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Abstract. Most modern programming systems such as Java allow us
to link independently developed components together dynamically. This
makes it possible to develop and deploy software on a per component
basis. However, a number of Java developers have reported a problem,
ironically called the version barrier, imposed by the strict separation of
namespaces. The version barrier prohibits one component from passing
an instance to another component if each component contains that class
type. This paper introduces a novel concept for Java namespaces, called
sister namespaces, to address this problem. Sister namespaces can relax
the version barrier between components. The main purpose of this paper
is to provide a mechanism for relaxing the version barrier, while still
allowing type-safe instance accesses between components with negligible
performance penalties in regular execution.

1 Introduction

Practically all modern programming environments allow developers to utilize
some kind of component system (e.g., JavaBeans [9], EJB [22], CORBA [25],
.NET/DCOM/ActiveX [24], Eclipse plug-ins [29]). A component system allows
programmers to develop a component-based application, which can be developed
and then deployed per component. Most of the component systems for Java adopt
a single class loader per component, and thereby create a unique namespace for
each application component. A namespace is a map from the class names to
the class definitions. A set of classes included in the same component joins 1 its
own namespace and thus naming conflicts between components can be avoided.
Moreover, a component can be dynamically and individually updated without
restarting the whole execution environment.

One significant drawback of such component systems for Java is the difficulty
for components to communicate across class loader boundaries in the Java Vir-
tual Machine (JVM) [13,20,8,14]. In fact, such communication is well known to
frequently cause a cast error ClassCastException or a link error LinkageError.
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Most of the link errors are just bugs; an error is caused when a class is wrongly
loaded by both parent and child loaders [16]. These bugs can be easily avoided
if developers are careful. However, cast errors are extremely difficult to avoid
since this problem is caused by the strict separation of namespaces, ironically
called the version barrier. The version barrier is a mechanism that prevents a
version of a class type from being converted to another version of that specific
class type. For instance, it restricts an instance of the former type to be assigned
to the variable of the latter type.

In Java, a class type is uniquely identified at runtime by the combination of
a class loader and a fully qualified class name. If two class definitions with the
same class name are loaded by different loaders, two versions of that class type
are created and they can co-exists, although they are regarded as distinct types.
The version barrier is a mechanism for guaranteeing that different versions of a
class are regarded as different types. This guarantee is significant for performance
reasons. If different versions of a class were not regarded as different types, the
advantages of being a statically typed language would be lost. Moreover, if the
same class definition (i.e., class file) is loaded by different class loaders, different
versions of that class are created and regarded as distinct types. Therefore, if
two components load the same class file individually, one component cannot pass
an instance of that class type to the other.

This paper presents our novel concept of namespaces in Java, which we call
sister namespaces, and the design of that mechanism. Sister namespaces can
relax the version barrier between application components. An instance can be
carried beyond the version barrier between sister namespaces if the type of that
instance is compatible between these namespaces. The main purpose of this pa-
per is to provide a mechanism for relaxing the version barrier while keeping
type-safe instance accesses with negligible performance penalties in regular ex-
ecution. The mechanism of sister namespaces is implemented by extending the
type checker and the class loader of the JVM.

The rest of this paper is organized as follows. Section 2 describes two prob-
lems that cause trouble for component-based application developers. Section 3
presents the design and implementation of the sister namespace. Section 4 dis-
cusses a few implementation issues. Section 5 presents the results of our exper-
iments. Section 6 compares the sister namespace mechanism to other related
work. Section 7 concludes this paper.

2 Problems of the Version Barrier

This section presents two problems that developers often encounter when de-
veloping a component-based application in Java. These problems are actually
caused by the version barrier between namespaces.

2.1 J2EE Components

Most J2EE platforms, either commercial (e.g., Websphere, Weblogic) or open-
source (e.g., JBoss, Tomcat), support both the development and the deployment



of pluggable component archives (EJB-JARs, WARs, and EARs). A Web Ap-
plication Archive (WAR file) is used to deploy a web-based application. This
file can contain servlets, HTML files, Java Server Pages (JSPs), and all asso-
ciated images and resource files. An Enterprise Application Archive (EAR file)
may contain one or more Enterprise JavaBeans (EJBs) and WARs. The func-
tionality of the so-called hot deployment enables such J2EE components to be
plugged and unplugged at runtime without restarting the application servers.
Thus, a J2EE application can be dynamically customized on a per-component
basis. This dramatically improves the productivity of software development. For
enabling hot deployment, each component joins a distinct namespace, loaded by
a distinct class loader.

EstimateServlet
SessionCache cache

= session.getCache();
Cart cart = new Cart();
cart.put(item);
cache.add(session, cart);

runs in a servlet in WAR1.

⇐⇒

OrderServlet
SessionCache cache = session.getCache();
Object object = cache.get(session);
Cart cart = (Cart) object;

runs in a servlet in WAR2,
and throws a ClassCastException.

Fig. 1. Passing the session cache from one WAR component to another.

However, the version barrier makes it impossible to pass instances of each
version of a class across the boundary of J2EE components, or namespaces. Such
instances are typically caches, cookies, or session objects or beans. For example,
consider the following scenario. An instance of the Cart class must be passed
between servlets included in different web application archives (that is, from the
EstimateServlet included in one web archive, WAR1, to the OrderServlet
in another web archive, WAR2). The class file of the Cart class is packaged
into a Java Archive (JAR) file, and identical copies of that JAR file reside
in the WEB-INF/lib directories in each web archive. Thus, each class loader
loads the Cart class separately. Figure 1 illustrates the implementation of these
servlets: EstimateServlet puts an instance of Cart into the session cache and
OrderServlet pulls that instance out of the cache. When casting it from Object
to Cart, the JVM will throw a ClassCastException. Since the Cart class refer-
enced by the EstimateServlet class is a distinct type from the type referenced
by the OrderServlet class, the version barrier prevents assignment of that in-
stance to the variable cart in the OrderServlet class by throwing a cast error
in advance.

