
Remote Pointcut
— A Language Construct for Distributed AOP

Muga Nishizawa
Tokyo Institute of Technology

2-12-1 Ohkayama, Meguro-ku,
Tokyo 152-8552, Japan

muga@csg.is.titech.ac.jp

Shigeru Chiba
Tokyo Institute of Technology

2-12-1 Ohkayama, Meguro-ku,
Tokyo 152-8552, Japan

chiba@is.titech.ac.jp

Michiaki Tatsubori
IBM Tokyo Research Lab.
1623-14 Shimotsuruma,

Yamato, Kanagawa 242-8502,
Japan

mich@trl.ibm.com

ABSTRACT
This paper presents our extension to AspectJ for distributed
computing. Although AspectJ allows Java developers to
modularize a crosscutting concern as an aspect, this paper
shows that some crosscutting concerns in distributed com-
puting are not modularized in AspectJ as simple aspects.
Rather, aspects modularizing such a concern tend to be in
code spread over multiple hosts and explicitly communicated
across the network. This paper illustrates this fact with
an example of testing a distributed program written in As-
pectJ with Java RMI. To address this complexity caused by
network communication, this paper proposes an extension
to AspectJ for distributed computing. The language con-
struct that we call remote pointcut enables developers to
write a simple aspect to modularize crosscutting concerns
distributed on multiple hosts. This paper presents DJcut-
ter, which is our AspectJ-like language supporting remote
pointcuts.

Keywords
Distributed software, AspectJ, Language design

1. INTRODUCTION
Modularizing crosscutting concerns in distributed systems

is one of significant demands in software industry. For ex-
ample, transactions, security, and fault tolerance are typical
crosscutting concerns in distributed systems. Current pro-
gramming systems do not provide mechanisms for modular-
izing such concerns and thus they are major sources of low
readability and maintainability of the software.

Many crosscutting concerns also arise during unit testing
of distributed systems. The importance of testing frame-
works is becoming widely accepted. In particular, since the
XP (Extreme Programming) community [3] began advocat-
ing unit tests, unit testing has become a popular practice.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
AOSD 04,March 2004, Lancaster UK.
Copyright 2004 ACM 1-58113-842-3/03/0004 ...$5.00.

Several tools such as JUnit [12] and Cactus [1] have been de-
veloped as simple regression test frameworks for automating
unit testing.

The code for unit testing includes typical crosscutting con-
cerns that AspectJ [7] can deal with [9]. AspectJ is a widely
used language for aspect-oriented programming (AOP) [4, 8,
21, 14] in Java. Unfortunately, if we use AspectJ to modular-
ize testing code for distributed software, the code (”aspect”)
can be somewhat modular but it often consists of several
sub-components distributed on different hosts. They must
be manually deployed on each host and the code of these sub-
components must include explicit network processing among
the sub-components for exchanging data since they cannot
have shared variables or fields. These facts complicate the
code of the aspect and degrade the benefits of using aspect-
oriented programming.

The source of these problems is that the language con-
structs of AspectJ do not accommodate to distribution or
network processing. Combination of AspectJ and an exist-
ing framework for distributed software, such as Java RMI
(remote method invocation)[19] is not a solution. The ex-
isting frameworks extend language constructs for object-
orientation, such as method calls, so that they can accommo-
date distribution. They do not support language constructs
for aspect orientation.

To address these problems, this paper proposes a new
AspectJ-like language named DJcutter . In this language,
several language constructs, in particular pointcuts, have
been extended for distributed software. The extended point-
cuts of DJcutter are called remote pointcuts. Although a
pointcut in AspectJ identifies execution points on the local
host, a remote pointcut can identify them on a remote host.
This language construct can simplify the code of a com-
ponent implementing a crosscutting concern in distributed
software. DJcutter also provides another language construct
named remote inter-type declaration, which allows develop-
ers to declare a new method and field in a class on a remote
host. The aspect weaving in DJcutter is performed at load
time on each participating host. When a class is loaded
from a local file system, it is transformed according to an
aspect sent from a remote host. This architecture is useful
for distributed unit testing since the users do not have to
deploy a woven program to each host whenever they change
the description of the aspects.

The rest of this paper is structured as follows. Section 2 il-
lustrates our motivating example. It shows that a program

written in AspectJ with Java RMI often includes compli-
cated network processing in the description of some aspects.
Section 3 presents DJcutter and its language constructs such
as remote pointcut and remote inter-type declaration. Sec-
tion 4 shows how the example in Section 2 can be imple-
mented in DJcutter. Section 5 presents the results of our ex-
periment using DJcutter. Section 6 mentions related work.
Section 7 is conclusion.

