
遠隔ポイントカット
– 分散アスペクト指向プログラミングのための言語機構

Remote Pointcut
– A Language Construct for

Distributed Aspect-Oriented Programming

by

西澤 無我

Muga Nishizawa

02M37259

January 2004

A Master’s Thesis Submitted to

Department of Mathematical and Computing Sciences

Graduate School of Information Science and Engineering

Tokyo Institute of Technology

In Partial Fulfillment of the Requirements

for the Degree of Master of Information Science and Engineering.

Supervisor: Shigeru Chiba

Copyright c© 2004 by Muga Nishizawa. All Rights Reserverd.

Abstract

This paper presents our extensions to the AspectJ language that enables
to separate crosscutting concerns in distributed systems. Aspect-Oriented
Programming (AOP) is technology that can capture concerns that cut across
multiple modules, called crosscutting concerns, such as logging, synchro-
nization and security. AOP allows developers to modularize a crosscutting
concern as an aspect, to develop maintainable and understandable systems.

This paper shows that some crosscutting concerns in distributed sys-
tems cannot be modularized in existing AOP languages as simple aspects.
Rather, aspects modularizing such a concern tend to be in code spread over
multiple hosts and explicitly communicate across the network. Here, the
simple aspect means maintainable and readable aspect. This paper illus-
trates this fact with an example of testing a distributed program in AspectJ
with Java RMI. AspectJ is an implementation of AOP for Java.

To address this problem of the complexity due to network communica-
tion, this paper proposes an AOP language called DJcutter, which is the
extension to AspectJ for distributed computing. The most significant dif-
ference between DJcutter and existing AOP languages is that DJcutter pro-
vides a new language construct named remote pointcuts. Pointcut is a
language construct provided by AspectJ, and it has a function to pick out
the program’s operations, called join points, such as method calls, field ac-
cesses, and exception events in the program flow. However, the pointcut
language provided by AspectJ is only for identifying join points on a single
host, and it doesn’t have functions enough to implement some crosscutting
concerns in distributed systems. Remote pointcuts provided by DJcutter
allow developers to designate join points on remote host. Thereby, DJcutter
enables to write a simple aspect that can modularize crosscutting concerns
distributed on multiple hosts. Moreover, to examine the execution perfor-
mance of remote pointcuts, we compared the execution time of the programs
in DJcutter and AspectJ using Java RMI.

Acknowledgments

I profoundly thank my supervisor, Professor Shigeru Chiba at Tokyo
Institute of Technology. His suggesions and supports greatly helped me
write this work. I am also thankful to Dr. Kenichi Kourai at Tokyo Institute
of Technology, Dr. Michiaki Tatsubori at IBM Tokyo Research Laboratory,
and Yoshiki Sato at Tokyo Institute of Technology, who gave me great advice
and comments. I also thank my colleagues in our research group at Tokyo
Institute of Technology, in particular Chikayasu Uzaki, Kiyoshi Nakagawa,
and Ryo Kurita. I am greateful for english support by Shannon Jacobs at
IBM Tokyo Research Laboratory and Emi Seto at University of Nihon.

Contents

1 Introduction 1

2 Distributed AOP 4
2.1 Aspect-Oriented Programming 5

2.1.1 Overview . 5
2.1.2 AspectJ . 6

2.2 Motivating Problem . 8
2.2.1 Complicated Network Processing 8
2.2.2 Example . 8

2.3 Related Work . 12

3 Language Specificaion 15
3.1 Remote Pointcut . 15

3.1.1 Introductory Simple Example 16
3.1.2 Aspect Server . 17
3.1.3 Load-time Weaving . 18
3.1.4 Remote Inter-type Declaration 18

3.2 Pointcut Designators . 19
3.2.1 Hosts . 19
3.2.2 Cflow . 20

3.3 Access to Aspect Methods . 21
3.4 Pointcut Parameters . 22
3.5 Reflection by thisJoinPoint . 23
3.6 Local Aspect . 24
3.7 Examples . 25

3.7.1 The Use of Remote Pointcut 25
3.7.2 The Use of Remote Inter-type Declaration 26

i

CONTENTS ii

4 Implementation Issues 28
4.1 Java-bytecode Translation by Javassist 28

4.1.1 Structual Reflection 29
4.1.2 Bytecode Edition with a Source-level View 30

4.2 Compiler . 32
4.2.1 Aspect Declarations 32
4.2.2 Advice Declarations 33
4.2.3 Member Methods and Fields 34
4.2.4 Pointcut Declarations 34
4.2.5 Inter-type Declarations 34

4.3 Runtime Infrastructure . 34
4.3.1 Load-time Weaving . 34
4.3.2 Design and Implementation of thisJoinPoint 39
4.3.3 Remote Reference Implemented Proxy Pattern 40
4.3.4 Deadlock Avoidance with ThreadLocal Object 44
4.3.5 Tuning RMI using Thread Pool 45

5 Experiment 48
5.1 Performance Measurement of RMI 48
5.2 High Readability and Maintainability of an Aspect 49

6 Concluding Remarks 51

List of Figures

2.1 The test code for non-distributed software in AspectJ 10
2.2 The testing code in AspectJ 12

3.1 Introductory simple example in DJcutter 16
3.2 The behavior of aspect server 18
3.3 The testing code in DJcutter 26

5.1 Comparing each aspect in DJcutter and AspectJ with Java
RMI The left-side code is the aspect in DJcutter. The right-
side code is the aspect in AspectJ with Java RMI. 50

iii

List of Tables

2.1 Several pointcut designators of AspectJ 7

3.1 The pointcut designators of DJcutter 19
3.2 Part of methods in JoinPoint class 23

4.1 Part of methods for modifying a class 30
4.2 Part of methods for modifying a field 30
4.3 Part of methods for modifying a method or constructor . . . 31

5.1 The elapsed time (msec.) of testRegisterUser() 48

iv

Chapter 1

Introduction

Modularizing software systems is one of significant demands in software
industry. Developers should decompose software into a number of small
independent programs so that they can develop software of high quality,
which is easy to understand, modify, and maintain [21]. To do that, sev-
eral paradigms have been proposed. One of them is Object-Oriented Pro-
gramming (OOP) technology. It is a widely used paradigm for developing
software systems because the object modeling, which is a central concept of
this paradigm, provides a better fit with real domain problems. Therefore, a
large number of OOP based systems, languages, and applications have been
developed so far.

Recently, to separate crosscutting concerns in software, Aspect-Oriented
Programming (AOP) have been proposed [6, 16, 36, 27]. Crosscutting con-
cerns, such as logging, cut across the boundary between modules, and they
decrease maintainability and understandability of software. Whereas OOP
is not powerful technology enough to separate such concerns, AOP is tech-
nology that can modularize crosscutting concerns as aspects. AOP allows
developing maintainable and understandable systems.

Motivating Problem

Many crosscutting concerns, such as logging, transaction, and security, arise
in distributed software systems. Some of them cannot be modularized in
exising AOP languages as simple aspects. Rather, aspects modularizing
such concerns tend to be in code spread over multiple hosts and explicitly
communicate across the network. Here, the simple aspect means maintain-
able and readable aspect. This paper illustrates this fact with an example
of testing a distributed program in AspectJ with Java RMI. AspectJ is an

1

CHAPTER 1. INTRODUCTION 2

implementation of AOP for Java [15].
The source of these problems is that existing AOP languages do not ac-

commodate to distribution or network processing. Combination of the AOP
language and an existing framework for distributed software, such as Java
RMI (remote method invocation)[35] is not a solution. The existing frame-
works extend language constructs for object-orientation, such as method
calls, so that they can accommodate distribution. They do not support
language constructs for aspect orientation.

Solution by This Thesis

To address this problem of the complexity due to network communication,
this paper proposes a new AspectJ-like language named DJcutter . In this
language, several language constructs, in particular pointcuts, have been
extended for distributed software. The extended pointcuts of DJcutter are
called remote pointcuts. Although a pointcut in AspectJ identifies execution
points on the local host, a remote pointcut can identify them on a remote
host. This language construct can simplify the code of a component im-
plementing a crosscutting concern in distributed software. DJcutter also
provides another language construct named remote inter-type declaration,
which allows developers to declare a new method and field in a class on a
remote host. The aspect weaving in DJcutter is performed at load time on
each participating host. When a class is loaded from a local file system, it
is transformed according to an aspect sent from a remote host. This archi-
tecture is useful for distributed unit testing since the users do not have to
deploy a woven program to each host whenever they change the description
of the aspects.

The Structure of This Thesis

From the next chapter, we present background, language specifications, and
implementation issues of DJcutter. The structure of the rest of this thesis
is as follows:

Chapter 2: Distributed AOP

At first, we explain motivation and contribution of AOP that is the un-
derlying technology of our research. In particular, we explain the detail of
the AspectJ language. Next, we present motivating problem and example
of this work. At last, we present existing languages, tools, and systems for
modularizing crosscutting concerns in distributed software as related work.

CHAPTER 1. INTRODUCTION 3

Chapter 3: Language Specification

To address the motivating problem, we propose a new AspectJ-like language
named DJcutter and explain the language specification. Moreover, we show
several examples of apects in DJcutter.

Chapter 4: Implementation Issues

We present implementation issues of DJcutter. The DJcutter implementa-
tion mainly consists of two parts: the one is a compiler, the other is runtime
infrastructure. We explain the implementation issues of each part.

Chapter 5: Experiment

At first, to examine the execution performance of remote pointcuts, we
compared the execution time between DJcutter and AspectJ using Java
RMI. Next, we show that an aspect in DJcutter is easy to understand and
maintain.

Chapter 6: Concluding Remarks

We conclude this thesis in chapter 6. Moreover, we present future work.

Chapter 2

Distributed AOP

Recently, to modularize concerns that are scattered throughout modules,
called crosscutting concerns, Aspect-Oriented Programming (AOP) have been
proposed [6, 16, 36, 27]. Whereas Object-Oriented Programming (OOP) is
not powerful technology enough to modularize such concerns, AOP is tech-
nology that can separate the crosscutting concerns as aspects. It builds on
and complements OOP. Users can develop maintainable and understandable
systems involving such aspects.

We challenged to modularize crosscutting concerns in distributed sys-
tems. To modularize distributed software, a large number of tools, lan-
guages and middleware have been proposed and developed. For example,
CORBA (Common Object Request Broker Architecture)[24] and the Java
RMI (Remote Method Invocation) framework [35] are provided as part of the
standard in Java. They allow developers of distributed systems to simplify
stub-code generation. Thereby, the developers don’t need to use raw sockets
for network processing. However, most of them do not support for modu-
larizing crosscutting concerns in distributed software systems. Moreover,
existing AOP based tools, languages, and middleware don’t have sufficient
functions enough to modularize crosscutting concerns in distributed systems
yet.

In the rest of this chapter, at first we explain an AOP that is the under-
lying technology of our research. Moreover, we simply present the AspectJ
language specification. Next, we present motivating problem and example of
this work. At last, we explain existing tools, languages and middleware for
modularizing crosscutting concerns in distributed software as related work.

