
Secure and Manageable Virtual Private Networks for End-users

Kenichi Kourai† Toshio Hirotsu† Koji Sato† Osamu Akashi† Kensuke Fukuda†
Toshiharu Sugawara†

†NTT Network Innovation Laboratories
NTT Corporation

3–9–11 Midori-cho, Musashino
Tokyo 180–8585, JAPAN

Shigeru Chiba‡
‡Tokyo Institute of Technology
2–12–1 Ookayama, Meguro-ku

Tokyo 152–8552, JAPAN

{kourai,hirotsu,koji,akashi,fukuda,sugawara}@t.onlab.ntt.co.jp
chiba@is.titech.ac.jp

Abstract

This paper presents personal networks, which integrate a
VPN and the per-VPN execution environments of the hosts
included in the VPN. The key point is that each execution
environment called a portspaceis bound to only one VPN,
i.e., single-homed. Using this feature of portspaces, per-
sonal networks address several problems at multi-homed
hosts that use multiple VPNs. Information flow is sepa-
rated by personal networks so that it is not mixed at multi-
homed hosts. IP addressing in a personal network is inde-
pendent of the other personal networks, even the base net-
work, and therefore does not conflict with those of other net-
works at multi-homed hosts. In addition, personal networks
provide facilities for easy bootstrapping so that the end-
users can construct such isolated networks easily. Inheri-
tance of portspaces supports the creation of new portspaces
based on existing portspaces. Self-construction of personal
networks enables end-users to construct personal networks
without help from the base network.

Keywords: information flow, multi-homing, VPN, over-
lay network, network construction, execution environment

1. Introduction

Virtual private networks (VPNs) are becoming indis-
pensable for people who exchange private information via
the Internet. VPNs protect private information from leaking
to people who have no permission to access that informa-
tion. VPNs are subsets of the base network, which is the
existing network under VPNs, and they can have free net-
work topology. Traditionally, VPNs have been constructed
among network sites that belong to the same organization

but are distributed geographically. Such a site-to-site VPN
is managed by network administrators and provides users a
view as if the VPN were the only network.

However, VPNs can be used for various purposes, in par-
ticular, by end-users. To enable secure remote accesses, the
end-user can construct VPNs from her home to her corpora-
tion or other organizations that she belongs to. Using such
VPNs, she can securely receive mail from the mail server
inside her corporate network. Simultaneously, she may use
online shopping sites and send private information such as
her credit card number using SSL [4]. Moreover, VPNs can
be constructed as protected networks that deliver multime-
dia contents such as music and movies. By enclosing these
contents inside VPNs, content providers are released from
worry that these contents may be illegally copied in open
networks. End-users can select content providers and join
VPNs to buy their contents. Also, VPNs are suitable for
peer-to-peer networks that need their privacy protected.

As end-users use various VPNs, each host must deal with
multiple networks, i.e., VPNs and the base network. Such
multi-homed hosts encounter several problems. One prob-
lem is that information flow among these networks is mixed
at the hosts. Unintended information flow occurs due to
routing at the network layer and accidental or intentional
forwarding at the application layer. This causes leakage of
private information from some networks to other networks.
Another problem is that IP addressing between networks
may conflict when the same private addresses are used in
some networks. To avoid this problem, end-users cannot si-
multaneously use networks whose IP addressing conflicts.

The personal network, which we propose in this pa-
per, integrates a VPN and the per-VPN execution environ-
ments of the hosts included in the VPN. The per-VPN ex-
ecution environment is called aportspace and is single-

1

homed, i.e., bound to only one VPN. This is the key point
in solving problems caused by multi-homed hosts. Using
single-homed portspaces, personal networks can separate
end-users’ networking activities. Information flow is lim-
ited to the inside of a personal network, not only at the net-
work layer, but also at the application layer. IP addressing is
closed within a personal network so that it does not conflict
with other networks. As a result, portspaces in a host can
use the IP address assigned to the host in the base network.

For end-users, it is also important to make it easy to
bootstrap personal networks since personal networks are
completely isolated and must be therefore constructed from
scratch. To do this, personal networks provide the fol-
lowing two facilities: inheritance of portspaces and self-
construction of personal networks. Portspaces can be cre-
ated based on one of the existing portspaces and they can in-
herit network services and a file system provided by the par-
ent portspace. By the self-construction facility, the end-user
can construct a personal network within itself, not from the
base network.Portspace translation enables portspaces to
establish VPN connections between them without help from
the base network. Also, network construction is controlled
based on the Chinese Wall model [2] so that portspaces with
conflicting private information are not included in the same
personal network.

The rest of this paper is organized as follows. Section 2
describes the problems of hosts multi-homed by multiple
VPNs. Section 3 presents our personal networks and ex-
plains their components and how to construct these. The
details of implementation are described in Section 4. Sec-
tion 5 has the results of our experiments to determine the
overheads of personal networks. Section 6 discusses related
work and Section 7 concludes the paper.

