
Josh: An Open AspectJ-like Language

Shigeru Chiba
Tokyo Institute of Technology

2-12-1 Ohkayama, Meguro-ku, Tokyo 152-8552,
Japan

chiba@is.titech.ac.jp

Kiyoshi Nakagawa
Tokyo Institute of Technology

2-12-1 Ohkayama, Meguro-ku, Tokyo 152-8552,
Japan

nakagawa@csg.is.titech.ac.jp

ABSTRACT
Although aspect-oriented programming (AOP) is becoming
widely used, the design of the pointcut language and the
generic and reusable description of advice are still research
topics. To address these topics, this paper presents Josh,
which is our new AspectJ-like language with an extensible
pointcut language and a few mechanisms for generic descrip-
tion. The extensible pointcut language is based on the idea
of open compiler. Since Josh allows defining a new pointcut
designator in Java, the users can define a pointcut desig-
nator useful in a particular application domain. Also, Josh
allows any Java expression to be included in the body of
advice. This mechanism enables the generic and reusable
description of advice.

Keywords
Pointcut, generic description, extensibility.

1. INTRODUCTION
Aspect-oriented programming (AOP) [13] is an emerging

technique for modularizing crosscutting concerns, which cut
across several basic modules. These concerns cannot be
modularized with existing techniques such as object-oriented
programming. There have been several AOP languages and
systems [1, 20, 22] and AspectJ [15] is a typical AOP lan-
guage for Java.

Although AspectJ is getting widely used for software de-
velopment, a few challenging issues are known in the commu-
nity. The first one is to extend the pointcut language, that
is, the language for specifying pointcuts. The current one
provides only limited capability to specify execution points.
Another issue is generic description. The programmers must
often repeatedly describe similar inter-type declaration (pre-
viously called introduction) for several classes but those de-
scriptions should be replaced by a single generic description.
Although enabling parameterized description [10] similar to
the C++ templates might be a partial solution, the current
version of AspectJ does not provide even such a mechanism.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
AOSD 04,March 2004, Lancaster UK.
Copyright 2004 ACM 1-58113-842-3/03/0004 ...$5.00.

This paper presents our efforts to address these issues.
Our approach is to develop Josh, which is an AspectJ-like
language with an extensible pointcut language and a few
mechanisms for generic description. The extensible point-
cut language is based on the idea of the open-compiler ap-
proach, which was first proposed by Lamping et al [17] and
has been actively studied by several researchers [3, 11, 24,
21, 23]. This approach is not to make the source code of
the compiler open to the public. It is rather to develop eas-
ily understandable abstraction of the internal structure or
behavior of the compiler and to provide the programming in-
terface to customize the compiler through that abstraction.
This paper shows our abstract model of the AspectJ com-
piler and programming interface for language customization.

Josh allows expert developers to develop domain-specific
extensions to the pointcut language in Java so that execution
points can be selected with a complex algorithm. These
extensions might be somewhat ad hoc but they can be reused
by other application developers. In general, such domain-
specific extensions should not be included in the language
specifications but they should be supplied to the users as
an optional library or a compiler plug-in. As for the issue
of generic description, Josh can automatically adjust the
description of the inter-type declaration to fit a particular
class at compile time according to an algorithm given in
Java. Although only experts would be able to write such an
algorithm, other application developers can reuse it.

In Section 2, we first present two motivating examples of
the extensions. In Section 3, we propose our AspectJ-like
language named Josh. Section 4 shows an example of the
extensions in Josh. Related work is discussed in Section 6.
Section 7 concludes this paper.

2. MOTIVATIONS
First of all, we show motivating examples to illustrate

limitations of the current version of AspectJ.

2.1 Pointcut language
The figure-editor example [15] is frequently used to ex-

plain the idea of AOP. In this example, figure elements
are represented by several subclasses of FigureElement: Line,
Rectangle, and so on (Figure 1). A crosscutting concern in
this example is to update the window of the editor when the
shape of a figure element is changed. The code for window
updates spreads over all the classes of figure elements such
as Line.

In AspectJ, this concern is modularized to be an aspect in
the following way. First, the programmer defines a pointcut

to select all the method calls, such as a call to setWidth
in Rectangle for changing the shape of a figure element.
Then she defines advice to execute a method call to repaint
on the window object when the thread of control reaches
one of these method calls. repaint successively calls redraw
on every figure element so that the window will be up-
dated. The pointcut will enumerate the signatures of all
such methods as setWidth or it will include a pattern string
that matches these signatures. For example, the pattern
string like *.set*(..) matches all the calls to the methods
the names of which begin with set.

In the pointcut language of AspectJ, the programmer must
enumerate all the methods that change the shape of a fig-
ure element or follow the programming convention in which
the names of such methods start with set. However, As-
pectJ does not provide any mechanism for ensuring that all
the methods are correctly enumerated or named with that
programming convention.

A better solution is to use a more sophisticated algorithm
for selecting method calls. For example, the redraw method
would read some fields of the FigureElement object. The
methods we have to select are ones updating the values of
those fields. It would be good if we could describe a pointcut
that selects method calls according to this algorithm.

Unfortunately, AspectJ does not allow us to describe such
an algorithmic pointcut. The description of pointcuts con-
sists of several pointcut designators; they specify a kind of
execution such as method calls and field access, or simple
conditions that the selected execution points (called join
points in AspectJ) must satisfy. Such conditions filter out
execution points, for example, with a method signature,
which may include wild cards, or the class that the exe-
cution points belong to. The conditions can be composed
with a logical operator such as &&. In AspectJ, however, we
cannot specify a condition that uses the dependency among
classes as we showed with the example above. AspectJ in
a future version may provide a new pointcut designator for
supporting the pointcut we showed above but providing a
large number of pointcut designators would make the lan-
guage difficult to learn especially if most of them are used
only for specific applications. In fact, the AspectJ designers
seem to try to keep the language simple and elegant as much
as possible.

