
A Selective, Just-in-Time Aspect Weaver�

Yoshiki Sato1, Shigeru Chiba1, and Michiaki Tatsubori2

1 Dept. of Mathematical and Computing Sciences
Tokyo Institute of Technology

{yoshiki,chiba}@csg.is.titech.ac.jp
2 IBM Tokyo Research Laboratory

mich@trl.ibm.com

Abstract. Dynamic AOP (Aspect-Oriented Programming) is receiving
growing interests in both the academia and the industry. Since it allows
weaving aspects with a program at runtime, it is useful for rapid pro-
totyping and adaptive software. However, the previous implementations
of dynamic AOP systems suffered from serious performance penalties.
This paper presents our new efficient dynamic AOP system in Java for
addressing the underlying problem. This system called Wool is a hybrid
of two approaches. When a new aspect is woven in, the programmers
can select to reload into the JVM a modified class file in which hooks
for executing advice are statically embedded, or they can insert hooks as
breakpoints in the JVM. Since the two approaches have different perfor-
mance characteristics, the programmers can select the best one for each
join point. Our experimental result shows, under a certain circumstance,
Wool runs dynamic AOP application about 26% faster than a traditional
static code translation approach.

1 Introduction

Recently, practical demands are being made of dynamic aspect-oriented pro-
gramming (AOP [14]) systems [17,18,2,20,19]. Unlike static AOP, a dynamic
AOP system allows dynamically weaving and unweaving an aspect into/from a
program. Moreover, advice and pointcuts are changeable during runtime. These
dynamic features extend the application domains of aspect-oriented program-
ming. Dynamic AOP can make development cycles shorter [7] and it allows for
aspects that can adapt the behavior of application software at runtime to follow
the changes of the runtime environment and requirements [11,25,21].

The most typical technique for implementing dynamic AOP systems is based
on static code translation although it is not efficient. This approach statically
inserts pieces of code, which we call hooks, into all join points, and these hooks
determine at runtime whether or not there is associated advice to be activated
at each join point, in contrast to static AOP systems like AspectJ [13]. These
runtime checks imply serious performance overhead although they are necessary
since dynamic AOP allows turning advice on and off during runtime.
� This work was supported in part by the CREST program of Japan Science and

Technology Corp.

F. Pfenning and Y. Smaragdakis (Eds.): GPCE 2003, LNCS 2830, pp. 189–208, 2003.
c© Springer-Verlag Berlin Heidelberg 2003



190 Yoshiki Sato, Shigeru Chiba, and Michiaki Tatsubori

This paper presents our Java-based dynamic AOP system called Wool, which
exploits our new implementation technique for addressing the performance prob-
lem mentioned above. Wool inserts hooks into a program at runtime just in time
when the programmer directs the program to start using an aspect. Wool allows
the programmers to select from two implementation techniques the best one
for each join point. The first one is to insert the hooks as breakpoints handled
through the debugger interface of the Java virtual machine (JVM). The other
one is to produce a program in which the hooks are embedded as method calls
and reload that new program into the JVM. These two techniques do not require
a custom JVM, but work with the standard JVM.

The rest of this paper is organized as follows. Section 2 describes a typical
implementation technique of dynamic AOP systems and a performance problem
of that technique. Section 3 presents our new implementation technique for dy-
namic AOP. It also shows an overview of the current implementation of Wool.
Section 4 compares Wool to other AOP systems. Section 5 presents the results
of our experiments. We conclude the paper in section 6.

2 Dynamic AOP

Aspect-oriented programming can be classified into two categories: static AOP
and dynamic AOP. The static AOP systems such as AspectJ weave in the as-
pects at compile time or load time. The woven aspects cannot be removed or
reconfigured during runtime. On the other hand, the dynamic AOP systems can
weave aspects in at runtime. The programmers can dynamically plug and unplug
an aspect in/from running software. This section shows the benefits of dynamic
AOP and typical implementations of AOP systems.

2.1 Need for Dynamic AOP

Dynamic AOP is not just a mechanism that sounds fascinating but useless in
practice. It is a necessary mechanism especially, if an aspect implements a non-
functional concern cutting across several modules and the requirement of the
functionality dynamically changes at runtime. Non-functional concerns are ad-
ditional features such as transactions, distribution, security, and logging. They
are not directly involved with the core logic of the application and thus they are
not mandatory for the application software to provide the minimum service.

Profiling a performance of software (or logging) is a good example showing
that a dynamic AOP system is useful. It is recognized as a non-functional con-
cern that can be well modularized using AOP [7][9]. Since the code fragments for
collecting profiling information tend to be spread over the whole program, they
should be modularized into an aspect. However, the performance profiling imple-
mented on static AOP systems is not useful from the programmatic viewpoint.
Suppose that the software is a Web-based business application, which must run
24 hours a day. Our scenario is that we first run the software without profiling
code and, once it shows performance anomaly, perhaps under heavy load, we in-
sert profiling code. The profiling code should be inserted without shutting down



A Selective, Just-in-Time Aspect Weaver 191

the software since the anomaly may be due to the workload up to that point. If
the software is restarted, all the internal data structures are reset and hence the
information necessary for analyzing the anomaly would be lost. Furthermore, we
would need to interactively plug and unplug various kinds of profiling code until
solving the anomaly. Each profiling code would cut across different join points for
collecting different profiling information. We thus need dynamic AOP. Although
we could use large profiling code that collects all the information, it would imply
serious performance impacts. We should use minimal profiling code at a time for
reducing performance impacts. To satisfy these requirements, dynamic AOP is
a good solution.

