessed at the join point. In Figure 1, the
pointer to the inode structure is bound to a variable inode_value
that is available in an advice body. The type of inode_value is
void*. If the within_function pointcut is used, the local_var point-
cut is used for obtaining the value of a local variable at a join point.
The within_file and within_function pointcuts select join points in-
cluded in a specified file and function body, respectively. The argu-
ment pointcut is used for obtaining the argument value of a func-
tion specified with the execution pointcut. Multiple pointcuts can
be composed by AND or OR operators. If within_function is com-
posed by AND with another pointcut such as access, the selected
join points are ones that satisfy the conditions specified by both
within_function and access.

3.1 Source-based binary-level dynamic weaving

KLASY enables developers to dynamically weave an aspect into
the Linux kernel without rebooting the OS. To provide a pointcut
for selecting member accesses as join points, KLASY uses our new
technique named source-based binary-level dynamic weaving, in
which the kernel source code is compiled by an extended C com-
piler of KLASY and thereby a richer symbol information is pro-
duced. An aspect is dynamically woven in the compiled binary, that
is, a running OS kernel by exploiting that richer symbol informa-
tion. KLASY modifies the compiled binary of the running kernel.

3.1.1 Extended symbol information

To enable the access pointcut shown above, the target OS kernel
must be compiled by our extended C compiler so that the compiled
binary will include the symbol information that is necessary to lo-

cate all occurrences of member accesses to structures. We extended
the GNU C compiler (gcc) to develop that C compiler.

To record the locations of member accesses, we extended the
parser of gcc. Since the global variables lineno and input_filename
represent the current line number and the file name during parsing,
our extended parser records the values of those global variables as
well as a member name and a structure name whenever it encoun-
ters a member accesses. Note that an abstract syntax tree produced
by the gcc parser does not include type names. All type names are
converted into integer identifiers. Hence our extended parser main-
tains a mapping from the integer identifiers to the type names.

To locate the memory addresses of the machine instructions
corresponding to the join point shadow [20] of member accesses,
KLASY also needs to know where the compiled code of a given
source line is placed in memory. Although the original gcc pro-
duces such address information if it runs with a debug option -g,
the produced information is not sufficient for KLASY. For exam-
ple, consider pointcut accesses to the addr_limit member of the
thread_info structure. A source file acct.c of the Linux 2.6.10 ker-
nel includes an access to that member at line 493:

493: fs = get_fs();

Here, get_fs is a macro. The definition of this macro is at line 32 in
uaccess.h:

32: #define get_fs() (current_thread_info()->addr _limit)

Since this macro includes the member access, the line 493 in acct.c
is selected by the pointcut. KLASY records this line number. Note
that the line 32 in uaccess.h is not recorded. Since uaccess.h is not
a compilation unit (uaccess.h cannot be compiled into uaccess.o)
but included in other files, KLASY cannot easily find which object
file (.o file) contains the machine instructions corresponding to the
line 32 in uaccess.h. Thus KLASY records the line 493 in acct.c
as a join point since this line should be contained in acct.o, which
is obtained by compiling acct.c. However, according to the address
information produced by the -g option, the machine instructions for
the member access corresponds to the line 32 in uaccess.h. It does
not correspond to the line 493 in acct.c. Although this design is
suitable for debuggers, KLASY cannot find the machine instruc-
tions for the member access at line 493 in acct.c. To solve this
problem, we modified gcc. The parser of gcc associates the source
code after macro expansion:

fs = (current_thread_info()->addr_limit);

with both the line 493 in acct.c and the line 32 in uaccess.h.
These two line numbers associated with the code is removed by
the RTL (register transfer language) generator and only the line 32
in uaccess.h is associated after that. We modified the RTL gener-
ator and the sub systems following the RTL generator, such as an
RTL optimizer and an assembler (gas), so that they can maintain
multiple line numbers. ! Also, KLASY can maintain multiple line
numbers for inline functions.

!'Some readers might think that such complex implementation is unneces-
sary if all the source files of the Linux kernel are preprocessed in advance
by the cpp command with the -P option. This option suppresses generating
##line directives, which represent line numbers before preprocessing. How-
ever, this approach loses the information of the original line numbers and
thus KLASY could not generate a helpful warning message including a line
number. Furthermore, the users would want to know the original line num-
bers of the selected join points. Another problem of the cpp -P approach is
that it cannot maintain correct line numbers if two source lines are merged
into one for optimization.

oS II
source code
Modified
C compiler

Aspect compiler

Weaver

-

Hoo

OS kernel

Compiled advice

Core
k|OS kernel

Figure 2. Overview of KLASY

3.1.2 Dynamic weaving

An aspect is compiled by the aspect compiler of KLASY. The
advice bodies in the aspect are compiled into a loadable kernel
module. It is loaded in the kernel space by the insmod command
of Linux. Then KLASY resolves the memory addresses of the join
points selected by pointcuts and KLASY inserts hook code at those
addresses by using Kerninst [28]. The hook code calls an advice
body when it is executed. The overall architecture is illustrated in
Figure 2.

