
An Aspect-Aware Outline Viewer

Michihiro Horie Shigeru Chiba
Tokyo Institute of Technology

1 Introduction

An aspect-oriented programming (AOP) is for modularising a crosscutting con-
cern so that it can be easily attached and detached to/from software. Because of
this functionality, AOP is one of key technologies for enabling evolvable software.
However, critics have been mentioning that AOP makes modular reasoning diffi-
cult since join points where an aspect and an object are connected to each other
tend to spread over a whole program. Developers often have a problem finding
join points specified by pointcut definitions in an aspect. To help developers, a
tool such as AJDT has been developed.

For better modular reasoning in AOP, this paper presents a new interpre-
tation of AOP, in which an aspect is an extension to an existing module but
the extension may be effective only when the module is accessed from specific
accessor modules. This interpretation should let developers consider an aspect
is just an extension in the same sense that a subclass extends a super class
and override some methods. Thus developers would be able to think that each
module has an external interface and the internal implementation of the module
is never directly accessed by other modules including an aspect.

To support AOP according to this interpretation, we have developed an
Eclipse plugin. It is a programming tool for AspectJ and it shows an outline
view of a class woven with an aspect. It presents how each method is extended by
showing javadoc comments taken from the definitions of the class and the aspect.
This tool gives developers a totally different illustration of AOP programs from
AJDT, which is a standard programming tool for AspectJ. AJDT mainly shows
the locations of join points (or join point shadows) selected by pointcuts. In
other words, it only illustrates where an aspect and an object is connected to
each other.

2 An event-based interpretation

A famous paper by Filman and Friedman [2] explained that AOP is quantifica-
tion and obliviousness. According to their interpretation, program execution is
modeled as a sequence of events, such as method calls and field accesses. An
advice is an reaction to an event, i.e. a join point, selected by a pointcut. Thus,

1



class Line {
Point p1, p2;
void move(int x, int y) {

:
p1.setX(newX);

:
}
:

}

Figure 1: The move method in Line calls the setX method in Point.

to understand an AOP program, developers must know which events (i.e. join
points) are selected for connecting an object and an aspect.

This event-based interpretation makes modular reasoning difficult since most
of selected join points are part of the internal implementation of a module. For
example, if a pointcut selects a join point representing a call to a setX method
within a move method in a Line class (Figure 1), then that method call is part
of the implementation of the move method and it should not be exposed to
the outside of the Line class. Note that, here, the move method is not a callee
method but a caller method. However, to understand the behavior of an aspect,
developers must know the body of the move method contains the call to the setX
method and it causes the execution of an advice body. The readers would think
that the encapsulation principle is broken.

3 An extension-based interpretation

Although the encapsulation principle might seem broken in AOP, it is not really
broken. To illustrate this fact, we present a different interpretation of AOP.

According to our interpretation, an aspect is an extension to a class although
it might be effective only under some conditions. This is obviously acceptable if
an aspect includes an advice associated with an execution pointcut, which selects
the execution of a method body as a join point. Since the advice is executed
together with that method body, the aspect can be regarded as an extension
to the method body. Note that the extension does not break the encapsulation
of the extended method body as an extension by inheritance does not. The
extended method body is reused as is or the whole body is overridden.

An interesting case is an advice associated with a call pointcut, which selects
the execution of a method-call expression at a caller side. Suppose that a move
method in a Line class calls a setX method in a Point class and a call pointcut
selects a call to setX (Figure 1). We explain that the advice associated with that
call pointcut extends the behavior of the setX method in the Point class. An
advice always extends the behavior of a callee-side method even if a pointcut
is call. It does not extend a caller-side method, for example, the move method

2



Figure 2: Our outline viewer for a class extended by aspects (lower panel sur-
rounded by a blue rectangle). It shows javadoc comments on both a method
and an advice.

in Line. Note that, under the event-based interpretation, that advice is often
regarded as an extension to the caller-side method move.