Adaptable response cache in a web application is also a good example to
show the usefulness of dynamic AOP. The implementation of the response cache
includes not only caching the results of method calls but also invalidating the
cached results that scatter in the software. Since the response cache is a non-
functional and crosscutting concern, it cannot be modularized with object-
oriented programming; AOP is necessary [21]. However, to make the response
cache adaptable, the software must be able to dynamically switch a number of
aspects, in which various strategies are modularized, as the runtime environment
changes. Yagoub et al. reported that there is no universal caching strategy that
is optimal for all web applications and all the configurations [26]. For example,
if the cache provided by an aspect shows a low hit ratio, the software should
switch that aspect to another. If only part of the cache shows a high hit ra-
tio, the software should remove the aspects that do not provide that part of
the cache. The traditional object-oriented techniques like Design patterns never
modularize such a crosscutting concern, and still less switch it at runtime. Also,
static AOP does not even work in this example. If we use static AOP, all the
caching aspects must be statically woven in advance. Note that they are wo-
ven at different join points and hence, whenever the program execution reaches
one of the join points, they must dynamically examine whether every cache is
turned on or off. This runtime check causes a serious performance overhead. On
the other hand, if we use dynamic AOP, only the activated aspects can be woven
to avoid the runtime check. Dynamic AOP enables efficient implementation of
adaptable cache.

2.2 The Implementation of AOP Systems

Typical implementations of object-based AOP systems, including both static
and dynamic AOP, insert hooks at a number of execution points such as method
calls, field access, instance creation, and exception handling. These execution
points are called join points. If the program execution reaches join points, the
inserted hook intercepts it and executes a piece of code called advice if it is
included in a set of join points identified by pointcuts. Different advice can be
associated with each different pointcut. An aspect is a set of pairs of pointcuts
and advice.

In most static AOP systems, a hook is usually implemented as inlined hooking
code, in which pieces of aspects are directly embedded into a base program by



192 Yoshiki Sato, Shigeru Chiba, and Michiaki Tatsubori

static translations of source code or bytecode. However, several join points cannot
be uniquely determined by the pointcuts, such as cflow or this. Such a set of
join points depends on the current execution context and changes dynamically.
Thus, hooking code must be embedded into potential join points with conditional
statements, which examine if the advice should be executed in the execution
context.

Generally, a dynamic AOP system must examine whether any advice should
be executed at every join point when the execution of a program passes that
point. In dynamic AOP, all the join points are dependent on the execution
context, since the set of join points are specified at runtime. Furthermore, the
set of join points changes dynamically. Thus, the check whether or not the system
should execute advice must continue after the join point has been specified.

2.3 Static Code Translation

There exists a well-known approach that enables every join point to be checked
at runtime, and which is supported by static code translation of application
programs. For example, JAC [18] and Handiwrap [2] are dynamic AOP systems
using a static code translation approach, in which a compiler (or a translator)
inserts minimal hooks for all potential join points (Figure 1). They translate the
code of a program to a version with inserted hooks. The translation is performed
by the source-to-source or binary-to-binary, during compilation or class loading.
Most static AOP systems also use static code translation and this is more or less
appropriate to their purpose because most intercepted join points are identified
statically.

compilation
or translation

aspect

need_advice();
need_advice();
need_advice();
need_advice();
need_advice();
need_advice();
need_advice();
need_advice();
need_advice();
need_advice();
need_advice();
need_advice();

pointcut

Fig. 1. Static code translation.

Static code translation does not cause much of a performance penalty in
advice execution, while involving some overhead in normal operations with no
woven aspect. The execution of advice is fast since an inserted hook is represented
as just a method call. However, even if no aspects are woven, all checks whether



A Selective, Just-in-Time Aspect Weaver 193

or not the system should execute advice is performed. This results in unnecessary
method calls or verbose indirection of object references, which involves overhead
in normal operations that cannot be ignored.

Popovici et al. [19] have implemented a Just-In-Time (JIT) aspect compiler
based on Jikes RVM [1]. Their JIT compiler inserts hooks at all potential join
points only at the time of the first just-in-time compilation. Thus, their work
can be regarded as a static code translation approach mentioned above. They
avoided adding options to the JIT compiler that could recompile bytecode since
that would increase the complexity of the JIT compiler support too much. They
reported they could limit the overhead due to the hooks since their hooks are
implemented using native code, not Java byte code. Unfortunately, the JIT com-
piler approach is irreconcilable with recent high-performance runtime technolo-
gies like Sun’s HotSpot(TM) technology or the IBM JIT compiler [23], which
involves the mixture of a JIT compiler and interpreter.

3 Wool

We developed Wool, which inserts hooks into the program on demand, in Java.
Since the hooks are inserted after all of the intercepted join points are specified,
Wool does not insert unnecessary hooks. This section presents the details of our
new dynamic AOP system Wool and shows how it enables efficient dynamic
AOP.

3.1 An Overview of Wool

Wool is implemented as a Java library that provides dynamic AOP functionality,
consisting of APIs to write aspects, a weaver to compose aspects with programs,
and a subsystem for accepting a request for weaving from the outside of the
running program.

Wool allows the aspect to be woven either locally, from within an application
running on the same JVM, or remotely when sent to the subsystem of Wool.
The following code shows how the aspect is woven in by Wool.

WlAspect azpect = WlAspect.forName("ProfileAspect");
Wool wool = Wool.connect("localhost", 5432);
wool.weave(azpect);

In a locally woven case, the aspect instance azpect is created in the running
program. The weaver instance wool is connected to the subsystem of Wool.
Weaving runs immediately after the method weave() is called. Alternatively in
a remotely woven case, the aspect instance is actually created and recomposed
outside of the JVM in which it will be woven. It is then serialized and sent over
the network to the subsystem of Wool in the target JVM.



194 Yoshiki Sato, Shigeru Chiba, and Michiaki Tatsubori

3.2 Just-in-Time Hook Insertion

Wool adopts a hybrid approach so that the programmers can choose a suitable
hook at a join point considering the entire cost, and which hooks are breakpoints
or method calls. In Wool, just-in-time hook insertion is done in two timeframes
at runtime, as shown in Figure 2.

break and
executioln

aspect

pointcut

do_advice();
do_advice();

do_advice();
do_advice();

debugger
dynamic code

translation

Fig. 2. Two timeframes for hook insertion.