2. COMPLICATIONS OF NETWORK PRO-
CESSING

AspectJ is a useful programming language for developing
distributed software. It enables modular implementation
even if some crosscutting concerns are included in the imple-
mentation. However, the developers of distributed software
must consider the deployment of the executable code. Even
if some concerns can be implemented as a single component
(”aspect”) at the code level, it might need to be deployed on
different hosts and it would therefore consist of several sub-
components or sub-processes running on each host. Since
Java (or AspectJ) does not provide variables or fields that
can be shared among multiple hosts, the implementation of
such a concern would include complicated network process-
ing for exchanging data among the sub-components.

Programming frameworks such as Java RMI do not solve
this problem of complication. Although they make details of
network processing implicit and transparent from the pro-
grammers’ viewpoint, the programmers still must consider
distribution and they are forced to implement the concern
as a collection of several distributed sub-components ex-
changing data through remote method calls. The program-
mers cannot implement such a concern as a simple, non-
distributed monolithic component without concerns about
network processing. This is never desirable with respect
to aspect orientation since it means that the programmers
must be concerned about distribution when implementing a
different concern.

We illustrate this situation with an example of unit test-
ing1 for distributed software. Distributed test code includes
crosscutting concerns but, if they are modularized in As-
pectJ, the code develops the complexities mentioned above.
Writing test code for automating unit tests is an important
development process that the XP (Extreme Programming)
community recommends. The automation results in cleaner
code, encourages refactoring, and makes rapid development
possible. Recently, simple regression test frameworks such
as JUnit and Cactus have been getting popular for the au-
tomated unit testing.

2.1 Unit test for authentication service
As an example, we present test code for a distributed au-

thentication service. The implementation of this service con-
sists of two components: a front-end server AuthServer on
a host W and a database server DbServer on another host
D. This is a typical architecture for enterprise Web applica-
tion systems. If a client application needs to register a new
user, it remotely calls registerUser() on the front-end server
using Java RMI. Then the registerUser() method remotely
calls addUser() on the database server, which will actually
access the database system to update the user list.

1Some might think this example should be called not unit
testing but end-to-end testing.

To unit-test the registerUser() method, the test code would
first remotely call the registerUser() method and then con-
firm that the addUser() method is actually executed by the
database server. Note that since the test code must con-
firm that remote method invocation is correctly executed,
it must confirm not only that registerUser() on the host W
calls addUser() but also that addUser() starts running on the
host D after the call.

The test code would be simple and straightforward if the
examined program is not distributed. We below show the
test code written in AspectJ:

1: aspect AuthServerTest extends TestCase {
2: boolean wasAddUserCalled;
3: void testRegisterUser() {
4: wasAddUserCalled = false;
5: String userId = "muga", password = "xxx";
6: AuthServer auth = new AuthServer();
7: auth.registerUser(userId, password);
8: assertTrue(wasAddUserCalled);
9: }

10: before():
11: execution(void DbServer.addUser(String,
12: String)) {
13: wasAddUserCalled = true;
14: }
15: }

Although this is not complete code due to the space limi-
tations, the readers would understand the overall structure
of the test code. The main part of the test code is testReg-
isterUser() (lines 3 to 9). It calls the registerUser() method
and then confirms the wasAddUserCalled field is true. This
field is set to true by the before advice (lines 10 to 14) when
the addUser() method is executed.

2.2 Test code in AspectJ
Unfortunately, the test code becomes more complicated if

the examined program is distributed. The test code shown
below is a distributed version (again, it is not complete code.
Access modifiers such as public and constructors are not
shown):

1: // on host T
2: class AuthServerTest extends TestCase {
3: boolean wasAddUserCalled;
4: void testRegisterUser() {
5: Naming.rebind("test", new RecieverImpl());
6: wasAddUserCalled = false;
7: String userId = "muga", password = "xxx";
8: AuthServer auth
9: = (AuthServer) Naming.lookup("auth");

10: auth.registerUser(userId, password);
11: assertTrue(wasAddUserCalled);
12: }
13: class ReceiverImpl
14: extends UnicastRemoteObject
15: implements NotificationReceiver {
16: void confirmCall() {
17: wasAddUserCalled = true;
18: }
19: }
20: }
21:
22: interface NotificationReceiver
23: { // on both hosts
24: void confirmCall();
25: }

:AuthServer

:AuthServerTest

:DBServer

3. confirmCall()

1. registerUser()

2. addUser()

Host W

Host T

Host D

<<aspect>>
:Notification

<<pointcut>>
execution(addUser())

:Receiver

Figure 1: The testing code in AspectJ

26:
27: aspect Notification { // on host D
28: before():
29: execution(void DbServer.addUser(String,
30: String)) {
31: NotificationReceiver test
32: = (NotificationReceiver)
33: Naming.lookup("test");
34: test.confirmCall();
35: }
36: }

The test code now consists of three sub-components: Auth-
ServerTest, ReceiverImpl, and Notification (Figure 1). Al-
though the overall structure is the same, the AuthServerTest
and ReceiverImpl objects run on a testing host T but the
Notification aspect runs on the host D, where the DbServer
is running. The host T is different from W or D.