4

CHAPTER 2. DISTRIBUTED AOP 5

2.1 Aspect-Oriented Programming

2.1.1 Overview

Aspect-Oriented Programming (AOP) has been proposed as technology for
improving separation of concerns in software. However Object-Oriented
Programming (OOP) is the technology that can fundamentally modularize
software systems, it is not sufficient technology enough to separate concerns
that are scattered throughout modules. We call such concerns crosscutting
concerns. They decrease maintainability and understandability of software
systems. Because the crosscutting implementation is scattered throughout
modules, the developers must understand and change each modules in soft-
ware even if they change and maintain the crosscutting implementation. For
example, code for logging is scattered within code whose primary respon-
sibility is something else. Even if the developers change and remove the
codes for logging, they must change and remove every scattered codes for
logging. AOP can pull the widespread crosscutting concern into a single
module. These modules are termed aspects. AOP builds on several tech-
nologies, such as procedural programming and OOP, that have already made
significant improvements in software modularity.

Several general-purpose AOP languages, tools, and systems have been
developed already. AspectJ [15] is a simple and practical AO extension
to Java. Adaptive Programming [20] provides a special-purpose language,
called DemeterJ [23], for writing class structure traversal specifications.
DemeterJ prevents knowledge of the complete class structure from becoming
tangled throughout the code. Composition filters object model [6] provides
control over messages received and sent by an object. The composition
filters mechanism provides an aspect language that can beused to control
a number of aspects inlcuding synchronization and communication. Com-
poseJ [39] is an extension of the Java language that adds composition filters
to Java classes through inlining. Multi-dimensional separation of concerns
(Subject-Oriented Programming) [36] provides for composing and integra-
tion disparate class hierarchies, each of which might represent different con-
cerns. Hyper/J [14] supports separation and integration of concerns along
multi-dimensional in standard Java software. JAC [29] is a Java framework
for dynamic AOP. Unlike other lanugages such as AspectJ, JAC does not
require any langugae extensions to Java.

CHAPTER 2. DISTRIBUTED AOP 6

2.1.2 AspectJ

AspectJ is an implementation of AOP for Java [15, 11, 28] 1. But concerns,
such as logging and security, cut across the classes in Java, the crosscut-
ting concerns are not easily turned into classes precisely. AspectJ allows
developers to implement this concerns in Java.

AspectJ adds to Java just one new concept, a join point – and that’s re-
ally just a name for an existing Java concept. It adds to Java only a few new
constructs: pointcuts, advice, inter-type declarations and aspects. Pointcuts
and advice dynamically affect a thread of control, inter-type declarations
statically affects a program’s class heirarchy, and aspects encapsulate these
new constructs.

Join Points

A join point is a program’s operation in the program flow. As an example of
operations, there are method calls, method executions, field accesses, con-
structor calls, constructor executions, and exception events in the program
flow.

Pointcuts

Pointcuts pick out certain join points in the program flow. For example, the
pointcut:

call(void Point.setX(int))

picks out join points that is a method call of the signature void Point.setX(int)
in the program flow. The call is one of pointcut designators, identifies each
join points that are call of the specified method. In table 2.1, we listed
several pointcut designators that AspectJ is provided. Also, a pointcut can
be built out of other pointcuts with and (&&), or (‖), and not (!). For
example, the pointcut:

call(void Point.setX(int)) || call(void Point.setY(int))

picks out join points that is method call of the signature void Point.setX(int)
or void Point.setY(int).

1In this paper, we call AspectJ 1.0.6 ”AspectJ”. Currently, AspectJ 1.1.1 have been
released.

CHAPTER 2. DISTRIBUTED AOP 7

Table 2.1: Several pointcut designators of AspectJ

designator join points
within(TypePattern) the join points included in the declaration of the

types matching TypePattern
target(Type or Id) the join points where the target object is an

instance of Type or the type of Id
this(Types or Ids) the join points when the currently executing object

is an instance of Type or Id’s type
args(Types or Ids) the join points where the arguments are instances

of Types or the types of of the Ids
call(Signature) the calls to the methods matching Signature
execution(Signature) the execution of the methods matching Signature
cflow(Pointcut) all join points that occur between the entry and

exit of each join point specified by Pointcut

Advice

Advice is a method-like mechanizm used to declare that certain code should
execute at each join point in a pointcut. Advice consists of two parts: the
one is a pointcut, the other is the code. AspectJ has before, after and
around advice. Before advice runs before the thread of control reaches each
join point in a pointcut. After advice runs after the thread of control reaches
identified join points.

Aspects

Aspects are modular units of crosscutting implementation, wrap up pointcuts
and advice. It is defined like a class, can have member methods and fields.
As an example, the aspect:

aspect LoggingAspect {
pointcut move():

call(void Point.setX(int)
|| void Point.setY(int));

before(): move() {
System.out.println("about to move");

}
}

CHAPTER 2. DISTRIBUTED AOP 8

prints a message whenever the setX() and setY() method in the Point class
are called.

Inter-type Declarations

Inter-type declarations (formerly called the introduction) are declarations
that cut across classes and their hierarchies in AspectJ. We can declare
those in an aspect.

2.2 Motivating Problem

2.2.1 Complicated Network Processing

Several AOP languages such as AspectJ are useful programming languages
for developing distributed software. They enable modular implementation
even if some crosscutting concerns are included in the implementation. How-
ever, developers of distributed software must consider the deployment of the
executable code. Even if some concerns can be implemented as an aspect
at the code level, it might need to be deployed on different hosts and it
would therefore consist of several sub-components or sub-processes running
on each host. Since Java (or most of the AOP languages) does not provide
variables or fields that can be shared among multiple hosts, the implemen-
tation of such a concern would include complicated network processing for
exchanging data among the sub-components.

Programming frameworks such as Java RMI (remote method invoca-
tion) do not solve this problem of complication. Although they make de-
tails of network processing implicit and transparent from the programmers’
viewpoint, the programmers still must consider distribution and they are
forced to implement the concern as a collection of several distributed sub-
components exchanging data through remote method calls. The program-
mers cannot implement such a concern as a simple, non-distributed mono-
lithic component without concerns about network processing. This is never
desirable with respect to aspect orientation since it means that the program-
mers must be concerned about distribution when implementing a different
concern.

2.2.2 Example

A program written in existing AOP languages with distributed middelware
often includes complicated network processing in the description of some

CHAPTER 2. DISTRIBUTED AOP 9

aspects. As an example to address this problem, we explains testing code
written in AspectJ with Java RMI in this section.

We illustrate this situation with an example of unit testing2 for dis-
tributed software. The importance of testing frameworks is becoming widely
accepted. Writing test code for automating unit tests is an important devel-
opment process that the XP (Extreme Programming) community [5] recom-
mends. The automation results in cleaner code, encourages refactoring, and
makes rapid development possible. Recently, simple regression test frame-
works such as JUnit [25] and Cactus [1] have been getting popular for the
automated unit testing.

Many crosscutting concerns arise during unit testing of software sys-
tems. Testing code for non-distributed software includes typical crosscut-
ting concerns that AspectJ can deal with [18]. However, if we use AspectJ
to modularize the testing code for distributed software, the code develops
the comlexities mentioned above.

Unit Test for Authentication Service

As an example, we present test code for a distributed authentication service.
The implementation of this service consists of two components: a front-end
server AuthServer on a host W and a database server DbServer on another
host D. This is a typical architecture for enterprise Web application systems.
If a client application needs to register a new user, it remotely calls regis-
terUser() on the front-end server using Java RMI. Then the registerUser()
method remotely calls addUser() on the database server, which will actually
access the database system to update the user list.

To unit-test the registerUser() method, the test code would first remotely
call the registerUser() method and then confirm that the addUser() method
is actually executed by the database server. Note that since the test code
must confirm that remote method invocation is correctly executed, it must
confirm not only that registerUser() on the host W calls addUser() but also
that addUser() starts running on the host D after the call.

The test code would be simple and straightforward if the examined pro-
gram is not distributed. We below show the test code written in AspectJ
(figure 2.1). Although this is not complete code due to the space limita-
tions, the readers would understand the overall structure of the test code.
The main part of the test code is testRegisterUser() (lines 3 to 9). It calls
the registerUser() method and then confirms the wasAddUserCalled field is

2Some might think this example should be called not unit testing but end-to-end test-
ing.

CHAPTER 2. DISTRIBUTED AOP 10

1: aspect AuthServerTest extends TestCase {
2: boolean wasAddUserCalled;
3: void testRegisterUser() {
4: wasAddUserCalled = false;
5: String userId = "muga", password = "xxx";
6: AuthServer auth = new AuthServer();
7: auth.registerUser(userId, password);
8: assertTrue(wasAddUserCalled);
9: }

10: before():
11: execution(void DbServer.addUser(String,
12: String)) {
13: wasAddUserCalled = true;
14: }
15: }

Figure 2.1: The test code for non-distributed software in AspectJ

true. This field is set to true by the before advice (lines 10 to 14) when the
addUser() method is executed.

Test Code in AspectJ

Unfortunately, the test code becomes more complicated if the examined
program is distributed. The test code shown below is a distributed ver-
sion (again, it is not complete code. Access modifiers such as public and
constructors are not shown).

1: // on host T
2: class AuthServerTest extends TestCase {
3: boolean wasAddUserCalled;
4: void testRegisterUser() {
5: Naming.rebind("test", new RecieverImpl());
6: wasAddUserCalled = false;
7: String userId = "muga", password = "xxx";
8: AuthServer auth
9: = (AuthServer) Naming.lookup("auth");

10: auth.registerUser(userId, password);
11: assertTrue(wasAddUserCalled);
12: }

CHAPTER 2. DISTRIBUTED AOP 11

13: class ReceiverImpl
14: extends UnicastRemoteObject
15: implements NotificationReceiver {
16: void confirmCall() {
17: wasAddUserCalled = true;
18: }
19: }
20: }
21:
22: interface NotificationReceiver
23: { // on both hosts
24: void confirmCall();
25: }
26:
27: aspect Notification { // on host D
28: before():
29: execution(void DbServer.addUser(String,
30: String)) {
31: NotificationReceiver test
32: = (NotificationReceiver)
33: Naming.lookup("test");
34: test.confirmCall();
35: }
36: }

The test code now consists of three sub-components: AuthServerTest, Re-
ceiverImpl, and Notification (Figure 2.2). Although the overall structure is
the same, the AuthServerTest and ReceiverImpl objects run on a testing host
T but the Notification aspect runs on the host D, where the DbServer is
running. The host T is different from W or D.

The testRegisterUser() method (lines 4 to 12) on T remotely calls regis-
terUser() on W and then confirms that the wasAddUserCalled field is true.
This field is set to true by the confirmCall() method in ReceiverImpl, which is
remotely called by the before advice (lines 28 to 35) of Notification running
on D. The confirmCall() method cannot be defined in AuthServerTest since
AuthServerTest must extend the TestCase class whereas Java RMI requires
that remotely-accessible classes extends the UnicastRemoteObject class.3

3This is not precisely accurate. Technically, a confirmCall() can be defined in Auth-
ServerTest by using certain programming tricks. However, the test code would be signifi-
cantly more complicated.

