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Abstract
This paper proposes a Java to CUDA runtime program trans-
lator for scientific-computing applications. Traditionally,
these applications have been written in Fortran or C with-
out using a rich modularization mechanism. Our translator
enables those applications to be written in Java and run on
GPGPUs while exploiting a rich modularization mechanism
in Java. This translator dynamically generates optimized
CUDA code from a Java program given at bytecode level
when the program is running. By exploiting dynamic type
information given at translation, the translator devirtualizes
dynamic method dispatches and flattens objects into simple
data representation in CUDA. To do this, a Java program
must be written to satisfy certain constraints. This paper
also shows that the performance overheads due to Java and
WootinJ are not significantly high.

Categories and Subject Descriptors D.3.3 [PROGRAM-
MING LANGUAGES]: Language Constructs and Features

General Terms Languages

Keywords HPC, CUDA, Java

1. Introduction
A program for scientific computing has been written in For-
tran — by real programmers. This is mainly for achiev-
ing the highest performance of underlying hardware called
a supercomputer but, as modern machine architecture such
as distributed memory, multicores, and GPGPU is getting
adopted, the programming costs have been significantly in-
creased. Writing a classic Fortran program for modern su-
percomputers is never a simple task today if achieving the
highest performance is a primary goal.

Modern supercomputers require programmers to consider
not only scientific computation but also performance-aware
coding. How to parallelize computation, how to minimize
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data transfers, and how to utilize maximum memory band-
width are examples of performance-aware coding. Program-
mers have to deal with those two concerns at the same time
and classic languages including Fortran and C do not pro-
vide sufficient modularization capability for separately im-
plementing the two concerns in a clear and easy manner.
Thus the resulting code is tangling and increases develop-
ment and maintenance costs.

This tangling problem is not only on the programming in
Fortran or the like. Popular tool sets for high-performance
computing (HPC) such as MPI [7] and PGAS[10] provides
relatively lower-level abstraction, which does not hide un-
derlying hardware architecture so that programmers can be
aware of it for performance tuning. The tangling problem
could be addressed by introducing a modern language with
a rich modularity mechanism but the performance penalties
due to modularization has been a major obstacle to the adop-
tion of such a language in HPC.

This paper presents our approach to make rich modular-
ization available in HPC. As the first step, we are developing
a Java-based programming system for CUDA [8], named
WootinJ. CUDA is Nvidia’s programming environment for
GPGPU (General-Purpose Graphics Processing Units, or
GPU in short) computing. Since GPU is getting widely
adopted by top supercomputers, for example, the world’s
5th fastest supercomputer TSUBAME 2.0 [9] of our uni-
versity, supercomputer programmers have to utilize GPUs
and hence write a CUDA program to obtain the best per-
formance. The language used in CUDA is an extension of
the C language. WootinJ provides a program translator from
Java to CUDA, which performs the translation at runtime
for advanced optimization. Despite its runtime code trans-
lation, the performance overhead is not significantly high.
WootinJ exploits dynamic type information and performs
devirtualization and flattens object structures so that they
will be simple data representations in C. On the other hand,
WootinJ accepts only a Java program written in the restricted
form.

2. A CUDA program
In CUDA, programmers have to carefully consider under-
lying hardware architecture. Figure 1 shows simplified ex-
amples of CUDA programs. In both programs, pre and post
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Figure 1. CUDA code samples
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Figure 2. The architecture of Nvidia GPU

functions implement the core logic of scientific computing
and they are run on GPUs. Since CUDA programs are writ-
ten in the SPMD (Single Program Multiple Data) style, these
functions are responsible for the computation on only part
of array elements. At runtime, a large number of threads
are created to execute those functions in parallel. In CUDA,
<<<grid,block>>> following a function name specifies that
the function is invoked by a number of threads.

An interesting problem is synchronization. In CUDA,
programmers can be aware of the underlying GPU archi-
tecture to obtain the best performance. The flip side is that
they must write a program with lower-level abstraction, for
example, with respect to synchronization. Suppose that the
post function must start after all the invocations of the pre
function. In the left program in Figure 1, the main function
is run on a host processor (CPU) creates threads on a GPU
and each thread executes the run function in parallel. The
run function calls the pre function and then syncthreads
function for synchronization. The post function is called af-
ter syncthreads.