KLASY resolves the memory address of a join point by ana-
lyzing the symbol information produced by our extended gcc com-
piler. It first searches the symbol information for the file name and
the line number of each join point selected by a given pointcut.
Then it resolves the memory address corresponding to that line
number. Our extended compiler compiles the OS kernel with the -g
option and stores the extended address information in the debug in-
formation section of the compiled binary code. The compiler uses
the DWARF 2 format to construct the binary code. KLASY first
reads the .debug_info section of the binary of the kernel and finds
the address information of the compilation unit that corresponds to
the file name. Since the address information consists of .debug_line
sections, KLASY reads them to find the memory address that cor-
responds the line number.

The minimum resolution of KLLASY is a line since the symbol
information does not include the exact memory address that corre-
sponds to an expression such as member accesses. Therefore, for
example, a before advice is executed not just before a join point
such as a member access but before the line including the join point
(shadow [20]) is executed. Some readers may think that KLASY
can pick the exact memory address by using the information of
the variable position pointcutted, which is in the symbol informa-
tion. However, we believe that this approach should often fail be-
cause the variable position told in the symbol information is only
warranted just before the line is executed. Moreover, this approach
spent so much time for weaving that the developers would avoid
using this tool. This limitation would not be a serious problem if
KLASY is used for debugging and profiling an OS kernel because
that resolution is the same as that of source-level debuggers and
typical profilers.

Since the compiler may merge multiple lines for optimization,
some lines including selected join points may disappear from the
compiled binary. KLASY cannot find the memory address of those
lines. However, in that case, KLASY tries to find the memory
address of the line nearest to the original line. KLASY increments
and decrements the line number one by one and tries to find the

memory address of the line. When KLASY finds the memory
addresses of the two lines before and after the original line, it
examines whether or not the two lines are in the same basic block. If
they are, KLASY adopts the memory address of the line before (or
after) the original line for a before (or after) advice. We assume that,
in this situation, the original line is also in the same block and the
original line is surely executed between them. Otherwise, KLASY
prints an warning message and ignores the join points included in
the original line. The basic blocks are computed by Kerninst.

If the memory address of a join point is found, KLASY inserts
hook code at that address by using Kerninst. Since an advice body
is transformed into a C function in a loadable kernel module, the
hook code calls that function with the address of the join point as
an argument. Kerninst substitute a jump instruction for the original
instructions at that address. The jump instruction jumps to the hook
code given by KLASY, which is placed somewhere else, and the
original instructions are executed after the hook code. If the size of
the replaced instruction is too small to put the jump instruction (5
bytes), Kerninst uses a breakpoint-trap instruction, which is only
one byte. If the thread of control reaches that instruction, a trap
handler is invoked and it executes the hook code and the instruction
replaced with the breakpoint-trap instruction. Since the breakpoint-
trap instruction causes software interruption and hence it implies
a larger performance penalty than the jump instruction, Kerninst
uses the breakpoint-trap instruction only when the jump instruction
cannot be substituted for the original instruction. To weave multiple
advice bodies at the same join point, KLASY generates a wrapper
function that calls multiple advice bodies in turn. The hook code
calls that function instead of advice bodies. This implementation is
due to limitations of the current version of Kerninst.

3.1.3 Context exposure

The local_var, target, and argument pointcut designators pass the
value of a local variable, an accessed structure, or function argu-
ments, to an advice body; they can pass a value of execution context
at a join point. For implementing this feature, KLASY generates a
trampoline function, which bridges between hook code inserted by
Kerninst and an advice body. When a trampoline function is called
by hook code, it obtains a value of execution contexts and passes it
to an advice body as an argument.

To obtain the value of a local variable or a function argument,
KLASY reads the .debug_info section of the kernel binary to know
the register number or the memory address of that variable. The
.debug_info section is generated by the -g option to the gcc com-
piler. The -fno-omit-frame-pointer option is also used to remain a
frame pointer to know an accurate position of a local variables. If
a register is allocated to a variable, it is saved by Kerninst on stack
memory before a trampoline function is called and thus KLASY
reads the stack memory to obtain the value of such a register vari-
able. On the other hand, if a stack frame is allocated to a variable,
KLASY reads the saved value of ebp register to obtain the address
of that stack frame and computes the memory address for a variable
based on that.

If a pointcut includes access and target, a trampoline function
must obtain the address of an accessed structure specified by ac-
cess. If that structure is referred to by a local variable, KLASY
obtains the value of that local variable by the way mentioned above
and computes the address. For example,

inode.length
inode_ptr->length

If these accesses are selected by a pointcut, the addresses of the
target structures are the values of &inode and inode_ptr. Our ex-
tended gcc compiler generates an extra symbol information of how

<aspect>
<advice>
<pointcut>execution(check_free_space())
</pointcut>
<before>printk("execution of check_free_space");
</before>
</advice>
</aspect>

Figure 3. An example of execution pointcut

those values are computed from local variable inode and inode_ptr.
KLASY computes the addresses according to that symbol informa-
tion.