Some readers might think the delegation model of class loaders in Java is a
solution to the problem above. These WAR components can share the same ver-
sion of a class if they delegate the loading of that class to their common parent,
such as the EAR class loader (Figure 2). In fact, the typical J2EE platform has
such a common parent loader. Child class loaders can have their parent loader
load a class if they want to share the same version of that class. In the case
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Fig. 2. A parent EAR class loader is
used for sharing class types between
WAR1 and WAR2. The rounded
box represents a namespace for the
J2EE component. The overlapping
part means the overlapped names-
pace.
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Fig. 3. The JBoss application server
based on the unified class loader ar-
chitecture makes a parent-child re-
lationship between the communicat-
ing components.
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Fig. 4. All inter-component communi-
cations are realized by a remote call.



of J2EE, the SystemClassLoader is the parent of all EAR class loaders and
an EAR class loader is, in turn, the parent of all WAR class loaders included
in that EAR. However, the solution using a parent class loader tightly couples
several irrelevant J2EE components together. Such coarse-grained composition
decreases the maintainability and availability of all related software components.
For example, consider the two components DVDStore and Pizzeria: the former
models an online 24-hour DVD store and the latter models an online home deliv-
ery pizzeria available from hours 10 to 21. If both of these components share the
abovementioned application component including Cart and if this component
is packaged into Pizzeria, then undeploying Pizzeria for maintenance stops
the service by DVDStore. Since DVDStore must run 24 hours a day, it is almost
impossible to decide the maintenance schedule of Pizzeria.

To solve this problem, the JBoss application server provides the unified class
loader (UCL) architecture [21] for sharing across components across the J2EE
components. A collection of UCLs acts as a single class loader, which places into
a single namespace all the classes to be loaded. All classes are loaded into the
shared repository and managed by this repository. However, this architecture
disables different J2EE components with the same name (Figure 3).

Another technique, considered a last resort, is using the Java Serialization
API to exchange objects between different J2EE components through a byte
stream, which is the referred to as Call-by-Value (Figure 4). Typical J2EE plat-
forms adopt this approach for inter-EAR communications. However, even if an
EAR wants to transfer an object to another EAR deployed in the same container
(or JVM), it must execute a remote call. This remote call is a waste of I/O re-
sources and it decreases the overall performance. Although the Local Interface
mechanism introduced in EJB2.0 allows communications between components
without remote calls (Call-by-Reference), these components must be packaged
together in the same archive.

2.2 Eclipse Plug-in Framework

The Eclipse platform [37], an integrated development environment for Java, can
be considered as a component system due to its advanced plug-in framework. A
plug-in module can contain all sorts of resources, including code and documenta-
tion. A plug-in module must also contain sufficient information for the platform
to incorporate the code or documentation into itself. The plug-in framework al-
lows us to easily add, update and remove discrete portions of the contents. In
addition, since a separate class loader (called a plug-in class loader) is created
for each plug-in module, each plug-in module has its unique namespace and is
dynamically deployable.

However, the Eclipse plug-in framework has a structural problem due to the
version barrier. For example, consider the Eclipse help system plug-in mod-
ule [12]. It is a useful plug-in module that allows users to develop and de-
ploy professional-quality, easy-to-use, and searchable online documentation. The
Eclipse help system can be used as an infocenter, which is an application im-
plemented as a web component and accessible from a web browser. However,



to be used as an infocenter, the current Eclipse help system needs to run on a
separate process from the process of the web server (Figure 5). The web server
must make new processes for the help system and the minimum Eclipse system,
and then the web server must dispatch all requests to the help system. Thus,
every communication for dispatching requests from the web server to the help
system is a remote call, which involves marshalling all passed instances.
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Fig. 5. The Eclipse help system must run as a separate process.

A real problem of the example above is that, no matter which namespace
the help system joins, all instances must be marshaled and unmarshaled with
performance penalties to avoid trouble due to the version barrier when they are
passed between the web server and the help system. This is true even if the
help system is run on the same process as the web server. Suppose that the
help system runs on the same JVM as the infocenter, and both the help system
and the infocenter use the Apache Xerces [36] archive, which contains an XML
parser in the WEB-INF/lib directory. If the help system joins a namespace inde-
pendent of the namespace of the infocenter (Figure 6), the version barrier does
not allow the instances of an XML parse tree to be exchanged between the help
system and the infocenter, since the copies of the Xerces archive are loaded in
duplicate and then different versions of the tree-node class types are created for
each archive. If the help system joins the same namespace as the infocenter by
deploying as a WAR file into the WEB-INF/lib directory (Figure 7), the XML
parse tree can be exchanged between the two components. However, this obvi-
ously breaks the isolation of the help system from the infocenter. For example,
several core components of the Eclipse platform must also be loaded together
with the help system, and these core components cause naming conflicts with
the infocenter. Furthermore, all the components must be redeployed together
when some of the components are redeployed for maintenance. Finally, if the
help system joins a descendant namespace of the infocenter (Figure 8), delegat-
ing the Xerces archives to the parent class loader also allows sharing the Xerces
archives. However, it ends up breaking separated namespaces, too.
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Fig. 6. The Xerces archives are loaded in duplicate for the
Eclipse help system and the infocenter.
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Fig. 7. Loading all components by a
class loader breaks the isolation of each
namespace.
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Fig. 8. Delegating the Xerces archives
to the web component class loader
breaks the isolation of the help system.