This program, however, works only when the total num-
ber of threads is small since the physical synchronization is
available only for the threads running on the same Streaming
Multiprocessor (SM). Figure 2 illustrates the basic architec-
ture of Nvidia GPUs. A GPU has several SMs (Streaming
Multiprocessors), each of which consists of 32 CUDA cores
(or Streaming Processors, SPs) in the Fermi generation and
performs SIMD (Single Instruction Multiple Data) comput-
ing with them. Hence, physical synchronization is available
only per 32 threads. CUDA also provides a logical thread
group called a block. The syncthreads function synchro-
nizes all the threads in the same logical group although these
threads must run on the same SM and thus the maximum
parallelism is limited.
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Figure 3. A synchronization framework in Java

If the number of threads is large, the right program in
Figure 1 should be used to increase parallelism. Note that
this program does not include a call to syncthreads. The
main function directly invokes the pre and post functions
with <<<grid,block>>>. Each function is executed in par-
allel in the SPMD style. Since CUDA implicitly performs
global synchronization to wait until all the threads started by
<<<grid,block>>> complete, the program does not have to
explicitly perform synchronization. However, this program
is slow if the number of threads is small. Since the main
function runs on a CPU, the overheads due to the invocation
by <<<grid,block>>> is not negligible.

From the viewpoint of software maintenance, the pre and
post functions should be modularized separately from the
main (and run) function. For the latter, two sets of reusable
modules should be prepared for large and small problem
sizes and programmers should be able to choose between
them. Implementing the latter module to be generic and
reusable is significantly difficult since language constructs
used for implementing reusable modules are not available in
CUDA. For example, function pointers are not available. The
reason would be making compiler optimization for SIMD
programs easy.

If a Java-like language were available, the module sep-
aration above would be straightforward although program-
mers must accept serious performance penalties. For exam-
ple, Figure 3 shows a pseudo framework for synchronization
in Java. The computation concern corresponding to the pre
and post functions is represented by the Logic interface. The
performance concern corresponding to the main (and run)
function is represented by the CUDA class. Programmers
write concrete classes implementing or inheriting from Logic
and CUDA. SyncFramework is a framework class that com-
bines instances of Logic and CUDA according to the prob-
lem size. The run method in another framework class CUD-
AKicker corresponds to <<<grid,block>>> in CUDA, which
starts threads on a GPU in the SPMD style.



3. WootinJ
To allow writing a program in a Java-like language for
GPGPU with acceptable overheads, we are developing a
programming system named WootinJ. The main component
of WootinJ is a Java-to-CUDA runtime translator. It trans-
lates a Java method implementing computation that will run
on a GPU. We call this method a kernel method to follow the
naming convention of CUDA. WootinJ runs on the standard
JVM on a host processor (CPU). During runtime, WootinJ
receives a kernel method, the target object that the method is
called on, and the arguments passed to the method. Then it
translates the method and the related methods called within
that method. The generated code is a CUDA program. Woot-
inJ then compiles it, automatically transfers it to a GPU, and
executes it there with the arguments.

Since WootinJ receives a target object and actual argu-
ments when translating a Java method, it generates opti-
mized code by using the actual types of the target and the
actual arguments. All dynamic method dispatches are devir-
tualized and Java objects are flattened into plain data repre-
sentation available in C, such as an array and a set of prim-
itive values. Indirect field references are statically resolved.
To help these optimization techniques, the types of all object
references must be statically resolvable; programmers must
guarantee that no polymorphism is used in the Java methods
translated by WootinJ. Only the field values of the target ob-
ject and the parameters to the kernel method are exceptions.

This optimization allows the generated CUDA code to
show comparable performance against the equivalent pro-
gram written by hand. Although the overheads due to run-
time code generation is not small and the constraints on
polymorphism is not negligible, these drawbacks are ac-
ceptable for our primary goal, building a framework in Java
for separating computation-concern code and performance-
concern code. An important usage of polymorphism in
framework code is to combine objects implementing dif-
ferent concerns. In a typical framework in scientific com-
puting, the parameters to a kernel method are such objects
implementing a concern and other variables used in the ker-
nel method do not need polymorphism. Thus, we expect
that the constraints on polymorphism are not a serious draw-
back. Furthermore, the values of those parameters do not
change during a large number of iterations of executing the
kernel method within a kernel loop. This lets WootinJ reuse
the generated CUDA code and reduces the overhead due to
runtime code generation.

3.1 The execution model
WootinJ converts a Java method to an optimized CUDA code
at runtime. This translater constructs a Java AST(Abstract
Syntax Tree) from the Java bytecode of the method at run-
time. From that AST, this translater generates a CUDA code.
That code is compiled by nvcc, CUDA compiler, and Woot-

Listing 1. Java’s dynamic method dispatch sample

class A{ @kernel int getI (){ return 10;}}
class B extends A{

@kernel int getI (){ return -1;}}

@kernel void run(A a,A b){
int x=a.getI ();
int y=b.getI (); }

inJ runs it on GPU. Other methods called from that method
are also converted into CUDA code.