2. Motivation

When end-users use their own VPNs freely, end-hosts
become multi-homed. That is, end-hosts have multiple net-
works that end-users can use simultaneously. Even if an
end-host has only one VPN, the host also uses a traditional
LAN, so that the host becomes dual-homed. Until now,
multi-homing of end-hosts has been often used for network
redundancy or load balancing. When network failure occurs
in one network, another network is activated. Multiple net-
works are used for load balancing so that the traffic in each
network is equal. At multi-homed hosts formed by VPNs,
multi-homing is used for security. VPNs are constructed
to dedicate particular private information and are chosen by
end-users according to the private information they want to
use. While it is natural that different end-users must use
different VPNs, one end-user must also use different VPNs
according to the nature of her activities. For example, she
would use different VPNs between when she reads business

mail and when she reads private mail.
When multi-homed hosts are formed by VPNs that end-

users construct, these hosts encounter several problems.
First, information flow among networks, including VPNs
and a LAN, is uncontrollable. If there are network routes
between these networks, private information inside one
VPN can be carried to another network, resulting in leaking
information. This is caused if an end-host runs as a router
in VPNs because it determines network routes according to
a single routing table including routes in various networks.
Unfortunately, even if such network routes do not exist, un-
intended information flow can occur via file systems or ap-
plications. For example, mail received from some VPN can
be forwarded to other networks intentionally or accidentally
by a mail client application. It is difficult to prevent illegal
information flow among networks at the application layer. It
is unknown from which network information that has been
processed in applications comes.

Second, IP addressing may conflict among networks
when some networks include hosts with private IP ad-
dresses. Private IP addresses are freely used within closed
networks. A VPN may assign private IP addresses to the
member hosts when they join the VPN or, otherwise, it
may include hosts that inherently have private IP addresses.
Also, a LAN may use private IP addresses. If each network
is completely independent, IP addressing does not conflict
even if the same IP addresses are used. However, the ex-
istence of multi-homed hosts breaks this independence by
combining multiple networks at these hosts. If there are
hosts with the same IP address in different networks, a
multi-homed host that is connected to these networks can-
not determine the unique route to the IP address. This prob-
lem seems to be solved by assigning unique IP addresses to
hosts in all VPNs but this approach is not realistic. A free
IP address space is not large enough, in particular, in IPv4
when end-users create multiple VPNs as they wish.

3. Personal networks

To address the problems on multi-homed hosts formed
by VPNs, we proposepersonal networks. A personal net-
work encloses an aspect of the end-user’s networking activ-
ities and prevents interference with outside networks. Per-
sonal networks have the following features:

• separation of networking activities, and

• easy bootstrapping.

The second feature is not a solution to multi-homing prob-
lems but is important for end-users to construct isolated net-
works on demand.

2

campus network

my host

home network

corporate network

httpd

popd popd

httpd

portspace

personal
network

VPN

Figure 1. Example of personal networks.

3.1. Overview

A personal network integrates a VPN and the per-VPN
execution environments, calledportspaces, of the hosts in-
cluded in the VPN. While a VPN is a virtualized net-
work, a portspace is considered as a virtualized host. Each
portspace has independent namespaces for a network, a file
system, and processes and is bound to only one VPN, i.e.,
single-homed. Figure 1 is an example of personal networks
that the end-user constructs between a home network, a cor-
porate network, and a campus network. The end-user can
select one of these personal networks according to her ac-
tivities.

Single-homed portspaces are the key point in solving
problems inherent in multi-homed hosts. A personal net-
work can limit information flow at the network layer by sep-
arating network routing from the other personal networks
and the base network. Separation of network routing is
achieved by providing an independent routing table at each
portspace. A personal network can also limit information
flow at the application layer. Since each portspace separates
a file system and processes from the other portspaces and
belongs to only one personal network, information flow via
file systems or processes does not occur among portspaces
that belong to different personal networks. Moreover, IP
addressing in a personal network is closed and independent
of other networks, even the base network. Each personal
network can use even the same IP addresses with the base
network for member portspaces, so that end-users can easily
configure and access new personal networks.

Personal networks provide the facilities for easy boot-
strapping of components, i.e., portspaces and VPNs. Easy
bootstrapping is important for end-users to construct per-
sonal networks by themselves since the setup of the com-
ponents is hard task. One facility for easy bootstrap-

network
link

transport

host

portspace

network
link

transport

network
link

transport

root portspace
(base environment)

file
system

file
system

process

file
system

base network

VPN1 VPN2

inherit

network
link

transport

file
system

VPN3

inherit

Figure 2. Portspaces and the hierarchy.

ping is inheritance of portspaces. Since a newly created
portspace basically provides an empty space isolated from
other portspaces for security, end-users have to set up the
network, file system, and server processes from scratch. In-
heriting network services and file systems of portspaces al-
lows end-users to create new portspaces based on existing
ones to reduce the difficulty of the task. In other words,
they can customize existing portspaces by creating new
portspaces. For example, they can replace some network
services and change network configurations.