2.2 Generic description
In AspectJ, an aspect can include a method or field decla-

ration in another class. This is called inter-type declaration.
Suppose that we are implementing a tree-traversal program
according to the Visitor pattern [7] in AspectJ. The tree
represents an arithmetic expression. If we use Java, the
tree-traversal concern will be implemented with the Visitor
class and the accept methods in all the tree-node classes
(Figure 2). The accept method calls the visitXX method
(XX is a node-class name) on the Visitor object given as the
parameter to accept.

In AspectJ, this concern is implemented as an aspect. The
definitions of the Visitor class and the accept methods are put
in the aspect. However, the programmer must repeatedly
write the definition of accept for every node class; if there
are ten node classes, she must write the definitions of ten
accept methods, which are only slightly different from each
other. For example,

void Sum.accept(Visitor v) {

FigureElement

Line Rectangle

redraw()

Point getP1()

Point getP2()

setP1(int,int)

setP2(int,int)

redraw()

Point getPos()

setPos(int,int)

int getWidth()

setWidth(int)

redraw()

Window

repaint()
*

Figure 1: Figure Editor

Expr

Sum Number

accept(Visitor) accept(Visitor)

accept(Visitor)

Visitor

visitSum(Sum)

visitNumber(Number)

Figure 2: Arithmetic Expression

v.visitSum(this);
}
void Number.accept(Visitor v) {

v.visitNumber(this);
}

The differences between the two definitions are only the
name of the method called on v and the class declaring ac-
cept.

To avoid this redundancy, it would be good if the accept
methods could be defined in a more generic form without
repetitions:

void Expr+.accept(Visitor v) {
Class nodeClass = this.getClass();
String name = "visit" + nodeClass.getName();
Method m = v.getClass().getMethod(name,

new Class[] { nodeClass });
m.invoke(v, new Object[] { this });

}

This inter-type declaration appends the accept methods to
all the subclasses of Expr. No redundant repetitions are
required. However, the body of accept must be described

with the Java reflection API [12] and thus the execution
performance of this method involves performance penalties.
Furthermore, the description of the method body is compli-
cated and difficult to read. It first obtains the class name
of this object and concatenates “visit” and that class name.
Then it obtains the Method object representing the method
with that concatenated name. It next makes an array of Ob-
ject containing the value of this as the parameter. Finally,
it calls invoke on the Method object with v and that array.

Although there is no redundancy in this generic inter-type
declaration, the readability is rather worse than that of the
redundant description shown at the beginning. The prob-
lem would be that AspectJ provides only a limited number
of mechanisms for generic description. For example, As-
pectJ provides special syntax proceed, which is available in
the body of around advice. proceed executes the computa-
tion that is originally supposed to do at the execution point
specified by the pointcut. It can be regarded as a mechanism
for generic description since it is independent of details of
that computation such as the method name and parameters
and thus a single body of around advice may cover several
execution points that have different details. The program-
mer does not have to repeatedly write a similar but different
advice body for each execution point. However, proceed and
any other syntax of AspectJ do not simplify the declaration
of the accept methods shown above.

3. JOSH
To address the problems mentioned in the previous sec-

tion, we propose a new AspectJ-like language named Josh,
which allows the users to define a new pointcut designator
suitable for their applications. While Josh currently sup-
ports a subset of the specifications of AspectJ, it provides
several new language mechanisms for generic description.

3.1 Programming model of AspectJ
We first describe the programming model of AspectJ to

present our terminology used in this paper. In AspectJ, a
modular unit of crosscutting concern is an aspect. A com-
ponent of the aspect is either aspect member, inter-type dec-
laration, or advice. The aspect member is a field or method
belonging to the aspect. The inter-type declaration was for-
merly called introduction. It typically adds a new field or
method to another class.

The advice specifies a piece of code executed at some well-
defined points of the program execution. It is a pair of point-
cut and body. The body represents the executed code and
the pointcut represents where the body should be executed.
There are three kinds of advice: before, after, and around.

The inter-type declaration can be also regarded as a pair
of pointcut and body although the specifications of AspectJ
does not say so. For example,

int Point.getX() { return x; }

This appends the getX method to only the Point class. If
Point+ is substituted for Point, the classes that the method
is appended to are extended to all the subclasses of Point.
Point and Point+ can be regarded as the pointcut of this
inter-type declaration. The body is the rest of this declara-
tion.

Pointcuts are classified into two categories: static des-
ignators and dynamic designators. The static designators

depend on only the lexical information obtained by static
program analysis. AspectJ’s call and get are static designa-
tors. The dynamic designators depend on the information
available only at runtime. AspectJ’s cflow and target1 are
dynamic designators. The inter-type declaration cannot use
these dynamic designators; it must use only the static des-
ignators since the target language is Java, in which class
definitions cannot be altered during runtime.

Another element of the components of an aspect is context
exposure. In AspectJ, we can define a pointcut parameter
so that the runtime context at the execution point, such
as method parameters, can be exposed and available in the
body of the advice. We call this context exposure. Provid-
ing pointcut parameters for the inter-type declaration is also
feasible and useful although AspectJ does not provide them.
In fact, Josh provides a framework to access the lexical con-
text of the program for the inter-type declaration.

