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ABSTRACT

We present a source-level kernel profiler named KLAS. Since
this profiler is based on dynamic aspect-orientation, it allows
the users to describe any code fragment in the C language.
That code fragment is automatically executed for collecting
detailed performance data at execution points specified by
the users. Enabling dynamic aspect-orientation is crucial
since otherwise the users would have to reboot an operat-
ing system kernel whenever they change aspects. Although
KLAS dynamically transforms the binary of a running op-
erating system kernel for weaving an aspect at runtime, un-
like other similar tools, the KLAS users can specify those
execution points, that is, joinpoints through a source-level
view. For example, the users can describe a pointcut that
picks up accesses to a member of a structure; they do not
have to explicitly specify the addresses of the machine in-
structions corresponding to the member accesses. We have
implemented this feature by extending a C compiler to pro-
duce augmented symbol information. KLAS has been im-
plemented for the FreeBSD operating system with the GNU
C compiler.

1. INTRODUCTION

During the history of operating systems (OS), performance
tuning of OS kernels has been an important topic for kernel
developers. Even nowadays, the kernel developers are mak-
ing serious efforts to run the OS kernel as fast as possible.
They are still improving scheduling algorithms, implemen-
tation of network stack, lock mechanism, and so on. For
example, both Linux and FreeBSD recently introduced new
implementation of their process schedulers.

Investigating a performance bottleneck is the important first
step for improving the performance of OS kernels. To do
this, using a sophisticated performance profiling tool for OS
kernels is mandatory. Here “sophisticated” means that the
profiler reports not only the number of calls to each function
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constituting an OS kernel but also more detailed data spec-
ified by the users. In fact, we are studying a performance
bottleneck of network processing of the FreeBSD operat-
ing system since we observed inappropriate behavior of the
network module when multiple processes are simultaneously
executing network I/O operations. We need a profiler that
allows us to produce a log message including time stamp
at any execution points (a.k.a joinpoints in AOP) that we
specify.

This paper presents our kernel profiler called KLAS. It is a
dynamic aspect-oriented system and allows the users to exe-
cute a code fragment as advice at specified execution points
in an OS kernel. The advice is normally used to record time
stamps but it can also executing any code written in the C
language, for example, printing a log message. Since KLAS
is a dynamic aspect-oriented system, the users can dynam-
ically weave an aspect with a running OS kernel. Enabling
dynamic weaving is crucial since the users can avoid reboot-
ing a OS kernel whenever they change an aspect during in-
vestigation of kernel performance. For KLAS, we have devel-
oped a new implementation technique for dynamic aspect-
oriented systems. KLAS replaces machine instructions in
an OS kernel with breakpoint-trap instructions so that ad-
vice is woven at the address of those instructions. To enable
the users to specify pointcuts with a source-level view, such
as accesses to a member of a structure, we modified a C
compiler so that it will produce extra symbol information.
KLAS uses this extra information to identify the machine
instructions that correspond to the specified pointcut. We
implemented KLAS for the FreeBSD operating system with
the GNU C compiler.

The rest of this paper is organized as follows. Section 2 de-
scribes requirements for kernel profilers. Section 3 presents
our new implementation technique for dynamic aspect ori-
ented programing (AOP). It also shows an overview of the
current implementation of KLAS. Section 4 compares KLAS
and other systems, including AOP systems and non-AOP
systems. We conclude this paper in section 5.

2. REQUIREMENTS

To investigate a performance bottleneck, using a perfor-
mance profiling tool is mandatory; in particular, a tool that
can measure the elapsed time between interesting execution
points in the OS kernel is useful. However, existing tools
or techniques do not satisfy our requirements for investigat-



ing kernel performance. Since modern OS kernels are imple-
mented with object orientation in the C language, a number
of interesting execution points are calls to functions speci-
fied by function pointers. That profiler does not support
such execution points; it only supports functions statically
resolved. We below mention our requirements for such a
kernel profiler.

