
An Easy-to-Use Toolkit for Efficient Java

Bytecode Translators

Shigeru Chiba Muga Nishizawa

Dept. of Mathematical and Computing Sciences
Tokyo Institute of Technology

Email: {chiba,muga}@csg.is.titech.ac.jp

Abstract. This paper presents our toolkit for developing a Java-bytecode
translator. Bytecode translation is getting important in various domains
such as generative programming and aspect-oriented programming. To
help the users easily develop a translator, the design of our toolkit is
based on the reflective architecture. However, the previous implementa-
tions of this architecture involved serious runtime penalties. To address
this problem, our toolkit uses a custom compiler so that the runtime
penalties are minimized. Since the previous version of our toolkit named
Javassist has been presented in another paper, this paper focuses on this
new compiler support for performance improvement. This feature was
not included in the previous version.

1 Introduction

Since program translators are key components of generative programming [5], a
number of translator toolkits have been developed. For the Java language, some
toolkits like EPP [9] and OpenJava [18] allow developers to manipulate a parse
tree or an abstract syntax tree for source-level translation. Other toolkits, such
as BCEL [6], JMangler [13], and DataScript [1], allow manipulating a class file,
which is a compiled binary, for bytecode-level translation. The ease of use and
the power of expressiveness are design goals of these toolkits. The latter goal
means what kinds of translation are enabled. The former goal is often sacrificed
for the latter one.

The bytecode-level translation has two advantages against the source-level
translation. First, it can process an off-the-shelf program or library that is sup-
plied without source code. Second, it can be performed on demand at load time,
when the Java virtual machine (JVM) loads a class file. A disadvantage of the
bytecode translation is, however, that the toolkits are difficult to use for devel-
opers who do not know detailed specifications of the Java bytecode.

To overcome this problem, a few researchers have proposed bytecode trans-
lator toolkits that provide higher-level abstraction than raw bytecode. For ex-
ample, our toolkit named Javassist [4] provides source-level abstraction based

This work was supported in part by the CREST program of Japan Science and
Technology Corp.

on the reflective architecture. The application programming interface (API) of
Javassist is designed with only source-level vocabulary like class and method
instead of bytecode-level one like constant pool and invokevirtual. Javassist in-
terprets the program transformation written with the source-level vocabulary
and executes an equivalent transformation at the bytecode level.

So far Javassist has allowed only limited modification of a method body for
performance reasons. Other reflection-based translator toolkits enable inserting
a hook at an interesting execution point such as method invocation in a method
body so that the execution can be intercepted to change the computation at
that point or to append extra computation there. The execution contexts at that
point are converted into regular objects and passed to the intercepting code. If
the intercepting code modifies these objects, then the modifications are reflected
on the original execution contexts. The former conversion is called reify and the
latter one is called reflect. Although this modification mechanism still restricts a
range of possible program transformation, a number of research activities have
revealed that it covers a wide range of application domains. Also, the idea of this
mechanism has been also adopted by aspect oriented programming systems such
as AspectJ [11, 12]. However, the reify and reflect operations are major sources of
runtime overheads due to the reflective architecture. Existing reflective systems
such as Kava [19] and Jinline [17] always perform these operations and thus
imply not-negligible runtime overheads.

This paper presents our solution of this performance problem. We developed
it for a new version of Javassist, which now allows the users to modify a method
body as other reflection-based translator toolkits. To reduce runtime penalties
due to the reify and reflect operations, Javassist suppresses unnecessary part of
these operations as much as possible. A compiler specially developed for Javas-
sist enables this suppression. It can compile source code written in Java with
extensions for reification and reflection. Javassist uses this compiler for compiling
intercepting code into efficient bytecode.

In the rest of this paper, we first show a performance problem of the previous
implementations of the reflective architecture in Section 2. We next present our
solution developed for Javassist in Section 3. We mention the results of our micro
benchmark in Section 4. Related work is discussed in Section 5. We conclude this
paper in Section 6.

2 Modifying a Method Body

Jinline [17] is a typical translator toolkit that is based on the reflective architec-
ture and enables modifying a method body. From the implementation viewpoint,
it is a Java class library developed on top of Javassist by a research group dif-
ferent from ours. With Jinline, the users can develop a bytecode translator that
substitutes a hook for a specific expression in a method body. For example, it
can substitute hooks for all the accesses to the fields in a Point class. The hooks
can call the methods specified by the user so that the methods perform the al-
tered behavior of the field-access expressions. In the case of Jinline, the call to

this method is inlined in the method body containing the replaced expression;
this is why the toolkit is called Jinline.