3.2 The Design of Josh
Josh is our AspectJ-like language. Although Josh does

not currently support all the functionality of AspectJ, it al-
lows the users to extend the pointcut language. The syntax
supported by Josh is a subset of AspectJ’s. For example,
the following program is a logging aspect written in Josh:

aspect Logging {
before(): call("void Point.set*(..)") {

System.out.println("Point was called");
}

}

This prints a logging message if a method in Point is called
and the name of that method starts with set. The syntax
is the same as AspectJ’s except the parameter to call is sur-
rounded by double quotes. The reason why Josh uses this
syntax is described in Section 3.4.

For inter-type declaration, however, Josh uses different
syntax so that the pointcut is clearly separated from the
body.

intro(): within("Point") {
int getX() { return x; }

}

This appends the getX method to the Point class. The within
designator specifies the class to which the method in the fol-
lowing block is appended. intro represents that the following
block is the inter-type declaration. This design decision dif-
ferent from AspectJ is just for making the extension mech-
anism for inter-type declaration, which will be shown later,
syntactically consistent with one for advice.

If the method is not preceded by intro, the method is
regarded as an aspect member. For example,

static void print(String s) {
System.out.println(s);

}

This declares the print method in the aspect. To call this
method, the programmer must explicitly write Logging.print,
where Logging is the aspect name. In the current implemen-
tation of Josh, the fully qualified name is required to access
a field or method declared in an aspect. Finally,

1target is not a static designator since it depends on the
runtime type of the target object.

intro(): within("Point"):
implements("Comparable");

This changes the type hierarchy so that the class Point im-
plements the Comparable interface. Note that there is :

(colon) between within and implements. The designators fol-
lowing the colon are not part of the where specification but
part of the body of the component.

Josh provides a mechanism for context exposure. Unlike
AspectJ, Josh does not provide a designator like args for
exposing runtime context but it provides special variables
available in the body of the advice. These variables can be
used without the explicit declaration of the use of the vari-
ables. This Perl-like syntax is provided by Javassist, which
is the underlying system of Josh, for efficient execution and
generic description [5].

An example of these variables is $0, which represents the
target object if the execution point is a method call or a
field access. $1, $2, ... represent the values of the first,
second, ... parameters to the method. They correspond to
args of AspectJ. $ represents the result value. Assignment
to $ within the advice body changes the result value of the
execution point. $1 and $2 are used as follows:

before(): call("void *.move(int,int)") {
if ($1 < 0 || $2 < 0)

System.err.println("assertion failure");
}

This before advice prints an error message before the call to
move if the first or second parameter to move is negative.
The types of $1 and $2 are determined according to the call
designator.

A few special variables are used for reflective computation.
$args represents an array of the parameters. Since the type
of $args is java.lang.Object[], if some parameter types are
primitive ones like int, they are implicitly wrapped by wrap-
per objects like Integer. $sig (signature) represents an array
of java.lang.Class representing the formal parameter types.
$type represents the java.lang.Class object representing the
formal return type. $class represents the java.lang.Class ob-
ject representing the type of the target object.

In the body of around advice, another special syntax $pro-
ceed is available. It corresponds to AspectJ’s proceed. The
around advice traps the execution at the specified point and
the advice body is run instead of that execution point. The
original action associated with that execution point must be
invoked with $proceed if it is needed. For example,

around(): call("void *.move(int,int)") {
if ($1 < 0 || $2 < 0)

throw new Exception();
else

$_ = $proceed($1, $2);
}

This advice runs the original call to move with the original
parameters unless the parameters are negative. $ represents
the result value of this execution point. Josh also provides
special syntax $$, which can be used as the parameter to
$proceed. It represents the list of all the parameters $1,
$2, ... Thus $proceed($1, $2) above can be replaced with
$proceed($$) without changes of the behavior. $$ is unique
syntax of Josh; it can encapsulate the number of the parame-
ters and thus, for example, it helps to write a reusable advice
body that can be used for the calls to methods with different
signatures. For example, the users can simply write:

.josh

 files

.java

 files

 aspect

compiler

Weaver

.class

 files

.java files

.class

 files

.class

 files

Figure 3: The Josh Compiler

$_ = $proceed($$);

to execute the original action of the execution point trapped
by around, whatever the kind of that execution point is. The
users can use the above statement as a convenient idiom.

Some users might dislike the Perl-like syntax. Josh al-
lows those users to use not $1, $2, ... but parameter names
appearing in the source code if the pointcut is execute.2 Ex-
tending Josh to provide the args designator of AspectJ is
our future work so that variable names given by the users
can be bound to $1, $2, ... We believe that this extension
would be quite straightforward.

3.3 Josh Compiler
The Josh compiler consists of an aspect compiler and a

weaver. The aspect compiler is a source-to-source translator
from the Josh language to the Java language. It reads the
aspect definitions written in Josh (.josh files) and translates
them into Java programs (.java file). According to these
compiled aspect definitions, the weaver transforms the reg-
ular Java classes compiled by a regular Java compiler such
as javac. The output of this weaver is the compiled Java
program (.class files) in which the aspects have been woven
with the classes. Figure 3 illustrates this flow. Note that
the aspect compiler or the weaver do not require souce code
of the regular Java classes. They only require .class files.

We here present how aspect definitions (.josh files) are
translated into regular Java programs. Understanding the
overview of this translation is required for the users to ex-
tend the Josh compiler.

For every component of an aspect, the weaver must insert
a piece of code at appropriate positions in the class defi-
nitions. The positions are specified by the lexical part of
the pointcut, or the shadow [19], in the component. If the
component is an aspect member or an inter-type declara-
tion, then the piece of code is inserted as a field or method
declaration. If it is advice, then the piece of code is inserted
in a method body. The dynamic designators of the point-
cut, if any, are contained in the inserted code so that the

2The source code must be compiled with the -g option so
that the symbol table is included in the .class file.