The strategy for deciding at the hooked join point whether advice is executed
or embedded into the program is simple. All of the hooks are represented as
breakpoints first. At each hooked join point, there are alternative ways, one is
executing pieces of advice by using the debugger and the other is embedding
hooks into the program using dynamic code translation. If the hooked join point
using a breakpoint is judged likely to be intercepted again and again in the
future, and if the degradation it causes is estimated to be higher than that
caused by dynamic code translation, such a hook should be embedded into the
program instead of executing the advice by using the debugger. After the hook
is embedded, the breakpoint at the join point is removed.

A comparison of the implementation techniques of dynamic AOP systems
is shown in Table 1. Wool is a hybrid of the last two techniques. Unlike static
code translation, both of the two techniques that Wool adopts do not insert any
unnecessary hooks (Column 1 in Table 1).

As a Breakpoint. The first hook insertion method, which we call breakpoint-
based execution, where all the hooks are inserted as breakpoints, which are set
at runtime through standard debugger interface in Java called JPDA (Java Plat-
form Debugger Architecture) [24]. The JPDA allows a programmer to register
requests for execution events inside a JVM and controls execution for each event



A Selective, Just-in-Time Aspect Weaver 195

notification. These breakpoints are set for all join points specified by a pointcut.
If the thread of control reaches one of the breakpoints, it switches to the debug-
ger thread and the advice associated with that join point (breakpoint) is run.
Using JPDA doesn’t require the modification of the runtime system.

The execution overhead due to breakpoint is not a serious problem since the
HotSpot (TM) VM that comes with the Java 2 SDK 1.4 runs a program together
with a just-in-time compiler even if any breakpoints are set. In addition, hooks
in the form of breakpoints can be inserted into programs so quickly (Column
3 in Table 1). Although programs must be run in a debug mode, it doesn’t
cause much performance penalty under normal operations without active advice
(Column 4 in Table 1).

For frequently executed advice, the overheads for breakpoint-based execution
are not negligible (Column 1 in Table 1). The large number of context switches
to execute the advice causes the overhead, since advice has to be executed sep-
arately in the debugger process.

As a Method Call. The second hook insertion method, which we call dynamic
code translation: To reduce the overhead caused by context switches, a frequently
invoked join point expressed as a breakpoint is replaced with a modified method
in which the hooks are directly embedded. The method body is modified at the
bytecode level so that a bytecode sequence for executing the advice is embedded
at the join points contained in the method body. At the breakpoint, all join points
specified by the pointcut are identified, so hooks can be statically embedded
into the programs without garbage (unnecessary) hooks as in other static-code-
translation-based dynamic AOP systems.

The runtime replacement of bytecode is done using the hotswap mecha-
nism [8] of the JPDA. The hotswap mechanism allows a new class to be reloaded
at runtime while under the control of a debugger. The actual reloading isn’t per-
formed immediately when the static code translation is completed, because the
cost of such a translation is very large. If there is a method that should be re-
placed with a hook embedded method, dynamic code translation is forked, the
breakpoint-based execution continues until the translation is finished. Therefore,
the dynamic code translation stops the application thread for a short time and
uses the translation time effectively. After replacing the method, the thread of
control does not stop at the join points contained in the method body. The hooks
are embedded into the program as simple method calls, and therefore the advice
execution is much faster than using the debugger (Column 1 in Table 1).

Dynamic code translation is not efficient under certain circumstances. It
causes only a single context switch to embed hooks into the program. How-
ever, the cost of the translation and the hotswap performed for every crosscut
class is relatively high if advice is rarely executed (Column 2 and 3 in Table 1).
In this case, dynamic code translation is just unnecessary as most of hooks are
in the static code translation approach in Section 2.3.



196 Yoshiki Sato, Shigeru Chiba, and Michiaki Tatsubori

Table 1. Comparison of the three approaches. Wool is a hybrid of the last two tech-
niques, which are using breakpoint-based execution and dynamic code translation. Each
column indicates the degree of the efficiency of using that approach.

frequently executed rarely executed hook insertion normal operation
advice advice without aspect

Static code © × © ×
translation (statically)
Breakpoint-based × © � ©
execution
Dynamic code © × × ©
translation

3.3 Aspect in Wool

Wool provides the programmers with APIs to define an aspect in Java. It does not
provide a special aspect language for easily writing an aspect, which is different
from the languages such as AspectJ or any others that are intended to enhance
flexibility and abstraction. Using these APIs, an aspect can be instantiated in the
Java program. Therefore, the aspect can be composed and changed by a program
dynamically. This means that pointcuts and advice can be reconstructed while
the target program runs.

The following fragment of a program is a sample profiling aspect described
in Java with Wool APIs:

1: public class ProfileAspect extends WlAspect {
2: Timer timer = new Timer();
3: int count = 0;
4: Pointcut timedentry = Pointcut.methodCall("public","FigureElement","paint","*");
5: public void weave(Wool wool) throws WeaveException {
6: wool.insert(new BeforeAdvice(timedentry) {
7: public void advice(Joinpoint joinpoint) {
8: timer.start();
9: count++;

10: }
11: });
12: wool.insert(new AfterAdvice(timedentry) {
13: public void advice(Joinpoint joinpoint) {
14: timer.stop();
15: }
16: });
17: }
18: }

Here, the class ProfileAspect inherited from WlAspect is used for profiling
the bottleneck of a program. In particular, the above example is specified by
the Pointcut object for profiling the method call that belongs to the class
FigureElement and named paint and that has a public modifier. This as-
pect inserts before advice and after advice to measure the elapsed time and the
number of the method calls. BeforeAdvice and AfterAdvice represent before
and after advice, respectively. Advice in Wool is inserted by using the method
insert() in the class of Wool.