The target structure can be indirectly pointed to. Suppose that p
is a local variable.

p->thread->fs

If the member access to fs is selected by a pointcut, the address
of the target structure is p—>thread. Our compiler also generates
a symbol information of how the address is computed. A local
variable and an intermediate member can be an array type. For
example, our compiler generates a symbol information for the
following access:

p[0]->threads[1]->fs

However, our compiler does not generate such a symbol infor-
mation if an access is something like this:

current_thread_info()->exec_domain

since current_thread_info() is a function call. Our compiler gen-
erates a symbol information for computing a target address only
if the address is a member of a structure directly or indirectly re-
ferred to by a local variable. If the target address is computed by an
expression that KLASY does not support, our compiler reports an
error.

3.2 Execution pointcut

KLASY also support the execution pointcut designator, which se-
lect function execution as a join point. For example, Figure 3 is an
aspect that prints a trace message when a function check_free_space
is executed.

The implementation of the execution pointcut is simple because
the symbol information generated by a normal C compiler (in our
case, gcc) includes the memory address of function entry points.
KLASY uses Kerninst for inserting hook code, which calls an ad-
vice body when executed. If an advice is a before advice, KLASY
inserts the hook code at the entry point of the specified function,
that is, at the beginning of the function body. If an advice is an af-
ter advice, KLASY inserts the hook code at the exit point of the
function. This insertion is processed by Kerninst. Due to the lim-
itations of Kerninst, the execution pointcut cannot be used with a
static function or an inlined function.

3.3 Unweaving

KLASY supports unweaving an aspect during runtime. KLASY
records all the aspects that have been woven and, when the users
request KLASY to unweave one of the aspects, KLASY removes
the hook code inserted for that aspect, or removes the advice bod-
ies from the trampoline functions. The modification of the binary

code is processed by Kerninst. The users can run a command for
unweaving an aspect with the name specified by a command-line
argument. For example,

% klasy unweave inode_trace.klasy

this command unweaves an aspect named inode_trace.

4. Experiment

We have developed a prototype of KLASY for the Linux 2.6.10
kernel (Fedora Core 2) with Kerninst 2.1.1 and gcc 3.3.3. This sec-
tion reports the results of our experiments with this prototype. The
machine we used for the experiments has an AMD Athlon™ XP
2200+ processor (1.8GHz), 1GB memory and an Intel® PRO/1000
network card.

4.1 Micro benchmark

First of all, we measured the overheads of a null advice. Since
KLASY uses Kerninst as a back end, an advice is invoked by
either jump instruction or breakpoint-trap instruction. If the size
of the machine instruction at a join point (shadow) is too short, the
breakpoint-trap instruction is used. Otherwise, the jump instruction
is used. Furthermore, KLASY generate trampoline functions for
either local_var or target pointcut is used. Therefore, we examined
all these combinations. We implemented a simple new system call
and wove a null advice with the kernel function implementing that
system call.

Table 1 lists the results. We examined three cases: no trampoline
function, a trampoline function obtaining data located in a register,
and a trampoline function obtaining data located in a stack frame.
If an advice is invoked through the jump instruction, an average
overhead is about 16 nano seconds per join point. If it is invoked
through the breakpoint-trap instruction, an average overhead is
about 200 nano seconds. The overhead due to a trampoline function
was negligible compared to the overhead of an advice invocation.

trampoline
no register stack frame
jump 16 18 19
breakpoint trap 200 202 203

Table 1. Overheads of null advice (nano sec.)

4.2 Userland benchmarks

To evaluate overheads of KLASY in more realistic situations, we
ran benchmark programs from UnixBench [1]. The programs are
dhry2reg (Dhrystone 2 benchmark using register variables), whet
(Whetstone benchmark), execl (performance of exec system calls),
pipe (throughput of process pipes), context (performance of context
switching between processes connected through a pipe), filel (file
copy 256 byte), file2 (file copy 1024 byte), file3 (file copy 4096
byte). create (process creation), shell (shell scripts), and syscall
(overheads of system calls).

We first measured the execution performance of three Linux
kernels with these benchmark programs. One is monolithic, which
is a kernel compiled by the regular gcc and statically linked. An-
other is KLASY, which is a kernel compiled by our extended gcc
for dynamic weaving. Any aspects were not woven during experi-
ments. This kernel is also statically linked because KLASY doesn’t
support a dynamically-linked kernel. The last one is normal, which
is a normal Linux kernel included in the Fedora Core 2 distribution.
Note that the normal kernel is not statically linked. A number of
kernel modules will be loaded during runtime. On the other hand,

the monolithic and KLASY kernels are statically linked and thus
they should have performance advantages.

Table 2 lists the index numbers reported by the benchmark
programs. A larger number is better. The number in a parentheses
shows an overhead to the index of the monolithic kernel. The
number after “+” shows an error. According to this table, there is
little difference among three kernels. Although the KLASY kernel
is little slower than the monolithic kernel in several experiments,
total amount of the overheads is only 4% with respect to their
mean value. The KLASY compiler could not optimize as well as the
regular compiler because our extended compiler must run with -g
and -fno-omit-frame-pointer options as well as -Os option (normal
optimization for a kernel) to obtain correct debug information.
Those options disable a few optimization.