WootinJ’s main method is CUDAKicker.run:

CUDAKicker.run(Dim3s dim3s , Object target ,
String method , Object [] args)

The first argument dim3s is the informations of number of
threads. The second argument target is the object that the
kernel method is called on. The third argument method is
the name of that kernel method. The last argument args is
the arguments passed to that kernel method. With this run
method, the users can specify which method is run on a GPU
with what arguments.1

The data that are used in a kernel method are automati-
cally send to GPU memory from CPU memory (Java mem-
ory). But the data that are rewritten in GPU are not automat-
ically got back from GPU memory. This design is for speed,
because the translation data between CPU and GPU is very
heavy. The users want to use that data in CPU, they must ex-
plicitly use a WootinJ’s method CUDAData.get. For exam-
ple, in the case of using an array of int, named arr, WootinJ
automatically sends that data and manages that the pointer in
a GPU memory. To get back that data to CPU memory, the
user write CUDAData.get(arr). CUDAData.get method’s
argument is not a pointer but a plain Java object. The pointers
are managed by WootinJ. The users can forget the pointers.

Kernel methods can be run as pure Java methods. The
user can choose either GPU mode or pure Java mode. Since
the user can debug in the pure Java environment.

3.2 Devirtualization
For optimizing kernel methods, WootinJ changes dynamic
method dispatches to static method dispatches in those at
a point of running those. Actually each method dispatch
in kernel methods is changed to a unique function call in
the generated CUDA code. In the Listing 1, the appearance
types of arguments of run method are the same. @kernel is
an annotation of kernel method. If the actual type of object b
is B and the actual type of a is A, this code will be converted
to the Listing 2. Each method call is converted to CUDA
function call( device means that is a function called from
global functions). Each function body is got from the Java
method body determined by the actual type.

This optimization requires following conditions.

1 A call to CUDAKicker.run(Dim3s dim3s,Object target) is equiv-
alent to a call to CUDAKicker.run(dim3s, target, "run", null).



Listing 2. converted CUDA code

__device__ int A_getI (){ return 10;}
__device__ int B_getI (){ return -1;}
__global__ void run (){

int x=A_getI ();
int y=B_getI (); }

Listing 3. a sample of using Java objects

final class A{ B b; int x;}
final class B{ int y;}

@kernel public void run(A a){
int sum = a.x+a.b.y; }

1. In the kernel method, both types of sides in the assign-
ment expression must be strcitfinal.

2. The return type of a kernel method must be strictfinal.

3. The array in the kernel method must be strictfinal.

4. The kernel method must not call non kernel methods(or
Constructors).

Strictfinal is an attribute of type (We will explain about
strictfinal later). This attribute warrants to be same an ap-
pearance type and an actual type. From second and forth
condition, any objects generated in kernel method are strict-
final. On the other hand, objects generated at outside kernel
methods are not required strictfinal. These objects are given
to a kernel method as the parameters or fields of it. These
conditions are able to be checked at compile time.

The definition of strictfinal are shown below.

1. Primitive types are strictfinal.

2. An array that its element type is strictfinal, is strictfinal.

3. The class that is final class and all fields (include super
classes’ fields) are strictfinal, is strictfinal.

For example, there is an object t that its appearance type is
strictfinal type T, the actual type of t must be T. Because
the strictfinal type has no subtypes. Any method calls from
a strictfinal object can be determined a unique method body
from its appearance type.

3.3 Flattening the structure of an object
WootinJ supports the optimization for field accesses in Java.
Java’s field access may be not small overhead as a CUDA
code. Since WootinJ flattens structures of objects in kernel
method. For example, we consider the situation in Listing
3. There are some ways to change this Java code to CUDA
code. Maybe a simple way is to use the C’s struct and arrow
operator(like a.b-¿y), but the arrow operator costs some time
to access to the structs. In this case, if there is no side-effect
for the object a in the kernel method, we can consider the
object a as a group of values (x and y). Since we can get the
result in Listing 4. In this way, WootinJ can change objects
to groups of primitive values under certain conditions.

This optimization requires the following conditions.

Listing 4. flattern CUDA code

__global__ void run(int x,int y){
int sum = x+y; }

1. The target object’s type is not the recursive type.

2. After creating an alias of the target object, there is no
side-effect for those.

3. If the tager object is a paramater of the kernel method,
there is no side-effect for it.

The side-effect means an assignment to the variable or the
field. WootinJ considers Java class as a group of primitive
types, since cannot flatten the recursive type. And current
WootinJ does not have the alias analysis feature, the second
condition is required.

If a return object is the flatten target object, WootinJ will
do in-line expansion for that method. Since WootinJ does not
do the interprocedural analysis.