The testRegisterUser() method (lines 4 to 12) on T re-
motely calls registerUser() on W and then confirms that
the wasAddUserCalled field is true. This field is set to true
by the confirmCall() method in ReceiverImpl, which is re-
motely called by the before advice (lines 28 to 35) of Noti-
fication running on D. The confirmCall() method cannot be
defined in AuthServerTest since AuthServerTest must extend
the TestCase class whereas Java RMI requires that remotely-
accessible classes extends the UnicastRemoteObject class.2

As we can see, even this simple testing concern is imple-
mented by distributed sub-components and hence we had to
write complicated network processing code using Java RMI
despite that it is not related to the testing concern. In par-
ticular, the Notification aspect is used only for notifying con-
firmCall() on the host T beyond the network that the thread
of control on the host D reaches addUser(). The Notification
aspect is a sub-component that are necessary only because
confirmCall() and addUser() are deployed on different hosts.
This means that the component design of the unit testing
is influenced by concerns about distributed. Furthermore,
this notification code is similar to what the AspectJ compiler
produces for implementing the pointcut-advice framework.
It should not be hand-coded, but implicit within the lan-
guage constructs provided by an AOP language.

2This is not precisely accurate. Technically, a confirmCall()
can be defined in AuthServerTest by using certain program-
ming tricks. However, the test code would be significantly
more complicated.

3. DJCUTTER
To address the problems of the previous section, we pro-

pose DJcutter, which is an extension to the AspectJ lan-
guage for distributed software. It allows the users to im-
plement a crosscutting concern as an aspect that does not
include explicit network processing using Java RMI, even if
that concern cuts across multiple components on different
hosts.

3.1 Remote pointcut
The most significant difference between AspectJ and DJ-

cutter is that DJcutter provides remote pointcuts. A remote
pointcut is a function for identifying join points in the execu-
tion of a program running on a remote host. In other words,
when the thread of control reaches the join points identified
by a remote pointcut, the advice body associated with that
remote pointcut is executed on a remote host different from
the one where those join points occur. Remote pointcuts
are analogous to remote method calls, which invoke the ex-
ecution of a method body on a remote host. Unfortunately,
AspectJ does not provide such a pointcut. An advice body
in AspectJ is executed on the same host as where the join
points identified by a pointcut occur.

Remote pointcuts enable implementing a distributed cross-
cutting concern as a simple, non-distributed component with-
out concerns about network processing. The following is an
aspect written in DJcutter, which conforms to the regular
AspectJ syntax:

aspect LoggingAspect {
pointcut setter(int x):

args(x) && call(void Point.setX(int));
before(int x): setter(x) {

System.out.println("set x: " + x);
}

}

This aspect prints a message whenever the setX() method
is called on each participating host. The message is printed
on a single particular host wherever the setX() method is
called.

The setter pointcut in LoggingAspect:

call(void Point.setX(int))

identifies each join point that is a call to the setX() method
in the Point class. Unlike pointcuts in AspectJ, however, this
pointcut identifies the join points matching the signature on
every host even if the advice body is not deployed on the
host.

Aspect server
The body of the advice:

System.out.println("set x: " + x);

is executed just before each call to setX(), but it is executed
on a host different from the host where the caller thread is
running. If the thread of control reaches the join point, it
implicitly sends a message through the network to an aspect
server running on a different host3 so that the aspect server
will execute the advice body. The thread of control that sent

3Technically, the aspect server might be running on the same
host.

the message blocks until the aspect server finishes the exe-
cution of the advice body. Since all of the advice bodies are
executed by the aspect server on the central host, they can
easily exchange values by storing data in the fields defined
in the aspect. These fields are locally accessible from the
advice bodies. Note that, in AspectJ, the advice body is ex-
ecuted on the same host where the caller thread is running.
Thus it may have to explicitly send values through the net-
work to exchange them with other advice bodies executing
on other hosts.

Load-time weaving and remote inter-type declaration
DJcutter performs load-time weaving. The normal Java
classes on each participating host must be loaded by the
class loader provided by DJcutter [10]. This class loader
weaves aspects and classes on the fly. The compiled as-
pects are stored in the aspect server. The parts of the com-
piled code except for the advice bodies are automatically
distributed by the aspect server to each host, so the latest
aspects can be woven when the classes are loaded. The users
of DJcutter do not have to manually deploy the compiled as-
pects to every host.

This fact improves the usefulness of the inter-type dec-
laration (formerly called the introduction) in DJcutter. An
aspect can declare that it will respond to certain methods
and field-access requests on behalf of other objects. In DJ-
cutter, these methods and fields can be declared other ob-
jects on multiple remote hosts. Since the description of the
inter-type declaration is automatically distributed from the
aspect server to every host, declaring a method or field to
classes on remote hosts is simple. The users only have to
install the compiled aspect on the aspect server. Unlike in
AspectJ, they do not have to manually deploy the woven as-
pect and classes to every host. This automatic deployment
is useful in the context of distributed unit testing. We will
revisit this issue in Section 4.

