
ECOOP'03 ASARTI Workshop 1

Using HotSwap for
Implementing Dynamic

AOP Systems

Shigeru Chiba, Yoshiki Sato
(Tokyo Institute of Technology)

Michiaki Tatsubori (IBM)

ECOOP'03 ASARTI Workshop 2

Dynamic AOP, Why?

Bug fixing by performance profiling
On-site
Real work load
Try-and-Error

Insert profiling code for monitoring particular actions,
remove it, insert different profiling code, and …

Low performance penalty
Don’t ship the products with a large amount of profiling
code.

ECOOP'03 ASARTI Workshop 3

Another application

Adaptive caching for Web app. servers
Caching database-query results and file contents

Selectively for better hit ratio.
Crosscutting concern

Caching and invalidation cut across multiple classes.
Dynamic join points

Static AOP should be slow.
Runtime contexts turns caching on and off.

ECOOP'03 ASARTI Workshop 4

Wool

Java Dynamic AOP system
Using the Java Platform Debugger Architecture
(JPDA) of JDK 1.4
Intercepting method invocation by:

Breakpoints
HotSwap
to replace a method including hooks for interception

Wool is a Java class library.
No AOP language.
No introduction.

ECOOP'03 ASARTI Workshop 5

First stage

Using breakpoints
Advice runs in the
debugger process

aspect aspect

Debugger

JPDA
Wool

Application

breakpoints An aspect is
an object

ECOOP'03 ASARTI Workshop 6

Joinpoint object

A parameter to advice
It represents the runtime contexts of the join
point.

Method prameters, target object, etc…

Abstraction for accessing the application
process from the debugger process.

ECOOP'03 ASARTI Workshop 7

Second stage

Using HotSwap
Advice runs in the
app. process

JPDA

Application

Debugger
Wool

aspect

aspect Reloading a class

ECOOP'03 ASARTI Workshop 8

Using both breakpoint and
HotSwap, Why?

Breakpoint
Installation is fast.
Every interception takes long time.

HotSwap
Reloading a class takes long time.
Every interception is fast.

ECOOP'03 ASARTI Workshop 9

Also, …

HotSwap does not allow reloading a class
if …

Stack frames class Rectangle {
void move(int x, int y) {

:
}
:

}
The method
is running.

Reloaded class

ECOOP'03 ASARTI Workshop 10

Pair of before&after advice

They must be woven simultaneously.
Wool allows the users to control this.

Example.
Before advice records current time.
After advice records the elapsed time.

The after advice does not work if the before advice
has not been installed.

ECOOP'03 ASARTI Workshop 11

Jess in SPECjvm98

Elapsed time (Number puzzle)

0

5000

10000

15000

20000

25000

30000

AspectJ Wool

4 null advice

1 null advice

7,388,812

HotSwap
Breakpoint

Breakpoint

ECOOP'03 ASARTI Workshop 12

Jess in SPECjvm98

Elapsed time (Monkey banana)

0

2000

4000

6000

8000

10000

12000

14000

AspectJ Wool

4 null advice

1 null advice

45,817

HotSwap
Breakpoint

Breakpoint

ECOOP'03 ASARTI Workshop 13

Summary

Wool
Java-based Dynamic AOP system using JPDA

Mixing Breakpoints and HotSwap
No need to use a custom JVM

Overheads due to dynamic AOP is not negligible
against static AOP.

Constructing a Joinpoint object would be a major
source of runtime penalty.

	Using HotSwap for Implementing Dynamic AOP Systems
	Dynamic AOP, Why?
	Another application
	Wool
	First stage
	Joinpoint object
	Second stage
	Using both breakpoint and HotSwap, Why?
	Also, …
	Pair of before&after advice
	Jess in SPECjvm98
	Jess in SPECjvm98
	Summary