3.4 Other Issues
The semantics of Java is not completely preserved. For ex-
ample, an array in Java is converted to an array in C. In the
generated CUDA code, even if there is an access to the array
with negative index, any exceptions will be not thrown. The
semantics of multidimensional array is not preserved, either.
The multidimensional array in Java is expressed as an array
of arrays, but in the generated CUDA code, it is converted a
multidimensional array in C.

4. Micro benchmark
We did the micro benchmark about our tool’s performance.
We used the synchronization sample, to add to each elements
of the array with that next elements. The pre method adds the
next element on the right hand, and post method adds the left
element. That calculation is run ten million times.

We developed three versions programs for that. The first
is WootinJ version. We developed a small threads sam-
ple(1024 threads: in our micro benchmark’s environment,
the max size of threads per SM is 1024) using WootinJ and
a big threads(2048 threads) sample using WootinJ. The Sec-
ond version is the writing CUDA codes in hand that are same
applications with WootinJ version’s. The last is the pure C
version that do not use the GPU.

We measured three points of the performance. The first
point is the overhead of generated CUDA code. For this, we
measured the GPU running time for the WootinJ version and
the hand version. The second point is a time of generating
and compiling CUDA code. The last point is a comparison
of CPU and GPU. For this point, we measured the running
time of pure C code without GPU. The environment of this
micro benchmark is TSUBAME 2.0 [9] that CPUs are two
Intel Xeon 2.93 GHz (6 cores) , GPUs are three NVIDIA
Tesla M2050 and capacity of memory is 54GB.



The result is shown in Table 1. The time of generating
and compiling CUDA code are about 5 sec. This overhead is
large, but this is done only once on the application runtime.
If the whole calculation time is large, this overhead is not
serious. About the GPU running time, WootinJ version is
bit slower than Hand version. The 1024 version is not so
different. The 2048 version’s overhead is about 13% of the
Hand version. Both versions of WootinJ and Hand are faster
than the C version.

Table 1. micro benchmark result

GPU time[sec]
CUDA code generation

and compile[sec]
WootinJ 1024 15.61 ± 0.03 5.01 ± 0.01
WootinJ 2048 79.52 ± 1.69 5.06 ± 0.01

Hand 1024 15.56 ± 0.01 -
Hand 2048 68.93 ± 0.79 -

C 1024 82.46 ± 0.94 -
C 2048 166.03 ± 0.62 -

5. Related Works
5.1 Java to CUDA
JCuda[6] is a bridge tool between Java and CUDA. This tool
has APIs for connecting to CUDA from Java. But this tool
cannot automatically convert Java to CUDA. The users must
write a CUDA code by themselves.

JCUDA[11] is an expanded Java language for accessing
to CUDA(This is not same as above one). This brings in
new syntaxes to Java, for example, this has a notation of
〈〈〈...〉〉〉 to identify a kernel method. On the other hand, users
of WootinJ can write their code in pure Java.

JConqurr[4] is a toolkit for multi-core programming in
Java. For GPU, this tool provides the feature for loop han-
dling. This converts the for-loop in user’s Java code to the
GPU function. But this tool has no optimization for Java’s
rich modularities. WootinJ optimises the Java’s rich modu-
larities.

5.2 Optimization Techniques
Class hierarchy analysis can be used for devirtualization[2][3].
If the devirtualization target method has a single imple-
mentation, its method call can be replaced by the static
method dispatch. Kszuaki Ishizaki et el proposed the tech-
nique called direct devirtualization with the code patching
mechanism[5]. In this technique, the compiler generates the
inline code of the method, together with the backup code
of making the dynamic method dispatch. At runtime, if the
inlined code is invalid, this system uses the backup code in-
stead of that. WootinJ can deal with the overrided methods
under WootinJ’s constrain, and convert the dynamic method
dispatches to the static method dispatches at runtime.

The object flattening is known. Kaiyu Chen et el use the
object flattening for generating the optimized C++ code[1].
On the other hand WootinJ generates the CUDA code.

6. Conclusions
We proposed a Java to CUDA translater, WootinJ, for sci-
entific computing applications. This tool generates the opti-
mized CUDA code from a Java method under certain con-
strains at runtime. That constrains are about the dynamic
method dispatch, however this tool saves the ability of con-
structing a Java framework for separation of concerns. Since
the users can write a application for scientific computing us-
ing Java’s rich modularities with small overheads.

In the future we plan to reduce WootinJ’s constrains. For
example, if WootinJ has the alias analysis, several restric-
tions of the object flattening will be removed. The cost of
generating and compiling CUDA code is big. We should re-
duce it.
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