Table 1: Part of the methods in CtClass

String getName()
get the class name

void setName(String name)
change the class name

int getModifiers()
get the class modifiers such as public

void setModifiers(int m)
change the class modifiers.

CtClass getSuperclass()
get the super class

void setSuperclass(CtClass c)
change the super class

CtClass[] getInterfaces()
get the interfaces

void setInterfaces(CtClass[] i)
change the interfaces

CtField[] getFields()
get all the fields

void addField(CtField f)
add a new field

CtMethod[] getMethods()
get all the methods

void addMethod(CtMethod m)
add a new method

CtConstructor[] getConstructors()
get all the constructors

void addConstructor(...)
add a new constructor

advice body is executed only if the requirements given by
the dynamic designators are satisfied.

To do this code insertion, the aspect compiler translates
aspect definitions into a Java program using our compile-
time reflection library called Javassist [4]. Javassist pro-
vides the functions of reading a class file (compiled binary)
and creating several objects representing the class, the fields,
the constructors, and the methods contained in the class file.
These are CtClass, CtField, CtConstructor, and CtMethod ob-
jects.3 We call them join-point objects.4

These objects provide methods for inspecting the class
definition with respect to the static structure (Table 1 and
2). These methods are parallel to ones defined in the stan-
dard reflection API [12]. Since Javassist is for manipulating
a class that has not been loaded yet, it does not support
object creation, method invocation, or field access. Unlike
the reflection API, however, Javassist enables to alter the
class definition. The API design of Javassist is based on the
structural reflection, which was first developed in Smalltalk-
80 [8]. We later discuss the Javassist API again.

The weaver traverses the join-point objects included in
every given .class file and, if it finds the position where a
piece of code must be inserted, then the weaver inserts the
code there through Javassist. The weaver inquires of the
compiled aspect definitions whether it inserts the code or
not. The aspect compiler translates every component of an
aspect into an if statement, which is executed for inquiry
as part of the weaver program. For example, if an aspect

3Ct means compile-time. It is added to distinguish from the
standard classes Class, Field, and so on.
4Although a join point means a dynamic execution point
in AspectJ, a join-point object in Josh represents a lexical
point of the program.

Table 2: Part of the methods in CtMethod

String getName()
get the method name

void setName(String name)
change the method name

int getModifiers()
get the method modifiers such as public

void setModifiers(int m)
change the method modifiers

void setBody(String src)
change the method body

void instrument(ExprEditor e)
modify the method body

void insertBefore(String src)
insert the code at the beginning of the body

void insertAfter(String src, boolean asFinally)
insert the code at the end of the body

Table 3: Part of the methods in MethodCall

CtClass getCtClass()
get the class of the target object

CtMethod getMethod()
get the callee method

CtMethod getMethodName()
get the name of the callee method

CtClass[] mayThrow()
get the exceptions that may be thrown

CtBehavior where()
get the method body containing this call

int getLineNumber()
get the line number of the source line

String getFileName()
get the source file

void replace()
replace the method-call expression

includes an inter-type declaration for adding a new field z
to the Point class, that declaration is compiled into the fol-
lowing if statement:

if (c.getName().equals("Point"))
c.addField(CtField.make("int z;", c));

Here, c is the CtClass object representing the given class.
The method including this if statement is loaded together
with the weaver program and it is invoked for the CtClass
object created from every given class file at weaving time.
Note that the lexical part of the pointcut is translated into
the conditional expression in the if statement.

Javassist also produces an object representing an expres-
sion contained in a method body. Such an object is either
MethodCall, NewExpr (object creation by the new operator),
FieldAccess, Handler (exception handler), Cast, or InstanceOf
object. They are also join-point objects and provide meth-
ods for inspecting the static context of the expressions (Ta-
ble 3). To obtain these join-point objects, the instrument
method must be called on a CtMethod object. The parame-
ter to the instrument method is an ExprEditor object, which
is an event listener; whenever the instrument method finds a
join point in a method body, it calls the edit method on the
ExprEditor object. The parameter to the edit method is the
object representing that join point, for example, a Method-
Call object. The following is an example of the use of the

instrument method (suppose that mth is a variable referring
to a CtMethod object).

mth.instrument(new ExprEditor() {
public void edit(MethodCall expr) {

// do something here.
});

The edit method is invoked whenever a method-call expres-
sion is found in the method body represented by the Ct-
Method object.

Advice might be translated into an if statement accessing
these join-point objects. For example, if the advice is:

around(): call("void *.move(..)") {
System.out.println("move");
$_ = $proceed($$);

}

then the aspect compiler produces something like this:

new ExprEditor() {
public void edit(MethodCall mc) {

if (mc.getMethodName().equals("move")) {
mc.replace(

"{ System.out.println(\"move\");"
+ "$_ = $proceed($$); }");

}
}}

This if statement is run for every MethodCall object found
in a method body. Here, mc is a MethodCall object repre-
senting the method-call expression at the caller side. The
replace method compiles the given code, which is an advice
body, into the Java bytecode and substitutes the bytecode
for the original one. Thus, the advice body is inlined at the
join point. replace also statically expands the special vari-
ables starting with $. The runtime values accessed through
those special variables are saved to local variables in the pro-
logue of the compiled advice body. The special variables are
compiled to the bytecode that accesses these local variables.

If the pointcut is composition of two pointcut designators,
then the translated designators are also composed with the
same logical operator. For example, This pointcut:

call("void *.move(..)") && within("Display")

is translated into the following conditional expression:

mc.getMethodName().equals("move")
&& c.getName().equals("Display")

Here c is the CtClass object representing the class that in-
cludes a method body containing the method-call expression
represented by mc. The if statement including this expres-
sion is run if the MethodCall object mc is found.