2.3 Extending Assignment Compatibility

The problems illustrated above can be solved if the algorithm for computing as-
signment compatibility in the Java programming language is extended to include
version conversions between different versions of a class type. Here, the version
conversion means a conversion from a version of a class type to any other ver-
sion of that class type. If this conversion is chosen in the context of assignment,
casting, and method invocation conversions such as widening and narrowing
conversions, instances could be easily passed across the version barrier 2. For
example, this extension of assignment compatibility would allow assignments
between different versions of a class type. Thus, a component would be able
to pass instances into and from another component, even if both components
load and define that class type separately. The OrderServlet class in Figure 1
would not throw a cast error. Moreover, the Eclipse platform would not need
to care about where and how many Xerces libraries are available in the current
execution environment.

2 If two class types have assignment compatibility with each other, one type can be
converted to the other type in the context of not only assignment conversions but
also casting and method invocation conversions.



However, naively relaxing the version barrier by extending the assignment
compatibility causes a serious security problem. For example, a program may
access a non-existing field or method and then crash the JVM. In fact, the ver-
sion barrier of Sun JDK 1.1 was wrongly relaxed, and thus it had a security
hole known as the type-spoofing problem, first reported by Saraswat [26]. This
security hole had been solved by the loader constraint scheme [18], which rather
strengthens the version barrier. To avoid this security problem while relaxing
the version barrier, it would be necessary to have runtime type checking, as is
found in dynamically typed languages such as CLOS, Self, and Smalltalk. In
such languages, since a variable is not statically typed, any type of instance
can be assigned to it. For security, several interpreters for dynamically typed
languages perform runtime type checks, called guard tests, so that an excep-
tion can be thrown at runtime if a non-existing method or field is accessed.
A drawback of this approach is that it requires frequent runtime type checks,
which implies non-negligible performance degradation, whereas the JVM per-
forms these runtime type checks. Another technique is to perform runtime type
checks at every assignment operation, such as the aastore Java bytecode in-
struction, which is used for storing an object reference in an array object. This
operation verifies that the stored object is type-safe. However, this approach also
causes performance degradation, since the JVM must perform a type-check for
not only aastore but also for a large number of other assignment instructions.

3 Sister Namespaces

We propose sister namespaces, which can relax the version barrier between
namespaces. Different versions of a class type that join sister namespaces can be
assignment compatible with each other if these versions have differences while
still preserving the version compatibility. Our challenge is to relax the version
barrier while keeping type-safe instance accesses efficient. In this section, we
first define extended assignment compatibility, which is based on Java binary
compatibility [7] (Section 3.1). Next, we show the sister-supported type checker,
which takes the central role in relaxing the version barrier for sister namespaces
(Section 3.3). The type checker blocks illegal objects when they move across the
version barrier, and thus no subsequent extra check is needed for these objects.
This is enabled because it is prohibited for a namespace to become a sister of
its parent or child namespace. In addition, we present the sister loader con-
straint (Section 3.4) and then the schema class loading scheme (Section 3.5).
They prevent eager class loading and type inconsistencies, respectively.

We implemented the sister namespaces on the IBM Jikes Research Virtual
Machine (JRVM) [1]. The extensions to the JRVM are only the sister-namespace
API, a sister-supported class loader, and a sister-supported type checker. The
API is provided as an extension to the existing java.lang.ClassLoader in the
GNU Classpath libraries. These extensions consist of several core classes of the
JRVM such as class and object representations.



3.1 Version Compatibility

This section provides the definition of version compatibility, which securely ex-
tends the assignment compatibility between different versions of a class type.
We define two versions of a class type, Cver1 and Cver2, as assignment compati-
ble with each other if Cver1 is version compatible with Cver2 and vice versa. A
class type Cver2 is version compatible with Cver1 if all the class types that could
previously link with Cver1 and work with an instance of Cver1 without errors
are able to also correctly work with instances of Cver2 without other assignment
compatibility rules such as a subtyping relation. Thus, if Cver1 and Cver2 are
version compatible, then an instance of Cver1 can be securely converted to the
type Cver2 when it is assigned to a variable of Cver2 and vice versa. Here, be-
ing secure means that every operation on Cver2 is applicable to the instance of
Cver1 without errors; any method call, field access, or type casting applied to
the variable does not fail.

The following are the differences that programmers are permitted to make
between two versions of a class while preserving version compatibility between
the two versions:

– Differences of declared static members such as a static field, a static method,
a constructor, or an initializer.

– Differences of the implementation of instance members, such as an instance
method.

The differences are derived from the study of the binary compatible changes
mentioned in the Java language specification [11].

Version compatibility is based on the idea of binary compatibility; it means
that an instance rather than a class can work with the binary of another ver-
sion of the class type. Java binary compatibility defines a set of changes that
developers are permitted to make to a package or to a class or interface type
while preserving the compatibility with the preexisting binaries. A change to a
class type is binary compatible with preexisting binaries if preexisting binaries
that previously linked without errors will continue to link without recompiling.
Version compatibility defines differences between two versions of a class type
that preserve the binary compatible property between an instance of one version
and the binary of the other version. Unlike the original binary compatibility, the
version compatibility allows any change to static members since static member
accesses are irrelevant to instances. Version compatibility deals with the compat-
ibility between an instance and the binary of another version of that class type.
Therefore, to be version compatible, two versions of a class type must have the
same set of private members, although the implementations of those members
may differ. This is a difference from the binary compatibility, which allows the
two versions to have a different set of private members. Since a private member
can be accessed from not only this instance but also from other instances of
another version of that class type, version compatibility requires that the two
versions have the same set of private members.



