
A Dynamic Aspect Oriented Kernel Profiler for
Ease of Use

動的アスペクト指向に基づいた使いやすいカーネルプロ
ファイラ

A Source-level Kernel Profiler based on Dynamic
Aspect-Orientation

by

Yoshisato YANAGISAWA

柳澤 佳里

03M3731-1

January 2005

A Master’s Thesis Submitted to

Department of Mathematical and Computing Sciences

Graduate School of Information Science and Engineering

Tokyo Institute of Technology

In Partial Fulfillment of the Requirements

for the Degree of Master of Science.

Supervisor: Shigeru Chiba

Copyright c© 2005 by Yoshisato YANAGISAWA. All Rights
Reserverd.

Abstract

We present a source-level kernel profiler named KLAS. Since this profiler
is based on dynamic aspect-orientation, it allows the users to describe any
code fragment in the C language. That code fragment is automatically exe-
cuted for collecting detailed performance data at execution points specified
by the users. Enabling dynamic aspect-orientation is crucial since otherwise
the users would have to reboot an operating system kernel whenever they
change aspects. Although KLAS dynamically transforms the binary of a
running operating system kernel for weaving an aspect at runtime, unlike
other similar tools, the KLAS users can specify those execution points, that
is, join points through a source-level view. For example, the users can de-
scribe a pointcut that picks up accesses to a member of a structure; they do
not have to explicitly specify the addresses of the machine instructions cor-
responding to the member accesses. We have implemented this feature by
extending a C compiler to produce augmented symbol information. KLAS
has been implemented for the FreeBSD 5.2.1 operating system with the
GNU C compiler. Experiment shows that our modified C compiler spent
much time compared with normal C compiler. Experiment also represent
that execution overhead of KLAS is much smaller when a number of aspects
is small. However, experiment also showed that overhead becomes much
larger when KLAS runs with a quite large number of aspects.

Acknowledgments

This thesis was supervised by Shigeru Chiba. I would like to express my
respect for him.

I greatly thank Kenichi Kourai. He spent a large amount of time for me
and gave me a lot of suggestions.

Moreover, I thank my colleagues of the Chiba group at the Tokyo In-
stitute of Technology. In particular, discussions with Yoshiki Sato, Muga
Nishizawa and Masahiro Matsunuma were very interesting.

Contents

1 Introduction 1

2 Profiler for OS-kernel 6
2.1 Requirements . 6

2.1.1 Changeability of Code and Points without Rebooting 7
2.1.2 Supporting the C language 8
2.1.3 Fine-grained Profiling 8
2.1.4 Minimized Prove Effects 10

2.2 Existing Tools . 10
2.2.1 Aspect-oriented Programming 11
2.2.2 AspectC++ . 13
2.2.3 µ-Dyner . 13
2.2.4 TinyC2 . 14

3 KLAS: Kernel Level Aspect-oriented System 15
3.1 Overview of the KLAS system 15
3.2 Implementation . 16

3.2.1 Mechanism to Insert Hook 20
3.2.2 Mechanism to Collect Symbol Information 26
3.2.3 Mechanism to Find Address 29
3.2.4 Parsing Aspects and Weaving Mechanism 41

4 Experiment 44
4.1 Accuracy of Positions of Hooks 44
4.2 Simple Performance Measurement 45

4.2.1 Performance Measurement of Kernel Compile 45
4.2.2 Performance Measurement of Execution 45

4.3 Performance Measurement of Network Codes 48

i

CONTENTS ii

5 Related Work 50
5.1 Kernel Profilers . 50

5.1.1 Ktr . 50
5.1.2 LKST . 50
5.1.3 KernInst and GILK 51

5.2 Other Aspect-oriented Solutions 51
5.2.1 AspectC . 51
5.2.2 PROSE . 52
5.2.3 Wool . 52

6 Concluding Remarks 53

List of Figures

1.1 Example: sys/netinet/tcp output.c 2

2.1 The way finding performance bottlenecks 7
2.2 fileops structure(sys/file.h of FreeBSD) 9

3.1 An Overview of KLAS . 16
3.2 Aspect Definition in KLAS 17
3.3 Implementation of KLAS . 19
3.4 KLAS in the kernel space . 20
3.5 Execution of Advice . 20
3.6 Difference between Usual Debugger and DDB 21
3.7 Symbol tables in DDB . 23
3.8 Call Graph to Find an Address 24
3.9 Execution of Breakpoint-trap(BPT) 26
3.10 The Way to Map ID and the Name 28
3.11 Organization of Debugging Information 30
3.12 Decode unsigned LEB128 number 32
3.13 Decode signed LEB128 number 32
3.14 Parsing a Special Opcode . 39
3.15 Action of KLAS Userland Half 42
3.16 Action to Resolve Addresses 43

4.1 Elapsed Time by Increasing a Number of Aspects 46
4.2 Elapsed Time by Increasing a Number of Aspects (Log-scale) 47
4.3 Elapsed Time with a Smaller Number of Aspects 47
4.4 Elapsed Time with a Smaller Number of Aspects (Log-scale) 48

iii

List of Tables

2.1 Several pointcut designators of AspectJ 12
2.2 Advice of AspectJ . 13

3.1 Attribute format encodings 35
3.2 Terms of Line Number Information Format 36
3.3 Initial State of State Machine 37

4.1 Elapsed Time for Compiling OS Kernel 46
4.2 Throughput Change of Inserting Advice 49

iv

Chapter 1

Introduction

During the history of operating systems (OSes), performance tuning of OS
kernels has been an important topic for kernel developers. Even nowadays,
the kernel developers are making serious efforts to run the OS kernel as fast
as possible. They are still improving scheduling algorithms, block allocation
algorithms of filesystems, implementation of network stack, lock mechanism,
and so on. For example, both FreeBSD and Linux recently introduced new
implementation of their process schedulers.

Investigating a performance bottleneck is one of the important first step
for improving the performance of OS kernels. Investigating a performance
bottleneck let developers find the reason of performance degradation. It
helps developers to decide the way how to minimize such bottlenecks or im-
prove performance of these codes. If codes including a performance bottle-
neck is not required to process realtime it can be delayed until CPU becomes
idle to improve peek time performance. It is similar solution to filesystem
delayed-write or network delayed-ack. Improving such a bottleneck might
be great help for performance improvement since there are rule of thumb
that more than 80% of time is elapsed in less than 20% code snippets.

To investigate a performance bottleneck, using a performance profiling
tool for OS kernels is mandatory. A performance profiling tool is a tool
that measure elapsed time between certain points in the OS kernel. In fact,
we are studying a performance bottleneck for network processing, that is,
inappropriate behavior of the network module of the FreeBSD operating
system when multiple process are executing network I/O simultaneously.
Since there are many modules and functions associated with network I/O, a
performance profiling tool should be used. Developers would first measure
the execution time of a large code section and then they would gradually

1

CHAPTER 1. INTRODUCTION 2

int
tcp_output(struct tcpcb *tp)
{

...
struct mbuf *m;
...
m->m_len = hdrlen;
...

}

Figure 1.1: Example: sys/netinet/tcp output.c

narrow the range of that code section to find a performance bottleneck.
Since rebooting need much time and cause loss of memory, performance
profiling tool, which can change the points to measure time is needed.

Motivating Problem

Existing performance profiling tools for OS kernels are not powerful enough
to investigate a performance bottleneck in detail. There are two kinds of
performance profiling tools: tools which can get logs at fixed point and tools
which can transform codes to insert logs at any points. However, neither is
powerful enough. To investigate a performance bottleneck of network I/O,
measurement of elapsed time between member accesses of mbuf 1 structure
is required. That is because this structure is often used inside network code.

Figure 1.1 is an example to represent a weakness of existing tools. Since
whole network access should be traced to investigate a performance bottle-
neck, developers should measure elapsed time of each mbuf member access.
Since a location of each member access is removed by a compiler, existing
performance profiling tools, which only use information of running binary
can not designate the program counter to get logs. All member accesses are
changed into ld or st instruction and can not be distinguished.

Performance profilers which can get logs at fixed point is not powerful
enough. Some of these tools can get logs at entry-point and exit-point
of a function and the others can get log at occurrence of some specified
events. Since the point to get a log is restricted, these tools can not trace
network I/O codes, especially mbuf member accesses. Former one doesn’t

1memory buffer used in network stack codes of the FreeBSD operating system

CHAPTER 1. INTRODUCTION 3

support these kinds of points because the positions of them are disappeared
at compile time and can not investigate these positions at runtime. Latter
one doesn’t support these kinds of points either because the positions of
them are restricted already by developers of the tool. Even if a developer
increases a number of these points, measurement effects become so large
that a developer can not get logs in detail.

Dynamic code transformation is not powerful enough to trace network
I/O. A developer can insert log codes into anywhere he or she wants by
using dynamic code transformation. Then he or she can measure elapsed
time between certain points. However, since a compiler converts a member
access of a structure into a ld or st instruction and the program counter of
the instruction is not stored anywhere, a developer can not point out such
structure access to get a log.

Solution

To solve the problem mentioned above, this thesis proposes a new dynamic
code insertion mechanism for enabling insertion of code snippets into a point
of a member access. With the proposed mechanism, developers can get logs
at two kinds of member accesses: calling a function pointer and accessing a
data. Since accessing a data of a member is often used inside network I/O
codes of an OS kernel, developers can trace the network I/O code by using
this feature.

The dynamic code insertion mechanism proposed by this thesis is called
”Source-based binary-level dynamic weaving” and the name of a kernel pro-
filer presented by this thesis is KLAS. It means that KLAS uses a source
code level information of a member access to pick out the execution point
to insert code snippets dynamically. Since most of source level information
disappears at compile time, existing dynamic code insertion mechanism can
not pick out these points.

To get source-level view, KLAS uses an extra symbol information. An
extra symbol information is generated by a compiler modified for KLAS. It is
used by KLAS at the time it inserts code snippets into a running OS kernel.
Usual symbol information has an information of a name of a function and a
mapping of a line and a program counter. An extra symbol information this
thesis proposes has an information of a line where a member of a structure
is accessed. KLAS use both symbol informations to pick out the point to
insert code snippets.

An extra symbol information contains a line number and a file name of a

CHAPTER 1. INTRODUCTION 4

member access. To pick out a program counter of a member access, KLAS
uses an extra symbol information to get a line number and a file name. Then
KLAS use an usual symbol information to get a program counter with them.

KLAS uses breakpoint-trap instructions to insert code snippets. To in-
sert code snippets into a OS kernel, KLAS replaces machine instructions
on an OS kernel with breakpoint-trap instructions so that code snippets
can be executed at the addresses of those instructions. The place where
breakpoint-trap instructions inserted and the program counter associated
with it is remembered by KLAS to execute a required code snippet at the
time breakpoint-trap occurred.

We developed KLAS on the FreeBSD operating system[17] version 5.2.1
and the GNU C Compiler version 3.3.4. The FreeBSD operating is an
open source operating system derived from UC Berkeley’s 4.4BSD operating
system[16].