Then we ran several CPU-intensive benchmark programs (dhry2reg,

syscall, pipe, execl, and context) with four kinds of aspects. Two
aspects pointcut accesses to the nr_switches member of the run-
queue structure and the other two pointcut accesses to the state
member of the task_struct structure. For each set of the two as-
pects, the advice body of one aspect increments a counter while
that of the other aspect records the current time. The nr_switches
member represents the number of context switches that have been
done and the state member represents the process state such as
running and sleeping. When we wove these aspects, the weaver in-
serted hook code at 2 execution points for the nr_switches member
and 50 execution points for the state member.

Table 3 lists the index numbers reported by the benchmark pro-
grams. A larger number means better performance. The number in
round brackets represents the overheads of aspects and the num-
ber in square brackets below represents the number of calls to an
advice body during the program execution. The overheads due to
advice execution vary among benchmark programs. They depend
on how frequently advice is executed, which instruction (jump or
breakpoint-trap) is used for executing advice, and the execution
time of the advice body. However, we can see that the overheads
are acceptable unless an advice body is excessively frequently exe-
cuted.

4.3 Case study with real applications

We below show our case studies. Note that we use the access
pointcut designator to identify a number of interesting join points.
In the C language, enumerating member accesses for identifying
join points is often easier than enumerating functions even if we use
wild cards; unlike C++ or Java, the C language does not provide a
grouping mechanism for functions, such as packages and classes.
Furthermore, in the first case study, we obtain a target structure by
the target pointcut designator and use it to avoid logging the time
stamp of unnecessary events.

4.3.1 Network tracing

One of our initial motivation to develop KLASY was to find perfor-
mance bottleneck of the network I/O sub-system under heavy work-
load. Thus we tried measuring the elapsed time at several points of
the network I/O sub-system when we sent bulk data from a remote
host using the scp command. From the result, we could find that
one of possible root causes is process scheduling.

Figure 4 is an aspect we used for this measurement. This aspect
pointcuts accesses to all the members of the sk_buff structure and
sets arg0 to a pointer to that structure. local.h is a file we wrote.
Since some kernel data structures are defined in not a .h file but a
.c file, we copied those data structures into local.h and included it
in the aspect. The advice first casts the value of target to sk_buff.
Then, if the protocol is not ARP, the advice records the current
time as well as the program counter pc. DO_RDTSC is a macro
provided by KLASY. It executes the rdtsc (Read Time Stamp

‘ Total ‘

dhry2reg

whet execl

monolithic 540 £ 10 (2%) 380 £ 0 (0%) 180 £ 0 (0%) 770 £ 20 (3%)
KLASY 520 (4%) £ 20 (4%) | 380 (0%) £ 0 (0%) 180 (0%) £ 0 (0%) 730 (5%) % 30 (4%)
normal 540 (0%) £ 20 (4%) | 380 (0%) £ 0 (0%) 180 (0%) £ 0 (0%) 740 (4%) + 30 (4%)
filel file2 file3 create
monolithic 430 £ 30 (7%) 390 £ 20 (5%) 380 £+ 10 (3%) 1000 £ 50 (5%)
KLASY 390 (10%) £+ 40 (9%) 380 (3%) =20 (5%) 380 (0%) = 10 B3%) 970 (3%) + 40 (4%)
normal 440 (-1%) £ 50 (12%) 400 (-2%) £ 20 (5%) 390 (-2%) = 10 3%) 990 (1%) % 40 (4%)
pipe context shell syscall
monolithic 730 £ 60 (8%) 700 +£ 40 (6%) 800 £ 10 (1%) 830 £ 10 (1%)
KLASY 650 (12%) £ 40 (5%) 670 (4%) £ 40 (6%) 770 (4%) = 10 (1%) 820 (1%) £ 10 (1%)
normal 720 (1%) £+ 60 (8%) 780 (-9%) + 50 (7%) 780 (3%) = 10 (1%) 770 (8%) £ 60 (7%)
Table 2. The performance index of the Linux kernels
runqueue.nr_switch task_struct.state
no aspect counter time counter time
[# of calls.] [# of calls.]
dhry2reg 380 £ 0 (0%) 380 (0%) £ 0 (0%) 380 (0%) £ 0 (0%) 380 (0%) £+ 0 (0%) 380 (0%) £ 0 (0%)
[1,475] [136,716]
syscall 810 £20 2%) 800 (2%) + 50 (6%) 730 (10%) £ 50 (6%) 750 (7%) % 60 (7%) 800 (2%) £ 50 (6%)
[1,464] [136,912]
pipe 540 £ 60 (11%) 530 (2%) + 30 (6%) 520 (3%) £ 40 (7%) 520 (4%) % 30 (6%) 500 (6%) £ 30 (6%)
[1,521] [136,698]
execl 740 £20 (3%) 730 (1%) £ 20 3%) 730 (1%) = 20 (3%) 730 (2%) £ 30 (4%) 720 3%) £ 10 (1%)
[976] [127,482]
context 540 £ 30 (6%) 510 (4%) £ 20 (4%) 530 (1%) =20 (4%) 420 (22%) = 10 (2%) 420 (21%) =+ 20 (4%)
[43,457,582] [102,466,611]

Table 3. Indexes of Unix benchmark

Counter) machine instruction for obtaining the current time. Its
execution time is about 6 nano seconds. STORE_DATA is another
macro provided by KLASY. It is used to record data in kernel
memory, which can be read later from a user process.