The Jinline users can define a method that implements new behavior of the
hooked expression and then they can specify that method to be called by the
hook. However, the definition of that method must be subject to the protocol
provided by Jinline. For a simple example, we below show a translator for en-
forcing the Singleton pattern [8]. Suppose that the translator guarantees that
only a single instance of a class is created if the class implements an interface
named Singleton.

First, the Jinline users prepare the following class for runtime support:

class Factory {
static Hashtable singletons = new Hashtable();

Object make(Object[] jinArgs) {
String classname = (String)jinArgs[2];
Class c = Class.forName(classname);
Object obj = singletons.get(classname);
if (obj == null) {
Constructor cons = c.getDeclaredConstructor(...);
obj = cons.newInstance((Object[])jinArgs[3]);
singletons.put(classname, obj);

}
return obj;

}
}

Then, they write a translator program using the Jinline toolkit. Since Jinline
can notify the program whenever an interesting expression is found in the given
method body, the program can have only to receive an object representing that
expression and examine whether a hook must be substituted for that expression.
To examine it, the program can use the lexical contexts supplied by Jinline. If a
hook is substituted, the program must specify the method called by the hook. For
the example above, we must specify the make method in Factory if the expression
is the creation of an instance of a singleton class.

The parameter jinArgs to make is constructed by the hook at runtime. ji-
nArgs[2] is the class name of the created object and jinArgs[3] is an array of
Object representing the actual parameters to the constructor of the created ob-
ject. The make method uses these runtime contexts to implement the Singleton
pattern. For example, it uses jinArgs[3] for creating an object through the stan-
dard reflection API of Java [10]. The value returned by make is used as the result
of the original expression. The type of the return value is converted by the hook
into an appropriate type.

Constructing jinArgs and converting the type of the return value correspond
to the reify and reflect operations of the reflective architecture. Exposing run-
time contexts of the hooked expression through jinArgs is significant since they
are needed to implement the altered behavior. It also makes the make method
generic enough to deal with the instantiation of any class. Suppose that the
hooked expression is “new Point(3, 4)”. If the hook did not perform the reify

operation, it would directly pass the constructor parameters 3 and 4 to the make
method. The make method would have to receive two int parameters and thus
it could not be generic since it could not deal with instantiation with differ-
ent types of parameters. A different make method would be necessary for every
constructor with a different signature.

However, the reify and reflect operations are major sources of runtime penal-
ties. If a parameter type is a primitive type, then these operations involves
conversion between the primitive type such as int and the wrapper type such
as java.lang.Integer. Since these operations are performed whenever the hooked
expression is executed, this overhead is not negligible.

3 Javassist

Javassist [4] is a reflection-based toolkit for developing Java-bytecode translators.
It is a class library in Java for transforming Java class files (bytecode) at compile
time or load time. Unlike other libraries that are not based on reflection, it allows
the users to describe transformation with source-level vocabulary; the users do
not have to have detailed knowledge of bytecode or the internal structure of Java
class file.

The Javassist users can first translate a Java class file into several objects rep-
resenting a class, field, or method. The users’ programs can access these “meta”
objects for transformation. Introducing a super interface, a new field, and so on,
to the class is performed through modifying these objects. The modifications
applied to these metaobjects are finally translated back into the modifications
of the class file so that the transformation is reflected on the class definition.
Since Javassist does not expose internal data structures contained in a class file,
such as a constant pool item and a method info structure, the developers can
use Javassist without knowledge of Java class files or bytecode.� On the other
hand, other libraries such as BCEL [6] provide objects that directly represent a
constant pool item and a method info structure.

Javassist allows the users to modify a method body as Jinline does. To avoid
the performance problem, Javassist lets the users explicitly specify when the reify
and reflect operations should be performed. Several meta variables and types are
available for specifying this in the code executed by a hook. Javassist analyzes
the occurrences of these meta variables and types and it thereby eliminates
unnecessary reify and reflect operations.