The Structure of This Thesis

From the next chapter, we present background, system overview and im-
plementation issues of KLAS. The structure of the rest of this thesis is as
follows:

Chapter 2: Profiler for OS-kernel

At first, we describe requirements for kernel profilers for finding out per-
formance bottlenecks to clear our motivating problems. Then we explain
problems of the existing tools.

Chapter 3: KLAS: Kernel Level Aspect-oriented System

To address the motivating problem, we present our new implementation
technique for dynamic AOP. It also shows an overview of the KLAS system.

Chapter 4: Experiment

At first, we explained possibility and limitation of a hook insertion of the
KLAS system. Next, we measured the elapsed time for compiling OS kernel
to examine performance degradation with our gcc modification. Then we
measured elapsed time of executing the code snippets where KLAS weaved
aspects to examine performance degradation by KLAS.

CHAPTER 1. INTRODUCTION 5

Chapter 5: Related Work

At first We compared KLAS and kernel profilers and explained advantages
of KLAS. Then we compared KLAS and other AOP systems which are not
discussed in chapter 2.

Chapter 6: Concluding Remarks

We conclude this thesis in chapter 6. Moreover, we present future work.

Chapter 2

Profiler for OS-kernel

Detecting a performance bottleneck in an operating system (OS) kernel is
an important topic of operating system study. In fact, we are studying a
performance bottleneck for network processing, that is, inappropriate behav-
ior of the network module of the FreeBSD operating system when multiple
processes are executing network I/O simultaneously.

To investigate such a performance bottleneck, using a performance profil-
ing tool is mandatory; in particular, a tool that can measure the elapsed time
between interesting execution points in the OS kernel is useful. However,
existing tools or techniques do not satisfy our requirements for investigating
kernel performance. One profiler allows us to measure elapsed time between
any given two function calls. Since modern OS kernels are implemented
with object orientation in the C language, a number of interesting execution
points are calls to functions specified by function pointers. That profiler
does not support such execution points; it only supports functions statically
resolved. We below mention our requirements for such a kernel profiler and
problems of the existing tools and techniques.

2.1 Requirements

There are four requirements for a kernel profiler. Without fulfilling these
requirements, efficiency of profiling should become too bad. Requirements
are as follows.

6

CHAPTER 2. PROFILER FOR OS-KERNEL 7

Find bottlenecks
in large code snippets

performance bottleneck

Find bottlenecks
in smaller code snippets

look in detail

codes to get time

Figure 2.1: The way finding performance bottlenecks

2.1.1 Changeability of Code and Points without Rebooting

The kernel profiler must enable the users to measure elapsed time between
given two execution points. The users must be able to give those execution
points in the kernel at runtime and change them, if necessary, without re-
booting the kernel. The users also must be able to give code snippet for
measuring the elapsed time at runtime and change them without rebooting
the kernel.

The ability to change the execution points is crucial. The users would
first measure the execution time of a large code section and then they would
gradually narrow the range of that code section to find a performance bot-
tleneck (Figure 2.1). This might be the most efficient way to find a per-
formance bottleneck. That is because finding a performance bottleneck in
short code section tend to make the user miss the cause of a performance
bottleneck. Since rebooting the whole kernel is a time consuming task, fre-
quent rebooting significantly decreases our productivity. In fact, elapsed
time between before and after rebooting the FreeBSD operating system is
about one minute and the user should wait this long time every time they
change the execution points. Rebooting also clears the whole memory im-
age and thus the internal data of the network module. After rebooting, the
behavior that the users want to investigate might disappear. Then the users
should wait until the behavior appears again.

The code snippet for measuring the elapsed time must be given by the

CHAPTER 2. PROFILER FOR OS-KERNEL 8

users since the users may want to measure the elapsed time between the
execution points in which a certain variable holds a specific value. To do
this, the measurement code must check the runtime value of that variable but
only the users can give such code depending on a particular use case. The
code snippet for measuring the elapsed time should be given and changed
without rebooting the kernel since rebooting the kernel needs much time
and may vanish some behavior the user want to investigate. Also, the users
may want to print a log message, for example, to record the value of an
interesting variable.

2.1.2 Supporting the C language

The profiler should support the C language. The users must be able to
specify execution points by indicating a point in a source file. This is mainly
because the FreeBSD operating system, and other major operating systems
like Linux and NetBSD, are written in C language.

Several features of the C language makes it difficult to develop a kernel
profiler. For example, the macro processor makes it difficult to specify an
execution point and the compiled binary includes only limited symbol in-
formation. With these features, execution binary of C language can be run
fast instead of being ease of maintenance, and can be small not to waste
space and easy to use with embedded devices.

2.1.3 Fine-grained Profiling

The execution points that the users can specify for profiling must be fine
grained. The possible execution points must include not only function calls
but also member accesses, that is, accesses to members of structures. Func-
tion pointer is often used in operating system(OS) kernel and is sometimes
included in a structure as a member. A number of execution points that we
are interested in for performance profiling are function calls through function
pointers.

Modern OS kernels uses function pointers for inter-module function calls
since function pointers can be used for implementing a kind of polymorphism
in the C language. If the read or write system call is issued, the OS kernel
invokes a function pointed to by a function pointer associated with the
accessed I/O device. The function pointer associated with each I/O device
points to the read/write function dedicated for that device. It means that
a file descriptor which passed with read or write system call is just integer
value and is not be able to distinguish file descriptor is made by socket

CHAPTER 2. PROFILER FOR OS-KERNEL 9

typedef int fo_rdwr_t(struct file *fp, struct uio *uio,
struct ucred *active_cred, int flags,
struct thread *td);

#define FOF_OFFSET 1 /* Use the offset in uio argument */
typedef int fo_ioctl_t(struct file *fp, u_long com, void *data,

struct ucred *active_cred, struct thread *td);
typedef int fo_poll_t(struct file *fp, int events,

struct ucred *active_cred, struct thread *td);
typedef int fo_kqfilter_t(struct file *fp, struct knote *kn);
typedef int fo_stat_t(struct file *fp, struct stat *sb,

struct ucred *active_cred, struct thread *td);
typedef int fo_close_t(struct file *fp, struct thread *td);
typedef int fo_flags_t;

struct fileops {
fo_rdwr_t *fo_read;
fo_rdwr_t *fo_write;
fo_ioctl_t *fo_ioctl;
fo_poll_t *fo_poll;
fo_kqfilter_t *fo_kqfilter;
fo_stat_t *fo_stat;
fo_close_t *fo_close;
fo_flags_t fo_flags; /* DFLAG_* below */

};

Figure 2.2: fileops structure(sys/file.h of FreeBSD)

system call or open system call. Read or Write routine of socket I/O or File
I/O, however, is associated with file descriptor for the member of a fileops
structure (Figure 2.2) at the time the users call open or socket system call
and easily dispatched when the user calls read or write system call. Here is
another example. The VFS (Virtual File System) uses the same technique
for dispatching to a function appropriate to each type of file system. To use
many kind of file system in an Unix operating system, it has a mechanism
for hiding real file system and making them behave as an Unix own file
system. This mechanism is called VFS and realizes the behavior which suit
for each file system.

The network module of FreeBSD and NetBSD, which are descendants
of 4.3BSD, uses this technique for deallocating a memory buffer (mbuf) in a

CHAPTER 2. PROFILER FOR OS-KERNEL 10

means depending on a network device. To realize changeability of behavior
to free a mbuf cluster, a set of large memory to use large data in network I/O,
a function for freeing mbuf cluster is a function pointer and is the member
of mbuf structure.

2.1.4 Minimized Prove Effects

The prove effects due to the profiling should be minimized. If the overheads
of measuring elapsed time is large, the obtained data would be obviously
inaccurate. That is because the sum of elapsed time for measuring would
cover the elapsed time where the performance is not good if the overheads
of measurement is large. Moreover, if the sum of elapsed time for measure-
ment is larger than the elapsed time of executing the code snippet whose
performance is not good, the users can not find these code snippet any more.

Once necessary data is obtained, the profiling code for the time measure-
ment must be removed to avoid disturbance of the kernel behavior while the
elapsed time of a different code section is being measured. To realize this,
measurement code must be easily invalidated sooner after interesting data
is gotten. Then a method inserting a tab for executing a time measurement
code is not a good way to realize code changeability. That is because the
code snippet of such a tab consume a time everywhere a time measurement
code is executed and will cover a elapsed time of a bottleneck.

the size of a measurement code is another problem. If code size of OS
kernel is too large, memory amount which application can use becomes
small and a number of page in and out will becomes many. the size of a
measurement code would not be so large that application cause page in and
out frequently. If a tab, however, is inserted anywhere a joinpoint exists, the
sum of every code would become too large to run applications and kernel
efficiently even if a tab is small. That is because a number of joinpoint
would be too large if all functions and member accesses to structures become
joinpoints.

2.2 Existing Tools

A naive approach for performance profiling of OS kernels is to manually
insert profiling code into source files of the kernel, compile the source files,
and reboot the kernel. However, this approach is error-prone and does not
satisfy our requirements since it needs rebooting after recompiling source
codes. Although the most promising approach is to use the idea of aspect-

CHAPTER 2. PROFILER FOR OS-KERNEL 11

oriented programming (AOP), the existing AOP-based tools do not satisfy
our requirements.

2.2.1 Aspect-oriented Programming

Aspect-Oriented Programming(AOP) has been proposed as technology for
improving separation of concerns in software. Although object-oriented pro-
gramming(OOP) is the technology that can fundamentally modularize soft-
ware systems, it is not sufficient technology enough to separate concerns
that are scattered throughout modules. We call such concerns cross cutting
concerns. They decrease maintainability and understandability of software
systems. The users must understand and change each modules in software
even if they change and maintain the crosscutting implementation because
the crosscutting implementation is scattered throughout modules.

Logging is good example for understanding a strong point of AOP. The
users would scatter logging code to programs in developing phase to find
bugs and would remove such logging code after development finished. When
they remove such codes for logging, they should change the programs they
inserted codes for logging at the time of development to remove the codes.
Such operation, however, is prone to make other software bugs because they
change these codes by hands, in another words, human can easily make easy
mistakes. By using AOP instead of hand-coding, the users can easily insert
and remove codes without causing a care-less mistakes. That is because
AOP can pull the widespread crosscutting concern into a single module,
and inserting and removing the codes is done by a unit of such a module.
These modules are termed aspects in AOP. AOP builds on several technolo-
gies, such as procedural programming and OOP, which have already made
significant improvements in software modularity.

AspectJ

Before representing each AOP system, let us introduce AspectJ [13, 8, 11].
AspectJ is a famous AOP system and syntax of many AOP systems are
similar to AspectJ. In AspectJ, there are three important elements: a join-
point, a pointcut and an advice. A pair of some pointcuts and advices is
called an aspect. It is used passed to an AspectJ and it will insert a code
given in an advice body to the point where a pointcut point out. We call
this operation weave and the contrary operation, which removes the codes
from the program codes, is called unweave.