When we wove this aspect, the weaver could successfully insert
hook code at 2494 lines but failed at 297 lines. KLASY failed to
resolve the memory address of join points at 70 lines and failed to
obtain the value of target at 227 lines. We explored the reason for
these failures. The former failure occurred when a joinpoint is in
a conditional expression that consist of multiple lines. We modi-
fied KLASY for avoiding that failure in case of if and while state-
ments. However, KLASY still fails for other cases. The latter fail-
ure occurred when the value of target was lost by optimization.
We can avoid this failure if we don’t use target. Both kinds of fail-
ures would be unacceptable if we used KLASY for extending the
functionality of the Linux kernel. However, the target application
of KLASY is profiling and debugging, which do not need precise
selection of join points according to our experience. Moreover, if
the user avoids using target, the failure is only 70 lines (about 2.5%
of all joinpoints). Also note that KLASY prints a warning message
if it fails to finds the memory address at which hook code should
be inserted. The users can see where KLASY fails to insert hook
code.

We invoked the scp command from a remote host after we
wove the aspect. For each arrival of a network packet, we could
measure the elapsed time from when the network device of the
target host received a packet, at several points of the network
sub-system. Table 4 shows the result of tracing network I/O. We

selected only 11 points out of measured 74 points and two different
traces due to the space limitation of the paper. If the target host
receives a packet, the thread of control first passes through line
2773 in e1000_main.c. For both traces, it takes 14 to 15 micro
seconds from this line to line 4355 in tcp-input.c. However, the
elapsed time from this line to line 234 in datagram.c is largely
different: 12 or 688 micro seconds. When we examined source
code, we found that tcp_rcv_established puts sk_buff on a queue
and skb_copy_data_iovec dequeues it. Since skb_copy_data_iovec
is executed by a process, the time between these two lines depends
on process scheduling.

4.3.2 Tracing process switching

In our previous study, we examined how frequently an OS kernel
switches processes under heavy workload, and revealed that be-
havioral anomaly between light- and heavy-weight processes un-
der heavy workload is due to the thread scheduling policy in Linux
[16]. To investigate that, we measured a CPU time quantum con-
sumed by each thread in the Tomcat web application server [4], but
we had to modify the kernel source code of Linux by hand since the
execution point where we wanted to record the time in the scheduler
was a member access to a structure. The previous aspect-oriented
systems similar to KLASY did not enable us to pointcut member
accesses.

If we used KLASY, such measurement could be implemented
without modifying the kernel source code. We show the aspect for
that measurement in Figure 5. This aspect pointcuts accesses the
timestamp member of the task_struct structure within function

function file line packet 1 packet 2
e1000_rx_checksum €1000_main.c 2773 0.00 0.00
netif_receive_skb dev.c 1638 1.06 1.39
netif_rx dev.c 1500 1.68 2.17
ip_rcv ip-input.c 367 343 4.35
ip_local_deliver ip-input.c 275 5.56 6.67
tep-v4_rcv tep-ipvé.c 1741 6.84 8.05
tcp_rev_established tcp-input.c 4238 11.14 12.62
tcp-event_data_recv tcp-input.c 554 13.36 14.54
tep_rcv_established tcp-input.c 4355 14.23 15.43
skb_copy_datagram_iovec datagram.c 234 25.93 703.76
_kfree_skb skbuff.c 225 27.14 707.25

Table 4.

<aspect>
<import>linux/skbuff.h</import>
<import>linux/netdevice.h</import>
<import>linux/netlink.h</import>
<import>net/gen_stats.h</import>
<import>net/sock.h</import>
<import>net/tcp.h</import>
<import>local.h</import>
<advice>
<pointcut>
access(sk_buff.%) AND target(arg0)
</pointcut>
<before>
struct sk_buff *skb = (struct sk_buff *)arg0O;
unsigned long long timestamp;

if (skb->protocol != ETH_P_ARP) {
STORE_DATA (pc) ;
STORE_DATA (skb) ;
DO_RDTSC(timestamp) ;
STORE_DATA(timestamp) ;

Tracing result of network 1/O (partial)

<aspect>
<import>linux/sched.h</import>
<import>asm/page.h</import>
<advice>
<pointcut>
access(task_struct.timestamp) AND
within_file(sched.c) AND target(argO)
</pointcut>
<before>
struct task_struct *p =
(struct task_struct *)arg0Q;
unsigned long long timestamp;

DO_RDTSC(timestamp) ;
STORE_DATA (pc) ;
STORE_DATA (p-> ; pid) ;
STORE_DATA(timestamp) ;
</before>
</advice>
</aspect>

}
</before>
</advice>
</aspect>

Figure 4. Aspect for tracing network I/O

Figure 5. Aspect for tracing process switching

light-weight heavy-weight

service service
without aspect 650.20 6.87
with aspect 645.58 6.84
overhead 0.7% 0.4%

bodies defined in sched.c. The advice body stores the program
counter, the process identifier, and the current time. When we wove
this aspect, the weaver could successfully insert hook code at 10
lines.