3.1 Structural Reflection

The CtClass object is an object provided by Javassist for representing a class
obtained from the given class file. It provides the almost same functionality of

� For practical reasons, Javassist also provides another programming interface to di-
rectly access the internal data structures in a class file. However, normal users do
not have to use that interface.

Table 1. Part of methods for modifying a class

Methods in CtClass Description

void setName(String name) change the class name
void setModifiers(int m) change the class modifiers

such as public

void setSuperclass(CtClass c) change the super class
void setInterfaces(CtClass[] i) change the interfaces
void addField(CtField f, String i) add a new field
void addMethod(CtMethod m) add a new method
void addConstructor(CtConstrutor c) add a new constructor

Table 2. Part of methods for modifying a member

Methods in CtField Description

void setName(String n) changes the field name
void setModifiers(int m) changes the field modifiers
void setType(CtClass c) changes the field type

Methods in CtMethod, CtConstructor Description

void setName(String n) changes the method name
void setModifiers(int m) changes the method modifiers
void setExceptionTypes(CtClass[] t) sets the types of the exceptions

that the method may throw
void setBody(String b) changes the method body

introspection as the java.lang.Class class of the standard reflection API. Intro-
spection means to inspect data structures, such as a class, used in a program.
For example, the getName method declared in CtClass returns the name of the
class, the getSuperclass method returns the CtClass object representing the su-
per class. getFields, getMethods, and getConstructors return CtField, CtMethod,
and CtConstructor objects representing fields, methods, and constructors, re-
spectively. These objects parallel java.lang.reflect.Field, Method, and Constructor.
They provide various methods, such as getName and getType, for inspecting the
definition of the member. Since a CtClass object does not exist at run time, the
newInstance method is not available in CtClass unlike in java.lang.Class. For the
same reason, the invoke method is not available in CtMethod and so forth.

Unlike the standard reflection API, Javassist allows developers to alter the
definition of classes through CtClass objects and the associated objects (Table
1 and 2). For example, the setSuperclass method in CtClass changes the super
class of the class. The addMethod method adds a new method to the class. The
definition of the new method is given in the form of String object representing the
source text. Javassist compiles the source text into bytecode on the fly and adds
it into the class file. The addField method adds a new field. It can take source text

representing the initial value of the field. Javassist compiles the source text and
inserts it in the constructor body so that the field is appropriately initialized.

The setName method in CtClass changes the name of the class. To keep con-
sistency, several methods like setName perform more than changing one attribute
field in a class file. For example, setName also substitutes the new class name
for all occurrences of the old class name in the class definition. The occurrences
of the old class name in method signatures are also changed.

3.2 Behavioral Reflection

The new version of Javassist allows the users to modify a method body as other
reflection-based toolkits. The users can develop a bytecode translator that inserts
a hook at the beginning or end of a method body. The bytecode translator
can also substitute a hook for a specific expression in a method body. The
hook executes intercepting code specified by the users in the form of source
text. The intercepting code can be a single Java statement or several statements
surrounded by {} and it can directly execute the altered behavior of the hooked
expression or call another method for indirectly executing the altered behavior.
The code is inlined in the hook and thus executed in the same scope as the
original expression. It can access private fields of the object although it cannot
access local variables.

The following example substitutes the hooks for the caller-side expressions
that invoke the move method in the Point class if the expressions belong to the
Graph class:

CtClass cc = ClassPool.getDefault().get("Graph");
cc.insrtument(new ExprEditor() {
public void edit(MethodCall m) {

if (m.getClassName().equals("Point")
&& m.getMethodName().equals("move"))

m.replace("{ System.out.println(\"calling move()\");"
+ " $_ = $proceed($$); }");

}
});

The hook executes the code printing a log message. The variable cc is the CtClass
object representing the Graph class.

The instrument method in CtClass receives an ExprEditor object and scans
the bodies of all the methods declared in the class, in the case above, the Graph
class. If an interesting expression is found, the edit method is invoked on the
given ExprEditor object with a parameter representing the expression. The edit
method can be invoked if a method call, a field access, object creation by the new
operator, an instanceof expression, a cast expression, or a catch clause is found.
The parameter is a MethodCall, FieldAccess, NewExpr, Instanceof, Cast, or Handler
object, respectively. These objects provide various methods for inspecting the
lexical contexts of the expression.