3.2 Creating Sister Namespaces

A sister namespace is a first-class entity, but it is created implicitly when a class
loader is instantiated with a class loader given as a parameter. The ClassLoader
class provides the new constructor as follows:

protected ClassLoader(ClassLoader parent, ClassLoader sister)

The class loader obtained from this constructor becomes a sister class loader of
the class loader specified by the parameter sister. The latter class loader also
becomes a sister of the former one. These two sister class loaders construct their
own sister namespaces; the version barrier between them is relaxed if the version
compatibility is satisfied. The sister class loaders must not have a parent-child
relationship. This rule is significant for the efficient type checking we describe
later. If the sister class loaders have such a relationship, the construction of the
sister namespaces fails. In this paper, if a version of a class type is loaded earlier
(or later) than other versions, it is called a younger (or older) sister version of
that class type. This young-old relationship is independent of the creation order
of the sister class loaders.

In the case described in Section 2.1, the application programmers can ex-
change instances between two namespaces for WAR1 and WAR2 if they are
sister namespaces. Each namespace can contain a different version of the type of
the exchanged instance. WAR1 and WAR2 must be loaded by the class loaders
created as follows:

ClassLoader ear = new EARClassLoader();
ClassLoader war1 = new WARClassLoader(ear);
ClassLoader war2 = new WARClassLoader(ear, war1);

The ear, war1, and war2 are instances of the ClassLoader class. The third new
operation creates sister namespaces for WAR1 and WAR2. Both war1 and war2
have the same parent class loader ear. In general, application programmers of
components, such as Applets, Servlets, Eclipse plug-ins, and EJB, do not have
to be aware of namespaces or class loaders. These are implicitly managed by the
application middleware. Creating sister namespaces by using the ClassLoader
constructor above is the work of middleware developers. A sister namespace can
make another plain namespace its sister on demand. Since the sister relationship
is transitive, if a namespace becomes a sister of a namespace and then it becomes
a sister of another namespace, all three namespaces become sisters of each other.
Programmers can incrementally create a new namespace and make it another
sister of the other sister namespaces. This feature would be useful in cases of
incremental development processes and routine maintenance work.

Note that all class types defined by a sister class loader can be version com-
patible with the corresponding sister version of that class type, even if the loading
of these class types are initiated by the child class loaders. An initiating class
loader, which initiates the loading of a class type, does not have to actually load
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Fig. 9. The notation CLi

Ld
represents a class type, where C denotes the name

of the class, Ld denotes the class’s defining loader, and Li denotes the loader
initiated class loading. An inclusion relation represents a parent-child relation-
ship. For example, the class loader L1 is a parent of both L2 and L2’. And the
classes A, B, C, and the system classes are visible in the namespaces L2, L2’, L3,
L3’, L4, and L4’. In this figure, the sister namespace L3 and L3’ have a sister
relationship.

a class file. Instead, it can delegate to the parent class loader. The class loader
that actually loads a class file and defines that type is called a defining class
loader of that type. This delegation mechanism is used for sharing the same ver-
sion of class type between the initiating and defining class loaders. In Figure 9, if
two sister namespaces are created between class loaders L3 and L3’, the classes
F and H can be version compatible with F’ and H’, respectively. The pairs E
and E’ or G and G’ are not compatible with each other since they are defined
by other class loaders.

3.3 Sister-supported Type Checking

The version barrier is relaxed by a type checker that considers the sister names-
paces. In Java programs, most bytecode instructions such as the method in-
vocation instructions invokevirtual and invokenonvirtual, and field access
instructions such as getfield and putfield are statically typed. These instruc-
tions do not perform dynamic type checking. Therefore, these instructions as they
are can work correctly with any version of class type if they are version compat-
ible. On the other hand, several instructions such as instanceof, checkcast,
invokeinterface, athrow, and aastore entail dynamic type checking. The type
checking by those instructions must be enhanced if the version barrier is relaxed
so that version compatible instances can be passed between sister namespaces.
The algorithm of enhanced type checking for sister namespaces is shown in Fig-
ure 10. After the regular type checks are performed, and if they fail (line 2),



the extra checks are executed (lines 3–6). First, a sister relationship is exam-
ined (line 3). If the left-hand side class type (LHS) and the right-hand side class
type (RHS) have a sister relationship, then the type checker determines whether
one class type has undergone the schema compatible loading process against the
other type (line 4). Schema compatible loading is introduced later.

Note that these extra checks for sister namespaces are executed only after
the regular type checks fail. Since typical programs do not frequently cause type
errors, this enhancement for the built-in type checker implies no performance
penalties as long as instances are not passed between sister namespaces.

1: if LHS is a subtype of RHS then true
2: else if LHS is not a subtype of RHS then
3: if LHS is a sister type of RHS &&
4: LHS is version compatible with RHS then true
5: else false
6: end
7: end

Fig. 10. Pseudo code for enhanced type checking for sister namespaces. A type
check is the determination of whether a value of one type, hereafter the right-
hand side (RHS) type , can legally be converted to a variable of a second type,
hereafter the left-hand side (LHS) type. If so, the RHS type is said to be a
subtype of the LHS type and the LHS type is said to be a supertype of the RHS
type.

The sister-supported type checker only prohibits a version incompatible in-
stance from being passed between sister namespaces. A version incompatible
class can join each of the sister namespaces if an instance of that version stays
within the namespace. To avoid the security problem described in Section 2.3
(naively relaxing the assignment compatibility), sister namespaces must detect
a version incompatible instance being passed between sister namespaces. This
detection is executed by only the checkcast instruction. In other words, the de-
tection is not executed by other instructions for method invocation, field access,
and assignment. This is mainly due to the design of sister namespaces, which
must not have a parent-child relationship between them. This rule brings the
bridge-safety [26] property to all classes included in the sister namespaces. This
property guarantees that an instance of a class type is always examined by the
checkcast instruction when it is passed between sister namespaces. It must be
first upcast to a type loaded by the common parent class loader of the two sister
class loaders, and then it must be downcast before it is assigned to the class
type loaded by the sister class loader at the destination. For example, when an
instance of Cart is passed, it will be first upcast to a super class of Cart, such
as the Object class, and then downcast to another version of the Cart class



(Figure 11). Therefore, the checkcast instruction is always executed when the
instance is downcast to Cart.
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Fig. 11. Downcast enforced by the bridge-safety property satisfied between
namespaces.