CHAPTER 2. DISTRIBUTED AOP 12

:AuthServer

:AuthServerTest

:DBServer

3. confirmCall()

1. registerUser()

2. addUser()

Host W

Host T

Host D

<<aspect>>
:Notification

<<pointcut>>
execution(addUser())

:Receiver

Figure 2.2: The testing code in AspectJ

As we can see, even this simple testing concern is implemented by dis-
tributed sub-components and hence we had to write complicated network
processing code using Java RMI despite that it is not related to the testing
concern. In particular, the Notification aspect is used only for notifying con-
firmCall() on the host T beyond the network that the thread of control on
the host D reaches addUser(). The Notification aspect is a sub-component
that are necessary only because confirmCall() and addUser() are deployed on
different hosts. This means that the component design of the unit testing
is influenced by concerns about distributed. Furthermore, this notification
code is similar to what the AspectJ compiler produces for implementing
the pointcut-advice framework. It should not be hand-coded, but implicit
within the language constructs provided by an AOP language.

2.3 Related Work

Soares et al reported that they could use AspectJ for improving the modu-
larity of their program written using Java RMI [32]. Without AspectJ, the
program must include the code following the programming conventions re-
quired by the Java RMI. AspectJ allows separation of that code from the rest
into a distribution aspect. However, the ability of AspectJ is limited with
respect to modularization for distributed programs and thus the resulting

CHAPTER 2. DISTRIBUTED AOP 13

programs are often complicated and difficult to maintain. To address these
complications, we propose remote pointcuts and the inter-type declaration
as extended language constructs for distributed aspect-oriented programs.

Although Java RMI is the standard framework, several researchers have
been proposing other systems such as cJVM [2], our own Addistant [37] and
J-Orchestra [38]. These systems provide a single virtual machine image on
several hosts connected through a network. They allow for the distributed
execution of a program originally written as a non-distributed one, with-
out code modification for the distribution. An alternative to the approach
presented here might be to write a program in AspectJ and run it on these
systems, which would appropriately translate local pointcuts into remote
pointcuts at the implementation level. We did not take this approach since
our target applications are for the unit testing of enterprise server software,
and these programs are inherently designed and implemented as distributed
software. Therefore, we do not have to translate such software to distributed
software by, for example, using Addistant, except for the modules imple-
mented as aspects. If we translate all the modules of such software, the
unnecessary indirections due to the proxy objects would cause significant
performance penalties, since such software has already included indirections
for remote accesses. On the other hand, DJcutter can be regarded as a
system that translates only aspects to enable transparent remote accesses.
Although Addistant allows the programmers to specify translation only for
the classes generated by the AspectJ compiler from the aspects, the pro-
grammers must manually describe these specifications. DJcutter provides
better syntax so that these specifications can be simple or implicit within
the language constructs.

Distribution is a well known crosscutting concern and several systems
have been proposed to support such concerns. For example, the D language
[22] allows the programmers to separately describe how a parameter is passed
to a remote procedure. Such work has explores new crosscutting concerns
in distributed programs whereas our work explore general-purpose language
constructs for distributed aspect-oriented programs. The goal of our work is
to develop language constructs so that programs written in an AspectJ-like
language can be simple and easy to maintain.

JAC [29, 26] is a powerful framework for dynamic AOP in Java. Unlike
other lanugages such as AspectJ, JAC does not require any langugae exten-
sions to Java. An aspect of JAC is implemented by a set of aspect objects.
JAC also supports Java API that easily implements crosscutting concerns
in distributed systems such as the codes changing consistency protocol on
a set of replications and implementing load-balancing for developers. But,

CHAPTER 2. DISTRIBUTED AOP 14

using JAC, even if developers will separate the crosscutting concerns during
unit testing, complicated network processing is not necessarily solved. The
significant difference JAC and DJcutter is that DJcutter provide the remote
pointcut.

DADO (Distributed Adaplets for Distributed Objects) [40] provides a
CORBA-like programming model, which comprises several languages, tools,
and runtime environment, to support crosscuting concerns in distributed
heterogeneous systems. This programming model enables the developers to
separate crosscutting implementation that arised in application components
on both client and server side such as security, caching. In particular, the
DADO programming model has two languages. One of these languages,
DADO deployment language, is based on AspectJ and specifies how a QoS
feature interacts with an underlying application. However these languages
allow modeling the communications between client and server side, don’t
support remote pointcuts provided by DJcutter.

Chapter 3

DJcutter
Language Specification

In this chapter, to address the problems of the previous chaper, We propose
an extension to the AspectJ language for distributed software systems. The
proposed language allows developers to implement crosscutting concerns as
an aspect that does not incude explicit network processing, even if that the
concerns cut across multiple components on different hosts. As a result,
the developers can develop distributed software of high quality, which is
easy to understand, modify, and maintain. The proposed language is called
DJcutter (Distributed Join point cutter).

In the rest of this chapter, first, we present core technology of DJcut-
ter, called remote pointcuts. Then we explain the specification of runtime
infrastructure for realizing the remote pointcut mechanism. At second, we
present the DJcutter language specification, such as pointcut designators
and aspect methods. In particular, we explain the difference between As-
pectJ and DJcutter so that DJcutter is an extension to AspectJ.

3.1 Remote Pointcut

The contribution of DJcutter is that it provides remote pointcuts. A remote
pointcut is a function for identifying join points in the execution of a program
running on a remote host. In other words, when the thread of control reaches
the join points identified by a remote pointcut, the advice body associated
with that remote pointcut is executed on a remote host different from the one
where those join points occur. Remote pointcuts are analogous to remote
method calls, which invoke the execution of a method body on a remote host.

15

CHAPTER 3. LANGUAGE SPECIFICAION 16

1: aspect LoggingAspect {
2: pointcut setter(int x):
3: args(x) && call(void Point.setX(int));
4: before(int x): setter(x) {
5: System.out.println("set x: " + x);
6: }
7: }

Figure 3.1: Introductory simple example in DJcutter

Unfortunately, existing AOP languages such as AspectJ do not provide such
a pointcut. An advice body in these languages is executed on the same host
as where the join points identified by a pointcut occur.

The remote pointcut is a crucial language construct for distributed aspect-
oriented programming, corresponding to remote method invocation (RMI)
for distributed object-oriented programming. RMI is the technology that
can transparently access distributed objects same as objects on local host.
RMI enables users to describe to distributed software simply and easily.
The remote pointcut mechanism is also the technology that transparently
can identify join points on remote hosts same as join points on local host.

3.1.1 Introductory Simple Example

To explain the remote pointcuts, we show a simple aspect written in DJcut-
ter (figure 3.1), which conforms to the regular AspectJ syntax: This aspect,
named LoggingAspect, prints a message whenever the setX() method that is
defined in the Point class is called on each participating host.

The pointcut, named setter, (lines 2 to 3) in the aspect:

call(void Point.setX(int))

identifies each join point that is a call to the setX method in the Point class.
Unlike pointcuts provided by AspectJ, however, this pointcut in DJcutter
allows identifing each of join points matching the signature on every host
even if the advice body is not deployed on the host.

On the other hand, the body of the advice (line 5):

System.out.println("set x: " + x);

is executed just before each call to the setX(), but it is executed on a host
different from the host where the caller thread is running. If the thread

CHAPTER 3. LANGUAGE SPECIFICAION 17

of control reaches the join point, it implicitly sends a message through the
network to an aspect server running on a different host so that the aspect
server will execute the advice body. The detail of aspect server’s behavior
is explained in following section refsec:spec:aspectserver. As an example,
the Point objects are executed on each of hosts A and B. The aspect server
is running on a host C. When the thread of control reaches the designated
join point, that is a method call setX(), in the program flow on the host A
(or B), the before advice is executed by the aspect server on the host C –
that is, an argument of method call Point.setX(int) on A (or B) is printed
as the valiable x on C. Then, just after the advice is executed, the program
flow on A (or B) restarts from the method call setX().

3.1.2 Aspect Server

An aspect server is one of DJcutter’s runtime library, and it only can execute
the body of advice in the library 1. If the thread of control reaches each
of join points that are identified in pointcut, it implicitly sends a message
through the network to an aspect server running on a different host2 so
that the aspect server will execute the advice body. The thread of control
that sent the message blocks until the aspect server finishes the execution of
the advice body. Since all of the advice bodies are executed by the aspect
server on the central host, they can easily exchange values by storing data in
the fields defined in the aspect. These fields are locally accessible from the
advice bodies. Note that, in AspectJ, the advice body is executed on the
same host where the caller thread is running. Thus it may have to explicitly
send values through the network to exchange them with other advice bodies
executing on other hosts.

To explain the behavior of aspect server, we use the example that men-
tioned above (figure 3.1) again. Figure 3.2 show the behavior of it. When
the thread of control reaches a method call Point.setX(int) on A, it sends a
message so that the aspect server on C will execute the code of advice (Step
1). Then, the aspect server executes the advice (Step 2). When the aspect
server finished executing the code of advice on C, it sends a message so that
the thread of control on A will restart (Step 3).

1Note that, a local aspect (in section 3.6) makes an exception of this specification.
2Technically, the aspect server might be running on the same host.

CHAPTER 3. LANGUAGE SPECIFICAION 18

Figure 3.2: The behavior of aspect server

3.1.3 Load-time Weaving

DJcutter performs load-time weaving. This meaning is that the normal Java
classes and the compiled aspects that constitute distributed software on each
participating host are woven (composed) at load-time3. The normal Java
classes on each host must be loaded by the class loader provided by DJcutter
[19]. This class loader weaves the aspects and Java classes on the fly. Both
of this class loader and the aspect server are the significant components for
implementing the load-time weaving mechanism4.

The compiled aspects are stored in the aspect server. The parts of the
compiled code except for the advice bodies are automatically distributed by
the aspect server to each host, so the lastest aspects can be woven when the
classes are loaded. The users of DJcutter do not have to manually deploy
the compiled aspects to every host.

3.1.4 Remote Inter-type Declaration

This fact improves the usefulness of the inter-type declaration (formerly
called the introduction) in DJcutter. An aspect can declare that it will
respond to certain methods and field-access requests on behalf of other ob-
jects. In DJcutter, these methods and fields can be declared other objects
on multiple remote hosts. Since the description of the inter-type declaration
is automatically distributed from the aspect server to every host, declar-
ing a method or field to classes on remote hosts is simple. The users only

3Aspects are compiled by DJcutter compiler in advance. The compiled aspects are
normal Java-bytecode.

4The detail of weaving mechanism is explained in section 4.3.

CHAPTER 3. LANGUAGE SPECIFICAION 19

Table 3.1: The pointcut designators of DJcutter
designator join points
within(TypePattern) the join points included in the declaration of the

types matching TypePattern
target(Type or Id) the join points where the target object is an

instance of Type or the type of Id
args(Types or Ids) the join points where the arguments are instances

of Types or the types of of the Ids
call(Signature) the calls to the methods matching Signature
execution(Signature) the execution of the methods matching Signature
cflow(Pointcut) all join points that occur between the entry and

exit of each join point specified by Pointcut
hosts(Host, ...) the join points in the execution on Hosts

have to install the compiled aspect on the aspect server. Unlike in AspectJ,
they do not have to manually deploy the woven aspect and classes to every
host. This automatic deployment is useful in the context of distributed unit
testing. We will revisit this issue in the section 3.7.

3.2 Pointcut Designators

The pointcut designators provided by the implementation of DJcutter are
listed in 3.1. Most of the pointcut designators are from AspectJ. As an
example that mentioned the previous figuare 3.1, the call in AspectJ is
designator that can identify each join point that is a call to the specified
method as an argument though, one in DJcutter is designator that can
identify each of join points matching the speficied signature on every host.
In the rest of section, we explain unique pointcut designators that AspectJ
doesn’t support.