The edit method can inspect the given parameter to determine whether a
hook must be substituted for the expression. If the hook must be substituted,

the replace method is called on the given parameter. It replaces the expression
with the hook that executes the given Java statement or block. For the example
above, the hook executes the following block:

{ System.out.println("calling move()");
$_ = $proceed($$); }

The second statement in the block is written with special variables starting with
$, which are extensions to Java by Javassist. It executes the original method-call
expression.

Besides the instrument method, insertBefore, insertAfter, and addCatch meth-
ods are available in the CtMethod and CtConstructor classes. They receive source
text as a parameter, compile it, and insert the hook executing the compiled code
at the beginning or end of the method. The addCatch method inserts the hook
so that the hook will be executed when an exception of the specified type is
thrown in the method body. The hook executes the code given to addCatch as a
parameter.

3.3 Meta Variables and Types

The reify and reflect operations have been major sources of runtime overheads in
the reflective architecture. They are operations for converting runtime contexts
to/from regular Java objects so that the program can access and modify them.
Since other toolkits like Jinline use a regular Java compiler for compiling the
code executed by a hook, the code must be written as a regular Java method,
which must take the reified object as a parameter and return an object to be
reflected on the runtime contexts. Thus, the hook must always perform the reify
and reflect operations before/after invoking the method even though they might
be often unnecessary.

To avoid this problem, Javassist uses a Java compiler specially developed for
compiling the intercepting code. The compiler interprets several symbols in the
source text of that code as meta variables or types (Table 3). These symbols are
used to access the runtime or lexical contexts of the expression replaced with
the hook. If necessary, this access involves the reify and reflect operations. From
the implementation viewpoint, these symbols are macro variables expanded to
context-dependent text at compile time.

The meta variables enable Javassist to perform the reify and reflect opera-
tions on demand. Javassist does not perform these operations if the code executed
by the hook does not need them. If only part of the runtime contexts must be rei-
fied or reflected, the compiler produces optimized bytecode to minimize runtime
penalties due to the reify and reflect operations.

We below show details of some significant meta variables and types.

• $0, $1, $2, ...

They represent method parameters if the hooked expression is method call.
$0 represents the target object. The types of $0, $1, ... are identical to the types

Table 3. Meta variables and types

$0, $1, $2, ... parameter values
$_ result value
$$ a comma-separated sequence of the parameters

$args an array of the parameter values
$r formal type of the result value
$w the wrapper type

$proceed(..) execute the original computation
$class a java.lang.Class object representing the target class
$sig an array of java.lang.Class representing the

formal parameter types
$type a java.lang.Class object representing the formal

result type
$cflow(..) a mechanism similar to cflow of AspectJ

of the corresponding parameters. If the value of $1, $2, ... is updated, the value
of the corresponding parameter is also updated.

If the hooked expression is object creation, then $1, $2, ... represent the
actual parameters to the constructor. If it is field assignment, then $1 represents
the assigned value. The other variables like $2 are not available.

• $

The meta variable $_ represents the result value of the hooked execution. If
a new value is assigned to this meta variable, then the assigned value becomes
the result of the method call, field read, object creation, and so on. The type of
$_ is identical to the type of the result value of the original expression. If the
result type is void, then the type of $_ is Object.

• $$

The meta variable $$ is interpreted as a comma-separated sequence of all the
actual parameters. For example, if the hooked expression is a call to a method
move(int, int, int), then $$ is syntactically equivalent to $1, $2, $3. move($$)
is equivalent to move($1,$2,$3). This meta variable abstracts the number of
parameters from the source text so that the source text can be generic.

• $proceed

This is a meta method. If it is invoked, then the original computation of the
hooked expression is executed. For example, if the expression is a method call,
then the originally called method is invoked. If the expression is field read, then
$proceed() returns the value of the field. Typical usage of this meta method is
as following:

$_ = $proceed($$);

This executes the original computation with the current runtime contexts, which
may be updated through the meta variables.

Note that the types of the parameters of $proceed is the same as those of the
original ones. The result type is also the same. If the expression is field read,
then $proceed does not take a parameter. If the expression is field assignment,
then $proceed takes a new value of the field as a parameter. If the expression is
object creation, then $proceed takes the same parameters as the constructor.

• $args

The meta variable $args represents an array of all the parameters. The type
of this meta variable is an array of Object. Whenever this meta variable is read,
a new copy of the array is created and the parameters are stored in the array.
Note that $args is different from $$; $args can be used as a regular Java variable
whereas $$ is syntax sugar used only with a method call.