To implement the sister-supported type check, we modified the VM DynamicTypeCheck
class in the JRVM. We extended that class and the TIB (Type Information
Block) for fast type checking to consider sister relationships. The original TIB
holds several arrays of type identifiers. For example, the arrays of extended su-
perclass types and of implemented interface types are stored in the TIB for fast
type checking without looking up the whole type hierarchy [3][2]. Similarly, the
extended TIB holds two arrays of sids. The sid is the identifier of a sister re-
lationship. The two arrays are of the sids of the extended superclasses and the
sids of the implemented interfaces. The sid of a class can be obtained from a
VM Class object representing that class. We extended the VM Class class to hold
the sid of the class.

3.4 Sister Loader Constraint

A straightforward implementation of the sister-supported type checker requires
eager class loading. Even if the sister-supported type checker verifies that the
type of an instance is version compatible, that instance cannot be fully trusted.
The instance may contain a version incompatible instance as a field value or
return it as a result of a method execution. That is, the untrusted instance may
relay an incompatible instance. Since an instance is type checked only when it
is downcast, the types of the instance that may be relayed must also be type
checked at the same time. Therefore, the type checker verifies all the class types
occurring in the class definition of that instance, such as parameter types3, re-
turn types, and field types. It also recursively verifies the class types occurring
3 If a parameter type is not version compatible, an incompatible instance may be sent

back without type checking to the namespace that has sent the instance of the class
type including that parameter type.



in the definitions of those types. However, if this recursive type check is naively
implemented, all the related classes would have to be eagerly loaded. This eager
loading is practically unacceptable, since the advantages of the dynamic fea-
tures of Java would be lost. The sister-supported type checker must be able to
work with the scheme of lazy class loading. Note that the original class loading
mechanism of Java is based on lazy class loading.

To examine version compatibility while enabling lazy class loading, the JVM
maintains a set of sister loader constraints, which are dynamically updated when
the sister-supported type checker works. If the type checker finds a class type
that must be verified but has not been loaded yet, the JVM does not eagerly load
that class; instead, it records a sister loader constraint. For example, if the type
checker attempts to verify that a version of class C is version compatible with
another version C ′, but C or C ′ has not been loaded yet, the JVM records as a
constraint that C must be version compatible with C ′. This constraint is later
verified when C or C ′ is loaded. If the type checker detects that this constraint is
not satisfied, it throws a LinkageError. While the type checker is verifying that
constraint, if it finds another class type that must be verified but is not loaded,
a new sister loader constraint is recorded. If the type checker finds a class type
that must be verified and has been already loaded, it recursively verifies that
class type at the same time. Note that every constraint is verified only once. The
result of the verification is recorded to avoid further verification.

In summary, the JVM needs to maintain the invariant: Each class type co-
existing in the namespace satisfies all the sister loader constraints. The invariant
is maintained as follows:

Every time a new class joins a sister namespace, the JVM verifies whether that
class type will violate an existing sister loader constraint.
If the class type being loaded violates an existing sister loader constraint,
loading that class type fails since that class type is untrusted in the names-
pace. If there is no constraint referring to that class type, the JVM loads
that class type, although that class type might be version incompatible. It is
verified later when a new constraint referring to that class type is recorded.

Every time a new sister loader constraint is recorded, the JVM verifies whether
that constraint is satisfied with the class types that have been already loaded.
If a class type that has already been loaded does not satisfy a newly recorded
constraint, loading the class type that starts the type checking process pro-
ducing the new constraint is untrusted and hence the loading is aborted. If
any class types needed for verifying that constraint have not been loaded, the
verification is postponed until those classes are loaded. Otherwise, if all the
class types needed for the verification have been loaded and the constraint
is successfully verified, the constraint is removed from the record.

For efficient verification of constraints, we added an array of flags to VM Class.
Each flag indicates whether the version of the class type represented by a VM Class
object has been recursively type checked with another sister version. The flag
is true only if the two versions of the class type are version compatible and if



the type checker has verified that those two versions never relay a version in-
compatible instance. Since there might be multiple sisters, the VM Class object
holds an array of the flags, each of which indicates the result of the type check
with each sister version. The JVM uses these flags for executing a recursive type
check only once.

3.5 Schema Compatible Loading

Even if two versions of a class type satisfy the version compatibility, these in-
stances may have schema incompatibility. This means that the layout of the
internal type information blocks (TIBs) may not be identical between the two
versions of the class type. The TIB holds fields and function pointers to a cor-
responding method body. The order of the TIB entries depends on the JVM
or compilers; it does not depend on the order of the member declarations in a
source file or a class file. Thus, even if two versions of a class type have version
compatibility, the layout of the TIBs may not be identical.

The sister-supported class loader guarantees that layouts of the TIBs are
identical between two versions of a class type if the class types are version com-
patible. Since the JVM uses a constant index into the TIB when it accesses a
field or a method, the JVM cannot correctly execute the bytecode if the lay-
outs of the TIBs are not identical between compatible versions of the class type.
Therefore, when the class loader loads a younger version of a class type, the
JVM constructs the TIB of that version of the class so that the layout of the
TIB is identical to that of the TIB of an older version of the class. This loading
process is called schema compatible loading. Note that this process is given up
against the incompatible class type that has no binary compatibility with the
older sister version of that class type. This result is employed by the JVM to
quickly examine whether a class type is trusted or not.

In the JRVM, a TIB is constructed during the execution of the resolve
method in VM Class. The resolve method is invoked during the class resolu-
tion process by the VM ClassLoader class, an instance of which represents a
class loader. The resolve method has been extended to perform the schema
compatible loading.