The other facility for easy bootstrapping isself-
construction of personal networks. Self-construction means
that a personal network can be constructed within itself
without help from the base network. Self-construction pre-
vents the base network from interfering with personal net-
works on top of it. When a portspace joins a personal net-
work, the portspace itself needs to establish VPN connec-
tions with other portspaces in the personal network but it has
no network links used for VPN negotiation until it joins the
personal network. To establish VPN connection between
such portspaces, portspaces borrow the network links of the
parent portspaces in the inheritance hierarchy. In addition,
this self-construction facility controls the membership of
personal networks so that private information does not flow
between organizations.

3.2. Portspace

Portspaces are isolated execution environments and have
a certain hierarchy (Figure 2). The base environment, which
is the original execution environment of a host, is called a
root portspace in the hierarchy and is considered a pseudo
portspace. We use the term, root portspace only in the con-
text of the hierarchy.

3

3.2.1. Structure. A portspace consists of a network space,
a file space, and a process space. These spaces are indepen-
dent of those of other portspaces and the base environment.
Applications run inside a portspace, using a network proto-
col stack and a file system that the portspace provides. Since
portspaces are transparent to applications, existing applica-
tions do not need any modifications. Programmers can also
write applications aware of portspaces for special purposes.

A network space provided by a portspace includes the
following network elements:

• Network interfaces: A portspace provides logical in-
terfaces to a VPN. The logical interfaces are mapped
to physical interfaces in the base environment via
the VPN. Multiple logical interfaces are created if a
VPN is composed of a set of point-to-point network
links. A loopback interface to send packets locally in
a portspace is also provided.

• IP address: The end-user can assign a favorite IP ad-
dress to a portspace. The IP address does not conflict
with those of other portspaces and the base environ-
ment in a host because each portspace belongs to a
different personal network and the personal networks
cannot communicate with one another. The most use-
ful assignment is to use the same IP address with the
base environment. This assignment improves user ac-
cessibility because end-users and applications do not
need to be aware of the difference of their IP address.
When the use of the same IP address is not allowed,
a portspace can use an IP address manually or auto-
matically assigned within the personal network that the
portspace belongs to. Ways to assign unique IP ad-
dresses in a personal network are beyond of the scope
of this paper.

• Routing table: A portspace provides an indepen-
dent routing table. This routing table contains net-
work routes used only in the personal network that
the portspace belongs to. The independence of rout-
ing avoids the abuse of unintended routes and prevents
information flow among networks. Also, the isolated
routing table avoids the conflicts of routes when the
same IP address is used in different networks. In addi-
tion, dividing a traditional large routing table keeps a
routing table for each VPN small, resulting in speeding
up lookups of routes.

• Protocol control blocks: A portspace provides inde-
pendent protocol control blocks (PCBs) for protocols
over IP, such as TCP and UDP. PCBs bind sockets
to arbitrary network ports to run new services in the
portspace. Using this facility, end-users can run a dif-
ferent network service at the same port number with

the base environment. Starting new services affects
neither the other portspaces nor the base environment.

• VPN configuration: A portspace allows the end-user
to configure a VPN bound to it. Configurable pa-
rameters are destination IP addresses of VPN connec-
tions, key expiration times, the encryption algorithm,
the authentication algorithm, and so on. Note that a
VPN identifier is allocated by the system, not by each
portspace, because that value is used to dispatch pack-
ets to appropriate portspaces.

A portspace provides a separated file system. The end-
user can describe network configurations such as DNS for a
personal network in configuration files. These configuration
files are read by processes running in the portspace and are
reflected in these processes themselves or throughout the
portspace. Since this file system is allowed to be accessed
only from processes within the corresponding portspace, in-
formation flow via this file system does not occur among
portspaces within the same host.

A portspace limits interaction between processes. A
process can only send messages to and receive messages
from processes running in the same portspace, using inter-
process communication, shared memory, and signals.

3.2.2. Communication. Two portspaces at different hosts
communicate using a VPN connection between them. VPN
connections are established among portspaces and a set of
VPN connections forms a VPN. When a portspace sends
a packet, it first finds a VPN connection that can transfer
the packet to a target portspace within its network space. If
such a VPN connection is found, the packet is sent using
the connection. When the target host receives the packet,
it finds a portspace to deliver the packet according to the
VPN connection from which it received the packet. If an
appropriate portspace is found, the packet is dispatched to
the portspace.

A personal network routes packets according to its net-
work topology because VPN connections are not estab-
lished between every two portspaces. To relay packets to
target portspaces, all portspaces behave like routers and for-
ward packets to other portspaces according to the indepen-
dent routing tables. For example, a portspace can transfer
packets to an Intranet web server, which can be accessed
only via an application gateway, using this routing facility.
Packets are first sent from the portspace to the gateway and
are then forwarded to the target web server. A routing table
in each portspace is distributed using existing routing pro-
tocols over IP such as RIP [6]. RIP is known not to scale
in large networks but may be suitable for a personal net-
work, which tends to be small because it is often used by
one end-user.

4

HTTP request

httpd
forward

host A host B

super-portspace

80

web browser

inherited
port

personal network sub-portspace

80

inheriting
port

Figure 3. Example of inheritance in network
services.