A Selective, Just-in-Time Aspect Weaver 197

Aspect. The first step in the use of Wool is to create a WlAspect object repre-
senting an aspect defined by programmers. This step is for creating the aspect
and makes it accessible from a program. In an aspect of Wool, the programmers
can define it in the following two ways:

– Define the subclass of WlAspect, or
– Add advice to the scratch object of WlAspect.

The subclass of WlAspect represents an encapsulation of crosscutting con-
cerns. Programmers can define aspect variables in it, which are accessed from
advice or aspect methods or introductions such as timer and count shown in
the above example. In addition, it contains initial weaving advice described in
the method weave(), inherited from WlAspect. It is called on the return from
the weaver at the time an aspect is actually woven into a program. It is only
by using the method weave() that the programmers can insert advice into a
program in the subclass of WlAspect.

To construct and reconstruct an aspect object dynamically, Wool provides
another way to create it from scratch. This feature is useful because an aspect,
which is the intercepted join point identified by the pointcut or the operation de-
fined by advice, can be formed according to the behavior of the running program.
To do this, a WlAspect object must be created as follows:

WlAspect azpect = WlAspect.scratchAspect();
azpect.add(new BeforeAdvice(log) {

public void advice(Joinpoint joinpoint) {
/* some code */

}
});

The created object azpect represents an empty aspect that has no advice or
introductions although the method add() adds advice to the aspect later. If
new advice is added to a non-empty aspect like the class ProfileAspect, advice
inserted in the method weave() is left as it is, and the new advice is just added
as extra advice.

The added advice is not immediately reflected in the program. In Wool, ad-
vice is synchronized with the program only by the method weave() or unweave().
Thus, the behavior of a running program is changed only when those methods
are called.

Pointcut. Wool provides several methods for identifying the set of join points by
using the Pointcut class. The Pointcut class has some static methods to identify
a set of join points and some methods to be used for some logical operations.
For example, the method methodCall() identifies a call to the method with
four String arguments. Those arguments are used for indicating a modifier, a
method name, a declared class, and a signature. Table 2 lists several methods in
Pointcut.



198 Yoshiki Sato, Shigeru Chiba, and Michiaki Tatsubori

Table 2. Methods in Pointcut for identifying a set of join points.

static Pointcut methodCall(String, String, String, String)
identify a call to the method.

static Pointcut methodExecute(String, String, String, String)
identify an execution of the method.

static Pointcut fieldGet(String, String, String)
identify a read of the field.

static Pointcut fieldSet(String, String, String)
identify a write of the field.

static Pointcut instanceCreate(String, String, String)
identify a creation of the instance.

static Pointcut exceptionHandle(String)
identify a handling of the exception.

static Pointcut within(String)
identify any join point defined in the class.

Pointcut and(Pointcut)
perform an AND operation.

Pointcut or(Pointcut)
perform an OR operation.

Advice. Wool provides methods for inserting a piece of code called advice into
a program by the WlAdvice class and its subclasses, such as BeforeAdvice or
AfterAdvice. Advice consists of a pointcut and an advice body. The constructor
of the WlAdvice class takes as a parameter a Pointcut object to identify the
join point. In addition, an advice body is described in the method advice()
declared in the class inherited from the class WlAdvice. The object of WlAdvice
is inserted into a program in the method weave() on the WlAspect class through
the object of Wool.

If advice is defined as an anonymous class like a closure:

public void weave(Wool wool) throws WeaveException {
wool.insert(new BeforeAdvice(log) {
public void advice(Joinpoint joinpoint) {
/* can access the external variables */

}
});

}

The code in the method advice() can access external variables. Consequently,
the scope of the aspect can be made naturally because aspect variables can
be accessed from an anonymous class inherited from WlAspect. Moreover, the
advice is easily changed and modified at runtime.

A parameter of the method advice(), the object of Joinpoint, contains
reflective information about the current join point for the advice to use. It is
similar to thisJoinPoint of AspectJ. Mainly, this object is used to obtain certain
dynamic information such as the currently executing object or the target object
or the arguments. The current version of Wool doesn’t support obtaining more



A Selective, Just-in-Time Aspect Weaver 199

reflective information such as data structures of the class for the sake of efficiency.
However, such an optimization technique as partial evaluation [15] offers the
possibility of efficiently providing rich reflective information for programs, since
it can statically pack that information only into the advice that requires them.

Introduction. Although the limitations of the JPDA prevent Wool from im-
plementing an introduction directly, it is easy to implement it indirectly. When
a class is replaced with a new one, the JPDA restricts the new one to changing
the schema like fields and the hierarchy like subclasses or the interfaces and class
modifiers and method modifiers, and to deleting methods. Thus, the introduc-
tion itself is restricted with the JPDA. However, the introduced method or field
is actually referred to only from the advice code. Therefore, by adding a hidden
map or a list for the introduction to all of the classes at load-time, then making
the advice code use the hidden variable, Wool can allow for the addition of class
elements.

3.4 Control of the Weaver

Wool provides an optional function for programmers to control the behavior of
a weaver. This function operates at the time when an aspect actually weaves the
program, in other words, when the effect of an aspect appears in the running
program. In dynamic AOP systems, the timing of the weaving is important
because there is a non-determinacy when an aspect is woven from a remote JVM
and there is a necessity to care for a paired advice in relation to the activation
frames.

This function is implemented by delegating methods related to the weaving
operation from Wool to the programmer. A programmer can control Wool by
overriding the methods of WlAspect, specifically hook() and initWeave(). The
object of Wool is passed to the programmer through those two methods as a
parameter. Thus, by implementing the weaving operation by hand with several
provided methods, the programmer can control Wool and take care of paired
advice using dynamic information. Again, the programmer can select the method
of hook insertion as described below in detail. Table 3 lists the available methods
through the object of Wool.