4 Discussion

4.1 Canceling JIT Compilations

Just-In-Time (JIT) compiled code sometimes needs to be canceled since a de-
virtualized method call does not correctly refer to a method declared in a sister
version of the class type. Recent optimizing JIT compilers [15,32] perform the de-
virtualization optimization that transforms not only a final and a static method
but also a virtual method call to a static method. For a given virtual call, the
compiler determines whether or not the call can be devirtualized by analyzing
the current class hierarchy. If the method can be devirtualized and its code size



is small enough, the compiler inlines the method. Therefore, if the type of an in-
stance is converted to a sister version of that class type, the JVM would continue
to invoke the original inlined code instead of the real method of that instance.
This is because the JIT compiler does not consider sister namespaces; method
bodies might be different among sister versions of the same class type.

To avoid this problem, the JIT compiler must cancel devirtualization when
a new sister version of a class type is loaded. Fortunately, most optimizing JIT
compilers have an efficient cancellation mechanism for dynamic class loading.
Since a whole class hierarchy cannot be statically determined in Java, JIT com-
pilers can dynamically replace [32] or rewrite [15] inlined code. This is performed
when a new subclass is loaded and the subclass overrides a method that has not
been overridden by the other subclasses. The JIT compiler that supports sister
namespaces also cancels devirtualization when version compatibility is verified
and a new sister version of a class type is available.

4.2 Eager Notifications of Version Incompatibility

Version incompatibility checks between sister versions of a class type may ea-
gerly throw a cast error before any incompatible class types actually co-exist
in one namespace. For example, if the type checker detects that a class type
may relay a version incompatible instance, it throws a cast error. This eager
notification strategy is similar to the loader constraint scheme [18]. The JVM
prohibits different versions of a class type from even being loaded if the JVM
encounters an operation that relays instances from one namespace to the other.
If the JVM has already loaded these versions of the class, the JVM throws
a link error. However, except for the loader constraint scheme, verification of
compatibility and error notification are not performed at loading time but are
done later by the linker, while the linker resolves the constant pool items (e.g.,
NoSuchMethodError, IllegalAccessError, IncompatibleClasChangeError).
If a Java program includes binary incompatibility, it continues to run until it
actually executes an illegal operation caused by that incompatibility. This lazy
verification and notification are useful in practice.

However, we have adopted the eager strategy for avoiding performance penal-
ties due to version compatibility checks. To delay notifications of incompatibility
as long as the program continues to run without errors, a number of guard tests
must be embedded into the incompatible class. In Java, once the JVM executes
a method invocation or a field access, the operation is linked with the call site
and replaced with efficient code that does not perform type checking anymore.
Therefore, the guard tests must be embedded for verifying version compatibility
after the version incompatibility is found. It requires the JIT compiler to recom-
pile the code that refers the incompatible class type. Moreover, the guard tests
imply the non-negligible performance overhead mentioned in Section 2.3; thus,
we do not delay the notifications of incompatibility.



5 Experimental Results

This section reports the results of our performance measurements. We performed
all the experiments on the IBM Jikes Research Virtual Machine 2.3.2 with Linux
kernel 2.4.25, which were running on a Pentium4 1.9GHz processor with 1GB
memory. Both the Jikes RVM and our modified RVM were compiled to use
the baseline compiler for building the boot image with the semi-space garbage
collector.

Baseline performance To measure the baseline performance, we ran the
SPECjvm98 [31] benchmarks on both our JVM and the unmodified JVM. The
problem sizes of all the benchmarks were 100 (maximum). Table 1 lists the
results. The numbers are the average execution time for 20 repetitions. The
baseline overhead due to the sister namespace was negligible.

Table 1. SPECjvm98 benchmark results on both our JVM and the unmodified
JVM.

Benchmark Program Jikes RVM Sister-supported SVM
(JRVM) JRVM (SVM) /JRVM

201 compress 47.293 ms 46.218 ms 97.7%
202 jess 40.258 ms 38.726 ms 96.2%
205 raytrace 22.704 ms 23.404 ms 103.1%
209 db 65.628 ms 67.075 ms 102.2%
213 javac 54.698 ms 57.759 ms 105.6%
222 mpegaudio 29.344 ms 29.210 ms 99.5%
227 mtrt 25.812 ms 24.563 ms 95.2%
228 jack 28.372 ms 28.047 ms 98.9%

Total 314.109 ms 315.002 ms 100.3%

Cost of loading classes into sister namespaces We measured the time for
loading classes with a plain class loader or a sister class loader. This experiment
shows the performance penalty incurred by the sister class loader, which exe-
cutes schema compatible loading and verifies the version compatibility between
classes. We took nine application programs, listed in Table 2, to measure the
total loading time. The loading process includes delegating to the parent class
loader, searching for a class file in a specified classpath, and resolving, initial-
izing, and instantiating that class type in the JVM. All loading processes are
iterated 20 times. The results show that the performance penalty varied among
those applications from around 14% to 67%. The penalties mostly depended on
the number of declared methods and fields. Thus, the largest application showed
the largest overhead.



Table 2. Total loading time using an ordinary class loader and a sister class
loader. All classes are sequentially loaded by the loadClass() method.