First, the kernel profiler must enable the users to measure
elapsed time between given two execution points. The users
must be able to give those execution points in the kernel at
runtime and change them, if necessary, without rebooting
the kernel. The ability to change the execution points is
crucial. The users would first measure the execution time of
a large code section and then they would gradually narrow
the range of that code section to find a performance bottle-
neck. Since rebooting the whole kernel is a time consuming
task, frequent rebooting significantly decreases our produc-
tivity. Rebooting also clears the whole memory image and
thus the internal data of the network module. After reboot-
ing, the behavior that the users want to investigate might
disappear. Furthermore, the code snippet for measuring the
elapsed time must be given by the users since the users may
want to measure the elapsed time between the execution
points in which a certain variable holds a specific value. To
do this, the measurement code must check the runtime value
of that variable but only the users can give such code de-
pending on a particular use case. Also, the users may want
to print a log message, for example, to record the value of
an interesting variable.

Second, the profiler should support the C language. The
users must be able to specify execution points by indicating
a point in a source file. This is mainly because the FreeBSD
operating system, and other major operating systems like
Linux, are written in C. Several features of the C language
makes it difficult to develop a kernel profiler. For example,
the macro processor makes it difficult to specify an execution
point and the compiled binary includes only limited symbol
information.

Third, the execution points that the users can specify for
profiling must be fine grained. The possible execution points
must include not only function calls but also member ac-
cesses, that is, accesses to members of structures. A num-
ber of execution points that we are interested in for perfor-
mance profiling are function calls through function pointers.
Modern OS kernels use function pointers for inter-module
function calls since function pointers can be used for im-
plementing a kind of polymorphism in the C language. If
the read or write system call is issued, the OS kernel in-
vokes a function pointed to by a function pointer associated
with the accessed 1/O device. The function pointer associ-
ated with each I/O device points to the read/write function
dedicated for that device. The VFS (Virtual File System)
uses the same technique for dispatching to a function ap-
propriate to each type of file system. The network module
of FreeBSD and NetBSD, which are descendants of 4.3BSD,
uses this technique for deallocating a memory buffer (mbuf)
in a means depending on a network device.

Finally, the prove effects due to the profiling should be min-
imized. If the overheads of measuring elapsed time is large,

the obtained data would be obviously inaccurate. Once nec-
essary data are obtained, the profiling code for the time
measurement must be removed to avoid disturbance of the
kernel behavior while the elapsed time of a different code
section is being measured.

A naive approach for performance profiling of OS kernels
is to manually insert profiling code into source files of the
kernel, compile the source files, and reboot the kernel. How-
ever, this approach is error-prone and does not satisfy our
requirements since it needs rebooting.

3. KLAS: KERNEL LEVEL
ASPECT-ORIENTED SYSTEM

To fulfill all our requirements, we have developed a new
dynamic aspect-oriented system called KLAS (Kernel-level
Aspect-oriented System) for FreeBSD 5.2.1. AOP is the
most promising approach for our requirements. KLAS re-
ceives the definition of an aspect from the users through a
KLAS command running in the userland. Then it dynam-
ically patches the running OS kernel to weave that aspect
into the kernel at runtime. Since KLAS uses a modified ver-
sion of gcc for augmenting the symbol information contained
in the compiled binary of the OS kernel, it allows the users
to pointcut member accesses at the source-code level.

3.1 Overview of the KLAS system

KLAS is a dynamic aspect-oriented system for the OS kernel
of FreeBSD. The users can dynamically weave an aspect
into the running kernel so that they can change the code
section of which they measure the execution time. They do
not have to reboot the kernel when they change a woven
aspect. This feature improves the efficiency of the users’
investigation since they do not have to wait until the kernel
is rebooted and the behavior that they want to investigate
appears again. They can start investigation as soon as they
find the behavior that they are interested in.