3.5 Implementation of Just-in-Time Hook Insertion

We present the implementation issues of just-in-time hook insertion by describing
the details of weaving step-by-step. The order of the weaving process in Wool is:

(1) Scan classes.
(2) Insert hooks as breakpoints.
(3) The programmer selects the most suitable method.
(4)-1 Execute using the debugger, or
(4)-2 Embed the hook and call the advice.

Following are the details of each step.



200 Yoshiki Sato, Shigeru Chiba, and Michiaki Tatsubori

Table 3. Available methods in Wool for the control of Wool.

void advice(Joinpoint)
execute advice associated with the join point.

void embedHook(Joinpoint, Pointcut or String, optional boolean)
embed hooks into the program by using dynamic code translation. Second
optional parameter triggers undocking the translation thread.

int countActivationFrame(String)
count the number of activation frames in the context the intercepted pro-
gram is running in.

void filterClass(String, boolean)
restrict the loaded classes to be effected by an aspect.

Scan Classes. After Wool is attached to the target program, the application
threads except for the threads like the garbage collection and JIT compiler
threads are suspended for a while. Wool scans all of the loaded classes and
finds out the join points specified by any pointcut. The method initWeave()
is called just before this scan. For example, if some classes are filtered by the
method filtering() in initWeave() as follows:

public class ProfileAspect {
public void initWeave(Wool wool) throws WoolException {
wool.filterClass("ˆjava.*|ˆsun.*", false);

}

those classes are excluded from the scanning. then

Insert Hooks as Breakpoints. Wool sets breakpoints to specify each join
point in a set of filtered classes. In order to set the breakpoint, Wool use the
subclasses of Hook (CallHook, GetHook, etc.) included in the wool.hook package
that is implemented using the class BreakpointRequest in JPDA. At the same
time, pieces of any advice represented as a closure is associated with the join
point through the objects of Hook. Finally, all of the threads that Wool has
suspended are resumed.

The Programmer Selects the Most Suitable Method. When any thread
of the target program reaches the first join point, it is intercepted by Wool.
Wool calls the method hook(). A programmer can avoid the executing advice
that join point for the paired advice by overriding the method hook() in the
subclass of WlAspect. Wool gives programmers dynamic information about the
join point through the object of the functions using Joinpoint(CallJoinpoint,
GetJoinpoint, etc.) included in the wool.joinpoint package, which are all
implemented using the class BreakpointEvent. At the same time, the program-
mer can select whether to activate dynamic code translation by the method
embedHook() or to execute the advice by the method advice():



A Selective, Just-in-Time Aspect Weaver 201

Pointcut p
= Pointcut.methodCall("public","FigureElement","paint","*");

public void hook(Wool wool, Joinpoint joinpoint)
throws WoolException {
if (wool.countActivationFrame("main") > 0)
wool.advice(joinpoint); // breakpoint-based execution

else
wool.embedHook(joinpoint, p); // dynamic code translation

}

This fragment of a program means that if there is no activation frame at the
join point on the thread named main, the advice associated with the joinpoint
joinpoint is activated. Otherwise, dynamic code translation is performed. The
method embedHook() takes the object of Pointcut or the name of the class as
a parameter.

Execute Using the Debugger. There are two cases when the debugger ex-
ecutes advice. One is that the method hook() is not overridden, which is the
default case. The other is that the method advice() is called in an overriding
hook(). Just by calling the method advice(), the appropriate advice associated
with that join point is executed.

Embed the Hook and Call the Advice. When the method embedHook()
is called, Wool creates a hook for the class to be installed using Javassist [4],
which is a load-time bytecode modification tool, and calls the method
redefineClass(), which is declared in the class VirtualMachine in JPDA,
to replace it with the new one. During the translation and replacement, the in-
tercepted program allowed to resume execution. The advice is executed by the
debugger substituting the advice as required until the replacement is completed.

Once dynamic code translation has been executed, the control of Wool will
not return to the aspect program for the sake of efficiency. Not to adopt dynamic
code translation or to insert hooks per thread it is better to continue breakpoint-
based execution because hooks can be embedded anytime under the control of
Wool.

3.6 Taking Care of Activation Frames

Using just-in-time hook insertion, there is an exceptional case that we have to
treat in a special way when substituting a method in which hooks are embedded.
This is when the execution of some advice involves a join point contained in the
method currently being executed. For example, suppose that a draw method in a
Rectangle class is currently being executed and the activation frame associated
with that method is on the execution stack. After the class file of Rectangle
is reloaded with the hotswap mechanism, however, the execution of the draw
method with that activation frame on the stack is still being performed accord-
ing to the definition of the draw method given by the old class file. Thus, the



202 Yoshiki Sato, Shigeru Chiba, and Michiaki Tatsubori

hooks contained in the new class file are not effective for that execution. The
hooks are effective only for the execution of the draw method started after the
reloading. However, the draw method might recursively call itself after the class
file. To avoid this problem, dynamic code translation is automatically delayed,
instead breakpoint-based execution is performed on the activation frame until
the activation frame is popped from the stack.

We also have to be careful with the execution of a pair consisting of before
and after advice woven at the same join point. If that pair is woven accidentally
while the method containing that join point is executed, only the after advice will
be executed at the end of that execution. The before advice will not be executed
since the method execution had already been started. This behavior might cause
a problem if the after advice depends on the results of the before advice. For
example, the before advice might record the current time and the after advice
can use that value to compute the elapsed time. In this case, after advice must
not be executed if the corresponding before advice was not executed. To solve
this problem, our technique allows the programmers to select the behavior in
that case using the dynamic information at the join point.

4 Related Work

In this section, we discuss some AOP implementations related to our work,
and compare them to Wool. Most current AOP implementations are based on
code translation performed by a preprocessor at compile-time or by an extended
classloader at load-time of the classes. Two extreme dynamic AOP systems have
already proposed exceptions to static code translation, where hooks consist of
all-breakpoints or all-methodcalls. Both of these systems have drawbacks in their
program execution performance. Wool can avoid these performance penalties by
taking a suitable approach for each join point according to the programmer’s
specification.