If the type of a parameter is a primitive type such as int, then the parameter
value is converted into a wrapper object of that primitive value. For example,
an int value is converted into a java.lang.Integer object to be stored in $args.

If an array of Object is assigned to $args, then each element of that array
is assigned to each actual parameter. If a parameter type is a primitive type,
the type of the corresponding array element must be a wrapper type such as
java.lang.Integer. The value of the element is converted from the wrapper type
to the primitive type before it is assigned to the parameter.

• $r and $w

These are meta types available only in a cast expression. $r represents the
result type of the hooked expression. If the expression is a method call, then $r
represents the return type of the method call.

If the result type is a primitive type, then ($r) converts the value from the
wrapper type to the primitive type. For example, if the result type is int, then

Object res = new Integer(3);
$_ = ($r)res;

converts res into the value 3 and assigns it to the meta variable $ of type int.
If the result type is void, then the type cast operator with ($r) is ignored. If the

type cast operator with $r is used in the return statement, then that statement
is regarded as the return statement without any return value. For example, if res
is a local variable and the result type is void, then

return ($r)res;

is regarded as:

return;

This specification is useful for the generic description of the intercepting code.
($w) converts the value from a primitive type to the wrapper type. For ex-

ample, in this program:

Integer i = ($w)5;

the cast expression converts the int value 5 to the java.lang.Integer object. If ($w)
is applied to a value of Object type, then ($w) is ignored.

3.4 Compilation

The hook produced by Javassist does not prepare an object corresponding to
jinArgs of Jinline. Rather, the prologue of the hook stores the runtime contexts
in local variables without any data conversion. If the hooked expression is a
method call, all the parameters pushed on the operand stack are popped and
stored in the variables. The epilogue of the hook reads the value of $, which
is implemented as a local variable, and pushes it on the operand stack as the
resulting value of the hooked expression. The intercepting code executed by the
hook is inlined between the prologue and the epilogue.

The local variables containing the runtime contexts are accessed through
the meta variables. If $args is read, the runtime contexts are obtained from the
local variables and the parameters are converted into an array of Object. This
conversion is the reify operation. Javassist does not perform the reify operation
until it is explicitly required by the meta variables such as $args.

Since the programmers can use the meta variables for explicitly specifying
when and what runtime contexts must be reified or reflected, Javassist can mini-
mize runtime penalties due to the reify and reflect operations. If these operations
are not required, Javassist never performs it. For example, if the source text of
the intercepting code is only "$_ = $proceed($$);", then no reify or reflect
operations are performed. $proceed is compiled into the bytecode sequence for
executing the original computation. For example, if the hooked expression is a
method call, the parameters are loaded from the local variables onto the operand
stack and the method originally called is invoked by the invokevirtual instruction.
The resulting value on the operand stack is stored into $. The overheads are
only extra costs of load and store instructions.

3.5 Example

In Section 2, we showed an example of the use of Jinline. For this example, we
substituted a hook for an expression for creating an object so that the Singleton
pattern would be enforced.

This example can be implemented with Javassist as well. We must specify
that the hook will execute the following intercepting code:

Object obj = Factory.singletons.get($class);
if (obj != null)
$_ = ($r)obj;

else {
$_ = $proceed($$);
Factory.singletons.put($class, ($w)$_);

}

This intercepting code is generic; it covers all the singleton classes.
Factory.singletons is a hashtable containing the singleton objects that have

been created. The intercepting code first searches this hashtable and, if it finds
an object of the target class, then it returns that object. Otherwise, the code
creates the object by $proceed and includes it in the hashtable. Note that the
meta types $r and $w are used in cast expressions since the type of $ (the
resulting value) is the class type of the created object.

4 Experiment

To measure the runtime overhead of the hook substituted by Javassist, we ex-
ecuted micro benchmark tests. We used Javassist to replace a method-call ex-
pression with a hook that executes the following intercepting code:

{ $_ = $proceed($$); }

This only executes the original computation, which is a method invocation with
the original parameters. We measured the elapsed time of executing this hooked
expression. The body of the called method was empty. The measured time repre-
sents the overhead of Javassist in the best case where no reification or reflection
is required.