3.2.3. Inheritance. Portspaces can be created based on an
existing portspace. The existing portspace is called asuper-
portspace and the newly created portspaces from the super-
portspace are calledsub-portspaces. In this hierarchy, a
common parent of all portspaces is called a root portspace.
Using the inheritance facility, sub-portspaces can borrow
network services and the file system provided in the super-
portspace. In addition, sub-portspaces can override or hide
some services and some files. Thus, end-users can cus-
tomize existing portspaces and create new portspaces eas-
ily.

Sub-portspaces can use a network service of the super-
portspace by accessing a port whose number is the same as
the port that the network service is bound to in the super-
portspace. For example, if a web server process is running
at TCP port 80 in a super-portspace, the sub-portspaces in-
heriting the super-portspace can also provide the same ser-
vice at the same port 80. Inheritance of network services
is also referred to as inheritance of network ports or inheri-
tance of server processes since network services are closely
related to network ports and server processes. As outlined
in Figure 3, when the host A in a personal network sends
an HTTP request to the inheriting port 80 using the VPN,
the portspace that received that request forwards it to the
super-portspace. After the web server process in the super-
portspace handles the request, the reply is sent from the sub-
portspace using the VPN that the request was sent with.

End-users can run other servers at inheriting ports in sub-
portspaces to override the network services of the super-
portspace. If web servers are running at port 80 both in
a super-portspace and a sub-portspace inheriting the super-
portspace, requests to that port in the sub-portspace are not
forwarded to the super-portspace. It is handled by the web
server of the sub-portspace. As a useful example, end-users
can run servers that provide the same functions with servers
of the super-portspace but whose versions or configura-
tions are different. To avoid unexpected inheritance of net-
work services, end-users can hide network services of the

super-portspace when or after they create sub-portspaces.
The hidden network services are not visible to the sub-
portspaces. Using overriding and hiding network services,
end-users can inherit only necessary network services.

The super-portspace can expose its file system to the sub-
portspaces to inherit file systems. The end-user in a sub-
portspace can read files from the file system of the super-
portspace. Modified files and newly created files are only
visible to the sub-portspace. Deleted files are hidden from
the sub-portspace. In particular, inheriting the file system of
the root portspace, which has fundamental executables and
libraries such as ones provided in/usr/bin and/usr/lib,
helps end-users construct file systems in new portspaces.

Inheritance of network services may, as a result, allow a
portspace to communicate with the super-portspace and the
sibling portspaces derived from the same super-portspace.
We will discuss security from the view point of constructing
personal networks in Section 3.3.3.

3.3. Self-construction of personal networks

Personal networks are constructed by connecting
portspaces in a peer-to-peer manner. It is easy to set up
personal networks from the base network, but this may al-
low the base network to interfere in the policy of how to
construct personal networks. For example, network admin-
istrators may attach portspaces for monitoring all activities
in personal networks. In addition, this setup needs a mech-
anism to elevate the portspaces constructed in the base net-
work so that they run in personal networks. This may vi-
olate the integrity of personal networks because malicious
users can also intrude into these using this mechanism. To
avoid these security problems, personal networks are con-
structed without help from the base network.

3.3.1. Portspace translation. Portspace translation is a
mechanism to enable portspaces with no network links to
communicate with one another. Using this mechanism,
communication between two sub-portspaces with no net-
work links is translated to communication between their
super-portspaces with network links. To associate these
two communications with each other, portspace translation
rewrites the IP addresses and the port numbers of packet
headers based on the translation table. This is similar to
NAPT [17] if we consider sub-portspaces as end-hosts and
super-portspaces as NAPT boxes. The major difference is
that portspace translation not only considers IP addresses
and port numbers but a portspace identifier.

Figure 4 shows an example of communication between
sub-portspaces with no network links. When a UDP packet
is sent from port 500 in a local sub-portspace to port 500
in a remote sub-portspace, the source and destination port
numbers in the packet header are rewritten to 1025 and

5

sub-portspace

personal network

host A host B

super-portspace

translation table

translate

VPN

process

1025->1026

500->500500->500

Figure 4. Example of portspace translation.

1026, for example. Then, the packet is sent using a VPN
of a local super-portspace. When a remote super-portspace
receives the packet, it rewrites the packet header so that
the source and destination port numbers are 500 and 500
again. Finally, the packet is forwarded to an appropriate
sub-portspace. The use of portspace translation is limited
to portspaces with no network links since this mechanism
can violate the integrity of personal networks if portspaces
that belong to different personal networks can communicate
with one another.

3.3.2. Operations for self-construction. Personal net-
works have two operations for self-construction:unite and
reunite. These operations connect two portspaces using
portspace translation to construct a personal network. To
enable these operations, every portspace has theUnite Dae-
mon running in it.