CHAPTER 2. PROFILER FOR OS-KERNEL 12

designator meaning
set(Signature) select points writing a field of Signature
get(Signature) select points reading a field of Signature
call(it Signature) select points calling functions of Signature
execution(Signature) select points executing functions of Signature
cflow(Pointcut) all joinpoints that occur between the entry and exit

of each joinpoint specified by Pointcut

Table 2.1: Several pointcut designators of AspectJ

Joinpoint A joinpoint is the execution point which is defined in program
execution flow and is the point which is calling a function, executing a
function or accessing a variable. We means that the point calling a function,
for example, is a point which represent the points at the beginning and
ending of a function call. Life time of this joinpoint is from beginning and
ending of a function call, yet the point represented by joinpoint is only an
instance of beginning and ending a function call.

Pointcut Pointcut is used to pick out the specific points from joinpoints
in the program cflow. The following pointcut designator, for example, picks
out joinpoints that is a function call of the signature void Point.setX(int) in
the program flow.

call(void Point.setX(int))

The call is one of pointcut designators, identifies each join points that are
calls of the specified functions. In table 2.1, we listed several pointcut desig-
nators that AspectJ is provided. A pointcut can be build out other pointcuts
with and (&&), or(||) and not(). Following example picks out joinpoints that
is a function of the signature void Point.setX(int) or void Point.setY(int).

call(void Point.setX(int)) || call(void Point.setY(int))

Advice An advice defines the code which is executed at a joinpoint and a
pointcut to execute the code. AspectJ has before, after and around advice
and these are described in table 2.2.

CHAPTER 2. PROFILER FOR OS-KERNEL 13

advice meaning
before execute the code before a pointcut
after execute the code after a pointcut
around execute the code instead of executing a code snippet

at a pointcut

Table 2.2: Advice of AspectJ

2.2.2 AspectC++

AspectC++[23, 25] is an aspect oriented system for the C++ language. Syn-
tax of this system is very similar to AspectJ. It supports call and execution
pointcuts and also supports set and get pointcuts. Difference of grammar
between AspectJ and AspectC++ is follows: a wildcard operator is ‘%’ in-
stead of ‘*’ in AspectC, an operator which joins a class name and a method
or field name is ‘::’ instead of ‘.’, and a pointcut designator is quoted by ‘”’
to treat it a string though no quoting is used in AspectJ.

AspectC++ is using a source code translator PUMA[18] to realize as-
pect weaving. First source code for AspectC++ is scanned and parsed by
PUMA. Then AspectC++ get syntax tree generated by PUMA and make
manipulation commands to weave codes for AspectC++. Finally PUMA
manipulation engine get manipulation commands and weave these codes
into C++ source codes. Codes generated by PUMA is only written in C++
language and can be compiled by normal C++ compiler.

AspectC++ satisfies most of our requirements. It support a pointcut
to a member function of a class and might be support a member field of a
structure which is a function pointer. It also support C language because
C++ language is expanded from C language and it only weaves codes to the
points where pointcuts is designated. It is, however, a static aspect-oriented
system and cannot weave codes at runtime. If the users change profiling
code, that is, aspect code, the OS kernel must be recompiled and rebooted.

2.2.3 µ-Dyner

µ-Dyner[22] is a dynamic aspect-oriented system for the C language. This
system is made to realize web cache prefetching mechanism by dynamic
AOP. It means that the user write cache policy by an aspect and pass them
to µ-Dyner to change cache policy. Caching is one of cross cutting concern
and code snippets to realize caching is spread to whole source codes. By

CHAPTER 2. PROFILER FOR OS-KERNEL 14

using dynamic AOP, however, the user can give cache policy easily and easily
change cache policy.

The runtime overhead is, however, not negligible. It inserts special hook
code at the shadow of all the join-points at compile time. Some of the
inserted hooks are activated by the pointcut description given at runtime
and then they invoke an advice body when the thread of control reaches
those hooks. That is, µ-Dyner inserts the hook code at compile time at all
the places in which the users may potentially want to measure the execution
time. These special codes are consist of jmp and nop instructions and these
instructions are thought to be light weight. Yet a number of the places
in which the hook code must be inserted is usually large for our purpose,
profiling OS kernel, and the overhead due to the hook code is not negligible.
Moreover, since a number of hook code is large, the size of hook codes is
large as to consume much time at running OS kernel for page in and out.

2.2.4 TinyC2

TinyC2[14] is another dynamic aspect oriented system for the C language.
Unlike µDyner, TinyC2 can directly insert and remove the hook code in/from
the compiled binary during runtime. This capability is provided by Dyninst[2],
which is the backend system of TinyC2. Since the hook code is inserted at
only the places selected at runtime according to the given pointcut descrip-
tion, the overhead due to the hook code is minimized.

However, TinyC2 provides only a limited kind of execution points as join
points. For example, function calls are join points but member accesses are
not since the compiled binary of a C program does not include the informa-
tion about which machine instruction corresponds to member accesses. The
users must explicitly specify which machine instruction they want to pick
out by pointcut description.

Chapter 3

KLAS: Kernel Level
Aspect-oriented System

To fulfill all our requirements, we have developed a new dynamic aspect-
oriented system called KLAS (Kernel-level Aspect-oriented System) for FreeBSD
5.2.1. KLAS receives the definition of an aspect from the users through a
KLAS command running in the userland. Then it dynamically patches the
running OS kernel to weave that aspect into the kernel at runtime. Since
KLAS uses a modified version of gcc for augmenting the symbol informa-
tion contained in the compiled binary of the OS kernel, it allows the users
to pointcut member accesses at the source-code level.

3.1 Overview of the KLAS system

KLAS is a dynamic aspect-oriented system for the OS kernel of FreeBSD.
The users can dynamically weave an aspect into the running kernel so that
they can change the code section of which they measure the execution time.
They do not have to reboot the kernel when they change a woven aspect.
This feature improves the efficiency of the users’ investigation since they do
not have to wait until the kernel is rebooted and the behavior that they
want to investigate appears again. They can start investigation as soon as
they find the behavior that they are interested in.

KLAS allows the users to pick out member accesses (accesses to a mem-
ber of a structure) by pointcut. As we have already mentioned, it is a crucial
feature that the users can specify that an advice body is executed when a
particular member of function pointer type is accessed. For example, this
feature helps us investigate a performance bottleneck of network processing

15

CHAPTER 3. KLAS: KERNEL LEVEL ASPECT-ORIENTED SYSTEM16

Aspect Definition

-Pointcut Designation
-Advice

OS kernel

userland

Symbol
Information

insert hook

compiled advice

KLAS

gcc

Kernel
source
code

Figure 3.1: An Overview of KLAS

since we can easily measure the execution time of functions accessing the
mbuf structure.

An aspect definition for KLAS is described in XML. KLAS supports only
before advice. Figure 3.2 shows an example of an aspect definition for KLAS.
It pointcuts accesses to the member ext free of the m ext structure. Since
the value of ext free is a function pointer, this member access is a function
call. The advice body associated with this pointcut prints the current time
and the arguments to the function when that member access is performed.
In KLAS, special variables $eip, $ebp and $esp are available within advice
body. They represent eip, ebp and esp register.

3.2 Implementation

KLAS inserts the hook code into the OS kernel for executing advice body
when the thread of control reaches there. The overhead due to the hook
code is minimum since KLAS dynamically inserts the hook code only at the
places corresponding to the join point shadow picked out by given pointcuts.
If the aspect is unwoven, the inserted hook code is also removed from the
running OS kernel. Minimizing the overhead is important since the primary
application of KLAS is to investigate a performance bottleneck in the OS
kernel. If the overhead of using aspects is not negligible, the users may be
confused by the disturbance by the prove effects and have a trouble to find
a real performance bottleneck.

A unique feature of KLAS is that KLAS enables member accesses to
be picked out by a pointcut. To do this, KLAS expands the symbol table

CHAPTER 3. KLAS: KERNEL LEVEL ASPECT-ORIENTED SYSTEM17

<aspect name="log_mbuf_clean">
<pointcut>

<field name="ext_free" structure="m_ext" />
<pointcut>
<advice>

void* resolve_argument(long eip, long ebp, int argn)
{
/* resolve the N-th argument of

ext_free function. */
}
struct timespec ts;
nanotime(&ts);

printf("mbuf_clean@%d,%lld, arg:0x%x,0x%x\n",
ts.tv_sec, ts.tv_nsec,
resolve_argument($eip,$ebp,1),
resolve_argument($eip,$ebp,2));

</advice>
</aspect>

Figure 3.2: Aspect Definition in KLAS

CHAPTER 3. KLAS: KERNEL LEVEL ASPECT-ORIENTED SYSTEM18

contained in the compiled binary. This fine-grained pointcut helps the users
to efficiently investigate a performance bottleneck in the OS kernel. The
users can specify a pointcut to pick out interesting member accesses at the
source-code level, and KLAS refers to the expanded symbol table so that it
can insert the hook code at the machine instructions corresponding to those
member accesses (Figure 3.3).

To use KLAS, the OS kernel must be compiled by our extended GNU C
compiler (gcc) with the -g debug option. During compilation, our compiler
collects the names of structures and their members with the line numbers
and the file names in which those members are accessed. The collected
information is stored in an auxiliary file of the compiled kernel. Note that
this information is not included in the normal symbol table of the compiled
binary even if the -g option is given to the compiler. For example, GNU
C compiler discards this information after the parse tree is created; the
structure names and the member names are converted from character strings
to integer id. numbers and GNU C compiler uses those id. numbers for
distinguishing structures and members after the parsing phase.

If KLAS is requested to dynamically weave a new aspect while the OS
kernel is running, it refers the symbol information generated when the kernel
was compiled. KLAS uses that information for identifying the addresses of
the machine instructions corresponding to the join points picked out by
given pointcuts. To identify the address of a function, KLAS simply refers
to the regular symbol table by invoking the nm command. To identify the
address of a member access, KLAS performs the following three steps. First,
KLAS refers to the auxiliary file generated by our extended compiler and
obtains the file name and the line number at which that member access is
executed. Then KLAS accesses the debug information, which is included
in the regular symbol table. It uses the file name for identifying the name
of compilation unit, which is an object file constituting the OS kernel, and
it finally accesses the debug line information (the DWARF2 format) of that
compilation unit. The address of the line specified by the line number can
be found in the debug line information, which is also included in the regular
symbol table. Since KLAS can obtain only the address of the first machine
instruction of the line including the join point, it cannot insert the hook code
exactly at the instruction corresponding to that join point. However, this
limitation is not a serious problem for our application, which is investigating
a performance bottleneck of the OS kernel.

KLAS uses GNU C compiler (gcc) for compiling an advice body and
the kldload command for loading the compiled advice body into the kernel
land. After parsing an aspect definition written in XML, KLAS extracts an

CHAPTER 3. KLAS: KERNEL LEVEL ASPECT-ORIENTED SYSTEM19

KLAS kernel half

KLAS userland half

OS-kernel

Symbol
Information

gcc

kldload

Aspect Definition

pointcut designationadvice

Compiled
Advice

resolve
point to
insert hook

system call

insert
hook

Figure 3.3: Implementation of KLAS

advice body and attaches the prologue and the epilogue to the advice body
to make a source file of a loadable kernel module. This produced source file
is compiled by gcc. The compiled binary is loaded by the kldload command.
The advice body can be any code fragment if it is a valid C program in the
kernel.

