
Using HotSwap for Implementing

Dynamic AOP Systems

Shigeru Chiba1 Yoshiki Sato1 Michiaki Tatsubori2

1 Dept. of Mathematical and Computing Sciences
Tokyo Institute of Technology

{chiba,yoshiki}@csg.is.titech.ac.jp
2 IBM Tokyo Research Laboratory

mich@trl.ibm.com

1 Introduction

Practical demands on dynamic aspect-oriented programming (AOP) are get-
ting well recognized. For example, logging functionality is a typical application
of AOP but the usefulness of this functionality is limited without dynamic AOP.
When we are debugging a program, we tend to want dynamically adding or re-
moving various logging aspects without restarting the program. Suppose that
the program is a Web application server and there is a bug that appears only
after long product run. If the program is restarted for logging, all the internal
data structures are reset and hence the context causing the bug would be lost.

Another crosscutting concern that should be dynamically woven is security
fixes. Suppose that your organization is running a web application server for
selling your products. Since such a web server cannot stop except scheduled
maintenance time, if it turns out that the server has a security problem, a patch
fixing the problem should be applied to the server without shutting it down.
If a better patch is released later, the previous patch should be removed and
instead the new one should be applied. The patch will be used until the server
is rebooted after the bug is fixed in a clean way at scheduled maintenance time.

Developing an implementation technique for dynamic AOP systems is still
a research topic especially in Java. Since one of the most important features of
Java is platform independence, dynamic AOP systems are required to be built on
top of the standard Java virtual machine (JVM). A modified JVM for dynamic
AOP is not acceptable in practice.

This paper presents our Java-based dynamic AOP system called Wool. For
better performance than other systems, Wool is implemented with our novel
technique exploiting the HotSwap mechanism recently introduced by the Java2
SDK 1.4. This mechanism allows us to dynamically reload a class file to update
the class definition. However, naively using this mechanism does not improve
execution performance. This paper mentions how this mechanism should be used
with others to really improve performance.

This work was supported in part by the CREST program of Japan Science and
Technology Corp.



2 Just-in-time Hook Insertion

Like other dynamic AOP systems, Wool weaves an aspect by hooking the thread
of control at the join points identified by pointcuts. It is currently implemented
as a Java library; it dose not provide any aspect language for easily writing an
aspect. The supported join points are method calls (both caller and callee sides),
field accesses, object instantiation, and exception handlers. The Wool users can
use before and after advice but not around advice. The advice is described as a
Java method that receives a Joinpoint object as a parameter. The Joinpoint
object represents the runtime context at a join point as the thisJoinPoint
object in AspectJ. Wool does not allow introduction since the HotSwap does
not allow reloading a class file to which a new method or field is appended.

First, Wool starts running a program without inserting hooks or any other
code changes. If an aspect is dynamically woven during the runtime, Wool first
requests the JVM through the JPDA (Java Platform Debugger Architecture)
to set break points at all the join points identified by a pointcut. If the thread
of control reaches one of the break point, the JPDA suspends the thread and
notifies Wool that the thread reaches the join point. Then, Wool runs the advice
associated with that join point.

Since the JPDA is designed for debuggers, the program that the JPDA no-
tifies must be a process different from the JVM process. Hence Wool exists in
a different JVM process and the advice is executed in this process. If the ad-
vice must refer to the runtime context at the join point, it must obtain them
through a Joinpoint object that Wool passes to the advice. The Joinpoint
object encapsulates details of the JPDA to access the target JVM.

Since context switches between the two processes occur whenever the thread
reaches a break point, using break points as hooks implies serious performance
overhead. To reduce the overheads, after executing the advice, Wool always
replaces the method including the join points identified by pointcuts with the
modified method in which hooks and the advice are directly embedded. The
method body is modified at the bytecode level so that a hook, that is, a bytecode
sequence for executing the advice is embedded at the join point contained in that
method body. Wool uses the HotSwap mechanism of the JPDA for unloading
the original class file and reloading a modified class file. It uses Javassist[2] for
modifying a class file. After replacing the method, a break point is never set at
the join points contained in the method body. Therefore, the execution overheads
are minimized. Note that Wool does not immediately reload the modified class
file when the aspect is woven. Instead Wool sets break points since the HotSwap
mechanism is not available till the program execution is suspended by the JPDA.