Using theunite command, the end-user can attach re-
mote hosts to the personal network that she resides in. Fig-
ure 5 shows unite operation. In the first stage,unite inter-
acts with the Unite Daemon running in the root portspace at
a target remote host and makes it create a new portspace.
This communication is done using portspace translation
only at the end-user’s host becauseunite runs in the per-
sonal network separated from the remote host. In the sec-
ond stage,unite connects the newly created portspace to
the portspace whereunite is executed. To establish VPN
connection between the two portspaces, they exchange the
keys for it. This communication is done using portspace
translation at both hosts. They also add a new route to their
routing tables.

Using thereunite command, the end-user can attach
the portspace that she resides in to a remote personal net-
work. Reunite operation is basically the same as unite op-
eration. The difference is that the personal network authen-
ticates the end-user to ensure that her portspace has the per-
mission to participate in the personal network. The authen-
tication is done by the operating system of the remote host
at the first stage of negotiation. After that, the Unite Dae-
mon in the target portspace at the remote host is called to

base network
end-user’s host remote host

root portspace

new portspace

translation table

unite

Unite Daemon

VPN negotiation

VPN

personal network

create

no links

Figure 5. Unite operation.

set up a VPN.

3.3.3. Enforcing the Chinese Wall model. Depending on
how personal networks are constructed, inheriting network
services causes unintended information flow among per-
sonal networks and the base network. When a portspace
inherits the network services of the super-portspace, the
portspace uses server processes running in the super-
portspace. This means that the server processes are shared
among the super-portspace and all the sub-portspaces in-
heriting those services. As a result, information flow oc-
curs via the server processes among the networks that these
portspaces belong to. For example, when a web server is in-
herited, data submitted with CGI programs by end-users in
one network is saved in the local file system by the server. If
end-users in the other networks browse the data through dy-
namically created web pages, it is passed from one network
to other networks.

One way to address this problem is that all networks that
include the inherited server processes belong to the same
network domain. We define a network domain as a range
where private information is allowed to circulate. If all
networks are constructed in such a way, information flow
among these networks does not violate the integrity of any
network. In a wide sense, these networks are loosely cou-
pled and form a large pseudo personal network. Such net-
work construction is realistic. Consider an inherited web
server in a corporate network. The end-users can access the
private information of the web server within the corporate
network. They are also allowed to access the private infor-
mation from their personal networks that include the inher-
ited web server. Their personal networks naturally belong
to the same network domain with the corporate network.

To enforce such network construction, personal net-
works manage the membership of portspaces based on the
Chinese Wall model [2], where entities are only allowed ac-
cess to information that does not conflict with what they
already possess. We define the conflict of private informa-
tion as a state where some private information belongs to
network domains different from the others. Based on this

6

personal network

base network

inherit

network domain A

super-
portspace

sub-
portspace

network domain B

reunite

server
process

information flow

Figure 6. Construction restrictions based on
the Chinese Wall model.

definition, a portspace is allowed to join a personal network
as far as private information that the portspace possesses
does not conflict with what the personal network possesses.
Figure 6 shows an example that the reunite operation fails
between different network domains.

4. Implementation

We have implemented the Persona system based on
FreeBSD 4.7. Persona consists of an operating system pro-
viding portspaces and VPNs and middleware for member-
ship management. In the current implementation, IP secu-
rity (IPsec) [10] is used to form VPNs.

4.1. Portspace

A portspace is created by issuing a system call from a
process. The process and the descendant processes belong
to the created portspace. When all processes within the
portspace are terminated, the portspace is destroyed.

4.1.1. Network management. We have modified the op-
erating system kernel so that network processing is done
with appropriate data sets such as a routing table and IPsec
databases, according to portspaces. To dispatch network
processing, a portspace identifier is given to sockets and net-
work buffers (mbufs). The portspace identifier of a socket
is set by a process that creates the socket while that of an
mbuf is set depending on what data the mbuf contains.

IPsec tunnel mode is used for communication between
portspaces. When a process in a portspace sends a packet,
Persona looks up an entry in a routing table of the portspace.
If there is a matching entry, Persona encapsulates the packet
and passes it to the base environment. Likewise, if there is
a matching entry in the routing table of the base environ-
ment, the packet is carried to a target host with the destina-
tion IP address according to both the routing in the personal

network and that in the base network. When the target host
including the destination portspace receives the packet, Per-
sona dispatches it to an appropriate portspace using the se-
curity parameter index (SPI) contained in the IPsec header.
The value is considered as a VPN identifier and is unique
between every two hosts.

Inheritance of network services is implemented by mod-
ifying the protocol control block (PCB) lookup function,
which is called to find a PCB entry corresponding to a
socket that a packet is delivered to. Our PCB lookup func-
tion first attempts to find a PCB entry at the portspace that
received a packet. If no entry is found there, lookup con-
tinues at the super-portspace. If no entry is also found at
the root portspace, lookup fails. Thus, a request packet
sent to an inheriting port is delivered to the socket of the
server process running in the super-portspace. The socket
preserves the identifier of the original portspace that the re-
quest packet is sent to. Based on the identifier, the socket
returns a reply packet using the IPsec connection that the
request packet was sent with.