The loaded advice body is woven when a system call for dynamic weaving
is issued. KLAS identifies the machine instruction corresponding to the
join point and replaces it with the breakpoint-trap instruction, which is
the hook code of KLAS (Figure 3.4). This replacement is done while the
OS kernel is running. Since the length of the breakpoint instruction of the
x86 architecture is one byte, any machine instruction can be replaced with
the breakpoint instruction. If the aspect is unwoven, the original machine
instruction is substituted for the breakpoint-trap instruction. Note that the
jmp instruction cannot be used as the hook code since the length of that
instruction is three bytes. If an one-byte instruction located at the end of
an basic block is replaced with the jmp instruction, the first instruction of
the adjacent basic block is overwritten by the jmp instruction. This may
cause system hang-up.

When the thread of control reaches the breakpoint instruction substi-
tuted by KLAS, a breakpoint trap occurs (Figure 3.5). Then the trap
handler executes the map hook code function, which we implemented. This
function looks up the advice body corresponding to that breakpoint instruc-
tion, that is, the join point and then executes that advice body. Finally, this

CHAPTER 3. KLAS: KERNEL LEVEL ASPECT-ORIENTED SYSTEM20

system call(address,advice)

mapping between address and advice

KLAS

OS kernel

insert breakpoint

Figure 3.4: KLAS in the kernel space

int
ip_output(..)
{
 breakpont fault

}

trap(..)
{

 case BPT_FLT:
 map_hook_code(..)

}

map_hook_code(..)
{ ...
 advice = lookup_adv(pc)
 execute advice
 ...
}

advice{
...
}

Figure 3.5: Execution of Advice

function executes the original instruction replaced with the breakpoint in-
struction.

Following subsection represent implementation of KLAS in detail. We
are going to represent each module, one by one.

3.2.1 Mechanism to Insert Hook

Hook insertion mechanism is one of the most important mechanisms of
KLAS. With this mechanism, KLAS can insert hooks into OS kernel without
rebooting. This mechanism is using a thought of DDB, one of the FreeBSD
kernel debugger. Before talking about a hook insertion mechanism of KLAS,
let us talk about DDB.

CHAPTER 3. KLAS: KERNEL LEVEL ASPECT-ORIENTED SYSTEM21

target debugger

Usual Debugger DDB

debugger is included

change control at hook

Figure 3.6: Difference between Usual Debugger and DDB

DDB

DDB is a famous kernel debugger in FreeBSD. It was developed on the Mach
operating system, an operating system made by CMU computer research
team, and ported to 386BSD. Instead of usual debugger like GDB, GNU
debugger, DDB is included in OS kernel and runs on same CPU. Usual
kernel debugger runs the other system and would not stop its action even
if target system of debugging goes down. DDB, however, runs the same
system with OS kernel and once the break point trap or some other trap,
which should move control to a debugger, is occurred, the control is jumped
into the debugger code snippet in the same program (Figure 3.6). By this
mechanism, execution of DDB has nothing to do with execution speed of a
target operating system.

We would like to explain design and implementation of DDB one by one.
First, we will explain the action after trap and then explain the symbol table
structures debugger has and then explain the way how to look up address
from the symbol table. Finally, we explain the way to insert breakpoint-trap
by DDB.

Action after Trap Occurred Codes of action after trap is including
both machine dependent codes and machine independent codes. So, if we
explain the action, we should explain each trap treatment mechanism of each
architecture. Yet We would like to explain only the implementation of Intel
80x86 architecture since the architecture FreeBSD is supporting mainly and
whose number of users is the most in FreeBSD is Intel 80x86 architecture.

At the time breakpoint-trap or some other trap occurred, alltraps func-
tion, which is in sys/i386/i386/exception.s file is called. This is a general

CHAPTER 3. KLAS: KERNEL LEVEL ASPECT-ORIENTED SYSTEM22

trap management routine of FreeBSD and whole trap is registered to inter-
rupt vector in this file(exception.s). These traps are associated with a trap
management function written in the C language, named trap. Before calling
this function, alltrap push some registers onto stack.

Trap function is in sys/i386/i386/trap.c file and it manages whole traps
including a breakpoint-trap and a page fault trap and so on. Trap function
gets trapframe structure from alltrap function and trapframe structure has
a information about a kind of a trap which causes trap function called and
values of registers at the time trap occurred and so on. In trap function,
proper routine is chosen by the kind of a trap; for example, SIGPFE is set
and returned for the arithmetic trap, and page fault management routine is
called for page fault. If breakpoint-trap occurs, trap function first distinguish
it is called at userland or kernel. If it occurs in userland, SIGTRAP is set and
returned. If it occurs in kernel, kdb trap function, general kernel debugger
routine, is called.

Kdb trap function is general debugger function and is in sys/kern/subr kdb.c.
This function is machine independent function and this will be called by trap
management routine of each architecture. In FreeBSD, gdb, GNU debugger,
and DDB, debugger which comes from the Mach operating system, can be
chosen. By way of parenthesis, functions in this file is like an interface of
Java and they accept difference between gdb and DDB. The member of the
structure kdb dbbe holds a pointer to a debugger entrance function and this
is one of polymorphism like mechanism. At this point, db trap is called by
kdb trap function if DDB is chosen as a kernel debugger.

In db trap function, lists of addresses which stored breakpoint-trap and
watchpoint-trap, watchpoint has not been implemented yet though, is scanned.
Then print proper message with a kind of a trap and finally, command loop,
which receive command from user in command line, will be executed. After
command loop, kernel will run from the point where trap occurred.

Structure of db symtabs and Its Members DDB has symbol tables
inside it to find a proper address of a function from a name of a function
and to find a proper name of a function from an address. DDB resolves ad-
dresses or names of functions by using tree structures: db symtabs structure,
a symbol table structure and Elf Sym structure (Figure 3.7).

Members of db symtabs structure is made for each symbol tables; an
elf symbol table, a symbol table for symbols in compiled kernel, and an
kld symbol table, a symbol table for symbols which are loaded by kldload
command dynamically. Each member point out the symbol table for it and

CHAPTER 3. KLAS: KERNEL LEVEL ASPECT-ORIENTED SYSTEM23

elf

kld

db_symtabs
st_name

st_value

st_size

symbol table

st_name

st_value

st_size

Elf_Sym

Figure 3.7: Symbol tables in DDB

a member of symbol table point out Elf Sym structure.
Elf Sym structure contains a name and an address of each function:

st name describes the name of the function and st value describes the ad-
dress of beginning the function. This structure is in ELF binary and is set by
db add symbol table function at the beginning of ddb, when db init function
is called.

The Way to Look up the Function Address Address of beginning of
the function is needed to insert breakpoint-trap by function name or to call
the function inside DDB. This paragraph describes the way to find address
of the function from symbol tables described before.

To find the address of the function, db value of name function, which is in
sys/ddb/db sym.c, is called (Figure 3.8). Arguments of this function are the
name of the function and the pointer to db expr t structure to return an ad-
dress. The name of the function is passed to db lookup function. This func-
tion passes it to X db lookup function with a pointer to a structure of each
symbol table. Then X db lookup function traces symbol table to find Elf Sym
structure whose st name field is match the name of the function given as an
argument. X db lookup returns the pointer to the Elf Sym structure and then
db lookup returns it to db value of name function. Then db value of name
function pass this pointer value, the pointer to Elf Sym structure whose

CHAPTER 3. KLAS: KERNEL LEVEL ASPECT-ORIENTED SYSTEM24

db_value_of_name

db_lookup

db_symbol_values

X_db_lookup

X_db_symbol_values

return an address returns a suitable symbol

returns an address

Figure 3.8: Call Graph to Find an Address

member st name is matched to the function name, to db symbol values func-
tion. Db symbol values function calls X db symbol value with the argument:
the pointer and the name of the function. X db symbol values distinguish
whether the passed pointer is from elf symbol table or kld symbol table.
If the pointer is from elf symbol table, the value of st value, the mem-
ber of Elf Sym structure, is returned. Otherwise, address is resolved with
linker ddb symbol values function, which find a symbol table of dynamic
loaded functions. Then db symbol values function return the returned value
of X db symbol values function. Db value of name function returns the value
and the caller of this function successfully get the address of the function.

The Way to Insert Breakpoint-trap Breakpoint-trap is used to change
control from operating system to debugger at any point the user want. This
paragraph describes the way to insert breakpoint-trap after the user gives
break command to DDB.

After break command is given by the user, db break cmd function will
be called. Db break cmd calls db set breakpoint function. Db set breakpoint
function first calls db find breakpoint function to distinguish whether a breakpoint-
trap already set at the address or not. If a breakpoint-trap has already set, it
will print ”Already set” and return. After this, db set breakpint function will
call db breakpoint alloc function to get memory to store the address to insert
breakpoint-trap and the address map of it. Then db set breakpoint function
set the address and the address map to db breakpoint t type structure al-
located by db breakpoint alloc function to save breakpoint-trap information
and add it to linked list of breakpoint-traps whose name is db breakpoint list.

At the time kernel restarted, continue command is given for example,
db set breakpoints function is called. This function trace db breakpoint list
and insert breakpoint trap into the point where the member of db breakpoint t
type structure pointing. To insert breakpoint-trap, db set breakpoints func-

CHAPTER 3. KLAS: KERNEL LEVEL ASPECT-ORIENTED SYSTEM25

tion first calls db map current to set address map and then it use BKPT WRITE
macro. This macro substitute the instruction of the address and breakpoint-
trap and store the instruction into the member of db breakpoint t type struc-
ture. db clear breakpoints will called before entering DDB command loop
and breakpoint-traps are removed by this function.

KLAS Kernel Half Implementation

KLAS kernel half use breakpoint-trap to execute advice body at the point
the user ordered. The way KLAS kernel half insert breakpoint-trap is based
on DDB breakpoint-trap insertion mechanism mentioned before. KLAS
kernel half receives the point and the name of the function advice body is
included in to insert hook from the user by a system call. KLAS kernel half
register the mapping of the address and the name of the function. Then
KLAS kernel half insert a breakpoint-trap into OS kernel. Following shows
the detailed implementation one by one.

Table mapping address and advice KLAS kernel half has a table which
maps address of breakpoint-trap and the name of advice body function.
KLAS kernel half use linked list to realize this table. The member of this
table is tha pair of the address and the name. When breakpoint occurs,
linked list is traced one by one to find the member which contains the address
of breakpoint-trap.