3.2 Pointcut designators
The pointcut designators provided by the current imple-

mentation of DJcutter are listed in Table 1. Most of the
pointcut designators are from AspectJ.

A pointcut designator unique to DJcutter is hosts. It iden-
tifies the join points in the execution on the designated hosts.
Although DJcutter can deal with all the join points on ev-
ery participating host, this pointcut designator is used to
identify the join points on particular hosts.

For example, the users of DJcutter can describe the fol-
lowing pointcut with the hosts pointcut designator:

pointcut sample(): call(void Point.setX(int))
&& hosts(hostId1, hostId2)

This pointcut identifies join points that are calls to the
setX() method in the Point class on the hosts with the names
specified by hostId1 or hostId2. HostId1 and hostId2 are pa-
rameters given by the users when the program starts run-
ning. These runtime parameters allow the developers to
avoid embedding particular host names as constants in the
source code so that they can enjoy good flexibility.

DJcutter extends the cflow pointcut designator to handle
the control flows of distributed software. cflow identifies join
points that occur between the start of the method specified
by cflow and the return. It identifies only the join points vis-
ited by the thread executing the method specified by cflow.

In AspectJ, cflow cannot pick out join points on a remote
host since the control-flow data needed to implement cflow
is stored in a ThreadLocal variable but the ThreadLocal vari-
able is never passed through a network.

DJcutter provides a custom socket class so that the Thread-
Local variable can be passed through a network. If network
communication is performed with this custom socket class
[20], then cflow can pick out join points on a remote host.
For example, if Java RMI is used for network communica-
tion, the following program exports a remote object to make
it available to receive incoming calls, using the custom socket
class:

PointImpl p0 = new PointImpl();
Point p

= (Point) UnicastRemoteObject.exportObject(
p0, 40000,
new DJCClientSocketFactory(),
new DJCServerSocketFactory());

This program exports a PointImpl object, which is accessi-
ble from a remote host through the Point interface. The
DJCClientSocketFactory and DJCServerSocketFactory classes
are the factory classes provided by DJcutter for creating the
custom socket. DJcutter also provides a convenient method
with which the program shown above can be rewritten as
follows:

PointImpl p0 = new PointImpl();
Point p

= (Point) DJcutter.exportObject(p0, 40000);

3.3 Access to aspect methods
Although aspects are executed on the aspect server, nor-

mal Java classes can remotely call a method declared in the
aspects. To make an aspect accessible from remote hosts,
the aspect must implement an interface that declares the
exported methods.

Suppose that we want to export a displayLog() method
to remote hosts. The definition of the aspect should be as
follows:

interface Logger extends AspectInterface {
void displayLog(Point p, int x);

}
aspect LoggingAspect implements Logger {

void displayLog(Point p, int x) {
System.out.println("set x: " + x);

}
...

}

The Logger interface declares the displayLog() method, which
is exported to remote hosts. On the remote hosts, normal
Java classes can remotely call the displayLog() method as
follows:

Logger logger
= (Logger) Aspect.get("LoggingAspect");

logger.displayLog();

Aspect is the class provided by DJcutter. The get method
in Aspect returns a remote reference to the aspect with the
specified name (in this example, LoggingAspect). The type
of the remote reference is the interface type implemented
by that aspect. If a method is called on the proxy object

Table 1: The pointcut designators of DJcutter
designator join points
within(TypePattern) the join points included in the declaration of

the types matching TypePattern
target(Type or Id) the join points where the target object is an instance

of Type or the type of Id
args(Type or Id, ...) the join points where the arguments are instances of

Types or the types of the Ids
call(Signature) the calls to the methods matching Signature
execution(Signature) the execution of the methods matching Signature
cflow(Pointcut) all join points that occur between the entry and exit of

each join point specified by Pointcut
hosts(Host, ...) the join points in the execution on Hosts.

represented by the remote reference, then the corresponding
method in the aspect is invoked on the aspect server.

This architecture using the proxy objects is the same as
that of Java RMI [6]. The reason why methods in aspects
must be called through an interface type is that this archi-
tecture enables separate compilation. The developers can
compile normal Java classes without aspects, provided that
the interface type is available. This is quite helpful in the
development of distributed software. Furthermore, this ar-
chitecture allows the developers to implement components
independently of each other. For example, they can start de-
scribing a normal class that remotely calls a method in an
aspect before they have finished describing the aspect, if the
interface declaring the exported method is already available.

3.4 Pointcut parameters
Like AspectJ, DJcutter allows pointcuts to expose the ex-

ecution context of the join points they identify. For example,
the args pointcut designator can expose method parameters
and the target pointcut designator can expose the target ob-
ject. Each part of the exposed context is bound to a pointcut
parameter, which is accessible within the body of the advice.
For example,

pointcut setter(int x):
call(void Point.move(int,int))
&& args(x, *)

This setter pointcut exposes the first int-type parameter to
the move method through a pointcut parameter x.