4.1.2. File system management. Portspaces construct an
independent file system based on the chroot mechanism in
Unix. Chroot changes a subdirectory in the base environ-
ment to the entire directory in a portspace. To achieve in-
dependence even from the base environment, we have mod-
ified this mechanism so that the base environment cannot
access the subdirectories used by portspaces. However, in-
herited file systems are implemented using the union file
system in FreeBSD. The union file system enables a sub-
directory to be mounted above the existing file system in
such a way that both directory trees remain visible. The
processes read files from the lower or upper file system and
they write files to the upper file system. Since mount op-
eration is applied to the whole system in traditional Unix,
we have modified it so that a mounted file system is only
visible to a specific portspace.

4.2. Chinese Wall

To express private information that portspaces possess,
we use labels corresponding to the network domains that
the private information belongs to. In the current imple-
mentation, the label is described by subnetwork address and
mask in the base network. We assume that private infor-
mation is allowed to be accessed within a specific subnet-
work, which is assigned to an organization such as a cor-
poration, a department, and a group. The root portspace is
labeled according to the subnetwork. If a portspace inher-
its a super-portspace, the label is the same with that of the
super-portspace. If a portspace does not inherit any super-
portspaces, the label is null. A null label means a network
domain with no private information. Spoofing of a label is

7

Table 1. Round-trip latency (µsec) and throughput (Mbps) in three network constructions.
TCP UDP

latency throughput latency throughput
Base network+IPsec 132.40 91.13 126.63 94.00
Personal network 134.43 91.07 128.12 93.85
Personal network+inheritance 134.75 91.04 128.34 93.80

detected by comparing the IP address of the host where a
portspace is created with the subnetwork described in its la-
bel. If the IP address is not included in the subnetwork, we
can decide that the label is spoofed. For more rigid check,
the X.509 certification framework [3] can be used.

To enforce the Chinese Wall model to the construction of
a personal network, our system compares the labels of two
portspaces when they are connected by unite or reunite op-
eration. Comparing the two portspaces is sufficient to check
the integrity of the complete personal network because our
algorithm guarantees that all portspaces in the personal net-
work have the same label. The join succeeds if one has a
null label or if both have the same label, otherwise it fails.
If one portspace has a null label, it is rewritten by the la-
bel of the other portspace so that these two portspaces have
the same label. If both have null labels, these labels remain
null.

5. Experiments

Personal networks incur overheads of IPsec and
portspaces, compared with the base network. Since the
overheads of IPsec change largely depending on the encryp-
tion strength that end-users need, we focused on the over-
heads of portspaces, which we introduced in this paper. We
used two PCs each of which had a single 1.4 GHz Pentium
III-S processor with 512 MB memory and an Intel Pro/100+
network interface card. These PCs were connected via a
100baseT Ethernet switch. We configured the IPsec proto-
col so that only the ESP protocol [9] with the NULL en-
cryption algorithm, which does not encrypt or decrypt data,
was used.

We first measured the throughput and round-trip latency
of both TCP/IP and UDP/IP using thenetperf benchmark
program [7]. Netperf was run in three kinds of network
constructions. These were (1) a base network with IPsec,
(2) a personal network, and (3) a personal network with
portspace inheritance. In the third construction, we in-
heritednetserver, which is the remote-side program for
netperf, at the server-side portspace. The per-packet data
size sent in measuring latency was 1 byte.

Table 1 shows the round-trip latency and throughput. Us-
ing portspaces increases latency increase by 1.5% at max-
imum while throughput declines by 0.1%. This overhead

 0

 1000

 2000

 3000

 4000

 5000

 1 2 3 4 5 6 7 8
re

qu
es

ts
/s

ec

Concurrency

Base network with IPsec
Personal network with inheritance

Personal network

Figure 7. Changing performance of thttpd in
three network constructions.

is caused by looking up routing tables twice, checking the
portspace translation table, and dispatching packets to an
appropriate portspace. Using inheritance increases latency
by 0.2% at maximum. CPU utilization in measuring TCP
throughput was 16.1% in a base network with IPsec while
that was 20.3% in a personal network despite the use of in-
heritance.

We then measured the performance of thethttpd web
server [14] using the Apache benchmark program (ab) [1]
in the three constructions. To establish the relation between
the server’s CPU utilization and server performance, we
conducted this experiment as we changed the concurrency
of requests fromab. The concurrency was adjusted by the
number of processes that sent requests concurrently.Ab re-
quested an HTML file of 0 byte so that the overheads for
network processing were maximized.

Figure 7 shows changes inthttpd performance. Com-
paring a personal network with a base network with IPsec,
when we set the concurrency of requests to 1, its degrada-
tion in performance was 1.1%. At this time, the server’s
CPU utilization was 51.7%. However, as concurrency in-
creased, the CPU load became higher and degradation in
performance increased. When we set the concurrency to 3,
the server’s CPU utilization reached 100% and performance

8

decreased by 3.9%. This result suggests that the overheads
of portspaces become apparent at overloaded hosts. Mean-
while, the performance of a personal network with inheri-
tance was a little better than that of a personal network with-
out inheritance. This is caused by the fact thatthttpd run-
ning in the super-portspace does not access the union file
system but directly access the Unix file system. Access to
the union file system incurs overheads because the system
needs to access two file systems, i.e., the union file sys-
tem and the Unix file system. Based on our measurements,
writes in the union file system were about 10% slower while
the overheads of reads were negligible.