System Call Management Routine We implemented a system call to
insert and to remove the breakpoint-trap and the mapping of an address
of breakpoint-trap and advice code. This system call manages the table
mapping address and advice in backend. To insert the breakpoint-trap and
the mapping, the user call this system call with two argument: an address
to insert hook and a name of advice. The function attached to the system
call first checks the address is registered or not. If registered, system call
returns error value. Otherwise, the function add these arguments to the
table explained before, and then call db clear breakpoints function to clear
whole breakpoint-trap. Next, this function calls db breakpoint alloc function,
one of the function managing breakpoint-trap in DDB, to add the address
to db breakpoint list. Then this function calls db set breakpoints function to
insert breakpoint-trap into OS kernel.

To remove the hook from OS kernel, the user calls system call for this
purpose. The function attached to the system call first checks the address
passed by the user is contained by the member of the list containing the

CHAPTER 3. KLAS: KERNEL LEVEL ASPECT-ORIENTED SYSTEM26

BPT
BPT

BPT
DDB
set
BPT
next

to this

DDB
set
BPT
where
to set

control reach
to BPT

instruction
BPT overwrite

executed

continue
execution

Figure 3.9: Execution of Breakpoint-trap(BPT)

mapping of address and advice or not. If not, it returns error. Otherwise,
it calls db clear breakpoints to remove whole breakpoint trap. It remove the
member from the list and db breakpoint list by using db delete breakpoint
function. Then it calls db set breakpoints function to reflect the change.

Interface to DDB KLAS kernel half often use DDB functions to insert
and remove a breakpoint-trap. The functions using DDB functions are gath-
ered in one file to separate other modules and this one. One of function of
this file is called when a breakpoint-trap which is set by KLAS kernel half
occurs. We modified db trap function to execute this function at the time
breakpoint trap occurs. In this function, we set epc, ebp and esp registers
to be able to use in advice codes.

KLAS kernel half calls db continue cmd function after executing advice
code. To execute breakpoint-trap collectly, DDB insert breakpoint trap
next to the point the breakpoint was inserted and remove the breakpoint-
trap where it was to execute instructions at breakpoint-trap (Figure 3.9).
This is done by db continue cmd function. When control reached to next
instruction, breakpoint-trap occurs and DDB removes the breakpoint-trap
there and insert breakpoint-trap previous of this point, the point where
breakpoint should be inserted.

3.2.2 Mechanism to Collect Symbol Information

The unique mechanism KLAS has is using source-level view for dynamic
weaving aspects to OS kernel. To realize this mechanism, we alternate GNU
C compiler to collect symbol information. In following subsection, first we
explain the parsing and analyzing meaning of structures in GNU C compiler

CHAPTER 3. KLAS: KERNEL LEVEL ASPECT-ORIENTED SYSTEM27

which we alternated to realize member access as joinpoint. Then we explain
our mechanism to collect symbol information.

GNU C Compiler

GNU C compiler is implemented with kind of polymorphism to realize pars-
ing of meaning in visitor pattern like mechanism. All elements are type of
tree structure but tree structure is like an interface or an abstract class of
Java. Tree structure just supply the uniformed size of space and the type
itself has no members or meanings. Specific macros are prepared to use
tree structure in source code. Each macro first cast tree type to other types
needed at the point and then access its member. GNU C compiler changes
symbols into id. numbers at parsing time and store them tree structure. It
use only id. number instead of symbol name inside the code of compiler.

xref tag C program is first parsed codes according to yacc or bison rule
written in c-parse.in file, and then passed to xref tag function in c-decl.c
file. The arguments passed to xref tag function is id. number and symbol
information of the structure. We can get IDENTIFIER POINTER macro to
get the name of the structure.

build component ref At the time compiler parses a member of a struc-
ture, build component ref is called. This function is in c-typeck.c file. The
arguments passed to this function is the id. number of the structure and sym-
bol information of the member. We can get IDENTIFIER POINTER macro
to get the name of the structure.

Our Collecting Mechanism

To implement collection of symbol information, we made a module to save
a pair of the id. number and symbol name and modified files, c-decl.c and
c-typeck.c to collect id. number and symbol name. Since C language does
not have unified hash table implementation, we made hash table to store
mapping of an id. number and a symbol name. To get symbol name of
the structure at the point where the member of it is used, we save the
name of the structure at xref tag function and used it at build component ref
function. To pass the names, we used the hash table implemented by us
(Figure 3.10). To enable the implementation, we should rewrite makefile of
cc1 and cc1obj command to make our hash table library and our symbol

CHAPTER 3. KLAS: KERNEL LEVEL ASPECT-ORIENTED SYSTEM28

xref_tag(..)
{
...
}

build_component_ref(..)
{
...
}

hash
table

Figure 3.10: The Way to Map ID and the Name

storing library compiled with GNU C compiler program. Following explains
the alternation of each function.

xref tag Since the symbol information which contains the name of the
structure is passed by parser, xref tag function can get symbol name of the
structure. The id. number of symbol information is also get by lookup tag
function. The we stores them into the hash table; the key of hash table is
the id. number and the value of hash table is the name of structure.

build component ref Since id. number of the structure and the symbol
information of the member of it is given to build component ref function by
parser, all we have to do in this function is looking up the name of the
structure and a number and the file name where the member is accessed.
To get the name of the structure, we looks up the hash table by using the
id. number as a key. If the name found, we store it to the file with the
name of the member and the line number and the file name. The name of
the member is get by using IDENTIFIER POINTER macro. In our prototype
implementation, the file to store symbol information is opened and closed
every time we write symbol information to it.

To get the line number and the file name, we look up lineno variable
and input filename variable. Lineno variable contains the line number of the
point parser parsing and input filename contains the name of the file parser
is parsing.1 GNU C compiler stacks the file name and the line number if
#include statement is read. The name of the stack is file stack and we also
store the stack information with the other data such as the names of the
structure and the member to be able to find joinpoint which is inside the
include file near future.

1These information is saved to input location structure in GNU C Compiler version
3.4.x

CHAPTER 3. KLAS: KERNEL LEVEL ASPECT-ORIENTED SYSTEM29

3.2.3 Mechanism to Find Address

Since KLAS userland half can only get the line number and the file name of
the point where the member of the structure is accessed, it have to resolve
the address inside an OS kernel from them. To resolve address from the line
number and the file name, we use DWARF2 information, which is used by
GNU debugger to map a line number and an address of an instruction.

DWARF2 Information of ELF Binary

DWARF2(DWARF Version 2)[26] is one of the formats of debugger infor-
mation of ELF format[27, 1]. GNU C compiler put the information for
debug use in this format by default and we made parser of this format. ELF
format is famous binary execution format of Unix and Unix-like operating
systems. A ELF format file is composed with some sections and debugger
information is stored to several number of these sections. The section named
.debug info stores the information of whole debug information. This section
has information of each compilation unit and these information is stored in
debugging information entries. This section uses .debug abbrev section to
show the length of debugging information entries. Compilation unit is used
to be object file and is is linked to the ELF format file. Compilation unit is
made from only source file(”*.c” file) and these contains header files (”*.h”
files) in it.

Following tells the way to parse information inside each section. De-
bug info section contains the blanket information of debugging information
and this section works with .debug abbrev section which contains informa-
tion each unit in .debug info section, of the attribute and length. Debug line
section is assigned by .debug info section to show mapping line and address
of each compilation unit.

.debug info section The debugging information of DWARF2 is in .de-
bug info section of ELF format file. This section is consist of a set of de-
bugging information entries describing information about compilation unit.
Each debugging information entry is described by identifying tag and con-
tains a series of attributes. These are related to .debug abbrev section to
distinguish each attribute type and kind of information stored to debugging
information entry of each compilation unit (Figure 3.11).

Each attribute value is characterized by an attribute name. The available
values for an attribute is belong to one or more classes of attribute value
forms. Each form class may be represented in one or more ways. Some

CHAPTER 3. KLAS: KERNEL LEVEL ASPECT-ORIENTED SYSTEM30

length
2

a1(offset in abbrev table)
4
1

"kern_mbuf.c"
"GNU C Compiler"
"machiname:/usr/src/sys/kern:"
DW_LANG_C89
0x0
0x55
DW_FORM_data4
0x0
2

"char"
DW_ATE_unsigned_char
1
3

Compilation Unit
 in debugging information entries

Abbreviation Table

a1: 1
DW_TAG_compile_unit
DW_CHILDREN_yes
DW_AT_name DW_FORM_string
DW_AT_producer DW_FORM_string
DW_AT_compdir DW_FORM_string
DW_AT_language DW_FORM_data1
DW_AT_low_pc DW_FORM_addr
DW_AT_high_pc DW_FORM_addr
DW_AT_smst_list DW_FORM_indirect
0 0
2
DW_TAG_base_type
DW_CHILDREN_no
DW_AT_name
DW_AT_encoding
DW_AT_byte_size

DW_FORM_string
DW_FORM_data1
DW_FORM_data1

0 0
3

Figure 3.11: Organization of Debugging Information

CHAPTER 3. KLAS: KERNEL LEVEL ASPECT-ORIENTED SYSTEM31

attribute values, for example, consist of a constant data. ”Constant data”
is one of the class of attribute value. There are, however, several way to
represent constant data: one byte, two bytes, four bytes and eight bytes, and
variable data length. The particular representation for any given instance
of an attribute is encoded along with the attribute name as part of the
attribute name as part of the information that guides the interpretation of
a debugging information entry. Classes attribute belong to is following.

address Refers to some location in the address space of described program.

block An arbitrary number of bytes of data.

constant One byte, two bytes, four bytes, eight bytes of data, or data
encoded in the variable length format, LEB128.

flag A small constant that indicates the presence or absence of an attribute.

reference Refers to some member of the set of debugging information en-
tries. There are two types of reference. One is an offset relative to the
beginning of the compilation unit in which the reference occurs and
must refer to an entry within that same compilation unit. The other
is the address of any debugging information entry within the same
executable or shared object; it may refer to an entry in a different
compilation unit from the unit containing the reference.

string A null-terminated sequence of characters. Data in this form are
generally printable strings. Strings may be represented directly in the
debugging information entry or as an offset in a separate string table.

LEB128 is the variable length format of number used in DWARF2.
Decoding algorithm is written in Figure 3.12 (unsigned) and Figure 3.13
(signed).

There are no limitations on the ordering of attributes within a debugging
information entry. To prevent ambiguity, however, only one attribute with
a given name may appear in any debugging information entries.

Information of each compilation unit is useful for getting a map of ad-
dress and line. An object file may be derived from one or more compilation
units. Typically a compilation unit represent the text and the data of exe-
cutable binary from a single relocatable object and it may be derived from
several source files including pre-processed include files. Each such compi-
lation unit will be described by a debugging information entry with the tag
DW TAG compile unit.

The attributes compilation unit entry may have is following:

CHAPTER 3. KLAS: KERNEL LEVEL ASPECT-ORIENTED SYSTEM32

result = 0;
shift = 0;
while (true) {

byte = next byte in input;
result |= (low order 7 bits of byte << shift);

if (high order bit of byte == 0)
break;

shift += 7;
}

Figure 3.12: Decode unsigned LEB128 number

result = 0;
shift = 0;
size = no. of bits in signed integer (32 in Intel x80 architecture);
while (true) {

byte = next byte in input;
result |= (low order 7 bits of byte << shift);
shift += 7;
if (high order bit of byte == 0)

break;
}
if ((shift < size) && (sign bit of byte is et))

result != - (1 << shift);

Figure 3.13: Decode signed LEB128 number

CHAPTER 3. KLAS: KERNEL LEVEL ASPECT-ORIENTED SYSTEM33

DW AT low pc The relocated address of the first machine instruction
generated for compilation unit.