If the if statement requires multiple join-point objects, it
is run when the weaver finds the innermost object among
them. The join-point objects representing an expression
contained in a method body are the inner objects of the
CtMethod object representing the method with that body.
The CtMethod object is an inner object of the CtClass ob-
ject representing the class declaring that method. The if
statement requiring multiple join-point objects is run with
the innermost object and the outer objects surrounding that
innermost object. For example, if the innermost object is
a MethodCall object, then the if statement also receives the

CtMethod and CtClass objects surrounding that MethodCall
object. If no unique innermost object can be determined, a
compile error is reported. For example, the following point-
cut:

call("void *.move(..)") && get("int Point.x")

is translated into an if statement requiring MethodCall and
FieldAccess objects. Since either of the two is not the inner
object of the other, this pointcut causes a compile error. In
fact, the pointcut above does not select any join points.

Note that only the lexical part of a pointcut, or the shadow
[19], is translated into a conditional expression. The rest of
the pointcut, which depends on runtime context, is trans-
lated into part of the inserted code. For example, this around
advice:

around(): call("void *.move(..)")
&& within("Display") && target("Point") {

System.out.println("point");
$_ = $proceed($$);

}

is translated into this Java code:

if (mc.getMethodName("move")
&& c.getName().equals("Display")) {

mc.replace(
"if ($0 instanceof Point){"
+ " System.out.println(\"point\");"
+ "$_ = $proceed($$); }");

}

Here, c is the CtClass object and mc is the MethodCall ob-
ject. The inserted code examines at runtime whether the
target object is an instance of Point or not. Note that the
code shown above is naive; for better runtime performance,
the target type should be statically checked as well as at
runtime.

The declarations of fields and methods belonging to an
aspect are processed differently from other components of
the aspect. If there are such declarations in an aspect, the
aspect compiler produces the definition of a class with the
same name as the aspect. Then the aspect compiler includes
all those declarations in that class as static fields or methods.
The current implementation of Josh supports only singleton
aspects. It does not support per-object aspects.

3.4 Extensibility
Josh allows the users to define a new pointcut designator

for both inter-type declaration and advice. The definition of
a new designator is given as a static method written in Java
with using Javassist. Such a static method can implement
a complex algorithm for identifying join points since it can
fully use the ability of Javassist for inspecting the static
structure of the programs.

All occurrences of a new designator appearing in pointcuts
are translated by the aspect compiler of Josh into calls to the
static method implementing the new designator. The calls
are put in the conditional expressions of the if statements
corresponding to the pointcuts. The called static method
must return a boolean value.

Suppose that we want to define a simple designator named
paramType1. This captures a method the first parameter of
which is the given class type. It is used as follows:

paramType1("ColorPoint")

This picks out a method if the type of the first parameter
is ColorPoint. The definition of this designator is the follow-
ing static method in Java (this is a simplified version that
ignores error recovery):

static boolean paramType1(CtMethod m,
String[] args, JoshContext jc) {

CtClass parType
= m.getMethod().getParameterTypes()[0];
CtClass argType = jc.getType(args[0]);
if (parType.subtypeOf(argType))

return true;

if (argType.subtypeOf(parType)) {
jc.setIf("$1 instanceof " + argType.getName());
return true;

}
else

return false;
}

The first parameter to paramType1 is a join-point object that
this designator examines. It can be any other join-point ob-
ject like CtClass or MethodCall. The second parameter is
an array of String, which represents parameters given to the
designator. The user-defined designators can receive any
number of parameters, which are comma-separated multi-
ple String literals surrounded by double quotes. The third
parameter is a JoshContext object containing house-keeping
information. The return value is true if the first parame-
ter of the method represented by the given CtMethod object
matches the type given to the designator.

Since the first parameter is a CtMethod object, the Josh
weaver executes the if statement including the call to param-
Type1 whenever the weaver finds a CtMethod join-point ob-
ject (and it is the innermost object). The paramType1 re-
turns true if the first parameter type might be the specified
type, for the example above, ColorPoint. The weaver inserts
the advice body only if the paramType1 method returns true.

Dynamic designator and context exposure
The paramType1 designator is dynamic, that is, it needs run-
time type check. The weaver must also insert an if statement
to surround the inserted advice body so that the body will
be executed only if the result of the runtime type check is
true. Note that Josh deals with two if statements: one is
executed at weaving time for the shadow [19] of pointcuts
and the other is at runtime for the rest.

To insert an if statement executed at runtime, the param-
Type1 method invokes setIf in JoshContext. The parameter
to setIf is a conditional expression that will be included in the
if statement for the runtime type check. If two designators
composed with a logical operator give different conditional
expressions to the setIf method, these expressions are also
composed with the same logical operator.

The JoshContext class provides the expose method to de-
fine a new variable for exposing execution context. If the
static method implementing a designator calls this method,
the given source text is included in the code block inserted as
the advice body. Hence, if a variable is declared in the source
text passed to expose, that variable is available within the
advice body. For example, the following call makes a vari-
able cname available in the advice body. The value of cname
is the name of the class associated with the execution point.

jc.expose("String cname = \"" + c.getName()
+ "\";");

Here, jc is a JoshContext object and c is the CtClass object.
The given source text is compiled and inserted at the be-
ginning of the advice body. If the class represented by c is
Point, then the inserted code block is:

{ String cname = "Point";
/* advice body */ }

Although this example exposes lexical context, the expose
method can be used as well for exposing dynamic context
with a variable name specified by the user. Any value can
be exposed if constructing the source text for obtaining the
value is possible.

The JoshContext class also provides methods for access-
ing outer join-point objects surrounding the innermost one.
Recall that the method implementing a new designator only
receives the innermost join-point object as a parameter.