6. Related work

6.1. Virtual networks

Most virtual networks ignore the fact that hosts are
shared in multiple virtual networks but some do consider
problems in multi-homed hosts. Virtual Internets [20] in-
troduce independent environments with virtual network in-
terfaces into a host. The environments are connected to spe-
cific virtual networks via an internal router inside the host.
The internal router controls the connections between envi-
ronments and virtual networks so that an environment can
switch multiple virtual networks to support fault-tolerant
and persistent connections. Our personal network also in-
troduces execution environments called portspaces. The
major difference is that portspaces are used to insure se-
curity of information flow. To separate information flow, a
portspace is always bound to only one virtual network. In
addition, a portspace virtualizes not only network interfaces
but the other network elements and the file system.

Router partitioning [12, 16] incorporates routing with
VPNs at routers. To support routers that forward packets
from multiple VPNs, one routing table per VPN is provided.
Per-VPN routing tables allow the IP addresses of virtual
network interfaces to overlap between VPNs. VNS [12]
distinguishes VPNs by a VPN identifier inserted into ev-
ery packet. Scandariato et al. adds a VPN identifier to each
network interface for VPNs and it switches routing tables
according to the identifier of an incoming network inter-
face [16]. Our personal networks also achieve routing vir-
tualization at intermediate hosts that work as routers. More-
over, end-hosts have multiple routing tables because we as-
sume that end-hosts can manage multiple VPNs. The major
difference between end-hosts and routers is end-users’ ap-
plications. In routers, end-users’ applications are not run-
ning and so information flow at the application layer does
not occur.

A DVPN [15] is aware of operating system processes at
each host. A process is created within one DVPN and has
a DVPN identifier. Based on the DVPN identifier, a pro-

cess gets its own virtual host name and virtual IP address
through the modifiedgethostname andgethostbyname
functions. The virtual IP addresses are globally managed
by the available address service. DVPNs are similar to per-
sonal networks in that a process is only aware of other pro-
cesses in the same VPN. In DVPNs, however, a process
is also aware of the other processes belonging to different
DVPNs in the same host. In personal networks, on the other
hand, processes belonging to different networks are isolated
by portspaces.

To make it easy to construct virtual networks called over-
lay networks, the X-Bone [19], which is used by Virtual In-
ternets, provides high-level interfaces such as a web-based
GUI and a program-controlled API. Using parameters re-
ceived through these interfaces, the Overlay Manager au-
tomatically discovers available hosts and routers and con-
figures them. While the X-Bone constructs overlay net-
works using the Overlay Manager, personal networks are
constructed in a peer-to-peer manner. Therefore, end-users
can join private hosts that cannot gain access directly from
the Overlay Manager to personal networks.

6.2. Virtual hosts

There are many techniques to create virtual hosts. The
chroot system call confines files and directories that pro-
cesses can access to a subdirectory of the whole file system.
Jail [8] extends chroot to virtualize a network space and a
process space to some degree. An independent IP address
and host name are visible to the processes inside a jail envi-
ronment. A process cannot access other processes outside a
jail environment. Clonable network stacks [24] provide in-
dependent network stacks from the network interface layer
to the application layer and independent file systems based
on chroot. This is the same with portspaces except for inher-
itance of portspaces and integration with VPNs. Zap [13]
introduces a pod abstraction, which provides a virtualized
view of the operating system to a group of processes. Dif-
ferent from our portspaces, pods translate names in existing
namespaces and do not provide new namespaces. The vir-
tual hosts created using these techniques are lightweight and
are isolated from other environments more or less. How-
ever, it is unsuitable for end-users to create these virtual
hosts dynamically since they need to set up their file sys-
tems and/or networks from scratch.

Virtual operating systems such as User Mode Linux [5]
and virtual machines (VMs) such as VMware [22] run dif-
ferent operating systems, called guest operating systems,
on top of the host operating system. End-users can config-
ure the guest operating systems as completely independent
hosts. Some of these systems enable new disk images for
virtual hosts to be created from the existing image. Addi-
tionally, in VMware, end-users can take a snapshot of a run-

9

ning VM, including the disk image and the memory image,
and thereby can create a new VM from the snapshot. How-
ever, the new VM conflicts with the original VM in terms
of an IP address. Moreover, the performance overheads of
guest operating systems are high although this has recently
been reduced [18, 23].