KLAS allows the users to pick out member accesses (accesses
to a member of a structure) by pointcut. As we have already
mentioned, it is a crucial feature that the users can specify
that an advice body is executed when a particular member of
function pointer type is accessed. For example, this feature
helps us investigate a performance bottleneck of network
processing since we can easily measure the execution time
of functions accessing the mbuf structure.

An aspect definition for KLAS is described in XML. Fig-
ure 1 shows an example of an aspect definition for KLAS.
It pointcuts accesses to the member ext_free of the m_ext
structure. Since the value of ext_free is a function pointer,
this member access is a function call. The advice body as-
sociated with this pointcut prints the current time and the
arguments to the function when that member access is per-
formed. In KLAS, special variables $eip, $ebp and $esp are
available within advice body. They represent eip, ebp and
esp register.

3.2 Implementation

KLAS inserts the hook code into the OS kernel for execut-
ing advice body when the thread of control reaches there.
The overhead due to the hook code is minimum since KLLAS



<aspect name="log_mbuf_clean">
<pointcut>
<member-access name="ext_free" struct="m_ext" />
<pointcut>
<before-advice>
void* resolve_arg(long eip, long ebp, int argn)
{
/* resolve the N-th argument of
ext_free function. */
}
struct timespec ts;
nanotime (&ts) ;

printf ("mbuf_clean@}d,’11ld, arg:0x/x,0x%x\n",
ts.tv_sec, ts.tv_msec,
resolve_argument ($eip, $ebp,1),
resolve_argument ($eip, $ebp,2));
</before-advice>
</aspect>

Figure 1: Aspect Definition in KLAS

dynamically inserts the hook code only at the places corre-
sponding to the joinpoint shadow picked out by given point-
cuts. If the aspect is unwoven, the inserted hook code is also
removed from the running OS kernel. Minimizing the over-
head is important since the primary application of KLAS
is to investigate a performance bottleneck in the OS kernel.
If the overhead of using aspects is not negligible, the users
may be confused by the disturbance by the prove effects and
have a trouble to find a real performance bottleneck.

A unique feature of KLAS is that KLAS enables member
accesses to be picked out by a pointcut. To do this, KLAS
expands the symbol table contained in the compiled binary.
This fine-grained pointcut helps the users to efficiently in-
vestigate a performance bottleneck in the OS kernel. The
users can specify a pointcut to pick out interesting member
accesses at the source-code level, and KLAS refers to the
expanded symbol table so that it can insert the hook code
at the machine instructions corresponding to those member
accesses (Figure 2).

To use KLAS, the OS kernel must be compiled by our ex-
tended the GNU C compiler (gcc) with the -g debug op-
tion. During compilation, our compiler collects the names
of structures and their members with the line numbers and
the file names in which those members are accessed. The
collected information is stored in an auxiliary file of the com-
piled kernel. Note that this information is not included in
the normal symbol table of the compiled binary even if the
-g option is given to the compiler. For example, the GNU C
compiler discards this information after the parse tree is cre-
ated; the structure names and the member names are con-
verted from character strings to integer ID. numbers. The
GNU C compiler uses not names but those ID. numbers for
identifying structures and members after the parsing phase.

If KLAS is requested to dynamically weave a new aspect
while the OS kernel is running, it refers the symbol infor-
mation generated when the kernel was compiled. KLAS
uses that information for identifying the addresses of the
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Figure 2: Implementation of KLAS

machine instructions corresponding to the joinpoints picked
out by given pointcuts. To identify the address of a function,
KLAS simply refers to the regular symbol table by invoking
the nm command. To identify the address of a member ac-
cess, KLAS performs the following three steps. First, KLAS
refers to the auxiliary file generated by our extended com-
piler and obtains the file name and the line number at which
that member access is executed. Then KLAS accesses the
debug information, which is included in the regular sym-
bol table. It uses the file name for identifying the name of
compilation unit, which is an object file constituting the OS
kernel, and it finally accesses the debug_line information (the
DWARF?2 format) of that compilation unit. The address of
the line specified by the line number can be found in the
debug_line information, which is also included in the regular
symbol table. Since KLAS can obtain only the address of the
first machine instruction of the line including the joinpoint,
it cannot insert the hook code exactly at the instruction
corresponding to that joinpoint. However, we believe that
this limitation is not a serious problem for our application,
which is investigating a performance bottleneck of the OS
kernel. Moreover, this approach allows the users to use the
same compiler that they are usually using for compiling the
kernel because the information our modified GNU C Com-
piler generates is only a mapping between member accesses
and line numbers.