3.2.1 Hosts

A pointcut designator unique to DJcutter is hosts. It identifies the join
points in the execution on the designated hosts. Although DJcutter can deal
with all the join points on every participating host, this pointcut designator
is used to identify the join points on particular hosts.

For example, the users of DJcutter can describe the following pointcut
with the hosts pointcut designator:

CHAPTER 3. LANGUAGE SPECIFICAION 20

1: pointcut sample(): call(void Point.setX(int))
2: && hosts(hostId1, hostId2);

This pointcut identifies join points that are calls to the setX() method in
the Point class on the hosts with the names specified by hostId1 or hostId2.

These parameters HostId1 and hostId2 are not each of host names, these
are parameters given by the users when the program starts running. These
runtime parameters allow the developers to avoid embedding particular host
names in the source-code. Thereby, the source-code is flexible.

3.2.2 Cflow

DJcutter extends the cflow pointcut designator to handle the control flows
of distributed software. Cflow identifies join points that occur between the
start of the method specified by cflow and the return. It identifies only the
join points visited by the thread executing the method specified by cflow. In
AspectJ, cflow cannot pick out join points on a remote host since the control-
flow data needed to implement cflow is stored in a ThreadLocal variable but
the ThreadLocal variable is never passed through a network.

DJcutter provides a custom socket class sothat the ThreadLocal variable
can be passed through a network. If network communication is performed
with this custom socket class, then cflow can pick out join points on a remote
host. For example, if Java RMI is used for network communication, the
following program exports a remote object to make it available to receive
incoming calls, using the custom socket class:

PointImpl p0 = new PointImpl();
Point p = (Point)

UnicastRemoteObject.exportObject(p0,
40000,
new DJCClientSocketFacotry(),
new DJCServerSocketFacotry());

This program exports a PointImpl object, which is accessible from a remote
host through the Point interface. The DJCClientSocketFactory and DJC-
ServerSocketFactory classes are the factory classes provided by DJcutter for
creating the custom socket. DJcutter also provides a convenient method
with which the program shown above can be rewritten as follows:

PointImpl p0 = new PointImpl();
Point p = (Point) DJcutter.exportObject(p0, 40000);

CHAPTER 3. LANGUAGE SPECIFICAION 21

3.3 Access to Aspect Methods

Although aspects are executed on the aspect server, normal Java classes
can remotely call a method declared in the aspects. To make an aspect
accessible from remote hosts, the aspect must implement an interface that
declares the exported methods.

Suppose that we want to export a displayLog() method to remote hosts.
The definition of the aspect should be as follows:

interface Logger extends AspectInterface {
void displayLog(Point p, int x);

}
aspect LoggingAspect implements Logger {

void displayLog(Point p, int x) {
System.out.println("set x: " + x);

}
...

}

The Logger interface declares the displayLog() method, which is exported to
remote hosts. On the remote hosts, normal Java classes can remotely call
the displayLog() method as follows:

Logger logger = (Logger) Aspect.get("LoggingAspect");
logger.displayLog();

Aspect is the class provided by DJcutter. The get method in Aspect returns
a remote reference to the aspect with the specified name (in this example,
LoggingAspect). The type of the remote reference is the interface type imple-
mented by that aspect. If a method is called on the proxy object represented
by the remote reference [12], then the corresponding method in the aspect
is invoked on the aspect server.

This architecture using the proxy objects is the same as that of Java
RMI. 5 The reason why methods in aspects must be called through an in-
terface type is that this architecture enables separate compilation. The
developers can compile normal Java classes without aspects, provided that
the interface type is avvailable. This is quite helpful in the development of
distributed software. Furthermore, this architecture allows the developers
to implement components independently of each other. For example, they
can start describing a normal class that remotely calls a method in an aspect

5This architecture in detail explained in section 4.3.3.

CHAPTER 3. LANGUAGE SPECIFICAION 22

before they have finished describing the aspect, if the interface declaring the
exported method is already available.

3.4 Pointcut Parameters

Like AspectJ, DJcutter allows pointcuts to expose the execution context of
the join points they identify. For example, the args pointcut designator can
expose method paramemters and the target pointcut designator can expose
the target object. Each part of the exposed context is bound to a pointcut
parameter, which is accessible within the body of the advice. For example,

pointcut setter(int x):
call(void Point.move(int, int))
&& args(x, *);

This setter pointcut exposes the first int-type parameter to the move method
through a pointcut parameter x.

In DJcutter, since remote pointcuts identify join points on remote hosts,
the pointcut parameters should refer to data on the remote hosts. By de-
fault, they refer to a copy of that data constructed on the aspect server.
The runtime system of DJcutter first serializes the data on the remote hosts,
transfers it through the network, and constructs a copy from the serialized
data. The pointcut parameters available in the advice body refer to that
copy.

Pointcut parameters can be specified as remote references instead of
local references to the copies. If the configuration file specifies that pointcut
parameters of class type C are remote references, then the runtime system of
DJcutter dynamiclly generates a proxy class for C. From the implementation
viewpoint, the pointcut parameters are made to refer to instances of that
proxy class on the aspect server. If the advice body calls a method on
that proxy object, then the method is invoked on the master object on the
remote host where the join point occurs. To generate proxy classes, DJcutter
uses the replace approach we developed for Addistant. For example, if the
remote object associated with a proxy object is a Widget object, then the
proxy class is also named Widget. On the aspect server, this proxy class is
loaded instead of the original Widget class. The proxy-class generation is
performed with our bytecode engineering library Javassist [7].

Remote references are used not only for pointcut parameters but also
references to instances of aspects. As shown in the section 3.3, normal
Java classes can call methods declared in aspects. The references to the

CHAPTER 3. LANGUAGE SPECIFICAION 23

Table 3.2: Part of methods in JoinPoint class
Methods in JoinPoint Description
Object[] getArgs() returns the arguments at this join point.
Signature getSignature() returns the signature at this join point.
Object getTarget() returns the target object.
Object getThis() returns the currently executing object.
String getHost() returns the name of the host.

instances of the aspects are also remote references implemented using the
same approach as for the pointcut parameters. In addition, the parameters
of the methods called on the remote object indicated by a remote reference
can be also remote references.

3.5 Reflection by thisJoinPoint

As in AspectJ, DJcutter provides the thisJoinPoint special variable for re-
flective access to join points. This variable refers to an object representing
the context of the current join point or advice. It available within the body
of the advice code. In the advice, thisJoinPoint is an instance of djcut-
ter.runtime.JoinPoint type. In table 3.2, we show parts of methods defined
in the JoinPoint class.

Unlike in AspectJ, This thisJoinPoint variable provided by DJcutter has
a getHost() method to acquire the name of the host where the identified
join point is located. For example, to change an attribute value of the Point
object according to hosts that allocates each join point, users can write an
aspect as follows:

1: String lastCallerHost;
2: void around(Point p, int x):
3: target(p)
4: && args(x)
5: && call(void Point.setX(int))
6: {
7: lastCallerHost = thisJoinPoint.getHost();
8: if (lastCallerHost.equals("D"))
9: point.setX(x + 5);

10: else if (lastCallerHost.equals("T"))
11: point.setX(x - 5);

CHAPTER 3. LANGUAGE SPECIFICAION 24

12: else
13: point.setX(x);
14: }

The x variable is an argument of Point.setX(int) method call on each host.
In this example, we show that the users can change the argument of the
setX() method according to each of hosts. Of course, this code is equivalent
to the following code with the hosts pointcut designator.

1: void around(Point p, int x):
2: target(p)
3: && args(x)
4: && hosts(hostId_D)
5: && call(void Point.setX(int)) {
6: point.setX(x + 5);
7: }
8: void around(Point p, int x):
9: target(p)

10: && args(x)
11: && hosts(hostId_T)
12: && call(void Point.setX(int)) {
13: point.setX(x - 5);
14: }
15: void around(Point p, int x):
16: target(p)
17: && args(x)
18: && !hosts(hostId_T, hostId_D)
19: && call(void Point.setX(int)) {
20: point.setX(x);
21: }

3.6 Local Aspect

In DJcutter, the developers can specify that copies of an aspect are dis-
tributed to each participating host and that body of advice in the aspect
is locally executed on the same host as where the join points exists. These
types of aspects, which are called local aspects, are equivalent to the as-
pects available in AspectJ. Since a local aspect is instantiated on each host,
the fields declared in the aspect are not shared among the hosts. A value
assigned to such a field on one host is not visible on the other hosts. To

CHAPTER 3. LANGUAGE SPECIFICAION 25

exchange data among the hosts, the data must be explicitly transferred
through the network, for example, by using Java RMI.

3.7 Examples

In this section, we show two example programs written in DJcutter to il-
lustrate how remote pointcuts and inter-type declaration can be used for
distributed unit testing.

3.7.1 The Use of Remote Pointcut

The testing code presented in chapter 2 was complicated compared to the
non-distributed version of the testing code. If we rewrite that testing code in
DJcutter, then the resulting code becomes as simple as the non-distributed
version:

1: // on host T
2: aspect AuthServerTest extends TestCase {
3: boolean wasAddUserCalled;
4: void testRegisterUser() {
5: wasAddUserCalled = false;
6: String userId = "muga", password = "xxx";
7: AuthServer auth
8: = (AuthServer) Naming.lookup("auth");
9: auth.registerUser(userId, password);

10: assertTrue(wasAddUserCalled);
11: }
12: before(): // remote pointcut
13: cflow(
14: call(void AuthServer.registerUser(String,
15: String)))
16: && execution(void DbServer.addUser(String,
17: String))){
18: wasAddUserCalled = true;
19: }
20: }

Unlike the code in AspectJ, the testing code in DJcutter is not divided
into distributed sub-components (figure 3.3). Although the before advice
(lines 12 to 19) is executed when the thread of control reaches the addUser()

CHAPTER 3. LANGUAGE SPECIFICAION 26

:AuthServer :DBServer

1. registerUser()

2. addUser()

Host W

Host T

Host D

<<pointcut>>
execution(addUser())

<<aspect>>
:AuthServerTest

Figure 3.3: The testing code in DJcutter

method on the host D, where the DbServer is running, the execution of the
before advice is on a different host T, where the testRegisterUser() method
is running. Thus the before advice can directly set wasAddUserCalled to
true. All the network processing for reporting the execution of the addUser()
method to the host T needs not be explicitly described.

Note that the before advice contains the cflow pointcut designator, since
DJcutter provides cflow across multiple hosts if the components communi-
cate with the Java RMI. This improves the accuracy of the testing code.
The code can examine not only whether or not addUser() is executed, but
also whether the caller to addUser() is registerUser().

The testing code in DJcutter has another advantage. Since DJcutter
automatically distributes the definitions of the aspects to each participat-
ing host and weaves them at load time, the programmers do not have to
manually deploy the compiled and woven code to the hosts whenever the
definitions of the aspects are changed for different tests.

3.7.2 The Use of Remote Inter-type Declaration

Unit testing sometime requires accessor methods for inspecting the internal
state of objects. AspectJ can be used to append such accessor methods
just for testing if these methods are not defined in the original program.
For example, the developer may want to confirm that the data sent by the

CHAPTER 3. LANGUAGE SPECIFICAION 27

registerUser() method is actually stored in the database by the addUser()
method. To do this, an accessor method containsUser() must be appended
to the DbServer class so that the testing code can examine whether the added
user entry is contained in the database.