In DJcutter, since remote pointcuts identify join points on
remote hosts, the pointcut parameters should refer to data
on the remote hosts. By default, they refer to a copy of that
data constructed on the aspect server. The runtime system
of DJcutter first serializes the data on the remote hosts,
transfers it through the network, and constructs a copy from
the serialized data. The pointcut parameters available in the
advice body refer to that copy.

Pointcut parameters can be specified as remote references
instead of local references to the copies. If the configura-
tion file specifies that pointcut parameters of class type C
are remote references, then the runtime system of DJcutter
dynamically generates a proxy class for C. From the imple-
mentation viewpoint, the pointcut parameters are made to
refer to instances of that proxy class on the aspect server. If
the advice body calls a method on that proxy object, then
the method is invoked on the master object on the remote
host where the join point occurs. To generate proxy classes,

DJcutter uses the replace approach we developed for Addis-
tant [22]. For example, if the remote object associated with
a proxy object is a Widget object, then the proxy class is
also named Widget. On the aspect server, this proxy class
is loaded instead of the original Widget class. The proxy-
class generation is performed with our bytecode engineering
library Javassist [5].

Remote references are used not only for pointcut parame-
ters but also references to instances of aspects. As shown in
Section 3.3, normal Java classes can call methods declared
in aspects. The references to the instances of the aspects are
also remote references implemented using the same approach
as for the pointcut parameters. In addition, the parameters
of the methods called on the remote object indicated by a
remote reference can be also remote references.

3.5 Reflection bythisJoinPoint
As in AspectJ, DJcutter provides the thisJoinPoint special

variable for reflective access to join points. This variable
refers to an object representing the context of the current
join point or advice. It is available within the body of the
advice code.

The thisJoinPoint variable provided by DJcutter has a
getHost() method to acquire the name of the host where
the identified join point is located. For example, the before
advice below records the name of the host that last called a
method in the Point class:

String lastCallerHost;
before(): call(void Point.*(..)) {

lastCallerHost
= thisJoinPoint.getHost();

}

3.6 Local aspect
The implementations of crosscutting concerns in distributed

systems do not always involve multiple hosts. Such crosscut-
ting concerns can be implemented without remote pointcuts
as a simple non-distributed component. If they are imple-
mented with remote pointcuts, the execution performance is
rather worse because of the overheads due to network com-
munication to the aspect server. These crosscutting con-
cerns should be implemented with the aspects provided by
AspectJ.

DJcutter therefore provides ones similar to the aspects
of AspectJ. The developers can specify that copies of an
aspect are distributed to each participating host and that
body of advice in the aspect is locally executed on the same

host as where the join points exist. These types of aspects,
which are called local aspects, are equivalent to the aspects
available in AspectJ. Since a local aspect is instantiated on
each host, the fields declared in the aspect are not shared
among the hosts. A value assigned to such a field on one host
is not visible on the other hosts. To exchange data among
the hosts, the data must be explicitly transferred through
the network, for example, by using Java RMI.

4. EXAMPLES
In this section, we show two example programs written in

DJcutter to illustrate how remote pointcuts and inter-type
declaration can be used for distributed unit testing.

4.1 The use of remote pointcut
The testing code presented in Section 2 was complicated

compared to the non-distributed version of the testing code.
If we rewrite that testing code in DJcutter, then the result-
ing code becomes as simple as the non-distributed version:

1: // on host T
2: aspect AuthServerTest extends TestCase {
3: boolean wasAddUserCalled;
4: void testRegisterUser() {
5: wasAddUserCalled = false;
6: String userId = "muga", password = "xxx";
7: AuthServer auth
8: = (AuthServer) Naming.lookup("auth");
9: auth.registerUser(userId, password);

10: assertTrue(wasAddUserCalled);
11: }
12: before(): // remote pointcut
13: cflow(
14: call(void AuthServer.registerUser(String,
15: String)))
16: && execution(void DbServer.addUser(String,
17: String))){
18: wasAddUserCalled = true;
19: }
20: }

Unlike the code in AspectJ, the testing code in DJcutter
is not divided into distributed sub-components (Figure 2).
Although the before advice (lines 12 to 19) is executed when
the thread of control reaches the addUser() method on the
host D, where the DbServer is running, the execution of the
before advice is on a different host T, where the testReg-
isterUser() method is running. Thus the before advice can
directly set wasAddUserCalled to true. All the network pro-
cessing for reporting the execution of the addUser() method
to the host T needs not be explicitly described.

Note that the before advice contains the cflow pointcut
designator, since DJcutter provides cflow across multiple
hosts if the components communicate with the Java RMI.
This improves the accuracy of the testing code. The code
can examine not only whether or not addUser() is executed,
but also whether the caller to addUser() is registerUser().

The testing code in DJcutter has another advantage. Since
DJcutter automatically distributes the definitions of the as-
pects to each participating host and weaves them at load
time, the programmers do not have to manually deploy the
compiled and woven code to the hosts whenever the defini-
tions of the aspects are changed for different tests.