Program Total loading time sister
(No. of classes) plain namespace sister namespace /plain

JDOM (72 classes) 328 ms 382 ms 116.5%
Crimson (144 classes) 569 ms 696 ms 122.3%
jaxen (191 classes) 802 ms 919 ms 114.6%
dom4j (195 classes) 1,308 ms 1,487 ms 113.7%
SAXON (351 classes) 1,749 ms 2,113 ms 120.8%
XT (466 classes) 1,223 ms 1,422 ms 116.3%
XercesJ 1 (579 classes) 2,495 ms 3,046 ms 122.1%
XercesJ 2 (991 classes) 4,144 ms 6,177 ms 149.1%
XalanJ 2 (1,548 classes) 12,884 ms 15,290 ms 166.6%

JDOM [38] : A simple Java representation of an XML document, version 1.0
Crimson [34] : A Java XML parser included with JDK 1.4 and greater, version 1.1.3
jaxen [39] : An XPath engine, version 1.0.
dom4j [23] : The flexible xml framework for Java, version 1.5.2
SAXON [17] : An XSLT and XQuery processor, version 6.5.3
XT [19] : A fast, free implementation of XSLT in java, version 20020426a
XercesJ 1 : The Xerces Java Parser 1.4.4.
XercesJ 2 : The Xerces2 Java Parser 2.6.2.
XalanJ 2 [35] : An XSLT processor for transforming XML documents, version 2.6.0.

Cost of the checkcast instruction Finally, we measured the execution time
for type checking. The sister-supported type checking includes not only the or-
dinary checkcast operation but also the checking of trusted instances. We ran
a program that executes the checkcast instruction for every class included in
a given application, and then we measured the total execution time of all the
checkcast instructions. Both experiment programs ran after all the classes had
been loaded and then the version compatibility of all the classes was verified. We
successively ran the program twice; the execution time of the second run indi-
cates the execution time of checkcast after the version compatibility of all the
possibly relayed classes is verified during the first run. Some of the first checks
also make use of the results of previous verifications.

Table 3 lists the results. The results are the average of 10,000 iterations. The
total execution time of the first checks was from about 10 to 40 times slower
than the ordinary checkcast operation. This is because the sister-supported
type checker traverses all possibly relayed class types. Since each application has
a different number of possibly relayed classes, the relative performance varies for
each application. On the other hand, the second checks included only around
160% overhead compared to the ordinary checkcast operation. Note that this
overhead is incurred only when checkcast examines the type of an instance
coming from another sister namespace. The overhead is negligible in regular
cases.

We also compared the execution time of the type check with the time for mar-
shalling and unmarshalling several XML data objects. Remember that the most
harmless practice for the inter-component communication described in Section 2



is using a remote call, which passes an object by means of the call-by-value.
This practice lets us avoid the problem of the version barrier, but it implies
overhead due to the marshalling and unmarshalling for parameter passing. On
the other hand, sister namespaces also let us avoid the problem, and it implies
extra overhead only due to the type check. We measured the execution time
for marshalling and unmarshalling DOM objects created by XercesJ 2.6.2 from
33 XML files taken from the Eclipse help system, which includes the Platform,
Workbench, JDT, Plug-in and PDE document plug-ins. The overall file size was
about 400KB. The measured execution time was 3 million times larger than the
execution time of the ordinary checkcast operation. Of course, actual inter-
component communication using a remote call would spend much more time for
the network data transportations. Therefore, this result shows the sister names-
pace is a significantly faster solution compared to the solution of passing objects
by a remote call.

Table 3. Total execution time of the type check by checkcast

Program checkcast Sister namespaces Relative performance
(No. of classes) first second first second

JDOM (72 classes) 33.3 us 1,205.7 us 53.7 us 3,721% 261.3%
Crimson (144 classes) 69.0 us 1,659.7 us 112.6 us 2,505% 263.1%
jaxen (191 classes) 89.2 us 1,573.1 us 139.8 us 1,864% 256.7%
dom4j (195 classes) 109.7 us 4,371.7 us 185.8 us 4,085% 269.3%
SAXON (351 classes) 295.7 us 5,141.3 us 499.8 us 1,839% 269.0%
XT (466 classes) 381.5 us 4,505.8 us 698.7 us 1,281% 283.1%
XercesJ 1 (579 classes) 644.4 us 7,824.3 us 1,041.3 us 1,314% 261.5%
XercesJ 2 (991 classes) 1,158.6 us 11,534.6 us 1,798.0 us 1,096% 255.1%
XalanJ 2 (1,548 classes) 1,650.6 us 22,627.8 us 2,696.2 us 1,471% 263.3%

6 Related Work

In the object database community, several schema evolution techniques such
as schema or class versioning [5,30] have been studied. These techniques allow
multiple co-existing versions of a schema or a class. Instances are evolved when
passing through the version barrier into the modified application or other ap-
plications. Using such evolvable object databases is a workable alternative for
component-based applications. However, our work concentrates on programming
environments, especially where runtime overheads due to schema evolution must
be severely minimized.

There have been other research activities tackling the version barrier problem
in the programming language and environment community. Most of the previ-
ous research regarded the version barrier as a temporal boundary between old



and new components and thus focused on dynamic software updates or evolu-
tion. That is, multiple versions of the same class type could not simultaneously
co-exist in the running program. Therefore, our problems were not directly ad-
dressed. In this research area, the main topic is which existing object should be
adapted to an updated version of the class type and how and when. For exam-
ple, the work on the hotswapping of classes falls into this category. Malabarba et
al. [20] modified the JVM to make a class reloadable at runtime so that all exist-
ing objects can be updated incrementally. The JPDA (Java Platform Debugger
Architecture) [33] and the java.lang.instrument package of the Java2 SDK5.0
provide the restricted hotswap functionality, whereby existing instances can be
considered as the new version of the class type without being updated. Hjalm-
tysson and Gray [13] implemented dynamic classes in C++ by using templates.
Users can selectively update some but not all objects with the help of wrapper
(or proxy) classes and methods. Hnětynka et al. [14] proposed the renaming ap-
proach using a bytecode manipulation tool. A class loader using this renaming
approach allows the reloading of a class, although it renames that class.