The remote inter-type declaration of DJcutter simplifies such unit test-
ing. If the developers use AspectJ, they have to recompile all the programs
and deploy the compiled and woven code to the participating hosts when-
ever they change the inter-type declaration in the aspect. On the other
hand, DJcutter can simplify this deployment. Since DJcutter automatically
distributes the new definitions of the aspect to the hosts and weaves it at
load time, the new aspect is reflected in the programs if the programs are
simply restarted.

The following is the testing code written in DJcutter. It appends con-
tainsUser() to the DbServer class (lines 13 to 18). The testRegisterUser()
method first confirms that the user muga is not recorded in the database
(line 9) and then it calls the registerUser() method (line 10). After that, it
confirms that the user muga is recorded in the database (line 11).

1: // on host T
2: aspect AuthServerTest extends TestCase {
3: void testRegisterUser() {
4: String userId = "muga", password = "xxx";
5: AuthServer auth
6: = (AuthServer) Naming.lookup("auth");
7: DbServer db
8: = (DbServer) Naming.lookup("db");
9: assertTrue(!db.containsUser(userId));

10: auth.registerUser(userId, password);
11: assertTrue(db.containsUser(userId));
12: }
13: boolean DbServer.containsUser(String
14: userId) {
15: // this method returns true if the user
16: // entry specified by userId is found
17: // in the database.
18: }
19: }

Chapter 4

DJcutter
Implementation Issues

In this chapter, we present implementaion issues of DJcutter. The DJcutter
implementation mainly consists of two parts: the one is a compiler, the
other is runtime infrastructure. The role of the compiler is to parse aspects
in DJcutter and to generate the normal Java-bytecodes representing the
aspects. We call the generated Java class the compiled aspect. DJcutter uses
Javassist [7, 8] for editing and translating the normal Java-bytecode. On
the other hand, the role of the runtime infrastructure is to weave (compose)
the compiled aspects and the Java classes in distributed software on each
host at load-time. Moreover, the runtime infrastructure executes distributed
software on each of hosts. The aspect server and the class loader that
mentioned above (in section 3.1) are included in this runtime.

In the rest of this chapter, at first, we simply explain Javassist, which is a
toolkit for the Java-bytecode translators. It is widely used within the classes
that are consisted by DJcutter. At second, we present how the compiler of
DJcutter generates the Java-bytecodes representing aspects. At last, we
explain the implementation of the DJcutter runtime.

4.1 Java-bytecode Translation by Javassist

The compiler and runtime infrastructure of DJcutter edit and translate the
Java-bytecode by using Javassist. Javassist is our bytecode engineering li-
brary, and a reflection-based toolkit for developing the Java bytecode trans-
lators. It is a class library in the Java language for transforming Java class
files (bytecode) at compile-time or load-time. Unlike other similar libraries

28

CHAPTER 4. IMPLEMENTATION ISSUES 29

[10, 3] that are not based on reflection, it provides a source-level view of
bytecode for the developers, who can manipulate bytecode without detailed
knowledge of the bytecode or the internal structure of the Java bytecode.
Javassist is easier to use than other naive toolkits as a source-level debug-
ger is easier to use than an assembly-level debugger. On the other hand,
Javassist restricts the ability to modify bytecode. It does not allow bytecode
modification that is difficult to express with a source-level view.

The Javassist users can first translate a Java class file into several objects
representing a class, field, or method. The users’ programs can access these
meta objects for transformation. Introducing a super interface, a new field,
and so on, to the class is described with these objects. The modifications ap-
plied to these metaobjects are finally translated back into the modifications
of the class file so that the transformation is reflected on the class file. Since
Javassist does not expose internal data structures contained in a class file,
such as a constant pool item and a method info structure, the developers
can use Javassist without knowledge about Java class file or bytecode.1 On
the other hand, other libraries such as BCEL[10] provide objects directly
corresponding to a constant pool item and a method info structure.

4.1.1 Structual Reflection

The CtClass object is an object provided by Javassist for representing a class
obtained from the given class file. It provides the almost same functional-
ity of introspection as the java.lang.Class class of the standard reflection
API. Introspection means to inspect data structures, such as a class, used
in a program. For examle, the getName method returns the CtClass object
representing the super class. GetFields, getMethods, and getConstructors re-
turn CtField, CtMethod, CtConstructor objects representing fields, methods,
and constructors, respectively. These objects parallel java.lang.reflect.Field,
Method, and Constructor. They provide various methods, such as getName
and getType, for inspecting the definition of the member. Since a CtClass
object does not exist at run-time, the newInstance method is not available
in CtClass unlike in java.lang.Class. For the same reason, the invoke method
is not available in CtMethod and so forth.

Unlike the standard reflection API, Javassist allows developers to alter
the definition of classes through CtClass objects and the associated objects
(Table 4.1, 4.2, and reftab:ctmember). For example, the setSuperclass

1For practival reasons, Javassist also provides another programming interface to di-
rectly access the internal data structures in a class file. However, normal users do not
have to use that interface.

CHAPTER 4. IMPLEMENTATION ISSUES 30

Table 4.1: Part of methods for modifying a class

Methods in CtClass Description
void setName(String name) changes the class name.
void setModifiers(int m) changes the class modifiers.
void setSuperclass(CtClass c) changes the super class.
void setInterfaces(CtClass[] i) changes the interfaces.
void addField(CtField f, String i) adds a new field.
void addMethod(CtMethod m) adds a new method.
void addConstructor(CtConstructor c) adds a new constructor.
void instrument(ExprEditor e) modifies the bodies of all methods and

constructors declared in the class.

Table 4.2: Part of methods for modifying a field
Methods in CtField Description
void setName(String name) changes the field name.
void setModifiers(int m) changes the class modifiers.
void setType(CtClass c) changes the field type.

method in CtClass changes the super class of the class. The addMethod
method adds a new method to the class. The definition of the new method
is given in the form of String object representing the source code. Javassist
compiles the sourcecode into bytecode on the fly and adds it into the class
file. The addField method adds a new field. Javassist compiles the source-
code and inserts it in the constructor body so that the field is appropriately
initialized.

The setName method in CtClass changes the name of the class. To keep
consistency, several methods like setName perform more than changing one
attribute field in a class file. For example, setName also substitutes the new
class name for all occurrences of the old class name in the class definition.
The occurrences of the old class name in method signatures are also changed.

4.1.2 Bytecode Edition with a Source-level View

Javassist newer than version 2.4 allows modifying only expression included in
a method body by using javassist.expr.ExprEditor class. Javassist.expr.ExprEditor
class is an editor for replacing an expression in a method body. The Javassist

CHAPTER 4. IMPLEMENTATION ISSUES 31

Table 4.3: Part of methods for modifying a method or constructor
Methods in CtMethod, CtConstructor Description
void setName(String name) changes the method name.
void setModifiers(int m) changes the class modifiers.
void setExceptionTypes(CtClass[] t) sets the types of the exceptions

that the method may throw.
void setBody(String b) changes the method body.
void instrument(ExprEditor e) modifiers the method body.

users can define a subclass of ExprEditor class to customize how to modify a
method body. The overall architecture is similar to the strategy pattern[13].

As an example, supposing to print a message, when the method setX()
defined in Point class is called. Javassist user should describe the following
code.

CtMethod cm = ... ;
cm.instrument(

new ExprEditor() {
public void edit(MethodCall m)

throws CannotCompileException
{

if (m.getClassName().equals("Point")
&& m.getMethodName().equals("setX"))

m.replace("{
System.out.println(\"setX is called\");
$_ = $proceed($$);

}");
}

});

To run an ExprEditor object, the users must call instrument() in CtMethod
or CtClass. This program searchs the method body represented by cm and
replaces all calls to setX in class Point with a block:

{
System.out.println("setX is called");
$_ = $proceed($$);

}

CHAPTER 4. IMPLEMENTATION ISSUES 32

The method instrument() searches a method body. If it finds an expression
such as a method call, field access, object creation, and exception handling,
then it calls edit() on the given ExprEditor object. In this example, since
the users want to found the expression that is called the setX() method,
they should use the MethodCall object that represents a method call. The
parameter to edit() is an object representing the found expression. The
edit() method can inspectand replace the expression through that object.
Calling replace() on the parameter to edit() substitutes the given statement
or block for the expression. If the given block is an empty block, that is,
if replace(””) is executed, then the expression is removed from the method
body. The second statement:

$_ = $proceed($$);

is the code that calls a method setX() actually. Then, the first statement
enables user to insert the code that prints the message setX is called before
calling the method setX().

4.2 Compiler

The role of DJcutter compiler is to parse aspects in DJcutter and to gen-
erate Java-bytecodes representing the source files of aspects that develop-
ers described. When parsing the aspects, the compiler doesn’t create and
edit Java-source files (.java files). Instead, It generates directly the Java-
bytecodes (.class files) by using Javassist (in section 4.1). By using the
compiled aspects that the compiler generated in advance, the runtime in-
frastructure of DJcutter on each host runs distributed software. Basically,
the compiler of DJcutter outputs the Java-bytecodes same as the code that
the compiler of AspectJ 1.0.6 outputs.

In the rest of this section, we explain how each member in an aspect is
compiled by the compiler.

4.2.1 Aspect Declarations

Even if the compiler parses an aspect declaration that DJcutter users de-
scribed, it creates an array of bytes (bytecode) of the Java class declaration.
The compiler generates a class file of the same name as the aspect name.
As an example, supposing that the compiler parses the following aspect.

aspect LoggingAspect {
}

CHAPTER 4. IMPLEMENTATION ISSUES 33

Then, by referring the aspect declaration, the compiler generates an array
of bytes of the following class.

public class LoggingAspect {
}

The Java class declaration representing an aspect is always pertained the
public modifier by the compiler. This reason is that the compiled aspects
and the normal Java classes in distributed software are always executed on
each different Java Vertual Machines (JVMs) in the current implementation
of DJcutter. Even though the compiler parses a local aspect declaration, it
generates same class declaration as default aspect.

4.2.2 Advice Declarations

Even if the compiler parses advice declarations in an aspect, it makes static
methods as advice in the compiled aspect. In body of generated static
method, the compiler inserts the body of advice without modification. For
example, supposing that the compiler reads the advice:

aspect LoggingAspect {
before(): setter() {

System.out.println("set x");
}

}

Then it generates the static method:

public class LoggingAspect {
public static void before_$0() {

System.out.println("set x");
}

}

A static method declaration representing an advice is always pertained
the public modifier. Moreover, the name of static method, before $0, is
automatically given by the compiler. The reason why this name before $0
is given is that the parsed advice is before advice. As if a parsed advice
were after advice, the name of static method were after $0. The charactor
with that before $0 ends, 0, represents number of advice. Even if two before
advice declarations are defined in an aspect by developers, the compiler
generates two static methods named before $0 and before $1.

CHAPTER 4. IMPLEMENTATION ISSUES 34

4.2.3 Member Methods and Fields

Member methods and fields that DJcutter users defined in an aspect are
directly inserted by the compiler, that is same signatures, same modifiers,
and same method bodies, within the compiled aspect.