4.2 The use of remote inter-type declaration

:AuthServer :DBServer

1. registerUser()

2. addUser()

Host W

Host T

Host D

<<pointcut>>
execution(addUser())

<<aspect>>
:AuthServerTest

Figure 2: The testing code in DJcutter

Unit testing sometime requires accessor methods for in-
specting the internal state of objects. AspectJ can be used
to append such accessor methods just for testing if these
methods are not defined in the original program. For exam-
ple, the developer may want to confirm that the data sent by
the registerUser() method is actually stored in the database
by the addUser() method. To do this, an accessor method
containsUser() must be appended to the DbServer class so
that the testing code can examine whether the added user
entry is contained in the database.

The remote inter-type declaration of DJcutter simplifies
such unit testing. If the developers use AspectJ, they have
to recompile all the programs and deploy the compiled and
woven code to the participating hosts whenever they change
the inter-type declaration in the aspect. On the other hand,
DJcutter can simplify this deployment. Since DJcutter au-
tomatically distributes the new definitions of the aspect to
the hosts and weaves it at load time, the new aspect is re-
flected in the programs if the programs are simply restarted.

The following is the testing code written in DJcutter. It
appends containsUser() to the DbServer class (lines 13 to
18). The testRegisterUser() method first confirms that the
user muga is not recorded in the database (line 9) and then
it calls the registerUser() method (line 10). After that, it
confirms that the user muga is recorded in the database (line
11).

1: // on host T
2: aspect AuthServerTest extends TestCase {
3: void testRegisterUser() {
4: String userId = "muga", password = "xxx";
5: AuthServer auth
6: = (AuthServer) Naming.lookup("auth");
7: DbServer db
8: = (DbServer) Naming.lookup("db");
9: assertTrue(!db.containsUser(userId));

10: auth.registerUser(userId, password);
11: assertTrue(db.containsUser(userId));
12: }
13: boolean DbServer.containsUser(String
14: userId) {
15: // this method returns true if the user
16: // entry specified by userId is found
17: // in the database.
18: }
19: }

5. EXPERIMENT
To examine the execution performance of remote point-

cuts, we compared the execution time between DJcutter and
AspectJ using Java RMI. For this experiment, we used the
testing programs shown in Section 2.2 (AspectJ using Java
RMI) and Section 4.1 (DJcutter). These programs exam-
ine whether registerUser() in AuthServer remotely calls ad-
dUser() in DbServer. We measured the elapsed time of the
testRegisterUser() method for each program. The body of
the addUser() method was empty. In this experiment, the
AuthServer and the AuthServerTest ran on the same host
while DbServer ran on another host. The AuthServer host
was a Sun Blade 10004 and the DbServer was a Sun Fire
V4805. These hosts were connected through a 100 BaseTX
network. We used Sun JDK 1.4.0 01 and AspectJ 1.0.6.

Table 2 lists the results of our measurement. Although the
program in DJcutter was slightly faster than in AspectJ, this
result does not mean DJcutter is considerably faster than
AspectJ using Java RMI. In the program in AspectJ (see
Section 2.2), when the body of the before advice is executed,
a remote reference test (lines 31 to 33) is obtained for calling
confirmCall(). On the other hand, this remote reference is
not obtained in DJcutter during the measurement. It is
implicitly obtained by the runtime system in advance. Since
obtaining this remote reference needs remote access to the
registry server, this difference caused about 1 milli-second
ahead of DJcutter in the measurement. We confirmed this
fact by other experiment.

The programs shown in Section 2.2 and 4.1 do not use
pointcut parameters. To evaluate effects by sending point-
cut parameters through a network, we also examined the
programs in that the before advice (in DJcutter) or the con-
firmCall() method (in AspectJ) receives one or both of the
parameters to the addUser() method (DJcutter). The type
of the parameters is the String class. The results of our mea-
surement showed that the performance impacts by pointcut
parameters are small.

For fair comparison, we also measured the elapsed time
of the program written in DJcutter without cflow since the
program in AspectJ did not use cflow. The results were sim-
ilar to those of the program using cflow since the overhead
due to cflow across a network is not significant.

6. RELATED WORK
Soares et al reported that they could use AspectJ for

improving the modularity of their program written using
Java RMI [18]. Without AspectJ, the program must in-
clude the code following the programming conventions re-
quired by the Java RMI. AspectJ allows separation of that
code from the rest into a distribution aspect. However, the
ability of AspectJ is limited with respect to modularization
for distributed programs and thus the resulting programs
are often complicated and difficult to maintain. To address
these complications, we propose remote pointcuts and the
inter-type declaration as extended language constructs for
distributed aspect-oriented programs.

Although Java RMI is the standard framework, several re-
searchers have been proposing other systems such as cJVM

4Dual UltraSPARC III 750 MHz with 1 GB of memory and
Solaris 8.
5UltraSPARC III Cu 900 MHz ×4 with 16 GB of memory
and Solaris 9.