Our work mainly focuses on the spatial version barriers among multiple com-
ponents. An older version of a class type remains after a new version is loaded.
Dynamic type changes such as predicate classes [4], reclassifying objects [6], and
wide classes [28] may allow relaxing of the spatial version barrier, since multiple
class members can be implicitly merged by the explicit composition operation.
Type-based hotswapping proposed by Duggan et al. [8] is similar to our work
but classified into the same category as the above systems. The .NET counter-
parts of the Java class loaders are application domains, which are used to load
and execute assemblies and can run in a single process. However, they adopt the
call-by-value semantics on inter-component communication between application
domains using the .NET Remoting Framework. Of course, dynamic typing lan-
guages, such as CLOS, Self, and Smalltalk, provide more flexible mechanisms
for allowing types to be changed at runtime. However, our challenge is relax-
ing only the version barrier in the strictly typing object-oriented world with
negligible performance penalties. Our contribution is that we have provided a
simple mechanism for relaxing the version barrier, which has been confusing Java
programmers because of the complicated semantics.

7 Conclusion

This paper presented the design and implementation of loosely-separated sis-
ter namespaces in Java. Combining multiple namespaces as sister namespaces
can relax the version barrier between them. It thereby allows an instance to
be assigned to a different version of that class type in that sister namespace.
This mechanism was implemented on the IBM Jikes RVM for evaluation of the
performance overhead. Our experiment showed that, once an instance passes
into the sister namespace across the version barrier, all instances of that class
type can go back and forth between the sister namespaces with significantly low
performance overhead. Our experiment also demonstrated that the execution



performance has only negligible overhead unless an instance is passed across the
version barrier.

We plan to develop a dynamic AOP (Aspect-Oriented Programming) system
based on sister namespaces. We have developed a Java-based dynamic AOP sys-
tem called Wool [27]. It allows weaving aspects with a program at runtime by
using the hotswap mechanism of the standard debugger interface called JPDA
(Java Platform Debugger Architecture) [33]. The version compatible changes
shown in this paper are almost the same as that supported by the JPDA. There-
fore, using sister namespaces will make our dynamic AOP system simpler and
more efficient while keeping the equivalent flexibility.

Currently, our primary focus for future work is the formal proof of the type
safety on the sister namespaces. We will also examine this issue with respect to
the Java security architecture [10].

Acknowledgement

We would like to express our deep gratitude to the anonymous reviewers. Hide-
hiko Masuhara gave helpful comments on an early draft of this paper. We also
thank Romain Lenglet for his great efforts to fix numerous English problem in
this paper. This research was partly supported by the CREST program of Japan
Science and Technology Corp.

References

1. Alpern, B., Attanasio, C.R., Barton, J.J., Burke, M.G., Cheng, P., Choi, J.D.,
Cocchi, A., Fink, S.J., Grove, D., Hind, M., Hummel, S.F., Lieber, D., Litvinov,
V., Mergen, M.F., Ngo, T., Russell, J.R., Sarkar, V., Serrano, M.J., Shepherd,
J.C., Smith, S.E., Sreedhar, V.C., Srinivasan, H., Whaley, J.: The Jalapeno virtual
machine. IBM System Journal 39 (2000) 211–238

2. Alpern, B., Cocchi, A., Fink, S.J., Grove, D., Lieber, D.: Efficient implementa-
tion of java interfaces: Invokeinterface considered harmless. In: Proceedings of
the 2001 ACM SIGPLAN Conference on Object-Oriented Programming Systems,
Languages and Applications (OOPSLA 2001). Number 11 in SIGPLAN Notices,
vol.36, Tampa, Florida, USA, ACM (2001) 108–124

3. Alpern, B., Cocchi, A., Grove, D.: Dynamic type checking in jalapeño. In: Java
Virtual Machine Research and Technology Symposium. (2001)

4. Chambers, C.: Predicate classes. In: ECOOP’93 - Object-Oriented Programming,
7th European Conference. Volume 707 of Lecture Notes in Computer Science.,
Kaiserslautern, Germany, Springer-Verlag (1993) 268–296

5. Clamen, S.M.: Type evolution and instance adaptation. Technical Report CMU-
CS-92–133, Carnegie Mellon University School of Computer Science, Pittsburgh,
PA (1992)

6. Drossopoulou, S., Damiani, F., Dezani-Ciancaglini, M., Giannini, P.: Fickle : Dy-
namic object re-classification. In: ECOOP 2001 - Object-Oriented Programming,
15th European Conference. Volume 2072 of Lecture Notes in Computer Science.,
Budapest, Hungary, Springer (2001) 130–149



7. Drossopoulou, S., Wragg, D., Eisenbach, S.: What is java binary compatibility?
In: Proceedings of the 1998 ACM SIGPLAN Conference on Object-Oriented Pro-
gramming Systems, Languages & Applications (OOPSLA ’98), Vancouver, British
Columbia, Canada (1998) 341–361

8. Duggan, D.: Type-based hot swapping of running modules. In: Proceedings of
the Sixth ACM SIGPLAN International Conference on Functional Programming
(ICFP ’01). Volume 10 of SIGPLAN Notices 36., Florence, Italy, ACM (2001)
62–73

9. Englander, R.: Developing Java Bean. O’Reilly and Associates, Inc. (1997)

10. Gong, L., Ellison, G., Dageforde, M.: Inside Java2TM Platform Security: Archi-
tecture, API Design, and Implementation 2nd Edition. Addison-Wesley, Boston,
Mass. (2003)

11. Gosling, J., Joy, B., Steele, G., Bracha, G.: The Java Language Specification Second
Edition. Addison-Wesley, Boston, Mass. (2000)

12. Halsted, K.L., Roberts, J.H.J.: Eclipse help system: an open source user assistance
offering. In: Proceedings of the 20st annual international conference on Documen-
tation, SIGDOC 2002, Toronto, Ontario, Canada, ACM (2002) 49–59
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