4.2.4 Pointcut Declarations

When the compiler parses pointcut declarations in an aspect, it doesn’t
reflects the information of pointcut declarations in the compiled aspect.
Instead, it creates objects of the Pointcut type by using the information of
pointcut declarations. Then, it passes the created Pointcut objects to the
aspect server of DJcutter runtime (in section 4.3.1).

The Pointcut object has two fields: joinpoints and adviceNames. The
joinpoints field is a reference of JoinPoints class defined in DJcutter runtime.
The pointcut declaration that users describe:

within(Point) && call(void Point.setX(int))

is assigned to the joinpoints field by the compiler when the compiler parsed
the declaration. On the other hand, the type of adviceNames field is an
array of the java.lang.String objects. Each java.lang.String object is names
of advice (static method) that is executed by DJcutter runtime when the
thread of control reaches each of join points in pointcut (e.g. before $0).

4.2.5 Inter-type Declarations

The compiler doesn’t reflect information of the inter-type declarations in the
compiled aspect same as pointcut declarations. The compiler creates objects
of the InterTypeDecl class defined in DJcutter by using the information of
inter-type declarations. Then it passes the created InterTypeDecl object to
the aspect server of DJcutter runtime (in section 4.3.1).

4.3 Runtime Infrastructure

4.3.1 Load-time Weaving

Aspect Server

The roles of aspect server are mainly as follows:

– First one is to execute the bodies of advice defined in an aspect on
same JVM that the aspect server is running.

CHAPTER 4. IMPLEMENTATION ISSUES 35

– Second one is to register information of pointcut declarations and inter-
type declarations parsed by the compiler of DJcutter.

The Execution of bodies of Advice using Reflection. Aspect server
executes the codes of advice defined in an aspect, when the thread of control
reached each of join points in pointcut on every hosts. By default, the code of
advice in the aspect is executed by the aspect server only 2. We implement it
using reflection technology [33]. As an example, we show the code of advice
execution defined in the aspect server as follow:

Class aspectClass = Class.forName(aspectName);
Method advice = aspectClass.getDeclaredMethod(adviceName,

parameterTypes);
Object result = advice.invoke(null, parameterValues);

At first, the aspect server receives the values of variables, aspectName, ad-
viceName, parameterTypes, and parameterValues as a message, through the
network from DJcutter runtime on other JVMs so that it will execute an
advice. The value of aspectName is the name of aspect, the value of advice-
Name is the name of static method as advice, the value of parameterTypes is
type of pointcut parameters, and the value of parameterValues is the argu-
ments of pointcut parameters. Next, the aspect server creates a Class object
of the aspect specified by aspectName name. Then it creates a Method ob-
ject representing the static method as the advice specified by adviceName.
At last, it executes the invoke() method defined in Method object in order
to execute the advice. 3

Registering the Information of Aspect Declarations. Once the com-
piler of DJcutter parsed aspects and required the information of pointcuts
and inter-type declarations in the aspects, the compiler registers the infor-
mation into the aspect server. DJcutter runtime on each host doesn’t know
which join points are designated in pointcuts and which classes are appended
as inter-type declaration on startup. So DJcutter runtime on each host asks
the aspect server the information on load-time and acquires it. Then the
runtime weaves the Java classes and the compiled aspects by using it.

The aspect server has two fields pointcuts and interTypeDecls. The type
of each field is java.util.Vector. Pointcuts is the field for registering the in-
formation of pointcut declarations, that is Pointcut objects. InterTypeDecls

2In section 3.6, we showed that aspect server executed advice bodies in aspects ex-
cepting a local aspect declaration.

3The aspect server technically can execute the codes of advice, without using reflection
technology.

CHAPTER 4. IMPLEMENTATION ISSUES 36

is the field for registering the inter-type declarations, that is InterTypeDecl
objects. DJcutter runtime on each host choose some objects from the Point-
cut objects and InterTypeDecl objects that the aspect server registers on
load-time. Then it weaves the Java classes by using those objects.

Class Loader provided by DJcutter

DJcutter provides unique class loader for implementing remote pointcuts
mechanism. As mentioned above (in section 4.3.1), DJcutter runtime on
each host doesn’t know which join points are identified in pointcuts and
which classes are declared in inter-type declarations on startup. Therefore,
the class loader provided by DJcutter asks the aspect server those informa-
tion, receives the information matching join points within a loading class,
and weaves (translates) a loading class by using the information. It is called
load-time weaving.

In the Java language, developers can implement subclass of java.lang.ClassLoader
class in order to extend the manner in which the JVM dynamically loads
classes [19]. We implement the findClass method defined in ClassLoader
class for achieving load-time weaving. The following code is the findClass()
method defined in the class loader provided by DJcutter runtime.

1: Class findClass(String className) {
2: ...
3: byte[] classFile = ...;
4: ...
5: Pointcut[] pcs = getPointcuts(className);
6: InterTypeDecl[] itds = getInterTypeDecls(className);
7: ...
8: classFile = weaver.weave(classFile, pcs, itds);
9: ...

10: return defineClass(...);
11: }

GetPointcuts() is the method that DJcutter runtime ask the aspect server
whether join points within the loading class are designated in pointcut or
not. It returns an array of Pointcut objects even if join points are designated
in pointcut(line 5). GetInterTypeDecl() is also the method that DJcutter run-
time ask the aspect server whether the fields and methods of loading class
are declared in aspects or not. It returns an array of InterTypeDecl objects
even if the fields and methods are declared (line 6). The processing on line
8 is that an aspect weaver of DJcutter runtime, the weaver variable, recieves

CHAPTER 4. IMPLEMENTATION ISSUES 37

the arguments pcs and itds from the class loader and weaves (translates)
the loading class by using the information of pointcuts and inter-type dec-
larations defined in aspects. After weaving the loading class, the aspect
weaver returns the array of bytes of loading class to the class loader (line 8).
Next, the class loader converts the array of bytes into an instance of class
java.lang.Class using the defineClass method defined in class ClassLoader (line
10).

Aspect Weaver

The most significant role of weave() in an aspect weaver is to insert the codes
for invoking the bodies of advice by bytecode translation at load-time. As
mentioned in section 4.3.1, the aspect weaver is executed by the class loader.
Then it modifies the array of bytes of the class by using the Pointcut objects
and InterTypeDecl objects passed by the class loader.

The aspect weaver checks whether each of join points within the loading
class, such as a method call, a field access, an object creation, and exception
event, matches the designated join points in pointcuts or not. Even if a
join point within the loading class matches the designated join points, the
aspect weaver immediately starts weaving. We show an example of weaving
the Line class and LoggingAspect aspect as follows:

1: class Line {
2: void moveX(int dx) {
3: int x1 = p1.getX();
4: p1.setX(x1 + dx);
5: int x2 = p2.getX();
6: p2.setX(x2 + dx);
7: observer.paint();
8: }
9: }

10: aspect LoggingAspect {
11: pointcut setterX():
12: within(Line)
13: && call(void Point.setX(int));
14: before(): setterX() {
15: System.out.println("set x");
16: }
17: }

Note that the compiler of DJcutter compiles the LoggingAspect aspect (lines

CHAPTER 4. IMPLEMENTATION ISSUES 38

10-17), and then it generates the following code.

class LoggingAspect {
static void before_$0() {

System.out.println("set x");
}

}

In this example, join points designated by Pointcut object is the Point.setX
method call. The aspect weaver of DJcutter checks whether each join point
within moveX() of the Line class is equal to the Point.setX method call or
not. First join point within moveX() is the Point.getX method call (line 3).
The Point.getX method call is not equal to the designated join point. Next,
join point within moveX() is the Point.setX method call (line 4). As this join
point is equal to the designated join point as pointcut, the weaver inserts
the code that invokes LoggingAspect.before $0() before calling Point.setX().
On the same way, the weaver checks whether join points of lines 5 to 7 are
equal to the designated join point or not. As a result, the weaver modifies
the body of moveX() as follow.

void moveX(int dx) {
int x1 = p1.getX();
LoggingAspect.before_$0();
p1.setX(x1 + dx);
int x2 = p2.getX();
LoggingAspect.before_$0();
p2.setX(x2 + dx);
observer.paint();

}

The class loader provided by DJcutter receives the array of modified bytes
from the weaver, and then loads those.

The Dynamic Join Point Model

The design of DJcutter language is the dynamic join point model same as
AspectJ language. The aspect weaver of DJcutter can insert not only the
code for executing the bodies of advice but also a code for evaluating a
dynamic context of the original join point. Note that, Wether the aspect
weaver inserts or not is independent on the pointcut declarations that users
wrote.

Even if the users wrote the aspect in DJcutter:

CHAPTER 4. IMPLEMENTATION ISSUES 39

aspect LoggingAspect {
pointcut testEquality(Point p):

target(Point)
&& args(p)
&& call(boolean equals(Object));

before(Point p): testEquality(p) {
System.out.println("set x");

}
}

, the aspect weaver inserts the following code into each of join points.

if (o instanceof Point) {
LoggingAspect.before_$0((Point) o)

}

In this case, if the argument passed to equals() is not Point type, the advice
(before $0 method) is not executed.

4.3.2 Design and Implementation of thisJoinPoint

Whereas the design of thisJoinPoint variable that developers use in advice
declaration is same as AspectJ 1.0.6, the implementation of thisJoinPoint is
different between AspectJ and DJcutter. The thisJoinPoint variable provided
by DJcutter is an object of type JoinPoint (JoinPoint is an interface).

In the implementation of DJcutter runtime, DJcutter must pass the in-
formation of designated join point, that is JoinPoint object, to the aspect
server. To do that, DJcutter edits and translates the bytecode of compiled
aspects. The aspect weaver of DJcutter adds one parameter to the param-
eters of static method representing the advice. And it edits for giving the
information of designated join point to the added parameter, that is, first
parameter-type of a static method representing an advice is the JoinPoint
type.

For example, the aspect weaver of DJcutter translates the advice:

static void before_$0(Point p, int x) {
}

into the following code.

static void before_$0(JoinPoint jp, Point p, int x) {
}

CHAPTER 4. IMPLEMENTATION ISSUES 40

4.3.3 Remote Reference Implemented Proxy Pattern

In the current implementation of DJcutter runtime, even if the compiled
aspects and the normal Java classes in distributed software are allocated
on a single host, these are performed on different Java Vertual Machines
(JVMs). The specification is same as the Enterprise Java Bean (EJB) 1.1
[34]. In the EJB 1.1 speficiation, even if some beans are allocated on a single
host, each of beans are performed on different processes (JVMs). DJcutter
runtime must implement inter-process communication. However, DJcutter
users need not to implement explicit network processing such as Java RMI
or socket programming.

Proxy-Master Model

DJcutter automatically implements the references to remote objects by byte-
code translation at load-time, in order to implicitly archieve the inter-process
communication. To run the translated software, no custom JVM is needed.
DJcutter employs the proxy-master model, which is also known as the remote
proxy pattern[12], so that a remote method can be transparently invoked
with the same syntax as a local method. In this model, an object whose
methods can be invoked from a remote host is associated with an object
called proxy existing on that remote host. For distinction, we call the for-
mer object master. A proxy provides the same set of methods as its master
and delegates every method invocation to its master. It encapsulates details
of network communication necessary for the remote method invocations.

In the rest of this paper, we write A proxy as remote reference to master
object A, that is proxy object.