Inter-type declaration
Josh also allows the users to define a new designator used
as the body of the inter-type declaration. Recall that the
inter-type declaration in Josh uses different syntax from in
AspectJ, for example,

intro(): within("Point"):
implements("Comparable");

The body of this declaration is implements, which makes
the Point class implement the Comparable interface. Josh
allows defining a new designator that can be used instead of
implements.

To implement it, the user defines a static method in Java.
Like other user-defined designators, the method receives a
join-point object, an array of String, and the JoshContext
object as parameters. The return type is void. The type of
the join-point object must be equal to the type of the join-
point examined by the pointcut. If not, the Josh compiler
reports an error. We below show an example of the method:

static boolean addThrows(CtMethod m,
String[] args, JoshContext jc) {

CtClass type = jc.getType(args[0]);
m.addExceptionType(type);

}

This appends the given exception type to the throws list of
the method captured by the where specification.

Body
For generic and reusable description of aspects, Josh allows
any Java expression to be contained in the body of inter-
type declaration or advice. This mechanism can be used to
modularize the concern of the Visitor pattern mentioned in
Section 2.2:

intro(): within("Expr+") {
void accept(Visitor v) {

v.visit<% josh.getCtClass().getName() %>(this);
}

}

This inter-type declaration appends the accept method to
every subclass of Expr. The code fragment surrounded by <%

and %> can be any expression in Java. The expression must
evaluate to a String object. The resulting text is substituted
for the code between <% and %> at compile time.

In the expression, a special variable josh is available. It is
a reference to the current JoshContext object. For the ex-
ample above, the name of the class specified by the pointcut
is obtained from josh. The aspect compiler of Josh trans-
lates the body of the inter-type declaration into the following
String concatenation, which constructs the code inserted by
the weaver:

"void accept(Visitor v) { v.visit"
+ josh.getCtClass().getName()
+ "(this);}"

Note that the appended methods differ among the subclasses
since the code between <% and %> is re-evaluated at compile
time for every subclass.

This inter-type declaration is simple and efficient com-
pared to ones in Section 2.2. Since the declaration in Josh
exploited compile-time reflection [3], it does not involve run-
time penalties unlike the one in AspectJ.

3.5 Javassist
Since all the extensions to Josh are implemented with the

compile-time reflection library called Javassist [4], the range
of the extensibility and the easiness of the extension depend
on the ability of Javassist. For example, the Josh users
cannot define a new kind of join point; only the fixed set of
join points provided by Javassist is available. The position
where an advice body can be inserted is either before, after,
or around. To overcome these limitations, Javassist itself
must be extended.

The current version of Javassist provides the ability to in-
spect and alter the type signatures of the given class, such
as a field type and a method signature. The ability to in-
spect them is equivalent to that of the Java reflection API.
Adding a new field or method to a class is also possible. The
definition can be given as source text.

The ability to inspect and alter part of a method body is
currently limited. As for this ability, the CtMethod object
allows inserting a code fragment at the beginning or end
of the method body. A catch clause can be added to the
method for receiving an exception thrown in the method
body. The CtMethod also provides a mechanism for ob-
taining the set of join-point objects included in the method
body; the set may include throw and instanceof expressions,
which AspectJ cannot handle. Control or data flow infor-
mation among join points is not available. However, the
join-point objects provide various kinds of information. For
example, the MethodCall object provides the name and sig-
nature of the called method, exceptions that the method-call
expression may throw, the method containing the expres-
sion, and so on. Furthermore, the join-point objects provide
the replace method, which substitutes the given source text
for the original expression in the method body.

Despite the limited ability of Javassist, a relatively com-
plex designator such as AspectJ’s cflow can be implemented
within the confines of Javassist. cflow can be implemented
with a thread-local variable, which is incremented (or decre-
mented) when a method starts (or finishes). Javassist can
insert the code performing this at necessary places.

4. EXAMPLE

Since the motivating example shown in Section 2.2 has
been implemented by Josh in Section 3.4, this section men-
tions how to address the problem shown in Section 2.1. We
present a user-defined designator updater for selecting the
method calls specified by the algorithm based on the de-
pendency among classes. The updater designator is used as
follows:

updater("FigureElement", "redraw")

This designator can be implemented on top of Josh since
Javassist, the backend of Josh, provides the necessary infor-
mation.

The following static method is the implementation of the
updater designator:

static boolean updater(MethodCall mc,
String[] args, JoshContext jc) {

CtClass root = jc.getCtClass(args[0]);
String mname = args[1];
CtMethod mth = mc.getMethod();

// skip if the method is redraw().
if (mth.getName().equals(mname))

return false;

Hashtable fields
= enumerateFields(jc, root, mname);

updated = false;
mth.instrument(new ExprEditor() {

public void edit(FieldAccess expr) {
String name = expr.getFieldName();
if (expr.isWriter()

&& fields.get(name) == expr.getCtClass())
updated = true;

}
});
return updated;

}

This method returns false if the called method mth is re-
draw. Otherwise, it invokes enumerateFields for enumerating
the fields that the redraw methods in a subclass of FigureEle-
ment read. These fields are recorded in the hashtable fields
(for better performance, the value of fields should be cached).
Then, the updater method calls instrument method to exam-
ine whether the body of the called method mth contains the
assignment to the field recorded in the hash table. updated
is a static field of the class declaring the updater method.
If the body includes such assingment, the updater method
returns true.

The instrument method enumerates join points included
in the body. Whenever it finds a FieldAccess join-point, it
calls the edit method on the given ExprEditor object. The
parameter to edit is that FieldAccess object. ExprEditor is a
class provided by Javassist.