These techniques for virtual hosts are different from
portspaces in two respects. First, all of them are closed
within one host and do not cooperate with other virtual
hosts via networks. Since such virtual hosts assume the use
of the base network, they have to have globally unique IP
addresses to provide network services to the Internet. On
the other hand, portspaces are integrated with a specific
VPN and can thereby communicate with each other even if
portspaces do not have globally unique IP addresses. Sec-
ond, traditional virtual hosts have been managed from the
base environment, which can access their file systems be-
cause these are constructed on top of the base file system. In
personal networks, no users, not even administrators, in the
base environment can access the file systems of portspaces.

7. Conclusion

In this paper, we proposed a personal network, which in-
tegrates a VPN and portspaces using the VPN. A portspace
is bound to only one VPN and is a single-homed execu-
tion environment. By confining information flow to a per-
sonal network, separation of information flow is achieved.
Moreover, inheritance of portspaces and self-construction
of personal networks enable end-users to construct personal
networks more easily. Although our current implementa-
tion of personal networks uses IPsec for VPNs, our method
can be implemented using other VPN technologies such as
L2TP [21] and VLAN [11].

One future direction is to deal with private information
that belongs to multiple network domains simultaneously.
In the current design, a personal network is allowed to in-
clude private information that belongs to only one network
domain to insure security of information flow. However,
not all private information is secret. We are seeking a way
of loosening the independence of personal networks in a se-
cure manner. Another direction is to introduce QoS to per-
sonal networks. We plan to combine network QoS such as
bandwidth and host QoS such as CPU.

References

[1] Apache HTTP Server Project. Apache HTTP Server Bench-
marking Tool.http://www.apache.org/.

[2] D. Brewer and M. Nash. The Chinese Wall Security Pol-
icy. In Proceedings of the IEEE Symposium on Security and
Privacy, pages 206–214, 1989.

[3] CCITT. Recommendation X.509: The Directory – Authen-
tication Framework, 1988.

[4] T. Dierks and C. Allen. The TLS Protocol Version 1.0. RFC
2246, 1999.

[5] J. Dike. A User-mode Port of the Linux Kernel. InPro-
ceedings of the 4th Annual Linux Showcase & Conference,
2000.

[6] C. Hedrick. Routing Information Protocol. RFC 1058, 1988.
[7] R. Jones. Netperf Benchmark.http://www.netperf.
org/.

[8] P. Kamp and R. Watson. Jails: Confining the Omnipotent
Root. InProceedings of the 2nd International SANE Con-
ference, 2000.

[9] S. Kent and R. Atkinson. IP Encapsulating Security Payload
(ESP). RFC 2406, 1998.

[10] S. Kent and R. Atkinson. Security Architecture for the In-
ternet Protocol. RFC 2401, 1998.

[11] LAN MAN Standards Commitee of the IEEE Computer So-
ciety. Virtual Bridged Local Area Networks (802.1Q), 1998.

[12] L. Lim, J. Gao, T. Eugene Ng, P. Chandra, P. Steenkiste, and
H. Zhang. Customizable Virtual Private Network Service
with QoS.Computer Networks, 36(2–3):137–151, 2001.

[13] S. Osman, D. Subhraveti, G. Su, and J. Nieh. The Design
and Implementation of Zap: A System for Migrating Com-
puting Environments. InProceedings of the 5th Symposium
on Operating Systems Design and Implementation, pages
361–376, 2002.

[14] J. Poskanzer. Tiny/turbo/throttling HTTP Server. http:
//www.acme.com/software/thttpd/.

[15] O. Rodeh, K. Birman, M. Hayden, and D. Dolev. Dynamic
Virtual Private Networks. Technical Report TR98–1695,
Cornell University, Computer Science, 1998.

[16] R. Scandarioato and F. Risso. Advanced VPN Support on
FreeBSD Systems. InProceedings of BSDCon Europe,
2002.

[17] P. Srisuresh and M. Holdrege. IP Network Address Trans-
lator (NAT) Terminology and Considerations. RFC 2663,
1999.

[18] J. Sugerman, G. Venkitachalam, and B. Lim. Virtualizing
I/O Devices on VMware Workstation’s Hosted Virtual Ma-
chine Monitor. InProceedings of the USENIX 2001 Annual
Technical Conference, 2001.

[19] J. Touch and S. Hotz. The X-Bone. InProceedings of
the 3rd Global Internet Mini-Conference at Globecom’98,
pages 59–68, 1998.

[20] J. Touch, Y. Wang, and L. Eggert. Virtual Internets. Tech-
nical Report ISI–TR–2002–558, Information Sciences Insti-
tute, 2002.

[21] W. Townsley, A. Valencia, A. Rubens, G. Pall, G. Zorn, and
B. Palter. Layer Two Tunneling Protocol “L2TP”. RFC
2661, 1999.

[22] VMware, Inc. VMware.http://www.vmware.org/.
[23] A. Whitaker, M. Shaw, and S. Gribble. Scale and Perfor-

mance in the Denali Isolation Kernel. InProceedings of
the 5th Symposium on Operating Systems Design and Im-
plementation, 2002.

[24] M. Zec. Implementing a Clonable Network Stack in the
FreeBSD Kernel. InProceedings of the USENIX 2003 An-
nual Technical Conference, pages 137–150, 2003.

10