We ran both light- and heavy-weight services on Tomcat after
we wove the aspect. To compute CPU time quantums from the
log recorded by the advice body, we selected log entries related
to process switches (line 2682 in sched.c). Table 5 shows the
distribution of CPU time quantums consumed by threads. This
shows that there are two peaks and the second peak is between 10
and 12. This observation is the same as that obtained in our previous
study [16]. To perform our previous study, a few more aspects are
needed in addition to the aspect in Figure 5. Those aspects are not
shown here due to limited space but writing them is as easy as
writing the aspect in Figure 5.

To investigate the overhead of advice execution in a real
application, we measured the throughput of Tomcat using the
ApacheBench benchmark program [3]. Table 6 shows the through-
puts (the number of processed requests per second) for light- and
heavy-weight services with or without the aspect in Figure 5. In
case of Tomcat, the overhead due to using aspect was negligible

Table 6. Throughputs of Tomcat (requests/sec)

even if an advice was executed whenever a process switch oc-
curred.

5. Related Work
5.1 Dynamic aspect-oriented systems for C/C++

There have been several dynamic aspect-oriented systems for the
C language. However, these systems do not enable developers to
pointcut accesses to a member of a structure. As we have men-
tioned, pointcutting member accesses is a significant feature for
profiling and debugging an OS kernel.

TOSKANA [11] is a dynamic aspect-oriented system for the
NetBSD operating system kernel. As KLASY does, it dynamically
modifies the compiled binary of the kernel for weaving an aspect.
Since TOSKANA uses the symbol information produced by a nor-
mal C compiler, it cannot allow developers to pointcut member ac-
cesses. The developers can only select function execution as join

range (ms) | 0-2 2-4 4-6

6-8 8-10 10-12 12-14 14—

frequency | 10,481 1,537 2,174

125 136 709 127 30

Table 5. Distribution of CPU time quantums

points. This design decision would be because TOSKANA was de-
veloped for autonomic computing, in which a kernel module is
automatically replaced to dynamically adapt the kernel. For this
purpose, the developers would rarely need to pointcut member ac-
cesses.

TOSKANA-VM [12] is a system that allows developers to
dynamically weave an aspect with the kernel. The approach of
TOSKANA-VM is similar to the approach of Steamloom [5, 15],
which is a custom Java virtual machine extended for enabling dy-
namic weaving. The kernel of TOSKANA-VM is compiled by a
special compiler into virtual machine code, which is run on a vir-
tual machine named LLVM. Since the virtual machine code con-
tains rich symbol information, TOSKANA-VM allows developers
to pointcut various kinds of join points such as reading and writing
a variable. However, the kernel must run on a virtual machine and
thus this approach cannot be used for profiling a kernel directly
running on native hardware.

DAC++ [2] and TinyC2 [31] are dynamic aspect-oriented sys-
tems for user processes written in the C++ language. For weav-
ing an aspect, those systems modify the compiled binary of C++
programs during runtime. Since they use the symbol information
produced by a normal compiler, they only support pointcuts for
selecting function execution as join points. Member accesses to
structures cannot be join points. Arachne [10] is a dynamic aspect-
oriented system for user processes written in the C language. Al-
though it also uses the symbol information produced by a normal
compiler, the pointcut designators of Arachne cover not only func-
tion calls but also accesses to global variables and memory blocks
allocated by malloc. However, Arachne does not provide a point-
cut designator for member accesses. Furthermore, pointcutting ac-
cesses to memory blocks implies serious performance penalties
since Arachne uses a page fault for detecting accesses to the mem-
ory block.

uDyner [26] is also a dynamic aspect-oriented system for user
processes written in the C language. It is a predecessor of Arachne.
pDyner inserts hook code at every join point marked as hookable
when a source file is compiled. The hook code examines whether or
not the join point is selected by a pointcut during runtime and, if it
is selected, the hook code executes the associated advice. Although
pDyner potentially can support various kinds of join points since
it inserts hook code at compile time, the developers must annotate
source files by the hookable mark so that the hook code will be
inserted at appropriate join points. If a join point is not marked
as hookable, it cannot be selected by a pointcut during runtime.
Furthermore, overheads due to hook code are not negligible if the
number of hookable join points is large.

5.2 Static aspect-oriented systems for C/C++

Since static aspect-oriented systems can utilize the complete
source-level information of a program when weaving an aspect
at compile time, they can easily provide various pointcut desig-
nators. Most of such source-level information is discarded after
compilation and thus existing dynamic aspect-oriented systems
that modify the compiled binary for weaving have not been able to
utilize that information except limited symbol information. How-
ever, static aspect-oriented systems are not appropriate for profiling
and debugging an OS kernel as we mentioned in Section 2. The de-
velopers should be able to weave a new aspect on demand without
rebooting a kernel.

AspectC is an early static aspect-oriented language for the C
language and it has been used for showing that aspect-oriented
programming works well for modularizing an OS kernel [9, 7, 8].
For example, the mechanism for prefetching a disk block must
cut across a virtual memory sub-system and a disk sub-system. To
implementing that mechanism separately from those sub-systems,
aspect-oriented programming is necessary.