[2], our own Addistant [22] and J-Orchestra [23]. These
systems provide a single virtual machine image on several
hosts connected through a network. They allow for the
distributed execution of a program originally written as a
non-distributed one, without code modification for the dis-
tribution. An alternative to the approach presented here
might be to write a program in AspectJ and run it on these
systems, which would appropriately translate local point-
cuts into remote pointcuts at the implementation level. We
did not take this approach since our target applications are
for the unit testing of enterprise server software, and these
programs are inherently designed and implemented as dis-
tributed software. Therefore, we do not have to translate
such software to distributed software by, for example, using
Addistant, except for the modules implemented as aspects.
If we translate all the modules of such software, the un-
necessary indirections due to the proxy objects would cause
significant performance penalties, since such software has
already included indirections for remote accesses. On the
other hand, DJcutter can be regarded as a system that
translates only aspects to enable transparent remote ac-
cesses. Although Addistant allows the programmers to spec-
ify translation only for the classes generated by the AspectJ
compiler from the aspects, the programmers must manu-
ally describe these specifications. DJcutter provides better
syntax so that these specifications can be simple or implicit
within the language constructs.

Distribution is a well known crosscutting concern and sev-
eral systems have been proposed to support such concerns.
For example, the D language [11] allows the programmers
to separately describe how a parameter is passed to a re-
mote procedure. Such work has explores new crosscutting
concerns in distributed programs whereas our work explore
general-purpose language constructs for distributed aspect-
oriented programs. The goal of our work is to develop lan-
guage constructs so that programs written in an AspectJ-like
language can be simple and easy to maintain.

JAC [15, 13] is a powerful framework for dynamic AOP
in Java. Unlike other lanugages such as AspectJ, JAC does
not require any langugae extensions to Java. An aspect of
JAC is implemented by a set of aspect objects. JAC also
supports Java API that easily implements crosscutting con-
cerns in distributed systems such as the codes changing con-
sistency protocol on a set of replications and implementing
load-balancing for developers. But, using JAC, even if de-
velopers will separate the crosscutting concerns during unit
testing, complicated network processing is not necessarily
solved. The significant difference JAC and DJcutter is that
DJcutter provide the remote pointcut.

DADO (Distributed Adaplets for Distributed Objects) [24]
provides a CORBA-like programming model, which com-
prises several languages, tools, and runtime environment, to
support crosscuting concerns in distributed heterogeneous
systems. This programming model enables the developers
to separate crosscutting implementation that arised in ap-
plication components on both client and server side such
as security, caching. In particular, the DADO program-
ming model has two languages. One of these languages,
DADO deployment language, is based on AspectJ and spec-
ifies how a QoS feature interacts with an underlying appli-
cation. However these languages allow modeling the com-
munications between client and server side, don’t support
remote pointcuts provided by DJcutter.

Table 2: The elapsed time (msec.) of testRegisterUser()
Pointcut parameters () (String) (String,String)
Java + Java RMI 5.9 5.9 6.0
AspectJ + Java RMI 5.9 6.0 6.0
DJcutter 4.8 4.9 5.0
DJcutter without cflow 4.8 4.9 4.9

7. CONCLUDING REMARKS
This paper presented DJcutter, which provides remote

pointcut as a new language construct for distributed AOP.
A remote pointcut is a function for identifying join points in
the execution of a program running on a remote host. It can
simplify the description of aspects with respect to network
processing if the aspects implement a crosscutting concern
spanning over multiple hosts. To illustrate this situation,
this paper used the example of a program written in DJcut-
ter for distributed unit testing. The remote pointcut is a cru-
cial language construct for distributed AOP, corresponding
to remote method invocation (RMI) for distributed object-
oriented programming.

Although we adopted load-time weaving for DJcutter, run-
time weaving is more appropriate if we use DJcutter as a
testing framework for distributed software. This allows the
developers to change the testing code written as an aspect
without restarting the target software they are testing. Ex-
tending DJcutter is our future work to enable runtime weav-
ing such as exists PROSE [16] and Wool [17]. Another area
of our future work is performance improvement. Although
the advice bodies in all aspects are currently executed in the
aspect server, this centralized approach might be a perfor-
mance bottleneck. We will extend DJcutter to allow multi-
ple aspect servers for better performance.

Acknowledgments
We would like to thank the anonymous reviewers. Their sug-
gestions and comments helped us revise this paper. We also
thank Shannon Jacobs for his great efforts to fix numerous
english problems in this paper.

8. REFERENCES
[1] Apache Software Foundation, Online publishing, URI

http://jakarta.apache.org/cactus/. CACTUS, 2000.

[2] Y. Aridor, M. Factor, and A. Teperman. cJVM: A
single system image of a JVM on a cluster. In
International Conference on Parallel Processing 1999
(ICPP 1999), pages 4–11, 1999.

