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Dynamic AOP, Why?

Bug fixing by performance profiling
On-site
Real work load
Try-and-Error

Insert profiling code for monitoring particular actions, 
remove it, insert different profiling code, and …

Low performance penalty
Don’t ship the products with a large amount of profiling 
code.
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Another application

Adaptive caching for Web app. servers
Caching database-query results and file contents

Selectively for better hit ratio.
Crosscutting concern

Caching and invalidation cut across multiple classes.
Dynamic join points

Static AOP should be slow.
Runtime contexts turns caching on and off.
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Wool

Java Dynamic AOP system
Using the Java Platform Debugger Architecture 
(JPDA)  of JDK 1.4
Intercepting method invocation by:

Breakpoints
HotSwap
to replace a method including hooks for interception

Wool is a Java class library.
No AOP language.
No introduction.



ECOOP'03 ASARTI Workshop 5

First stage

Using breakpoints
Advice runs in the
debugger process

aspect aspect

Debugger

JPDA
Wool

Application

breakpoints An aspect is
an object
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Joinpoint object

A parameter to advice
It represents the runtime contexts of the join 
point.

Method prameters, target object, etc…

Abstraction for accessing the application 
process from the debugger process.
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Second stage

Using HotSwap
Advice runs in the
app. process

JPDA

Application

Debugger
Wool

aspect

aspect Reloading a class
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Using both breakpoint and 
HotSwap, Why?

Breakpoint
Installation is fast.
Every interception takes long time.

HotSwap
Reloading a class takes long time.
Every interception is fast.
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Also, …

HotSwap does not allow reloading a class
if …

Stack frames class Rectangle {
void move(int x, int y) {

:
}
:

}
The method
is running.

Reloaded class
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Pair of before&after advice

They must be woven simultaneously.
Wool allows the users to control this.

Example.
Before advice records current time.
After advice records the elapsed time.

The after advice does not work if the before advice 
has not been installed.
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Jess in SPECjvm98
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Jess in SPECjvm98
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Summary

Wool
Java-based Dynamic AOP system using JPDA

Mixing Breakpoints and HotSwap
No need to use a custom JVM

Overheads due to dynamic AOP is not negligible 
against static AOP.

Constructing a Joinpoint object would be a major 
source of runtime penalty.
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