DW AT high pc The relocated address of the first location past the last
machine instruction generated for that compilation unit.

DW AT name A null-terminated string containing the full or relative path
name of the primary source file from which the compilation unit was
derived.

DW AT language A code indicating the source language of the compila-
tion unit. DW LANG C89 means ISO/ANSI C and DW LANG C means
Non-ANSI C, such as K&R.

DW AT smst list A reference to line number information of this compi-
lation unit. The value of this attribute is the offset in the .debug line
section of the first byte of the line number information for this com-
pilation unit.

DW AT macro info A reference to the macro information for this com-
pilation unit. The value of macro information attribute is the offset in
the .debug macinfo section of the first byte of the macro information
for this compilation unit.

DW AT comp dir A null-terminated string containing the current work-
ing directory of the compilation command that produced this compi-
lation unit in whatever form make sense for the host system. Format
of this value in Unix systems is ”hostname:pathname”. If hostname is
not available, ”:pathname”.

DW AT producer A null-terminated string containing information about
the compiler that produced the compilation unit. The actual contents
of the string will be specific to each producer. The value of this at-
tribute should begin with the name of the compiler vendor or some
other identifying character sequence to avoid confusion with other pro-
ducer values.

Each compilation unit is in .debug info section and consists of a compila-
tion unit header followed by a series of debugging information entries. Each
debugging information entry begins with a code that represent an entry in a
separate abbreviation table, table inside debug abbrev section. This code is
followed by a series of attribute values. Each compilation unit is associated
with the proper entry of abbreviation table (Figure 3.11).

CHAPTER 3. KLAS: KERNEL LEVEL ASPECT-ORIENTED SYSTEM34

Each compilation unit has a header to represent itself. This is consist of
following information:

1. A 4-byte unsigned integer represent the length of the information of
compilation unit. This field does not include the length field itself.

2. A 2-byte unsigned integer represent the version of DWARF informa-
tion of the compilation unit. For DWARF2, the value of this field is
2.

3. A 4-byte unsigned integer represent an offset inside the abbreviation
table, .debug abbrev section.

4. A 1-byte unsigned integer represent the size in byte of an address on
the target architecture. In 80x86 architecture, our target architecture,
the value of this field is 4.

Debugging information entries begins next to the header of the com-
pilation unit. Each debugging information entry begins with an unsigned
LEB128 number which represent an entry within the abbreviation tables in
debug abbrev section associated with this debugging information entry.

The abbreviation tables is shared by multiple compilation units. The
abbreviation table for a single compilation unit consists of a series of abbre-
viation declarations. Each declaration consist of the tag and attributes for a
form of debugging information entry and begins with an unsigned LEB128
number representing the abbreviation code itself. The same code appears at
the beginning of a debugging information entry. In abbreviation code, the
code ‘0’ is reserved and it represent null debugging information entries. The
abbreviation code is followed by another unsigned LEB128 encoded code
and it represent the encode of the entry’s tag.

Following tag encoding is a 1-byte value and it represent whether debug-
ging information entries has a child or not. If the value is DW CHILDREN yes,
next debugging information entry is a child of this entry. If it is DW CHILDREN no,
the entry next to this is brother of this entry. Each chain of brother entry
will terminated with a null entry.

Children encoding is followed by a series of attribute specifications. Each
specification consists of two parts. The first part is an unsigned LEB128
format value which represent the name of the attribute. The second part is
an unsigned LEB128 format value which represent the format of the data
this entry presents. The series of attribute specifications finishes with entry
containing 0 for the name and 0 for the format of the data. The format of
the data is represented in table 3.1. Class of each format is defined before

CHAPTER 3. KLAS: KERNEL LEVEL ASPECT-ORIENTED SYSTEM35

Format Class
DW FORM addr address
DW FORM block block
DW FORM block1 block
DW FORM block2 block
DW FORM block4 block
DW FORM data1 constant
DW FORM data2 constant
DW FORM data4 constant
DW FORM data8 constant
DW FORM string string
DW FORM flag flag
DW FORM sdata constant
DW FORM strp string
DW FORM udata constant
DW FORM ref addr refference
DW FORM ref1 refference
DW FORM ref2 refference
DW FORM ref4 refference
DW FORM ref8 refference
DW FORM ref udata refference
DW FORM ref indirect indirect

Table 3.1: Attribute format encodings

CHAPTER 3. KLAS: KERNEL LEVEL ASPECT-ORIENTED SYSTEM36

Term description
state machine The hypothetical machine used by a consumer of the line num-

ber information to expand the byte-coded instruction stream int a
matrix of line number information.

statement program A series of byte-coded line number information instructions which
represents one compilation unit.

basic block A sequence of instructions that is entered only at the first instruc-
tion and exited only at last instruction.

sequence A series of contiguous target machine instructions.
sbyte 1-byte signed integer.
ubyte 1-byte unsigned integer.
uhalf 2-bytes unsigned integer.
sword 4-bytes signed integer.
uword 4-bytes unsigned integer.
LEB128 Variable length signed and unsigned integer described before.

Table 3.2: Terms of Line Number Information Format

and a number followed by the name of the format is the size of the format:
2, for example, means 2 bytes. The class indirect did not represented before.
If the class is indirect, the attribute value itself in the .debug info section
begins with an unsigned LEB128 number that represent its format.

By using these information, we can distinguish the file name and the
directory name of each compilation unit and the offset of the line information
of it. These information are enough for mapping an address and a line of
files which composes the OS kernel.

.debug line section This section represent the line number information,
mapping of the line and the address of each compilation unit. The line
number information is written in a byte-coded language, a kind of machine
language. To decode this section, we should execute instructions of ma-
chine language of the region of this section where we would like to find
out mapping. Offset is set for each compilation unit and it is described in
DW AT smst list attribute of .debug info section.

Table 3.2 describes the terms used in the line number information. The
statement machine represented in table 3.2 has the following registers:

address The value of program-counter which corresponds to a machine
instruction.

CHAPTER 3. KLAS: KERNEL LEVEL ASPECT-ORIENTED SYSTEM37

register value
address 0
file 1
line 1
column 0
is stmt determined by default is stmt value in the statement

program prologue
basic block false
end sequence false

Table 3.3: Initial State of State Machine

file An unsigned integer indicating the id. number of the source file which
corresponds to a machine instruction.

line An unsigned integer indicating a source line number. The value 0
means no line is corresponding to a machine instruction.

column An unsigned integer indicating a column number within a source
line. The value 0 means that a statement begins at the ”left edge” of
the line.

is stmt A boolean indicating that the current instruction is the beginning
of a statement.

basic block A boolean indicating that the current instruction is the begin-
ning of a basic block represented in table 3.2.

end sequence A boolean indicating that the current address is that of the
first byte after the end of a sequence of target machine instruction. If
this register is true, machine will stop executing.

At the beginning of execution of each machine instruction, the state of the
register is table 3.3 value.

There are tree categories instructions of the state machine belongs to.
Each categories are following:

special opcodes These consist of only a ubyte opcode field. The value of
a ubyte opcode is always greater than opcode base given in statement
program prologue.

CHAPTER 3. KLAS: KERNEL LEVEL ASPECT-ORIENTED SYSTEM38

standard opcodes These consist of a ubyte opcode followed by zero or
more LEB128 arguments.

extended opcodes These consist of multi-byte opcode and multi-byte ar-
gument. The first byte of this opcode is zero and next bytes are an
unsigned LEB128 integer representing the opcode of the instruction.

The statement machine program has prologue before starting program
body. The prologue show the length of instructions and version number and
so on. The component of the prologue is as follows:

1. An uword integer represent total length of the state machine instruc-
tion (total length).

2. An uhalf integer represent version identifier for the state machine in-
struction (version).

3. An uword integer represent length of this prologue (prologue length).

4. An ubyte integer represent the smallest target machine instruction
(minimum instruction length).

5. An ubyte integer represent the initial value of is stmt register (de-
fault is stmt).

6. An sbyte integer used in special opcode (line base).

7. An ubyte integer used in special opcode (line range).

8. An ubyte integer represent the first value of special opcode (opcode base).
The opcode more than or equal to this value is special opcode.

9. An array of ubyte integer represent operands of each standard opcode
(standard opcode length). The first element is associated with the first
standard opcode. The length of this array is opcode base - 1.

10. An sequence of string represent the pathname of include directories
(include directories). This sequence ends with two null bytes.

11. An sequence of string and an unsigned LEB128 integer represent the
file name of each source codes composing this compilation unit (file names).
Each entry has a null-terminated string representing a file name and
an unsigned LEB128 integer representing a id. number of include di-
rectory given in include directory.

CHAPTER 3. KLAS: KERNEL LEVEL ASPECT-ORIENTED SYSTEM39

adj_opcode = opcode - opcode_base;
address_increment = (adj_opcode / line_range)

* minimum_instruction_length;
line_increment = line_base + (adj_opcode % line_range);

Figure 3.14: Parsing a Special Opcode

Special opcodes of the statement machine program is parsed as fig-
ure 3.14 to get line increment and address increment values. Special opcode
also have following effect on the state machine:

1. Add a line increment value to line register.

2. Add a address increment value to address register.

3. Record the value of line register and address register.

4. Set basic block register false.

The value of line register can be decrement if the machine instruction com-
piler produced is for pipelined architecture. The value of address register,
however, must not decrement.

Standard opcodes of the statement machine has following opcode:

DW LNS copy Record line register and address register, and set basic block
register false.

DW LNS advance pc Add a multiplied value of a following unsigned
LEB128 integer and minimum instruction length to address register.

DW LNS advance line Add a following signed LEB128 integer to line
register.

DW LNS set file Set a following unsigned LEB128 integer to file register.

DW LNS set column Set a following unsigned LEB128 integer to column
register.

DW LNS negate stmt Set logical negation of current value to is stmt
register.

DW LNS set basic block set basic block register true

CHAPTER 3. KLAS: KERNEL LEVEL ASPECT-ORIENTED SYSTEM40

DW LNS const add pc Add a minimum instruction length×(255−opcode base)
line base

value to address register.

DW LNS fixed advance pc Add following uhalf integer to address reg-
ister.

There are only 9 opcodes defined as standard opcodes and opcode base value
should be greater than 10.

Extended Opcodes begins with zero and followed by variable length op-
codes. These value is following:

DW LNE end sequence Just set end sequence register to true and record
address register and line register.

DW LNE set address set address register to the following value. The
value will change according to the architecture and can be hold enough
size of each address. In 80x80 architecture, this size should be 4 bytes.

By executing statement machine instruction before on virtual statement
machine, we can get a map of address and line number. The difficulty is
only the way to get each section of ELF format file.