[3] K. Beck. Extreme Programming Explained: Embrace
Change, chapter 4. Addison-Wesley, 1999.

[4] L. Bergmans and M. Aksits. Composing crosscutting
concerns using composition filters. In CACM. ACM
Press, 2001.

[5] S. Chiba. Load-time structural reflection in java. In
European Conference on Object-Oriented
Programming 2000 (ECOOP 2000), LNCS 1850, pages
313–336. Springer Verlag, 2000.

[6] E. Gamma, R. Helm, R. Johnson, and J. Vlissides.
Design Patterns: Elements of Reusable
Object-Oriented Software, chapter 4. Addison-Wesley,
1995.

[7] G. Kiczales, E. Hilsdale, J. Hugunin, M. Kersten,
J. Palm, and W. G. Griswold. An overview of aspectj.
In European Conference on Object-Oriented
Programming 2001 (ECOOP 2001), LNCS 2072, pages
327–353. Springer, 2001.

[8] G. Kiczales, J. Irwin, J. Lamping, J.-M. Loingtier,
C. V. Lopes, C. Maeda, and A. Mendhekar.
Aspect-oriented programming. In European
Conference on Object-Oriented Programming 1997
(ECOOP 1997), LNCS 1241, pages 220–242. Springer,
1997.

[9] N. Lesiecki. Test flexibly with AspectJ and mock
objects. IBM developerWorks, Online publishing, URI
http://www-
106.ibm.com/developerworks/java/library/j-aspectj2/,
May 2000.

[10] S. Liang and G. Bracha. Dynamic class loading in the
java virtual machine. In Object-Oriented Programming
Systems, Languages, and Applications 1998 (OOPSLA
1998), pages 36–44. ACM SIGPLAN Notices, 1998.

[11] C. Lopes. D: A Language Framework for Distributed
Programming. PhD thesis, College of Computer
Science, Northeastern University, Dec. 1997.

[12] Object Mentor, Online publishing, URI
http://www.junit.org/index.htm. JUnit.org, 2001.

[13] ObjectWeb Consortium, Online publishing, URI
http://jac.objectweb.org/index.html. The JAC
Project, 1999.

[14] D. Orleans and K. Lieberherr. Dj: Dynamic adaptive
programming in java. In International Conference on
Meta-level Architectures and Separation of
Crosscutting Concerns 2001 (Reflection 2001), pages
73–80. Springer Verlag, 2001.

[15] P. Pawlak, L. Seinturier, L. Duchien, and G. Florin.
Jac: A flexible solution for aspect-oriented
programming in java. In International Conference on
Metalevel Architectures and Separation of Crosscutting
Concerns 2001 (Reflection 2001), LNCS 2192, pages
1–24. Springer, 2001.

[16] A. Popovici, T. Gross, and G. Alonso. Dynamic
weaving for aspect-oriented programming. In
Aspect-Oriented Software Development 2002 (AOSD
2002), pages 141–147. ACM Press, 2002.

[17] Y. Sato, S. Chiba, and M. Tatsubori. A selective,
just-in-time aspect weaver. In Generative
Programming and Component Engineering 2003
(GPCE 2003), LNCS 2830, pages 189–208. SV, 2003.

[18] S. Soares, E. Laureano, and P. Borba. Implementing
distribution and persistence aspects with aspectj. In
Object-Oriented Programming Systems, Languages,
and Applications 2002 (OOPSLA 2002), pages
174–190. ACM SIGPLAN Notices, 2002.

[19] Sun Microsystems, Inc, Online publishing, URI
http://java.sun.com/products/jdk/rmi/. Java Remote
Method Invocation (RMI), 1995.

[20] Sun Microsystems, Inc, Online publishing, URI
http://java.sun.com/j2se/1.4.1/docs/guide/rmi/socketfactory/index.html.
Using a Custom RMI Socket Factory, 1995.

[21] P. Tarr, H. Ossher, W. Harison, and S. M. S. Jr. N
degrees of separation: multi-dimensional separation of
concerns. In International Conference on Software
Engineering 1999 (ICSE 1999), pages 107–119. IEEE
Computer Society Press, 1999.

[22] M. Tatsubori, T. Sasaki, S. Chiba, and K. Itano. A
bytecode translator for distributed execution of legacy
java software. In European Conference on
Object-Oriented Programming 2002 (ECOOP 2002),
LNCS 2072, pages 236–255. Springer, 2001.

[23] E. Tilevich and Y. Smaragdakis. J-orchestra:
Automatic java application partitioning. In European
Conference on Object-Oriented Programming 2002
(ECOOP 2002). Springer, 2002.

[24] E. Wohlstadter, S. Jackson, and P. Dvanbu. Dado:
Enhancing middleware to support cross-cutting
features in distributed, heterogeneous systems. In
International Conference on Software Engineering
2003 (ICSE 2003), pages 174–186. IEEE Computer
Society Washington, DC, USA, 2003.