KLAS uses the GNU C compiler (gcc) for compiling an ad-
vice body and the kldload command for loading the compiled
advice body into the kernel land. After parsing an aspect
definition written in XML, KLAS extracts an advice body
and attaches the prologue and the epilogue to the advice
body to make a source file of a loadable kernel module. This
produced source file is compiled by gcc. The compiled bi-
nary is loaded by the kldload command. The advice body
can be any code fragment if it is a valid C program in the
kernel.

The loaded advice body is woven when a system call for
dynamic weaving is issued. KLAS identifies the machine in-
struction corresponding to the joinpoint and replaces it with
the breakpoint-trap instruction, which is the hook code of
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Figure 3: KLAS in the kernel space
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Figure 4: Execution of Advice

KLAS (Figure 3). This replacement is done while the OS
kernel is running. Since the length of the breakpoint in-
struction of the x86 architecture is one byte, any machine
instruction can be replaced with the breakpoint instruction.
If the aspect is unwoven, the original machine instruction is
substituted for the breakpoint-trap instruction. Note that
the jmp instruction cannot be used as the hook code since
the length of that instruction is three bytes. If an one-byte
instruction located at the end of an basic block is replaced
with the jmp instruction, the first instruction of the adja-
cent basic block is overwritten by the jmp instruction. This
may cause system hang-up. However, according to our ex-
periment, using the jmp instruction for the hook is about 25
times faster than using the breakpoint-trap instruction. We
are planning extend KLAS to use the jmp instruction if the
joinpoint is in the basic block.

When the thread of control reaches the breakpoint instruc-
tion substituted by KLAS, a breakpoint trap occurs (Fig-
ure 4). Then the trap handler executes the map_hook_code
function, which we implemented. This function looks up the
advice body corresponding to that breakpoint instruction,
that is, the joinpoint and then executes that advice body.
Finally, this function executes the original instruction re-
placed with the breakpoint instruction. KLAS execute this
in the same way as DDB, the kernel debugger of FreeBSD,
does.

4. RELATED WORK

4.1 Kernel Profilers
Ktr[8] is a kernel profiler included in BSD/OS and FreeBSD.
This system is activated if a special compile option is given

when the kernel is compiled. The users can manually insert
logging code in the kernel source files before compilation.
The logging code must be written by using CTRx macros.
Since each logging code is individually activated during run-
time according to the data structure called ktr_mask, the
users can turn on and off the logging code by accessing
ktr_mask. Unlike KLAS, Ktr does not allow the users at run-
time to change the locations where log messages are printed.
If the users insert logging code at a large number of loca-
tions, they can selectively activate only a few of them and
change which ones are activated during runtime. However,
this approach implies non-negligible overhead.

LKSTI1, 2] is a kernel profiler for Linux. This system allows
the users to record current time or execute any given code
at a fixed set of locations in the kernel code. A problem of
LKST is that the users cannot specify the locations where
log messages are printed. They must select from the loca-
tions predetermined by LKST. This feature makes it difficult
to investigate the behavior of the kernel in a fine-grained
way.

KernInst[13] and GILK[9] can dynamically transform the bi-
nary code of the OS kernel. However, the users must specify
which machine instructions are replaced with another code
fragment. They cannot specify the replaced code with the
source-level abstraction, such as a function call and a mem-
ber access.