Our Implementation to Get an Address of a Line Number

Our resolver of address from number runs as daemon and used with inter-
process communication. The aspects the user wrote is parsed and passed
with this interface. The weaver passes the file name and the line number
of pointcut and the daemon returns the address of the point the weaver
suggested. The return value is formated with hex number.

Parsing Debugging Information We used BFD library to get debug info
section, debug abbrev section and debug line section. This is a library used
by gcc and gdb and the license of this library is GPL. We used this library
to manage ELF format file, especially to get sections described before.

BFD library provide us bfd get section by name function to find the offset
of proper section inside ELF format file. We used this function and find each
section. Then we used bfd seek function to move file pointer and then used
bfd bread function to get the section contents. We did this operation for
each sections.

Before use BFD library, we should execute bfd openr function to open
ELF format file. Then we should call bfd check format function to activate
the opened file. To make reading first, we also used bfd set cachable function.

CHAPTER 3. KLAS: KERNEL LEVEL ASPECT-ORIENTED SYSTEM41

After reading each section, we parsed debug info section to get informa-
tion about each compilation unit. Information of compilation unit contains
the file name of main source file composing this compilation unit. At the
time parsing the section, we push each compilation unit to the hash table
by using the file name of main source code as a key. We would like not to
degrade speed of finding the address in weaving, we do not parse debug line
section until user request us to do so.

Parsing Line Section When the weaver requested the address from the
file name and the line number, we start parsing from the offset of debug line
section, which the weaver give the name is associated to. Since the offset
is parsed before and stored in hash table, we can look up the table and
easily find the offset from the file name. We start executing the statement
machine from the offset of debug line section. We got mapping of addresses
and lines. Then we return the address which is associated with the line the
weaver required.

3.2.4 Parsing Aspects and Weaving Mechanism

Our aspect parser using XML parser of JDK since our aspect language is
written in XML format. The parser makes object of each aspect and each
aspect has the list of object representing pointcut and the object representing
advice body. The addresses of the pointcut inside the object is resolved by
the operation described before. KLAS insert hooks to these addresses and
and advice body is associated with them (Figure 3.15).

The object for pointcut has a polymorphism structure and is in the
list of pointcut. To use the pointcut object, we should distinguish which
kind of pointcut it is. If the object is function type pointcut, we call nm
command and look up the address of joinpoint. If the object is structure
type pointcut, we first find out the list of the file name and the line number
where the member of the requested pointcut exist by using extra symbol
table, and then we find out the addresses of these member access by using
mapping of the address and the line.

Both the module which resolve the line number and the file name from
the member name and the structure name and the module which resolve
the address from the line number and the file name are ran as daemon. To
find out the addresses of pointcut, we should communicate first module to
get the line number and the file name, and then second module to get the
addresses (Figure 3.16). After finding the address, KLAS userland half first
call kldload command to load advice body into OS kernel and then call a

CHAPTER 3. KLAS: KERNEL LEVEL ASPECT-ORIENTED SYSTEM42

Parse

Resolve Addresses

Symbol
Information

Aspect
definition

Parsed
Aspect

Resolved
Aspect

Advice

KLAS userland half

OS Kernel

insert hooks

Figure 3.15: Action of KLAS Userland Half

CHAPTER 3. KLAS: KERNEL LEVEL ASPECT-ORIENTED SYSTEM43

KLAS
Parser

KLAS
line resolver

KLAS
address resolver

(line,file)+

address+

(member,structure)

Pointcut

(line,file)+

Figure 3.16: Action to Resolve Addresses

system call to let KLAS kernel half to insert hooks into the OS kernel and
associate them with the advice body (Figure 3.3).

Chapter 4

Experiment

4.1 Accuracy of Positions of Hooks

A target of our system KLAS is evaluation of performance of code snippet
where the users specified. The users will measure the time at the point
where a function starts execution and at the point where a member access
of structure occurs. The users must need accuracy of a point to insert hook
where a member access occurs and a point where a function is executed and
error of the position to insert hooks should be minimized.

Nonetheless, since our system, KLAS, uses a line numbers and a file name
to find out a address to insert hook, KLAS can not accurately insert a hook
to member access of structure which occurs middle of a line. KLAS produce
symbol information with not program counter grained but line grained. That
is because of our implementation and we should reform this point to be
program counter grained accuracy. If the member is a function pointer,
however, the line should be begin with the structure. The point to insert
hook should be accurate. Even if the member is not a function pointer, the
problem is only the point where the member access occurs in the same line
of function call and it might not be so many.

Our system can not insert hooks to the point where the instructions
comes from include file either. Line information of each include file can be
get when the main source file of each compilation unit is needed. That is
because KLAS use debug information in lazy way not to delay start up of
the KLAS system and not to use memory so much. KLAS do not parse
line information of each compilation which has a information of include files
until the users want KLAS to look up the line of the main source code of the
compilation unit. This problem can be solved easily to let KLAS find out

44

CHAPTER 4. EXPERIMENT 45

relationship between main source codes and include file at compile time.

4.2 Simple Performance Measurement

We evaluate our design proposals on an 1800 MHz AMD Athlon(TM) XP
2200+ configured to use 1024MB of memory, running our modified FreeBSD
5.2.1 kernel.

4.2.1 Performance Measurement of Kernel Compile

Compile time of OS kernel should be slow by using our modified compiler.
We compared elapsed time of compiling OS kernel between original C com-
piler, GNU C compiler we do not modified and our modified C compiler.
We set ”NO MODULE=yes” option into make.conf not to make kernel mod-
ules and we used GENERIC configuration file for compiling OS kernel. Time
measurement is done by using Unix time command.

The result of this experiment is showed at table 4.1. We measured tree
times and calculated average of real time and system time and user time.
Real time means the whole elapsed time of compiling OS kernel and system
time means elapsed time only inside OS kernel and user time means elapsed
time only inside userland. According to the result, Our compiler is about
1.8 times slower than the ordinal C compiler in real time. It can be say that
this is meaningful difference between our modified compiler and normal one.
Most of time is used not inside userland but inside system. Difference of
user time is much smaller than difference of system time. Since our modified
compiler open and close the file for writing and flushing symbol information
to the file wherever member access found, Cause of this result must be
the implementation of our modified compiler. Overhead might be smaller
by caching file handler throughout compiling and we should implement the
overhead light. The total elapsed time of our modified compiler, however,
should be much smaller than compiling OS kernel whenever the users want
to change codes or change That is because the KLAS system needs only
one time for compiling and no more compile needed for changing codes and
points.

4.2.2 Performance Measurement of Execution

To examine the execution overhead of KLAS, we measured the execution
time of the kernel codes by increasing a number of points to insert hooks.
For experiment, we made a system call which call ten thousand of null body

CHAPTER 4. EXPERIMENT 46

kind of compiler real ave. user ave. sys ave.
normal gcc 294.25 211.72 79.54
modified gcc 527.86 223.06 301.07

Table 4.1: Elapsed Time for Compiling OS Kernel

 0

 10

 20

 30

 40

 50

 60

 70

 80

 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

el
ap

se
d

tim
e(

s)

of aspects

"execution"

Figure 4.1: Elapsed Time by Increasing a Number of Aspects

functions. We measured the elapsed time of the execution of the system call
by changing a number of the aspects which are weaved to these functions.
We weaved only an aspect into a function to make effects of aspects clearly.

The results of experiment is described in figure 4.1. This says the per-
formance degrade according to a number of aspects. It looks increasing
linearly from 7000 to 10000 and looks exponentially from 1000 to 7000. We
also printed log-scale graph of figure 4.1 to distinguish elapsed time increase
exponentially or not (Figure 4.2). A slope of elapsed time degrade by in-
creasing a number of aspects. The equation of elapsed time might be linearly
and not to increase exponentially.

A number of aspects, however, should not be so large when profiling OS
kernel. We also measured the elapsed time with smaller number of aspects
(Figure 4.3). According to the result, it looks that increase of elapsed time
is exponentially. We printed the same graph with log scale to distinguish the

CHAPTER 4. EXPERIMENT 47

 0.1

 1

 10

 100

 1000

 10000

 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

el
ap

se
d

tim
e(

s)

of aspects

"execution"
(x - 1000)**1 + 3

Figure 4.2: Elapsed Time by Increasing a Number of Aspects (Log-scale)

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 100 200 300 400 500 600 700 800 900 1000

el
ap

se
d

tim
e(

s)

of aspects

"execution"

Figure 4.3: Elapsed Time with a Smaller Number of Aspects

CHAPTER 4. EXPERIMENT 48

 0.001

 0.01

 0.1

 1

 10

 100

 1000

 100 200 300 400 500 600 700 800 900 1000

el
ap

se
d

tim
e(

s)

of aspects

"execution"
(x - 100)

Figure 4.4: Elapsed Time with a Smaller Number of Aspects (Log-scale)

increasing is exponentially or not (Figure 4.4). A slope of elapsed time also
degrade by increasing a number of aspects and it might be not exponentially
increasing but linearly increasing.

4.3 Performance Measurement of Network Codes

We also evaluate our design proposals on an 1800 MHz AMD Athlon(TM)
XP 2200+ configured to use 1024MB of memory and 100Base-TX Intel 82550
Pro/100 Ethernet Adaptor, running our modified FreeBSD 5.2.1 kernel. The
host communicating with machine with our modified FreeBSD kernel is the
same machine specification and running FreeBSD 5.3 kernel. Measurement
is done by sending packets from the machine with FreeBSD 5.3 kernel to the
machine with our modified FreeBSD 5.2.1 kernel. We used netstat command
to watch throughput of the communication.

We measured the throughput of TCP/IP network by inserting aspects
into network codes of OS kernel. First, we inserted aspects which have null
advice to whole TCP functions, functions whose name has ”tcp” string in
prefix. Then we inserted the aspects to whole IP functions, functions whose
name has ”ip” string. Finally, we inserted aspects into both TCP and IP
functions and measured throughput.

CHAPTER 4. EXPERIMENT 49

Kind of Advice TCP IP Both
Null Advice 98.5Mbps 98.3Mbps 48.6Mbps

Table 4.2: Throughput Change of Inserting Advice

The result of the experiment is described in table 4.2. According to
the result, the overhead of KLAS is not so big not to weave aspects both
IP and TCP codes. The reason of performance degradation might be a
latency of TCP time out of sliding window. As aspects increase, a number
of breakpoint-traps increase and inserting both aspects over the threshold
of permissible range of latency of TCP.

Chapter 5

Related Work

5.1 Kernel Profilers

5.1.1 Ktr

Ktr[15] is a kernel profiler included in BSD/OS and FreeBSD. This system
is activated if a special compile option is given when the kernel is compiled.
The users can manually insert logging code in the kernel source files before
compilation. The logging code must be written by using CTRx macros. The
syntax of CTRx macros is like a printf function and the users can easily
use these macros. Since each logging code is individually activated during
runtime according to the data structure called ktr mask, the users can turn
on and off the logging code by accessing ktr mask. Each logs are stored to
ring buffer in kernel memory at runtime and the user can move them to disk
by ktrdump command.