An earlier version of AspectJ [13] pre-processes the source code of the as-
pects and produces a base Java program used to generate a pure Java program
that includes woven aspects within it. Even though it only supports static AOP,
AspectJ is a typical compiler-based AOP system. Since it is a static AOP sys-
tem, whether to weave the advice at a join point is determined at compilation
time. Also, the advice activity never changes during the runtime in AspectJ.
This is sometimes a problem for faster development cycles [7] and for adaptable
aspects [11,25,21].

Several researchers have addressed the problem of compile-time weaving by
shifting the timing of aspect weaving to later stages. Approaches using bytecode-
modification tools such as BCA [12] and Javassist [4] use a customized Java
class loader to allow weaving at load-time. Extensions of a just-in-time (JIT)
compiler like OpenJIT [16] allow weaving at the time of dynamic compilation
by the JIT compiler. These are useful for faster development cycles. With these
approaches, however, the chance of composition of an aspect with a program is
restricted to only one time, at load-time or at dynamic compilation. In order



A Selective, Just-in-Time Aspect Weaver 203

to allow the dynamic activity of advice code, we need some tricks like runtime
class evolution [10] to decompose the aspects from a program. We employed the
hotswap mechanism of the JPDA for that in Wool.

PROSE [20] uses the JVM debugger interface called JPDA to insert a hook
as a breakpoint, which is same as Wool when it inserts only hooks as break-
points. They report that the execution of advice is too slow in their system to
be acceptable. However, we think this approach is useful in limited cases. For ex-
ample, when a system administrator must recover from system failure as soon as
possible, a lightweight diagnosis aspect could be helpful. Meanwhile, when Wool
inserts all of the hooks as method calls, this is the same as our previous work [6].
Our experiment has shown that dynamic code translation and class hotswap-
ping impose heavy costs in execution time. However, dynamic compilation may
amortize such costs in the long term.

5 Experimental Results

This section first shows the result of our preliminary experiments validating the
fundamental of Wool approach basing in a debug mode and combining two hook-
ing means in Wool. After that, it reports the result of our application bench-
mark which compares Wool to other implementation approaches to dynamic
AOP systems. We performed all the experiments on the Sun Java 2 SDK v1.4.0
HotSpotTM Client VM / Solaris8 / Sun Blade1000 (CPU:UltraSPARC-III dual
750MHz, RAM:1GB).

5.1 Preliminary Experiment

Debug Mode. Wool forces application programs run in the debug mode but
it is not a major problem with Java 2 SDK 1.4. Although [20] reported that
this overhead is too large to use the JPDA for implementing a dynamic AOP
system, this overhead has been significantly reduced by using Java 2 SDK
1.4. We measured the overhead incurred by a debug mode to show that Wool
adopts a realistic method. Table 4 summarizes the relative execution time of the
SPECjvm98 [22] benchmarks in the debug mode of Sun Java 2 SDK 1.4. The
observed performance loss is less than 5%.

Table 4. The overhead for SPECjvm98 in the debug mode of Sun Java2 SDK 1.4.

Benchmark overhead
200 check 103.52 %
201 compress 99.18 %
202 jess 104.64 %
209 db 101.54 %
213 javac 100.82 %
222 mpegaudio 101.33 %



204 Yoshiki Sato, Shigeru Chiba, and Michiaki Tatsubori

Two Kinds of Hooks. To demonstrate the differences of the two kinds of
hooks, the breakpoint and the method call, we compared the performance of a
join point hooked by a breakpoint with the same one using a method call, both
using Wool. In these measurements, the join point was an empty method call,
and the advice was empty. These measurements involved 10,000 iterations. The
results of these micro-measurements are shown in Table 5.

Breakpoint hooking takes approximately 700 times longer than method-call
hooking on average. The elapsed time for breakpoint hooking varies widely de-
pending on the implementation of the process scheduler used in the experimental
environment because a breakpoint must be intercepted by a debugger process.
Consequently, once a hook is inserted as a method call, it brings about a large
performance improvement. The average time of the hook as a method call shown
in Table 5 does not include the time elapsed during dynamic code translation in
order to measure the pure elapsed time for the hook as a method call.

Table 5. Hooks as breakpoints and method calls in Wool.

Measurement Average Minimum Maximum Hook insertion
breakpoint 9.956[ms] 9[ms] 103[ms]
method call 14.3[us] 435[ms]

5.2 Wool Measurements

To demonstrate the effectiveness of the proposed just-in-time hook insertion,
we compared the overhead of Wool with other techniques. We picked the jess
benchmark program from the SPECjvm98 benchmarks and measured the exe-
cution time of the program with one of the input data called monkey banana.
The jess benchmark is the Java Expert Shell System based on NASA’s CLIPS
expert shell system, which has over 10,000 lines of code and 140 classes.

We provided a before advice code which does nothing and let it woven into all
the public method bodies in the jess program. The methods woven an advice
code exists 163 and totally called 87,457 times. For comparison, we measured
the execution time of the program with the advice woven varying the underlying
systems to the one with static code translation stated in Section 2.3, the one
only with dynamic code translation, the one only with breakpoint-based hooks,
and Wool. For making use of Wool’s hybrid approach, we implemented a simple
profiler using Wool APIs as follows:

public void hook(Wool wool, Joinpoint joinpoint)
throws WoolException {
wool.advice(joinpoint);
Class clazz =
((ExecutionJoinpoint)joinpoint).method().declaringType();

if (map.increment(clazz) > 100)
wool.embedHook(joinpoint, clazz.getName());

}



A Selective, Just-in-Time Aspect Weaver 205

Table 6. Elapsed Time [ms] of jess. The results in AspectJ is 1013 ms just for refer-
ence.