4.2 Aspect-oriented Solutions

AspectC++[12] is an aspect oriented system for the C++
language. Although it satisfies most of our requirements,
it is a static aspect-oriented system. If the users change
profiling code, that is, aspect code, the OS kernel must be
recompiled and rebooted.

uDyner[11] is a dynamic aspect-oriented system for the C
language, but the runtime overhead is not negligible. It in-
serts special hook code at the shadow of all the join-points
at compile time. Some of the inserted hooks are activated
by the pointcut description given at runtime and then they
invoke an advice body when the thread of control reaches
those hooks. That is, uDyner inserts the hook code at com-
pile time at all the places in which the users may potentially
want to measure the execution time. Since the number of
the places in which the hook code must be inserted is usually
large, the overhead due to the hook code is not negligible.

TinyC2[7] is another dynamic aspect oriented system for the
C language. Unlike pDyner, TinyC? can directly insert and
remove the hook code in/from the compiled binary during
runtime. This capability is provided by Dyninst[4], which
is the backend system of TinyC?. Since the hook code is
inserted at only the places selected at runtime according to
the given pointcut description, the overhead due to the hook
code is minimized. However, TinyC? provides only a limited
kind of execution points as joinpoints. For example, func-
tion calls are joinpoints but member accesses are not since
the compiled binary of a C program does not include the in-
formation about which machine instruction corresponds to
member accesses. The users must explicitly specify which
machine instruction they want to pick out by pointcut de-
scription.



TOSKANA[3] is a dynamic aspect oriented system for OS-
kernels. It runs on the NetBSD operating system. It uses
the same approach as KLAS for loading advice. Since the
hook is implemented with a branch instruction, the execu-
tion time of advice is faster than KLLAS’s. However, since
it does not use a modified compiler, it cannot pick out a
member access as a joinpoint.

AspectC is an aspect oriented system for the C language.
Research with AspectC showed that AOP is useful for imple-
menting the cache mechanism in the kernel[6, 5] . Caching
in the kernel is a concern crosscutting across a memory man-
agement module and a disk management module. Since
these two modules are in different layers, implementing this
concern without AOP is more difficult than other concerns
cutting across multiple modules at the same layer. AspectC
weaves an aspect by source-to-source translation at compile
time. It does not support dynamic weaving. Also it does
not provide member accesses as joinpoints.

PROSE[10] is an early dynamic AOP system for Java. It
uses JVMDI (Java Virtual Machine Debugger Interface) to
implement dynamic weaving of aspects. It sets breakpoints
at the joinpoints specified by pointcuts. If the thread of con-
trol reaches one of those breakpoints, the JVM (Java Virtual
Machine) transfers the control to the PROSE system so that
PROSE will execute advice code associated with the join-
point. This idea is the same as ours but KLAS is a dynamic
AOP system for the OS kernel written in C. The cost of han-
dling breakpoint traps in the OS kernel is relatively smaller
than in the JVM.

5. CONCLUSION

Investigating a network bottleneck in the OS kernel needs
a sophisticated kernel profiler that enables measuring exe-
cution time of a fine-grained code section. Since the OS
kernel consists of a large number of layered modules, aspect
orientation is a significant paradigm for designing such a ker-
nel profiler. Furthermore, an aspect-oriented kernel profiler
should be able to dynamically weave an aspect for avoiding
kernel rebooting, which seriously decreases the efficiency of
the investigation of performance bottleneck.

In this paper, we proposed an aspect oriented system named
KLAS. This system provides fine-grained joinpoints, includ-
ing member accesses to structures, so that the users can
investigate details of the behavior of the OS kernel. KLAS
extends the symbol information included in the compiled
binary. KLAS collects symbol information, such as the file
name and the line number of member-access expressions, at
compile time and it makes the collected information avail-
able for the runtime weaver of KLLAS. This is because normal
C compilers produce a relatively smaller amount of symbol
information than Java compilers. We are currently still im-
plementing KLAS. The runtime weaver and the enhanced
the GNU C compiler have been implemented but a language
processor for compiling an aspect written in XML are still
being implemented.
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