The enumerateFields method examines the redraw meth-
ods and records all the fields that are declared in a subclass
of FigureElement and also read by one of the redraw meth-
ods. The fields found are recorded in the hash table. Sup-
pose that m is the CtMethod object representing the redraw
method and root is the CtClass object representing the Fig-
ureElement class. The following code examines the method
and records the fields:

m.instrument(new ExprEditor() {

public void edit(FieldAccess expr) {
if (expr.isReader()

&& expr.getCtClass().subclassOf(root))
fields.put(expr.getFieldName(),

expr.getCtClass());
}

});

Here, fields is a HashTable object.

5. EXPERIMENT
Although Josh is still under development, we show the

results of simple benchmark tests. We defined before advice
that counts up the number of non-static method calls on the
same object. This advice was woven at all the method calls
(caller-side) included in benchmark programs, which are
taken from the sequential benchmarks of the Java Grande
forum5.

Table 4 lists the results. Original represents the execu-
tion time of the benchmark programs without the before
advice. Josh and AspectJ represent the execution time of
the programs in which the before advice is woven by Josh or
AspectJ. The results show that the runtime performance of
Josh is comparable with that of AspectJ. Since Josh saves
all the method-call parameters to local variables in the pro-
logue of the compiled advice body, the overhead of Josh is
larger if the program includes methods that take a number
of parameters.

6. RELATED WORK
The if pointcut designator of AspectJ allows any Java ex-

pression to be included in a pointcut. The advice body is
executed only if the expression is true at runtime. This des-
ignator could be regarded as an extension mechanism of the
pointcut language. However, the if designator enables us to
implement only the dynamic designators. Since the static
designators evaluate at compile time and thus imply no run-
time overheads, new designators should be implemented as
static ones as long as they are independent of runtime con-
text. Josh supports both dynamic and static user-defined
designators.

Lieberherr et al proposed statically executable advice [18].
This allows the compile-time execution of an advice body,
for example, to check if a programming rule is enforced. Josh
can be used to implement this statically executable advice.

There are a few extensible AOP languages. For example,
some researchers [2, 9] proposed to use a logic language for
describing a complex pointcut. In this language, pointcut
designators are logic predicates. Logic reasoning is definitely
useful to select a set of join points satisfying complex condi-
tions but the users must learn logic programming. We took
the opposite direction for Josh. Since Josh is an AOP lan-
guage for Java, the language for extending Josh is also Java,
which the users should be familiar with. Using Java would
reduce initial learning costs to extend Josh.

Kiczales proposed new pointcut designators such as pcflow
for AspectJ to address the problem mentioned in Section 2.1
[14]. Developing a general-purpose designator is a right ap-
proach although we believe there are always problems that
the general-purpose designator cannot cover.

There have been several open compilers. Their differences
are the functions and internal data structures exposed to

5http://www.epcc.ed.ac.uk/javagrande

the users. Intrigue [17] is an open Scheme compiler; it al-
lows customization of code generation. MPC++ [11] and
OpenJava [24] open up a parse tree so that it can be trans-
formed. They also enable syntax extension. Josh opens up
not a parse tree but part of the weaving process represented
with the join-point objects.

Developing the exposed structure such as the join-point
objects is not trivial. If the AspectJ compiler is naively made
open, it might force the users to deal with low-level bytecode
image as typical toolkits for transforming Java class files,
such as BCEL [6] and JMangler [16], do. Letting the users
define a new pointcut designator for that system would not
be practical. On the other hand, the join-point objects of
Josh provide source-level abstraction while keeping practical
expressive power.

7. CONCLUDING REMARKS
This paper mentioned why aspect-oriented languages such

as AspectJ should be extensible and then proposed an open-
compiler solution for making those languages extensible. Our
AspectJ-like language called Josh allows the users to imple-
ment a new pointcut designator in Java. This mechanism en-
ables selection of join points without complicated program-
ming conventions or error-prone description of the pointcut.
Josh also allows a Java expression to be included within
an inter-type declaration. This mechanism enables avoiding
redundant description of the inter-type declaration.

Although AspectJ provides only a fixed set of built-in
pointcut designators, it allows the users to compose pointcut
designators with logical operators to define a new pointcut.
A problem is that the built-in designators are too high-level
and hence some pointcuts like one in Section 2.1 cannot be
defined in AspectJ. Our idea was to provide lower-level join-
point objects as primitives and use a regular language like
Java for composing them to define new pointcuts. This ap-
proach provides better flexibility. The built-in designators
of AspectJ can be implemented on this platform as user-
defined desingators for convenience.

Since the join-point objects represent the structural facet
of the program, Josh does not support the definition of a
pointcut depending on other facets such as data flow. Ex-
tending Josh to cover other facets is our future work. Fur-
thermore, Josh has not supported all the features of As-
pectJ, such as type checking and named pointcuts. Extend-
ing Josh to support all of them is also our future work.

8. REFERENCES
[1] Aksit, M., L. Bergmans, and S. Vural, “An

Object-Oriented Language-Database Integration
Model: The Composition-Filters Approach,” in
ECOOP ’92, LNCS 615, pp. 372–395, Springer-Verlag,
1992.

[2] Brichau, J., K. Mens, and K. D. Volder, “Building
Composable Aspect-specifc Languages with Logic
Metaprogramming,” in Generative Programming and
Component Engineering (GPCE 2002) (D. Batory,
C. Consel, and W. Taha, eds.), LNCS 2487,
pp. 93–109, Springer, 2002.

[3] Chiba, S., “A Metaobject Protocol for C++,” in Proc.
of ACM Conf. on Object-Oriented Programming
Systems, Languages, and Applications, SIGPLAN
Notices vol. 30, no. 10, pp. 285–299, ACM, 1995.