AspectC++ [27] is another static aspect-oriented system for the
C/C++ language. It provides the same kinds of pointcut designators
that Aspect] does [18] since it is a source-to-source translator from
an aspect-oriented language to the regular C/C++ language. Since
it is a static aspect-oriented language, it is not appropriate to our
applications.

5.3 Other related tools

There have been a few tools for modifying the binary code of
a running OS kernels. Kerninst [28], which is the back-end of
KLASY, is one of those tools. Unfortunately, their abstraction is
not source-level but assembly-level. The users must directly deal
with memory addresses of functions and global variables. This
is a serious drawback of Kerninst for profiling and debugging an
OS kernel since the developers should want to see source-level
abstraction. Also, GILK [22] is a similar tool to Kerninst but it
uses only jmp instruction to insert hook code. The performance of
GILK is better than that of Kerninst but GILK supports only old
Linux kernels.

SLIC [14] is another tool for modifying a running OS kernel. It
only allows developers to change an entry of jump tables such as an
interrupt vector table and to insert hook code at the beginning of a
function. These ability is not sufficient for profiling and debugging
an OS kernel.

LKST [17], DTrace [6], SystemTAP [23], and LTT [29] are
tools for producing log messages about events occurring in the
kernel. The users of these tools can dynamically control when a log
message is produced. However, the execution points where a log
message can be produced must be statically determined when the
kernel is compiled. The users can only select some of the pre-fixed
execution points and activate them to produce a log message.

6. Concluding Remarks

This paper presents KLASY, which is our dynamic aspect-oriented
system for debugging or profiling the Linux kernel. We devel-
oped the source-based binary-level dynamic weaving technique for
implementing KLLASY and thus KLASY allows users to pointcut
member accesses to structures. It is an important feature since se-
lecting member accesses to a few structures related to a profiling
is much simpler than selecting a large number of functions related
to a profiling. In the C language, structures are often shared among
functions implementing the same concern. They are units of mod-
ules as classes in Java and C++. It also provides pointcut desig-
nators for accessing local variables and target structures. Allowing
accesses to local variables might be inappropriate with respect to
modularization but KLASY is mainly for profiling and debugging.
Since accessing local variables is necessary in those domains, we
relaxed modularization concern.

Our dynamic weaving technique uses a modified C compiler
that generates extended symbol information, which the dynamic
weaver refers to for finding the memory addresses of the join points
(shadow) selected by pointcuts. The dynamic weaver modifies the

binary code of a running kernel so that hook code for executing an
advice body is embedded at those addresses. The extended symbol
information also enables accesses to target structures.

The contributions of this paper are to present the source-based
binary-level dynamic weaving and also to discuss limitations of that
approach. One drawback of that approach is that our modified gcc
compiler does not optimize as well as the original gcc since our
compiler must generate extended symbol information. The perfor-
mance penalty is about 0% to 30%. Another drawback is that an
aspect weaver may fail to find some join points selected by a point-
cut if a compiler performs serious code motion for optimization.

References

[1] Unixbench. http://www.tux.org/pub/tux/niemi/unixbench/.

[2] S. Almajali and T. Elrad. Coupling availability and efficiency for
aspect oriented runtime weaving systems. In Proceedings of the
Second Dynamic Aspects Workshop (DAWOS), march 2005.

[3] Apache HTTP Server Project. Apache HTTP server benchmarking
tool. http://httpd.apache.org/.

[4] Apache Software Foundation. Apache Tomcat. http://tomcat.
apache.org/.

[5] C. Bockisch, M. Haupt, M. Mezini, and K. Ostermann. Virtual
machine support for dynamic join points. In AOSD ’04: Proceedings
of the 3rd international conference on Aspect-oriented software
development, pages 83-92, New York, NY, USA, 2004. ACM Press.

[6] B. M. Cantrill, M. W. Shapiro, and A. H. Leventhal. Dynamic
instrumentation of production systems. In Proceedings of the USENIX
Annual Technical Conference, pages 15-28. USENIX Association,
June 2004.

[7]1 Y. Coady and G. Kiczales. Back to the future: a retroactive study of
aspect evolution in operating system code. In AOSD ’03: Proceedings
of the 2nd international conference on Aspect-oriented software
development, pages 50-59. ACM Press, 2003.

Y. Coady, G. Kiczales, M. Feeley, N. Hutchinson, and J. S. Ong.
Structuring operating system aspects. Communications of the ACM
(CACM), october 2001.

[9] Y. Coady, G. Kiczales, M. Feeley, and G. Smolyn. Using aspectC to
improve the modularity of path-specific customization in operating
system code. In ESEC/FSE-9: Proceedings of the Sth European
software engineering conference held jointly with 9th ACM SIGSOFT
international symposium on Foundations of software engineering,
pages 88-98. ACM Press, 2001.

[10] R. Douence, T. Fritz, N. Loriant, J.-M. Menaud, M. Ségura-
Devillechaise, and M. Siidholt. An expressive aspect language
for system applications with arachne. In AOSD ’05: Proceedings
of the 4th international conference on Aspect-oriented software
development, pages 27-38, New York, NY, USA, 2005. ACM Press.