Unlike KLAS, Ktr does not allow the users at runtime to change the
locations where log messages are printed. If the users insert logging code at
a large number of locations, they can selectively activate only a few of them
and change which ones are activated during runtime by accessing ktr mask.
This approach, however, implies non-negligible overhead.

5.1.2 LKST

LKST[10, 9] is a kernel profiler for Linux. This system allows the users to
record current time or execute any given code at a fixed set of locations in
the kernel code. LKST covers most events which are often the cause of bugs.
Since events are stored to disk, the users can use the system for debugging
after panic of OS kernel.

50

CHAPTER 5. RELATED WORK 51

A problem of LKST is that the users cannot specify the locations where
log messages are printed. They must select from the locations predetermined
by LKST. This feature might be a good way to debugging OS kernel. This
feature, however, makes it difficult to investigate the behavior of the kernel
in a fine-grained way. That is because the users can not shorten the range
of the section they want to find performance bottlenecks. As we mentioned
before, shortening the range is needed to find out performance bottlenecks
efficiently.

5.1.3 KernInst and GILK

KernInst[24] and GILK[19] can dynamically transform the binary code of
the OS kernel. It has been successfully applied to kernel performance mea-
surement and runtime optimization. The Linux version of KernInst use the
same way with KLAS kernel half to insert codes into running OS kernel.
GILK uses jmp instruction to insert codes into OS kernel.

The users, however, must specify which machine instructions are replaced
with another code fragment. They cannot specify the replaced code with
the source-level abstraction, such as a function call and a member access.
Moreover the space available for code patches and associated data is very
limited and weaving a large number of aspects is not suitable for them.
In addition, GILK can not insert codes into the section which is not basic
block. KLAS can insert codes into the section instead because KLAS use a
breakpoint-trap for a hook.

5.2 Other Aspect-oriented Solutions

5.2.1 AspectC

AspectC[7, 3, 12, 6, 5, 4] is an aspect oriented system for the C language.
Research with AspectC showed that AOP is useful for implementing the
cache mechanism in the kernel. Caching in the kernel is a concern crosscut-
ting across a memory management module and a disk management module.
Since these two modules are in different layers, implementing this concern
without AOP is more difficult than other concerns cutting across multiple
modules at the same layer.

AspectC weaves an aspect by source-to-source translation at compile
time. It does not support dynamic weaving. Also it does not provide member
accesses as join points.

CHAPTER 5. RELATED WORK 52

5.2.2 PROSE

PROSE[20] is an early dynamic AOP system for Java. It uses JVMDI
(Java Virtual Machine Debugger Interface) to implement dynamic weaving
of aspects. It sets breakpoints at the join points specified by pointcuts. If the
thread of control reaches one of those breakpoints, the JVM (Java Virtual
Machine) transfers the control to the PROSE system so that PROSE will
execute advice code associated with the join point.

This idea is the same as ours but KLAS is a dynamic AOP system for
the OS kernel written in C. The cost of breakpoint traps in the OS kernel
is relatively smaller than in the JVM.

5.2.3 Wool

Wool[21] is another dynamic AOP system for Java. The implementation of
Wool is a hybrid of two implementation techniques. At first, Wool sets a
breakpoint at the join point picked out by a pointcut. Then, if the thread of
control frequently reaches that join point, Wool changes the implementation.
It removes the breakpoint and reload the modified bytecode in which the
advice body is embedded. This hybrid approach improves total execution
performance.

Wool can perform this hybrid approach since the binary code of a Java
program includes richer symbol information than in the C language. To
obtain as rich symbol information in C as in Java, we have extended a C
compiler for KLAS.

Chapter 6

Concluding Remarks

Investigating a network bottleneck in the OS kernel needs a sophisticated
kernel profiler that enables measuring execution time of a fine-grained code
section. Since the OS kernel consists of a large number of layered mod-
ules, aspect orientation is a significant paradigm for designing such a kernel
profiler. Furthermore, an aspect-oriented kernel profiler should be able to
dynamically weave an aspect for avoiding kernel rebooting, which seriously
decreases the efficiency of the investigation of performance bottleneck.

In this thesis, we proposed an aspect oriented system named KLAS.
This system provides fine-grained joinpoints, including member accesses to
structures, so that the users can investigate details of the behavior of the
OS kernel. KLAS extends the symbol information included in the compiled
binary. KLAS collects symbol information, such as the file name and the
line number of member-access expressions, at compile time and it makes
the collected information available for the runtime weaver of KLAS. This is
because normal C compilers produce a relatively smaller amount of symbol
information than Java compilers.

Experiment shows that our modified C compiler spent much time com-
pared with normal C compiler. Since most of time is elapsed at system space,
we should decrease a number of file I/O to decrease overhead of compiling.
Experiment also represent that execution overhead of KLAS is much smaller
when a number of aspects is small. However, experiment also showed that
overhead becomes much larger when KLAS runs with a quite large number
of aspects.

53

Bibliography

[1] A WIKIMEDIA Project: Executable and Linkable Format , Online
Publishing, URI http://en.wikipedia.org/wiki/Executable and
Linkable Format.

[2] Buck, B. and Hollingsworth, J. K.: An API for Runtime Code Patch-
ing, The International Journal of High Performance Computing Appli-
cations, Vol. 14, No. 4, pp. 317–329 (2000).

[3] Coady, Y. and Kiczales, G.: Back to the future: a retroactive study of
aspect evolution in operating system code, AOSD ’03: Proceedings of
the 2nd international conference on Aspect-oriented software develop-
ment , ACM Press, pp. 50–59 (2003).

[4] Coady, Y., Kiczales, G., Feeley, M., Hutchinson, N., Ong, J. S. and
Gudmundson, S.: The 8th Workshop on Hot Topics in Operating Sys-
tems (HotOS) (2001).

[5] Coady, Y., Kiczales, G., Feeley, M., Hutchinson, N., Ong, J. S. and
Gudmundson, S.: Exploring an Aspect-Oriented Approach to OS Code,
4th ECOOP Workshop on Object-Orientation and Operating Systems
(2001).

[6] Coady, Y., Kiczales, G., Feeley, M., Hutchinson, N. and Ong, J. S.:
Structuring Operating System Aspects, Communications of the ACM
(CACM) (2001).

[7] Coady, Y., Kiczales, G., Feeley, M. and Smolyn, G.: Using aspectC
to improve the modularity of path-specific customization in operating
system code, ESEC/FSE-9: Proceedings of the 8th European software
engineering conference held jointly with 9th ACM SIGSOFT interna-
tional symposium on Foundations of software engineering , ACM Press,
pp. 88–98 (2001).

54

BIBLIOGRAPHY 55

[8] Eclipse Organization: aspectj project , Online publishing, URI http:
//www.eclipse.org/aspectj/.

[9] Hitachi,Ldt.: LKST（Linux Kernel State Tracer) - A tool that records
traces of kernel state transition as events., Online publishing, URI
http://oss.hitachi.co.jp/sdl/english/lkst.html.

[10] Hitachi,Ltd. Fujitsu,Ltd: Linux Kernel State Tracer , Online publishing,
URI http://lkst.sourceforge.net/ (2001).

[11] Kiczales, G., Lamping, J., Mendhekar, A., Maeda, C., Lopes, C., Lo-
ingtier, J.-M. and Irwin, J.: Aspect-Oriented Programming, Technical
Report SPL97-008 P9710042, Xerox PARC (1997).

[12] Kiczales, G. and Coady, Y.: AspectC , Online publishing, URI http:
//www.cs.ubc.ca/labs/spl/projects/aspectc.html.

[13] Kiczales, G., Hilsdale, E., Hugunin, J., Kersten, M., Palm, J. and Gris-
wold, W. G.: An Overview of AspectJ, Lecture Notes in Computer
Science, Vol. 2072, pp. 327–355 (2001).

[14] Leavens, G. T. and (eds.), C. C.: FOAL 9,003 Proceedings - Founda-
tions of Aspect-Oriented Langauges Workshop at AOSD 2003.

[15] Lehey, G.: Improving the FreeBSD SMP Implementation, Proceedings
of the FREENIX Track: 2001 USENIX Annual Technical Conference,
USENIX Association, pp. 155–164 (2001).

[16] McKusick, M. K., Bostic, K., Karels, M. J. and Quarterman, J. S.: The
Design and Implementation of the 4.4BSD Operating System, Addison-
Wesley Longman,Inc. (1996).

[17] McKusick, M. K. and NEVILLE-NEIL, G. V.: The Design and Imple-
mentation of the FreeBSD Operating System, Addison-Wesley Long-
man,Inc. (2004).

[18] OS Research Group at the University of Magdeburg: The PURE Ma-
nipulator , Online publishing, URI http://ivs.cs.uni-magdeburg.
de/∼puma/.

[19] Pearce, D. J., Kelly, P. H. J., Field, T. and Harder, U.: GILK: A
Dynamic Instrumentation Tool for the Linux Kernel, Computer Per-
formance Evaluation / TOOLS , pp. 220–226 (2002).

BIBLIOGRAPHY 56

[20] Popovici, A., Gross, T. and Alonso, G.: Dynamic weaving for aspect-
oriented programming, AOSD ’02: Proceedings of the 1st international
conference on Aspect-oriented software development , ACM Press, pp.
141–147 (2002).

[21] Sato, Y., Chiba, S. and Tatsubori, M.: A selective, just-in-time as-
pect weaver, GPCE ’03: Proceedings of the second international confer-
ence on Generative programming and component engineering , Springer-
Verlag New York, Inc., pp. 189–208 (2003).

[22] Ségura-Devillechaise, M., Menaud, J.-M., Muller, G. and Lawall, J. L.:
Web cache prefetching as an aspect: towards a dynamic-weaving based
solution, AOSD ’03: Proceedings of the 2nd international conference on
Aspect-oriented software development , ACM Press, pp. 110–119 (2003).

[23] Spinczyk, O., Gal, A. and Schröder-Preikschat, W.: AspectC++: an
aspect-oriented extension to the C++ programming language, CRPITS
’02: Proceedings of the Fortieth International Confernece on Tools Pa-
cific, Australian Computer Society, Inc., pp. 53–60 (2002).

[24] Tamches, A. and Miller, B. P.: Fine-Grained Dynamic Instrumentation
of Commodity Operating System Kernels, Operating Systems Design
and Implementation, pp. 117–130 (1999).

[25] the AspectC++ project: The Home of AspectC++, Online publishing,
URI http://www.aspectc.org/.

[26] TIS Committee: Tool Interface Standard(TIS) DWARF Debugging In-
formation Format Specification Version 2.0 , Online Publishing, URI
http://www.x86.org/ftp/manuals/tools/dwarf.pdf (1995).

[27] TIS Committee: Tool Interface Standard(TIS) Executable and Linking
Format(ELF) Specification version 1.2 , Online publishing, URI http:
//www.x86.org/ftp/manuals/tools/elf.pdf (1995).