Cases that Remote References are generated

DJcutter runtime automatically generates remote references at load-time.
Cases that remote references are generated are as follows:

– First one is a case that the thread of control reaches the identified join
point in pointcuts. If the pointcut parameter-types are reference types,
those parameters are translated remote references and are passed to
the aspect server so that the aspect server will use those parameters.

As an example of this case, we explain the following aspect.

aspect LoggingAspect { // on A
pointcut setter(Point p, int x):

CHAPTER 4. IMPLEMENTATION ISSUES 41

target(p)
&& args(x)
&& execution(void Point.setX(int));

before(Point p, int x) {
System.out.println("set x: " + x);

}
}

The aspect prints a message (executes the before advice) just before
being setX() method executed. Note that, The aspect is translated the
following Java class by the DJcutter compiler (in section 4.2) already.

class LoggingAspect { // on A
static void before_$0(Point p, int x) {

System.out.println("set x: " + x);
}

}

However, the compiled aspect and the Point object are executed on
each of diffenrent processes. Therefore, the LoggingAspect class is
translated the following code by DJcutter runtime at load-time.

class LoggingAspect { // on A
static void before_$0(Point_proxy p, int x) {

System.out.println("set x: " + x);
}

}

The Point proxy object is the remote reference of Point object. The
Point proxy class is automatically created by DJcutter runtime on de-
mands at load-time.

– Second one is a case that the distributed Java application classes re-
quire an reference to compiled aspect by using Aspect.get() method.
The Aspect.get() method explained in section 3.3. Aspects and Java
classes that are cosisted distributed systems are executed on each of
diffenrent processes, by default. Therefore, the Aspect.get() method
returns a remote reference to the compiled aspect with the specified
name.

CHAPTER 4. IMPLEMENTATION ISSUES 42

As an example of the aspect reference case, suppose that developers
use the displayLog() method defined in the LoggingAspect aspect. Log-
gingAspect is run on the host A. In this case, they should describe the
following code.

Logger logger = (Logger) Aspect.get("LoggingAspect");
logger.displayLog(p); // The variable p is the Point object

So that the program code mentioned above is executed on differ-
ent host from the host that the LoggingAspect object is allocated,
the variable logger receives the remote reference LoggingAspect proxy
to LoggingAspect object. At load-time, If LoggingAspect proxy class
doesn’t exist on the host A, DJcutter runtime create this class by
bytecode translation on the fly. Note that the remote reference Log-
gingAspect proxy has to implement the Logger interface.

– Third one is a case that DJcutter runtime executes the call of member
method in an aspect within distributed Java application classes. If
parameter-types of the member method defined in an aspect are refer-
ence types, remote references of parameters are passed to the method
through the network.

class LoggingAspect {
void displayLog(Point p) {

System.out.println("point: " + p);
}

}

As an example, supposing that the displayLog() method is defined in
the LoggingAspect aspect. This aspect is translated at load-time as
follows:

class LoggingAspect{
void displayLog(Point_proxy p) {

System.out.println("point: " + p);
}

}

– Fourth is a case that the DJcutter runtime executes member methods
defined in proxy class. As mentioned above, DJcutter users enable

CHAPTER 4. IMPLEMENTATION ISSUES 43

to use remote references as the pointcut parameters within the bod-
ies of advice. When DJcutter runtime executes the member methods
defined in the remote references, even if the parameter-types of mem-
ber methods are reference types, those parameters are translated to
remote references.

Several Approaches for Implementing Proxy

Unfortunately, any single implementation approach of the proxy-master
model cannot deal with all kinds of classes. Each approach convers only
the classes satisfying the criteria peculiar to that approach. The developers
cannot choose a single approach and enforce the criteria on the whole pro-
gram. For example, one of the approaches needs to modify the declaration of
the class of master objects. Since the JVM does not accept modified system
classes, if an instance of a system class is a remote object, that approach
cannot be used. A different approach must be used for that case.

To avoid this problem, Addistant [37] ,which is our old work, provides
several different approaches for implementing the proxy-master model. It
provides four approaches; replace, rename, subclass, and copy. The develop-
ers can choose one from the four for each class of master. The differences
among the four approaches are mainly how a proxy class is declared, how
caller-side code, that is, expressions of remote method invocations, is mod-
ified, and how a master class is modified. The four approaches cover most
of case.

DJcutter allows developers to specify a policy of proxy implementaion
for each of classes. The developers can declare that every instances of remote
reference of the class are implemented the specified approach. The policy
declaration is written in a policy file in an XML syntax. DJcutter runtime
receives the policy file that the developers write on startup, it parses the file
as an XML document. Then, DJcutter runtime automatically implements
remote references of each classes on demands at load-time. As an example,
the policy file:

<policy>
<class name="Point" proxy="replace">
<class name="java.lang.String" proxy="copy">
<aspect name="LoggingAspect" proxy="replace">

</policy>

means that every instances of remote reference of the Point class is imple-
mented by using replace approach, java.lang.String class is implemented by

CHAPTER 4. IMPLEMENTATION ISSUES 44

using copy approach, and LoggingAspect class representing the LoggingAspect
aspect is implemented by using replace approach. Currently, DJcutter allows
to choose one from replace and copy approaches.

4.3.4 Deadlock Avoidance with ThreadLocal Object

Any host can invoke a method on a remote object and receive a method
invocation from a remote object in DJcutter runtime. Therefore, a remote
method call from a host A to an other host B may cause another method
call back from B to A. In this case, the latter method call must be handled
by the same thread that requested the former method call on the host A.
Otherwise, a deadlock may occur if the methods are synchronized ones.

In order to ensure the same thread executes all the methods called
back, DJcutter establishes a one-to-one communication channel between the
thread executing a method on the host B and the thread executing a method
that is handled the method on the host A. This communication channel is
stored in a thread-local variable implemented with java.lang.ThreadLocal.
The ThreadLocal class provides thread-local variables for the Java devel-
opers. These variables differ from their normal counterparts in that each
thread that accesses one has its own, independently initialized copy of the
variable.

For example, the following code getCommChannel() (lines 2 to 11) is that
DJcutter runtime on each host establishes a communication channel.

1: static ThreadLocal commChannel = new ThreadLocal();
2: CommChannel getCommChannel(Isolate remoteVM) {
3: CommChannel channel = (CommChannel) commChannel.get();
4: if (channel != null)
5: return channel;
6: ...
7: channel = CommChannel.createSocketChannel(this, remoteVM);
8: setCommChannel(channel);
9: ...

10: return channel;
11: }
12: void setCommChannel(CommChannel channel) {
13: commChannel.set(channel);
14: }

The CommChannel class is defined in DJcutter runtime, an object of this
class represents a communication channel between a local thread and an

CHAPTER 4. IMPLEMENTATION ISSUES 45

other thread (representing the remoteVM variable). The remoteVM variable
is the object of Isolate class in DJcutter runtime, we implemented Isolate class
according to [4][9]. Even if channel is registered in the commChannel variable
alreadly (line 2), getCommChannel() returns channel (line 3). Otherwise
(that is , if channel is not registered), getCommChannel() creates a new
communication channel, and then returns it (lines 7 to 10).

A thread always uses the same channel for every remote method call and
it waits for not only the result of the invocation but also another request of
invocation from a remote thread sharing the same channel. A deadlock is
avoided.

4.3.5 Tuning RMI using Thread Pool

One simplistic model for building a RMI server program would be to create
a new thread each time a request arrives and serivce the request in the new
thread. This approach actually works fine for prototyping though, has sig-
nificant disadvantages that would become apparent if you tried to deploy the
RMI server program that worked this way. One of the disadvantages of the
thread-per-request approach is that the overhead of creating a new thread
for each request is significant, the server that created a new thread for each
request would spend more time and consume more system resources creat-
ing and destroying threads than it would processing actual user requests. In
addition to the overhead of creating and destroying threads, active threads
consume system resources. Creating too many threads in one JVM can
cause the system to run out of memory or thrash due to excessive memory
consumption.

To resolve this problem, current DJcutter tries to reduce the overhead
of creating and destroying threads by using the thread pool [17]. Actually,
we implement a thread pool (ThreadPool class) (lines 1 to 17)that combined
with a fixed group of worker threads (Worker class) (lines 18 to 35). The
thread pool uses wait() (line 25) and notify() (line 14) to signal waiting
threads that new work has arrived.

1: class ThreadPool {
2: final int threadNum;
3: final Worker[] threads;
4: LinkedList pool;
5: ThreadPool(int num) {
6: this.threadNum = num;
7: pool = new LinkedList();

CHAPTER 4. IMPLEMENTATION ISSUES 46

8: threads = new Worker[this.threadNum];
9: ... // initializes and starts each Worker

10: }
11: void execute(Runnable r) {
12: synchronized(pool) {
13: pool.addLast(r);
14: pool.notify();
15: }
16: }
17: }

The ThreadPool class has a field pool (line 4), which monitors the worker
threads and implements as LinkedList class. Objects of the Worker class
implement the Runnable interface.

18: private class Worker extends Thread {
19: public void run() {
20: Runnable r;
21: while (true) {
22: synchronized(pool) {
23: while (pool.isEmpty()) {
24: ...
25: pool.wait();
26: ...
27: }
28: r = (Runnable) pool.removeFirst();
29: }
30: ...
31: r.run();
32: ...
33: }
34: }
35: }

The thread pool in DJcutter meets the requirements for safely using notify().
The thread pool offers a solution to both the problem of thread life-cycle
overhead and the problem of resource thrashing. By reusing threads for
multiple tasks, the thread-creation overhead is spread over many tasks. As
a bonus, because the thread already exists when a request arrives, the de-
lay introduced by thread creation is eliminated. Thus, the request can be
serviced immediately, rendering the application more responsive. Further-
more, by properly tuning the number of threads in the thread pool, you

CHAPTER 4. IMPLEMENTATION ISSUES 47

can prevent resource thrashing by forcing any requests in excess of a certain
threshold to wait until a thread is available to process it.

Chapter 5

Experiment

5.1 Performance Measurement of RMI

To examine the execution performance of remote pointcuts, we compared the
execution time of the programs in DJcutter and AspectJ using Java RMI.
For this experiment, we used the testing programs shown in section 2.2.2
(AspectJ using Java RMI) and section 3.7.1 (DJcutter). These programs
examine whether registerUser() in AuthServer remotely calls addUser() in
DbServer. We measured the elapsed time of the testRegisterUser() method
for each program. The body of the addUser() method was empty. In this
experiment, the AuthServer and the AuthServerTest ran on the same host
while DbServer ran on another host. The AuthServer host was a Sun Blade
10001 and the DbServer was a Sun Fire V4802. These hosts were connected
through a 100 BaseTX network. We used Sun JDK 1.4.0 01 and AspectJ
1.0.6.

Table 5.1: The elapsed time (msec.) of testRegisterUser()
Pointcut parameters () (String) (String,String)
Java + Java RMI 5.9 5.9 6.0
AspectJ + Java RMI 5.9 6.0 6.0
DJcutter 4.8 4.9 5.0
DJcutter without cflow 4.8 4.9 4.9

Table 5.1 lists the results of our measurement. Although the program in

1Dual UltraSPARC III 750 MHz with 1 GB of memory and Solaris 8.
2UltraSPARC III Cu 900 MHz ×4 with 16 GB of memory and Solaris 9.