A call pointcut can be combined with other pointcuts such as within and
cflow. In this case, we explain that the behavior of a callee is extended by
an aspect only when a caller satisfies the conditions specified by those other
pointcuts such as within and cflow. For example, if a pointcut is the following:

call(void Point.setX(int)) && within(Line)

Then the advice associated with this pointcut extends the behavior of the setX
method only when setX is called from a method declared in the Line class. This
conditional extension cannot be implemented by subclassing; it needs AOP.

We similarly deal with get and set pointcuts as well. They extend the behav-
ior of the fields that the pointcuts specify. For example, if a pointcut is get(int
Point.xpos), then we consider that the advice associated with that get pointcut
extends the behavior of the read access to the xpos field in Point. Without the
extension, a read access to xpos simply returns the value of xpos. On the other
hand, with the extension, a read access to xpos involves not only returning the
value of xpos but also executing the associated advice.

3



void setX(int)
Sets the horizontal position to a given argument.

Extended if:
call(void Point.setX(int)) && within(Line)

An after advice signals the Display to update whenever a shape changes.

Figure 3: The Javadoc comments on the setX method

4 Tool support

Our extension-based interpretation encourages developers to treat modules only
through external interfaces even if aspects are woven with a program. The
effects by aspects can be described as part of external interfaces. To support
this idea, we have developed a AspectJ programming tool on top of the Eclipse
IDE (Integrated Development Environment). It is an outline viewer of a class
(Figure 2); it lists all the methods and fields declared in a specified class. If some
of those methods and fields are extended by aspects, then our outline viewer
also shows that fact. Furthermore, the outline viewer shows javadoc comments
taken from both a class and an aspect. If developers select a method or a field
extended by an aspect, then the outline viewer shows the javadoc comments
on a pointcut and an advice as well as that method or field. For example, in
Figure 2, the setX method in the Point class is selected. Thus, the outline viewer
shows comments (a larger image is presented in Figure 3) in the right pane.

5 Concluding remarks

This paper presents the extension-based interpretation of AOP, in which an
aspect is an extension to a callee class. Each advice in an aspect extends the
behavior of a target method or a target field; it never extends a method at
a caller (or accessor) side. If a pointcut includes a pointcut designator such
as within and cflow, the extension is effective only when the execution context
satisfies such a pointcut designator.

Our outline viewer presented in this paper helps programming with this
interpretation. It is different from existing AspectJ tools such as AJDT, which
supports the event-based interpretation. The outline view shown by our tool is
similar to the aspect-aware interface [3]. Although our work shares basic ideas
with the aspect-aware interface, we have further pursued appropriate concrete
representation of modules in the presence of crosscutting concerns. For example,
the article about the aspect-aware interface [3] does not mention how call, get,
and set pointcuts should be reflected on a module interface. It does also not
mention javadoc comments. Our outline viewer considers that an extension
by an aspect is conditional if a pointcut includes within etc. This conditional

4



extension is similar to the idea of Classbox/J [1] although Classbox/J is not an
AOP language.

References

[1] Bergel, A., S. Ducasse, and O. Nierstrasz, “Classbox/J: Controlling the
Scope of Change in Java,” in Proc. of ACM Conf. on Object-Oriented Pro-
gramming Systems, Languages, and Applications, 2005.

[2] Filman, R. E. and D. P. Friedman, “Aspect-Oriented Programming is
Quantification and Obliviousness,” in Aspect-Oriented Software Develop-
ment (R. E. Filman, T. Elrad, S. Clarke, and M. Aksit, eds.), pp. 21–35,
Addison-Wesley, 2005.

[3] Kiczales, G. and M. Mezini, “Aspect-Oriented Programming and Modular
Reasoning,” in Proc. of the Int’l Conf. on Software Engineering (ICSE’05),
pp. 49–58, ACM Press, 2005.

5