Table 4: The elapsed time (sec.)
Euler Molecular Monte Carlo Ray Tracer Search

Original 28.0 22.1 22.7 19.1 17.4
Josh 28.5 22.1 23.7 24.4 19.4
AspectJ 28.2 22.1 23.1 22.1 20.2
of calls 2,307 7,753 310,045 5,338,398 71,228,058

Sun Blade 1000 (Dual UltraSPARC III 750MHz, 1GB memory), Solaris 8, Sun JDK 1.4.0 01, AspectJ 1.1b2.

[4] Chiba, S., “Load-time structural reflection in Java,” in
ECOOP 2000, LNCS 1850, pp. 313–336,
Springer-Verlag, 2000.

[5] Chiba, S. and M. Nishizawa, “An Easy-to-Use Toolkit
for Efficient Java Bytecode Translators,” in Proc. of
Generative Programming and Component Engineering
(GPCE ’03), LNCS 2830, pp. 364–376,
Springer-Verlag, 2003.

[6] Dahm, M., “Byte Code Engineering with the
JavaClass API,” Techincal Report B-17-98, Institut
für Informatik, Freie Universität Berlin, January 1999.

[7] Gamma, E., R. Helm, R. Johnson, and J. Vlissides,
Design Patterns. Addison-Wesley, 1994.

[8] Goldberg, A. and D. Robson, Smalltalk-80: The
Language and Its Implementation. Addison-Wesley,
1983.

[9] Gybels, K. and J. Brichau, “Arranging Language
Features for More Robust Pattern-based Crosscuts,”
in Proc. of 2nd Int’l Conf. on Aspect-Oriented
Software Development (AOSD 2003), pp. 60–69, ACM
Press, 2003.

[10] Hanenberg, S. and R. Unland, “Parametric
Introductions,” in Proc. of 2nd Int’l Conf. on
Aspect-Oriented Software Development (AOSD 2003),
pp. 80–89, ACM Press, 2003.

[11] Ishikawa, Y., A. Hori, M. Sato, M. Matsuda, J. Nolte,
H. Tezuka, H. Konaka, M. Maeda, and K. Kubota,
“Design and Implementation of Metalevel
Architecture in C++ — MPC++ Approach —,” in
Proc. of Reflection 96, pp. 153–166, Apr. 1996.

[12] Java Soft, “JavaTM Core Reflection API and
Specification.” Sun Microsystems, Inc., 1997.

[13] Kiczales, G., J. Lamping, A. Mendhekar, C. Maeda,
C. Lopes, J. Loingtier, and J. Irwin, “Aspect-Oriented
Programming,” in ECOOP’97 – Object-Oriented
Programming, LNCS 1241, pp. 220–242, Springer,
1997.

[14] Kiczales, G., “The Fun Has Just Begun.” Keynote
talk at 2nd Int’l Conf. on Aspect-Oriented Software
Development (AOSD 2003), 2003.

[15] Kiczales, G., E. Hilsdale, J. Hugunin, M. Kersten,
J. Palm, and W. G. Griswold, “An Overview of
AspectJ,” in ECOOP 2001 – Object-Oriented
Programming, LNCS 2072, pp. 327–353, Springer,
2001.

[16] Kniesel, G., P. Costanza, and M. Austermann,
“JMangler — A Framework for Load-Time
Transformation of Java Class Files,” in Proc. of IEEE
Workshop on Source Code Analysis and Manipulation,
2001.

[17] Lamping, J., G. Kiczales, L. Rodriguez, and E. Ruf,

“An Architecture for an Open Compiler,” in Proc. of
the Int’l Workshop on Reflection and Meta-Level
Architecture (A. Yonezawa and B. C. Smith, eds.),
pp. 95–106, 1992.

[18] Lieberherr, K., D. H. Lorenz, and P. Wu, “A Case for
Statically Executable Advice: Checking the Law of
Demeter with AspectJ,” in Proc. of 2nd Int’l Conf. on
Aspect-Oriented Software Development (AOSD 2003),
pp. 40–49, ACM Press, 2003.

[19] Masuhara, H., G. Kiczales, and C. Dutchyn,
“Compilation Semantics of Aspect-Oriented
Programs,” in Proc. of Foundations of Aspect-Oriented
Languages Workshop, AOSD 2002, pp. 17–26, 2002.

[20] Mezini, M. and K. Lieberherr, “Adaptive
Plug-and-Play Components for Evolutionary Software
Development,” in Proc. of ACM Conf. on
Object-Oriented Programming Systems, Languages,
and Applications, pp. 97–116, 1998.

[21] Ogawa, H., K. Shimura, S. Matsuoka, F. Maruyama,
Y. Sohda, and F. Kimura, “OpenJIT : An
Open-Ended, Reflective JIT Compiler Framework for
Java,” in ECOOP 2000, LNCS 1850, pp. 362–387,
Springer-Verlag, 2000.

[22] Ossher, H. and P. Tarr, “Hyper/J: multi-dimensional
separation of concerns for Java,” in Proc. of the Int’l
Conf. on Software Engineering (ICSE), pp. 734–737,
2000.

[23] Tanter, E., N. Bouraqadi, and J. Noyé, “Reflex –
Towards an open reflective extension of Java,” in
Metalevel Architectures and Separation of Crosscutting
Concerns (Reflection 2001), LNCS 2192, pp. 25–43,
Springer, 2001.

[24] Tatsubori, M., S. Chiba, M.-O. Killijian, and K. Itano,
“OpenJava: A Class-based Macro System for Java,”
in Reflection and Software Engineering (W. Cazzola,
R. J. Stroud, and F. Tisato, eds.), LNCS 1826,
pp. 119–135, Springer Verlag, 2000.