Static code Dynamic code Breakpoint-based Wool
translation translation execution

pointcut 0 2,428 2,428 2,428
hook insertion 0 3,553 0 1,196
execution 10,938 4,077 398,286 4,514
elapsed time 10,938 10,058 400,714 8,138

Table 7. The numbers of translated classes, inserted hooks, and pointcut test. The
numbers in parenthesis represents the comparison to AspectJ.

Static code Dynamic code Breakpoint-based Wool
translation translation execution

translated classes 149 (196%) 76 (100%) 0 15 (20%)
inserted hooks 2,815 (1727%) 163 (100%) 163 163
execution times 1,077,338 (1231%) 87,457 (100%) 87,457 87,457

This means that if a class is being frequently intercepted, the hooks are embedded
into this class dynamically. Using this simple profiler and adjusting the threshold,
the method for hook insertion was automatically and suitably selected without
requiring in-depth knowledge of the application.

Table 6 lists the results of the benchmark execution. The total time consists
of the pointcut time (elapsed time for scanning classes), the hook insertion time
(elapsed time for runtime code translation and hotswapping) and the execution
time (the rest of the elapsed time). Table 7 lists the numbers of translated classes,
inserted hooks, and executed pointcut tests, for each hook implementation ap-
proach. These results show that Wool ran dynamic AOP application about 26%
faster than a dynamic AOP system using static code translation approach. This
is because Wool avoided inserting unnecessary hooks. The static code translation
inserted hooks into the program 17 times as many as Wool, and thus resulted
in 12 times more pointcut tests. Moreover, Wool was about 19% faster than
dynamic code translation and about 98% faster than breakpoint-based execu-
tion. This is because Wool allowed switching the breakpoint and method call
implementations at every join point. The results for dynamic code translation
show that compiling extra 61 (76 - 15) classes did not improve the performance
against Wool. The compilation cost 2357 (3553 - 1196) msec. whereas the exe-
cution time was reduced by only 437 (4514 - 4077) msec. The breakpoint-based
execution caused very large performance degradations because of over 87,000
context switches.

According to Table 6, Wool was 4 times slower than the ideal result using
AspectJ with respect to the pure execution time excluding time for pointcut and
hook insertion. This is mainly because Wool reifies runtime contexts at every join
points whereas AspectJ does not unless reifying is explicitly required. In fact,
another experiment by us showed that the execution performance of AspectJ



206 Yoshiki Sato, Shigeru Chiba, and Michiaki Tatsubori

was 25-30% slower if advice includes a special variable named thisJoinPoint
and thus AspectJ reifies part of runtime contexts. Another reason is that hooks
are not specialized for the type of each join point. Therefore, the hook code
is indirectly invoked at a join point and the context there is indirectly accessed
from advice. The overhead by Wool could be reduced if we employ the techniques
proposed in [5] and [3].

6 Conclusion

This paper presented a new dynamic aspect weaver called Wool, which makes it
possible to implement efficient dynamic AOP systems. Wool is implemented in
Java without modifying the existing runtime system. It integrates a technique
using breakpoints provided by the debugger interface of the JVM and a technique
using the hotswap mechanism, which allows us to reload a class file that has
already been loaded. This selective functionality is delegated to programmers
with dynamic information about the target program. Furthermore, it provides a
framework for taking care of activation frames by controlling the timing of the
aspect weaving.

Our experiment showed Wool runs dynamic AOP application about 26%
faster than a dynamic AOP system using static code translation approach under
a certain circumstance. This is because Wool avoids inserting unnecessary hooks.
Moreover, the experiment showed. Wool is about 19% faster than dynamic code
translation, and about 98% faster than breakpoint-based execution. This is be-
cause Wool allows programmers to select the most suitable hooking means at
each joinpoint from breakpoint or method call implementation.

Our first version of Wool requires the programmers to make decisions about
the hooks. This manual selection has a high probability of producing good re-
sults. However, sometimes the programmer does not know the best combination
of hooks as breakpoints and as method calls. In the future, we will implement
a sophisticated profiler like that of the HotSpot VM to automatically select the
most appropriate hooks.

Acknowledgement

We would like to express our deep gratitude to our shepherd, the anonymous
reviewers, and the program co-chairs. Their valuable suggestions and comments
helped us revise this paper. We also thank Shannon Jacobs for his great efforts
to fix numerous English problems in this paper.

References

1. Alpern, B., Attanasio, C.R., Barton, J.J., Burke, M.G., Cheng, P., Choi, J.D.,
Cocchi, A., Fink, S.J., Grove, D., Hind, M., Hummel, S.F., Lieber, D., Litvinov,
V., Mergen, M.F., Ngo, T., Russell, J.R., Sarkar, V., Serrano, M.J., Shepherd,
J.C., Smith, S.E., Sreedhar, V.C., Srinivasan, H., Whaley, J.: The Jalapeno virtual
machine. IBM System Journal 39 (2000) 211–238



A Selective, Just-in-Time Aspect Weaver 207

2. Baker, J., Hsieh, W.: Runtime Aspect Weaving Through Metaprogramming. In:
AOSD 2002. (2002) 86–95

3. Braux, M., Noyé, J.: Towards Partially Evaluating Reflection in Java. Proceedings
of the 2000 ACM SIGPLAN Workshop on Partial Evaluation and Semantics-Based
Program Manipulation (PEPM ’00) (2000)

4. Chiba, S.: Load-time structural reflection in Java. In: ECOOP 2000. LNCS 1850,
Springer-Verlag (2000) 313–336

5. Chiba, S., Nishizawa, M.: An Easy-to-use but Efficient Java Bytecode Translator.
In: Second International Conference on Generative Programming and Component
Engineering (GPCE’03), Erfurt Germany (2003)