For comparison, we also measured the elapsed time with the hook that in-
vokes the originally called method through the standard reflection API of Java.
The given code is:

{ $_ = ($r)method.invoke($0, $args); }

Here, method is a static field containing a java.lang.reflect.Method object. It rep-
resents the originally called method. Note that $args is used for obtaining the
parameter list and ($r) is for converting the type of the result value. They are
the reify and reflect operations. The measured time represents the minimum
overhead of the previous implementation technique of the reflective architec-
ture, which always performs the reify and reflect operations. Furthermore, we
measured the time with the behavioral reflection system included in the Javas-
sist toolkit. The system enables typical runtime reflection as Kava [19] does. In
this measurement, a metaobject trapped the method call and only executed the
body of the originally called method. The measured time includes the cost for
handling the metaobject as well as the reify and reflect operations.

Table 4 lists the results of our measurement using Sun JDK 1.4.0 01 for So-
laris 8. The listed numbers are the average of four million iterations after one
million iterations. We measured for several combinations of the return type and
the parameter types of the null method called by the hook. Reflection API means
the standard reflection API and Behavioral means the behavioral reflection sys-
tem. If Javassist was used, the elapsed time of all the combinations except one
was less than 10 nanoseconds. Since the pair of call and retl machine instructions
takes about 10 nanoseconds, these results mean that the overhead was negligible
and thus the method invocation was inlined by the JVM. On the other hand, the
other experiments showed the overheads were about 500 to 1,300 nanoseconds.

Table 4. The elapsed time of a null method call (nsec.)

Return type void void String String void int int double
Parameter types no String String String×2 int int int×2 double×2

Javassist ∗ ∗ ∗ ∗ ∗ ∗ ∗ 20
Reflection API 500 550 560 630 760 880 1,110 1,290
Behavioral 560 620 620 700 820 930 1,200 1,370

Sun Blade 1000 (Dual UltraSPARC III 750MHz, 1GB memory), Solaris 8, Sun JDK 1.4.0 01

∗ indicates the time was less than 10 nsec.

5 Related Work

This work is not the first work on improving the runtime performance of reflec-
tive systems. The technique of partial evaluation [7] has been actively studied
in this research field [14, 2]. However, since partial evaluation involves relatively
long compilation time, it is not appropriate for bytecode translators, which may
be used at load time. Compile-time reflection [3] can improve the runtime per-
formance but it makes runtime contexts difficult to access from the program.

The pointcut-advice framework of the AspectJ language [12] is similar to the
programming framework of Javassist. It allows programmers to insert a hook in
a method body for executing the code given as advice. Like Javassist, AspectJ
does not perform the reify operation unless they are explicitly requested through
the special variables such as thisJoinPoint. However, AspectJ is not a bytecode
translator toolkit but an aspect-oriented programming language and it does not
well support the reflect operation. On the other hand, Javassist supports both
of the reify and reflect operations. For example, assignment to $args updates the
runtime contexts.

The problem of Jinline mentioned in Section 2 is included in other aspect-
oriented systems that provide the pointcut-advice framework but are imple-
mented as a class library. For example, JAC [15] always reifies the runtime con-
texts before passing them to the wrappers. PROSE [16] allows choosing whether
the runtime contexts are reified or not but, if they are not reified, the description
of advice cannot be generic. Our compiler-based solution will be applicable to
those systems.

6 Conclusion

This paper presented a new version of our Java-bytecode translator toolkit
named Javassist. It allows the programmers to modify a method body according
to the reflection-based framework. A unique feature against other reflection-
based toolkits like Jinline is that Javassist uses a customized compiler for reduc-
ing runtime penalties due to the reify and reflect operations, which are fundamen-
tals of the reflective architecture. These runtime penalties have been disadvan-
tages of reflection-based toolkits whlie ease of use by the high-level abstraction

has been an advantage. Javassist reduces the runtime penalties while keeping
the ease of use. The version of Javassist presented in this paper has been already
released to the public and getting widely used. Applications of Javassist include
product-quality software like the JBoss EJB server.

References

1. Back, G., “DataScript — A Specification and Scripting Languages for Binary
Data,” in Generative Programming and Component Engineering (GPCE 2002)
(D. Batory, C. Consel, and W. Taha, eds.), LNCS 2487, pp. 66–77, Springer, 2002.