[11] M. Engel and B. Freisleben. Supporting autonomic computing
functionality via dynamic operating system kernel aspects. In AOSD
’05: Proceedings of the 4th international conference on Aspect-
oriented software development, pages 51-62, New York, NY, USA,
2005. ACM Press.

[12] M. Engel and B. Freisleben. Using a low-level virtual machine to
improve dynamic aspect support in operating system kernels. In
Proceedings of the Fourth AOSD Workshop on Aspects, Components,
and Patterns for Infrastructure Software, march 2005.

[8

—

[13] K. Fraser and F. Chang. Operating system i/o speculation: How two
invocations are faster than one. In Proceedings of the USENIX Annual
Technical Conference (General Track), pages 325-338. USENIX
Association, June 2003.

[14] D. P. Ghormley, D. Petrou, S. H. Rodrigues, and T. E. Anderson.
SLIC: An extensibility system for commodity operating systems. In
Proceedings of the USENIX Annual Technical Conference (NO 98),
june 1998.

[15] M. Haupt, M. Mezini, C. Bockisch, T. Dinkelaker, M. Eichberg, and
M. Krebs. An execution layer for aspect-oriented programming
languages. In VEE ’'05: Proceedings of the 1st ACM/USENIX
international conference on Virtual execution environments, pages
142-152, New York, NY, USA, 2005. ACM Press.

[16] H. Hibino, K. Kourai, and S. Chiba. Difference of degradation
schemes among operating systems. In Proceedings of Workshop on
Dependable Software - Tools and Methods, Dependable Systems and
Networks (DSN-2005), pages 172 — 179, June 2005.

[17] Hitachi, Ltd. and Fujitsu, Ltd. Linux kernel state tracer, 2001, 2005.
http://lkst.sourceforge.net/.

[18] G. Kiczales, E. Hilsdale, J. Hugunin, M. Kersten, J. Palm, and W. G.
Griswold. An overview of Aspect]. Lecture Notes in Computer
Science, 2072:327-355, 2001.

[19] G. Lehey. Improving the FreeBSD smp implementation. In
Proceedings of the FREENIX Track: 2001 USENIX Annual Technical
Conference, pages 155-164. USENIX Association, June 2001.

[20] H. Masuhara, G. Kiczales, and C. Dutchyn. Compilation semantics of
aspect-oriented programs. In Proc. of Foundations of Aspect-Oriented
Languages Workshop, AOSD 2002, pages 17-26, 2002.

[21] S. Molloy and P. Honeyman. Scalable Linux scheduling. In
Proceedings of the FREENIX Track: 2001 USENIX Annual Technical
Conference, pages 285-296. USENIX Association, June 2001.

[22] D.J. Pearce, P. H. J. Kelly, T. Field, and U. Harder. GILK: A dynamic
instrumentation tool for the linux kernel. In Computer Performance
Evaluation / TOOLS, pages 220-226, 2002.

[23] V. Prasad, W. Cohen, F. C. Eigler, M. Hunt, J. Keniston, and B. Chen.
Locating system problems using dynamic instrumentation. In
Proceedings of the Linux Symposium, volume 2, pages 49-64, july
2005.

[24] Red Hat, Inc. Red hat content accelerator (tux), 2001, 2002.
http://www.redhat.com/docs/manuals/tux/.

[25] J. Roberson. Ule: A modern scheduler for FreeBSD. In Proceedings
of BSDCon ’03, pages 17-28. USENIX Association, September 2003.

[26] M. Ségura-Devillechaise, J.-M. Menaud, G. Muller, and J. L. Lawall.
Web cache prefetching as an aspect: towards a dynamic-weaving
based solution. In AOSD ’03: Proceedings of the 2nd international
conference on Aspect-oriented software development, pages 110-119.
ACM Press, 2003.

[27] O. Spinczyk, A. Gal, and W. Schroder-Preikschat. AspectC++: an
aspect-oriented extension to the C++ programming language. In
CRPITS ’02: Proceedings of the Fortieth International Confernece
on Tools Pacific, pages 53—60. Australian Computer Society, Inc.,
2002.

[28] A. Tamches and B. P. Miller. Fine-grained dynamic instrumentation
of commodity operating system kernels. In Operating Systems Design
and Implementation, pages 117-130, 1999.

[29] K. Yaghmour and M. R. Dagenais. Measuring and characterizing
system behavior using kernel-level event logging. In Proceedings of
the USENIX Annual Technical Conference, pages 13-26, june 2000.

[30] S. Yamamura, A. Hirai, M. Sato, M. Yamamoto, A. Naruse, , and
K. Kumon. Speeding up kernel scheduler by reducing cache misses -
effects of cache coloring for a task structure -. In Proceedings of the
FREENIX Track: 2002 USENIX Annual Technical Conference, pages
275-286. USENIX Association, May 2002.

[31] C. Zhang. TinyC?: Towards building a dynamic weaving aspect

language for c¢. In FOAL 2003 Proceedings Foundation of Aspect-
Oriented Languages Workshop at AOSD 2003, march 2003.