6. Chiba, S., Sato, Y., Tatsubori, M.: Using HotSwap for Implementing Dynamic AOP
Systems. 1st Workshop on Advancing the State-of-the-Art in Run-time Inspection,
july, 2003, Darmstadt, Germany held in conjuction with ECOOP 2003 (2003)

7. Davies, J., Huismans, N., Slaney, R., Whiting, S., Webster, M., Berry, R.: Aspect
oriented profiler. In: 2nd International Conference on Aspect-Oriented Software
Development. (2003)

8. Dmitriev, M.: Towards flexible and safe technology for runtime evolution of java
language applications. In: In Proceedings of the Workshop on Engineering Com-
plex Object-Oriented Systems for Evolution, in association with OOPSLA 2001
International Conference, Tampa Bay, Florida, USA (2001) 14–18

9. Easy Software Foundation: ajProfiler - easy java profiler.
http://ajprofiler.sourceforge.net/ (2002)

10. Evans, H., Dickman, P.: Zones, contracts and absorbing changes: An approach to
software evolution. In: Proceedings of OOPSLA’99, Proceedings of the 1999 ACM
SIGPLAN Conference on Object-Oriented Programming Systems, Languages &
Applications. Number 10 in SIGPLAN Notices vol.34, Denver, Colorado, USA,
ACM (1999) 415–434

11. Joergensen, B.N., Truyen, E., Matthijs, F., Joosen, W.: Customization of Object
Request Brokers by Application Specific Policies. In: Middleware 2000 conference.
(2000)

12. Keller, R., Hëlzle., U.: Binary component adaptation. In: ECOOP’98 - Object-
Oriented Programming. LNCS 1445, Springer-Verlag (1998) 307–329

13. Kiczales, G., Hilsdale, E., Hugunin, J., Kersten, M., Palm, J., Griswold, W.G.:
An overview of AspectJ. In: ECOOP 2001. LNCS 2072, Springer-Verlag (2001)
327–353

14. Kiczales, G., Lamping, J., Menhdhekar, A., Maeda, C., Lopes, C., Loingtier, J.M.,
Irwin, J.: Aspect-oriented programming. In: Proceedings European Conference on
Object-Oriented Programming. Volume 1241. Springer-Verlag, Berlin, Heidelberg,
and New York (1997) 220–242

15. Masuhara, H., Kiczales, G., Dutchyn, C.: A compilation and optimization model
for aspect-oriented programs. In: Compiler Construction, 12th International Con-
ference, CC 2003, Held as Part of the Joint European Conferences on Theory and
Practice of Software, ETAPS 2003, Warsaw, Poland, April 7-11, 2003, Proceedings.
Volume 2622 of Lecture Notes in Computer Science., Springer (2003) 46–60

16. Ogawa, H., Shimura, K., Matsuoka, S., Maruyama, F., Sohda, Y., Kimura, Y.:
OpenJIT frontend system: an implementation of the reflective JIT compiler fron-
tend. In: ECOOP 2000. LNCS 1850, Springer-Verlag (2000)

17. Orleans, D., Lieberherr, K.: DJ: Dynamic adaptive programming in Java. In: In
Reflection 2001: Meta-level Architectures and Separation of Crosscutting Concerns.
LNCS 2192, Springer-Verlag (2000) 73–80

http://ajprofiler.sourceforge.net/


208 Yoshiki Sato, Shigeru Chiba, and Michiaki Tatsubori

18. Pawlak, R., Seinturier, L., Duchien, L., Florin, G.: JAC: A flexible framework for
AOP in Java. In: Reflection 2001. (2001) 1–24

19. Popovici, A., Alonso, G., Gross, T.: Just in Time Aspects: Efficient Dynamic
Weaving for Java. In: 2nd International Conference on Aspect-Oriented Software
Development. (2003)

20. Popovici, A., Gross, T., Alonso, G.: Dynamic Weaving for Aspect-Orinented Pro-
gramming. In: AOSD 2002. (2002) 141–147

21. Segura-Devillechaise, M., Jean-Marc Menaud, G.M., Lawall, J.L.: Web Cache
Prefetching as an Aspect: Towards a Dynamic-Weaving Based Solution. In: 2nd
International Conference on Aspect-Oriented Software Development. (2003)

22. Spec - The Standard Performance Evaluation Corporation: SPECjvm98.
http://www.spec.org/osg/jvm98/ (1998)

23. Suganuma, T., Ogasawara, T., Takeuchi, M., Yasue, T., Kawahito, M., Ishizaki,
K., Komatsu, H., , Nakatani, T.: Overview of the IBM Java just-in-time compiler.
IBM Systems Journals 39 (2000) 175–193

24. Sun Microsystems: JavaTM platform debugger architecture.
http://java.sun.com/j2se/1.4/docs/guide/jpda/index.html (2001)

25. Truyen, E., Jrgensen, B.N., Joosen, W.: Customization of component-based object
request brokers through dynamic configuration. In: Technology of Object-Oriented
Languages and Systems. (2000)

26. Yagoub, K., Florescu, D., Issarny, V., Valduriez, P.: Caching Strategies for Data-
Intensive Web Sites. In: In Proceedings of the 24th International Conference on
Very Large Databases (VLDB), Cairo Egypt (2000)

http://www.spec.org/osg/jvm98/
http://java.sun.com/j2se/1.4/docs/guide/jpda/index.html

	1 Introduction
	2 Dynamic AOP
	2.1 Need for Dynamic AOP
	2.2 The Implementation of AOP Systems
	2.3 Static Code Translation

	3 Wool
	3.1 An Overview of Wool
	3.2 Just-in-Time Hook Insertion
	3.3 Aspect in Wool
	3.4 Control of the Weaver
	3.5 Implementation of Just-in-Time Hook Insertion
	3.6 Taking Care of Activation Frames

	4 Related Work
	5 Experimental Results
	5.1 Preliminary Experiment
	5.2 Wool Measurements

	6 Conclusion
	References