2. Braux, M. and J. Noyé, “Towards Partially Evaluating Reflection in Java,” in Proc.
of Symposium on Partial Evaluation and Semantics-Based Program Manipulation
(PEPM’00), SIGPLAN Notices vol. 34, no. 11, pp. 2–11, ACM, 1999.

3. Chiba, S., “A Metaobject Protocol for C++,” in Proc. of ACM Conf. on Object-
Oriented Programming Systems, Languages, and Applications, SIGPLAN Notices
vol. 30, no. 10, pp. 285–299, ACM, 1995.

4. Chiba, S., “Load-time structural reflection in Java,” in ECOOP 2000, LNCS 1850,
pp. 313–336, Springer-Verlag, 2000.

5. Czarnecki, K. and U. W. Eisenecker, Generative Programming. Addison Wesley,
2000.

6. Dahm, M., “Byte Code Engineering with the JavaClass API,” Techincal Report
B-17-98, Institut für Informatik, Freie Universität Berlin, January 1999.

7. Futamura, Y., “Partial Computation of Programs,” in Proc. of RIMS Symposia on
Software Science and Engineering, LNCS, no. 147, pp. 1–35, 1982.

8. Gamma, E., R. Helm, R. Johnson, and J. Vlissides, Design Patterns. Addison-
Wesley, 1994.

9. Ichisugi, Y. and Y. Roudier, “Extensible Java Preprocessor Kit and Tiny Data-
Parallel Java,” in Proc. of ISCOPE ’97, LNCS, no. 1343, 1997.

10. Java Soft, “JavaTM Core Reflection API and Specification.” Sun Microsystems,
Inc., 1997.

11. Kiczales, G., J. Lamping, A. Mendhekar, C. Maeda, C. Lopes, J. Loingtier, and
J. Irwin, “Aspect-Oriented Programming,” in ECOOP’97 – Object-Oriented Pro-
gramming, LNCS 1241, pp. 220–242, Springer, 1997.

12. Kiczales, G., E. Hilsdale, J. Hugunin, M. Kersten, J. Palm, and W. G. Gris-
wold, “An Overview of AspectJ,” in ECOOP 2001 – Object-Oriented Programming,
LNCS 2072, pp. 327–353, Springer, 2001.

13. Kniesel, G., P. Costanza, and M. Austermann, “JMangler — A Framework for
Load-Time Transformation of Java Class Files,” in Proc. of IEEE Workshop on
Source Code Analysis and Manipulation, 2001.

14. Masuhara, H. and A. Yonezawa, “Design and Partial Evaluation of Meta-objects
for a Concurrent Reflective Languages,” in ECOOP’98 - Object Oriented Program-
ming, LNCS 1445, pp. 418–439, Springer, 1998.

15. Pawlak, R., L. Seinturier, L. Duchien, and G. Florin, “JAC: A Flexible Solution for
Aspect-Oriented Programming in Java,” in Metalevel Architectures and Separation
of Crosscutting Concerns (Reflection 2001), LNCS 2192, pp. 1–24, Springer, 2001.

16. Popovici, A., T. Gross, and G. Alonso, “Dynamic Weaving for Aspect-Oriented
Programming,” in Proc. of Int’l Conf. on Aspect-Oriented Software Development
(AOSD’02), pp. 141–147, ACM Press, 2002.

17. Tanter, E., M. Ségura-Devillechaise, J. Noyé, and J. Piquer, “Altering Java Se-
mantics via Bytecode Manipulation,” in Generative Programming and Component
Engineering (GPCE 2002) (D. Batory, C. Consel, and W. Taha, eds.), LNCS 2487,
pp. 283–298, Springer, 2002.

18. Tatsubori, M., S. Chiba, M.-O. Killijian, and K. Itano, “OpenJava: A Class-based
Macro System for Java,” in Reflection and Software Engineering (W. Cazzola, R. J.
Stroud, and F. Tisato, eds.), LNCS 1826, pp. 119–135, Springer Verlag, 2000.

19. Welch, I. and R. Stroud, “From Dalang to Kava — The Evolution of a Reflective
Java Extension,” in Proc. of Reflection ’99, LNCS 1616, pp. 2–21, Springer, 1999.

	ref: Proc. of 2nd Int'l Conf. on Generative Programming and Component Engineering (GPCE '03)
	page: LNCS 2830, pp.364-376, Springer-Verlag, 2003.