48

CHAPTER 5. EXPERIMENT 49

DJcutter was slightly faster than in AspectJ, this result does not mean DJ-
cutter is considerably faster than AspectJ using Java RMI. In the program in
AspectJ (see section 2.2.2), when the body of the before advice is executed,
a remote reference test (lines 31 to 33) is obtained for calling confirmCall().
On the other hand, this remote reference is not obtained in DJcutter dur-
ing the measurement. It is implicitly obtained by the runtime system in
advance. Since obtaining this remote reference needs remote access to the
registry server, this difference caused about 1 milli-second ahead of DJcutter
in the measurement. We confirmed this fact by other experiment.

The programs shown in section 2.2.2 and 3.7.1 do not use pointcut pa-
rameters. To evaluate effects by sending pointcut parameters through a
network, we also examined the programs in that the before advice (in DJ-
cutter) or the confirmCall() method (in AspectJ) receives one or both of the
parameters to the addUser() method (DJcutter). The type of the param-
eters is the String class. The results of our measurement showed that the
performance impacts by pointcut parameters are small.

For fair comparison, we also measured the elapsed time of the program
written in DJcutter without cflow since the program in AspectJ did not use
cflow. The results were similar to those of the program using cflow since the
overhead due to cflow across a network is not significant.

5.2 High Readability and Maintainability of an
Aspect

In this section, to show high readability and maintainability of an aspect in
DJcutter, we compared aspects in DJcutter and AspectJ with Java RMI.
Figure 5.1 is each of aspects written in DJcutter (the left-side code) and
AspectJ using Java RMI (the right-side code). As comparing with the as-
pect in AspectJ with Java RMI, the aspect written in DJcutter is a brief
description. Whereas the aspect in AspectJ includes several complicated
codes for explicit network processing, these complicated codes surely reduce
within the aspect in DJcutter.

CHAPTER 5. EXPERIMENT 50

Figure 5.1: Comparing each aspect in DJcutter and AspectJ with Java RMI
The left-side code is the aspect in DJcutter. The right-side code is the aspect
in AspectJ with Java RMI.

Chapter 6

Concluding Remarks

This paper presented DJcutter, which provides remote pointcuts as a new
language construct for distributed aspect-oriented programming. A remote
pointcut is a function for identifying join points in the execution of a pro-
gram running on a remote host. It can simplify the description of aspects
with respect to network processing if the aspects implement a crosscutting
concern spanning over multiple hosts. To illustrate this situation, this pa-
per used the example of a program written in DJcutter for distributed unit
testing. The remote pointcut is a crucial language construct for distributed
aspect-oriented programming, corresponding to remote method invocation
(RMI) for distributed object-oriented programming.

Although we adopted load-time weaving for DJcutter, runtime weaving
is more appropriate if we use DJcutter as a testing framework for distributed
software. This allows the developers to change the testing code written as
an aspect without restarting the target software they are testing. Extending
DJcutter is our future work to enable runtime weaving such as exists PROSE
[30] and Wool [31]. Another area of our future work is performance improve-
ment. Although the advice bodies in all aspects are currently executed in
the aspect server, this centralized approach might be a performance bottle-
neck. We will extend DJcutter to allow multiple aspect servers for better
performance.

51

Bibliography

[1] Apache Software Foundation: CACTUS , Online publishing, URI
http://jakarta.apache.org/cactus/ (2000).

[2] Aridor, Y., Factor, M. and Teperman, A.: cJVM: A Single System
Image of a JVM on a Cluster, International Conference on Parallel
Processing 1999 (ICPP 1999), pp. 4–11 (1999).

[3] Back, G.: DataScript - A Specification and Scripting Language for Bi-
nary Data, Generative Programming and Component Engineering 2002
(GPCE 2002), LNCS 2487, Springer (2002).

[4] Balfanz, D. and Gong, L.: Experience with Secure Multi-Processing
in Java, The 18th International Conference on Distributed Computing
Systems (ICDCS 1998), pp. 398–405 (1998).

[5] Beck, K.: Extreme Programming Explained: Embrace Change,
Addison-Wesley, chapter 4 (1999).

[6] Bergmans, L. and Aksits, M.: Composing crosscutting concerns using
composition filters, CACM , ACM Press (2001).

[7] Chiba, S.: Load-time Structural Reflection in Java, European Con-
ference on Object-Oriented Programming 2000 (ECOOP 2000), LNCS
1850, Springer Verlag, pp. 313–336 (2000).

[8] Chiba, S. and Nishizawa, M.: An Easy-to-Use ToolKit for Efficient
Java Bytecode Translators, Generative Programming and Component
Engineering 2003 (GPCE 2003), LNCS 2830, SV, pp. 364–376 (2003).

[9] Czajkowski, G.: Application Isolation in the Java Virtual Machine,
Object-Oriented Programming Systems, Languages, and Applications
2000 (OOPSLA 2000), Springer Verlag, pp. 354–366 (2000).

52

BIBLIOGRAPHY 53

[10] Dahm, M.: Byte Code Engineering, Java Information Tage (JIT 1999)
(2000).

[11] Eclipse Organization: aspectj project , Online publishing, URI
http://www.eclipse.org/aspectj/ (2001).

[12] Gamma, E., Helm, R., Johnson, R. and Vlissides, J.: Design Patterns:
Elements of Reusable Object-Oriented Software, Addison-Wesley, chap-
ter 4 (1995).

[13] Gamma, E., Helm, R., Johnson, R. and Vlissides, J.: Design Patterns:
Elements of Reusable Object-Oriented Software, Addison-Wesley, chap-
ter 5 (1995).

[14] IBM Research: Hyper/J: Multi-Dimensional Separa-
tion of Concerns for Java, Online publishing, URI
http://www.research.ibm.com/hyperspace/HyperJ/hyperJ.html.

[15] Kiczales, G., Hilsdale, E., Hugunin, J., Kersten, M., Palm, J. and Gris-
wold, W. G.: An Overview of AspectJ, European Conference on Object-
Oriented Programming 2001 (ECOOP 2001), LNCS 2072, Springer, pp.
327–353 (2001).

[16] Kiczales, G., Irwin, J., Lamping, J., Loingtier, J.-M., Lopes, C. V.,
Maeda, C. and Mendhekar, A.: Aspect-Oriented Programming, Eu-
ropean Conference on Object-Oriented Programming 1997 (ECOOP
1997), LNCS 1241, Springer, pp. 220–242 (1997).

[17] Lea, D.: Concurrent Programming Second Edition Design Principles
and Patterns, Addison Wesley Java Series, chapter 4 (2000).

[18] Lesiecki, N.: Test flexibly with AspectJ and mock objects,
IBM developerWorks, Online publishing, URI http://www-
106.ibm.com/developerworks/java/library/j-aspectj2/ (2000).

[19] Liang, S. and Bracha, G.: Dynamic Class Loading in the Java Virtual
Machine, Object-Oriented Programming Systems, Languages, and Ap-
plications 1998 (OOPSLA 1998), ACM SIGPLAN Notices, pp. 36–44
(1998).

[20] Lieberherr, K. J.: Adaptive Object-Oriented Software: The Demeter
Method with Propagation Patterns, PWS Publishing Company, Boston
(1996). ISBN 0-534-94602-X.

BIBLIOGRAPHY 54

[21] Liskov, B. and john Guttag: Program Development in Java - Abstrac-
tion, Specification, and Object-Oriented Design, Addison Wesley, chap-
ter 1 (2001). ISBN 0-202-65768-6.

[22] Lopes, C.: D: A Language Framework for Distributed Programming,
PhD Thesis, College of Computer Science, Northeastern University
(1997).

[23] Northeastern University: Demeter/Java(DARPA sup-
ported EDCS project), Online publishing, URI
http://www.ccs.neu.edu/home/lieber/Demeter-and-Java.html.

[24] Object Management Group, Inc: CORBA, Online publishing, URI
http://www.corba.org/.

[25] Object Mentor: JUnit.org , Online publishing, URI
http://www.junit.org/index.htm (2001).

[26] ObjectWeb Consortium: The JAC Project , Online publishing, URI
http://jac.objectweb.org/index.html (1999).

[27] Orleans, D. and Lieberherr, K.: DJ: Dynamic Adaptive Programming
in Java, International Conference on Meta-level Architectures and S
eparation of Crosscutting Concerns 2001 (Reflection 2001), Springer
Verlag, pp. 73–80 (2001).

[28] Palo Alto Research Center: AspectJ , Online publishing, URI
http://www.parc.com/research/csl/projects/aspectj/.

[29] Pawlak, P., Seinturier, L., Duchien, L. and Florin, G.: JAC: A Flexible
Solution for Aspect-Oriented Programming in Java, International Con-
ference on Metalevel Architectures and Separation of Crosscutting Con-
cerns 2001 (Reflection 1997), LNCS 2192, Springer, pp. 1–24 (2001).

[30] Popovici, A., Gross, T. and Alonso, G.: Dynamic Weaving for Aspect-
Oriented Programming, Aspect-Oriented Software Development 2002
(AOSD 2002), ACM Press, pp. 141–147 (2002).

[31] Sato, Y., Chiba, S. and Tatsubori, M.: A Selective, Just-In-Time As-
pect Weaver, Generative Programming and Component Engineering
2003 (GPCE 2003), LNCS 2830, SV, pp. 189–208 (2003).

[32] Soares, S., Laureano, E. and Borba, P.: Implementing Distribution
and Persistence Aspects with AspectJ, Object-Oriented Programming

BIBLIOGRAPHY 55

Systems, Languages, and Applications 2002 (OOPSLA 2002), ACM
SIGPLAN Notices, pp. 174–190 (2002).

[33] Sun Microsystems, Inc: Reflection, Online publishing, URI
http://java.sun.com/j2se/1.4.1/docs/guide/reflection/.

[34] Sun Microsystems, Inc: Enterprise JavaBeans Technology, Online pub-
lishing, URI http://java.sun.com/products/ejb/ (1995).

[35] Sun Microsystems, Inc: Java Remote Method Invocation (RMI), Online
publishing, URI http://java.sun.com/products/jdk/rmi/ (1995).

[36] Tarr, P., Ossher, H., Harison, W. and Jr, S. M. S.: N degrees of sep-
aration: multi-dimensional separation of concerns, International Con-
ference on Software Engineering 1999 (ICSE 1999), IEEE Computer
Society Press, pp. 107–119 (1999).

[37] Tatsubori, M., Sasaki, T., Chiba, S. and Itano, K.: A Bytecode Transla-
tor for Distributed Execution of Legacy Java Software, European Con-
ference on Object-Oriented Programming 2002 (ECOOP 2002), LNCS
2072, Springer, pp. 236–255 (2001).

[38] Tilevich, E. and Smaragdakis, Y.: J-Orchestra: Automatic Java Appli-
cation Partitioning, European Conference on Object-Oriented Program-
ming 2002 (ECOOP 2002), Springer (2002).

[39] University of Twente: ComposeJ , Online publishing, URI
http://trese.cs.utwente.nl/prototypes/composeJ/ (1999).

[40] Wohlstadter, E., Jackson, S. and Dvanbu, P.: DADO: Enhancing mid-
dleware to support cross-cutting features in distributed, heterogeneous
systems, International Conference on Software Engineering 2003 (ICSE
2003), IEEE Computer Society Washington, DC, USA, pp. 174–186
(2003).