There is an exceptional case that Wool has to delay substituting a method in
which hooks are embedded. This is when a join point identified by a pointcut is
contained in the method currently being executed. For example, suppose that a
draw method in a Rectangle class is currently being executed and the activation
frame associated with that method is on the execution stack. If the class file of
Rectangle is reloaded with the HotSwap mechanism, however, the execution of
the draw method with that activation frame is still being performed according to

2



the definition of the original draw method given by the old class file. Thus, the
hooks contained in the new class file are not effective for that execution. On the
other hand, the hooks are effective for the execution of the draw method started
after the reloading. For example, if the draw method recursively call itself after
the class file is reloaded, then the second call of draw is executed with the new
class file. To avoid this problem, Wool does not reload the class file until the
first call of the draw method finishes and the activation frame is popped from
the stack.

Wool also has to be careful of the execution of a pair consisting of before and
after advice woven at the same join point. If that pair is woven accidentally while
the method containing that join point is executed, only the after advice will be
executed at the end of that execution. The before advice will not be executed
since the method execution had already been started. This behavior might cause
a problem if the after advice depends on the results of the before advice. For
example, the before advice might record the current time and the after advice
might use that value to compute the elapsed time. In this case, the after advice
must not be executed unless the corresponding before advice was executed. To
solve this problem, Wool allows the programmers to select the behavior in that
case. It also allows them to control precisely when an aspect is woven.

3 Preliminary Experiments

To evaluate effects of our implementation technique, we measured the execu-
tion time of the jess benchmark program from SPECjvm98. The program was
run with the HotSpot Client JVM (Java2 SDK 1.4.0) on Sun Blade 1000 (dual
UltraSPARC III 750MHz and 1 GB memory).

We executed jess to solve two problems (the number puzzle and the monkey
banana). jess is an expert system, which receives a problem description and
solves the problem. The null before-advice was woven in a method body in one
or four classes when the program started. For comparison, we also measured the
execution time of the program statically woven by AspectJ and the program
in which advice was woven only with breakpoints but without the HotSwap
mechanism.

Table 1 lists the results. Compared to the implementation only with break-
points, the hooks embedded by the HotSwap mechanism significantly improved
execution performance despite extra overheads due to the HotSwap. The only
exception is the monkey banana in which advice was woven only in one method
body; since the frequency of the execution of that advice was relatively low, the
improvement by the HotSwap did not exceed the overheads.

We also broke down the execution time measured with Wool. The tuples
indicated by † represent the elapsed time for handling break points, for reloading
a class file with HotSwap, and for the rest of the computation. Note that Wool
first sets break points since the program execution must be suspended at break
points before using the HotSwap. The times for handling break points were equal
among the four tests since they are independent of the solved problems, which are

3



Table 1. Elapsed Time of jess (msec)

input num. of AspectJ breakpoint Wool
advice (static) only (HotSwap)

Number 4 8,590 7,388,812 19,638

puzzle (1,680 + 4,057 + 13,901)†

1 8,522 23,307 11,832

(1,680 + 806 + 9,346)†

Monkey 4 1,063 45,817 11,003

banana (1,680 + 4,057 + 5,266)†

1 1,003 3,833 3,993

(1,680 + 806 + 1,507)†
†(handling breakpoints + HotSwap + the rest)

input data, and the numbers of advice bodies. The time for reloading a class file
includes the time for modifying the class file. It is approximately proportional to
the number of modified class files, which is equal to the number of advice bodies
in our experiment. It is independent of the input data.

Unfortunately, the execution performance of Wool was still lower than that
of AspectJ even if the time for handling break points and reloading a class file is
excluded. This is mainly due to constructing a Joinpoint object, which repre-
sents runtime context. On the other hand, AspectJ constructs a thisJoinPoint
object only if advice needs it. Since the advice we used for this experiment does
not need it, the execution performance of AspectJ is better than Wool. We chose
the current design of Wool since we want to provide the same interface to advice
no matter how hooks are implemented, by break points or the HotSwap. If hooks
are implemented by break points, advice needs a Joinpoint object for accessing
the context at the join point in a target JVM process.

Another overhead of Wool is that it runs in debug mode although AspectJ
runs in normal mode. The overhead due to the debug mode is about 5% or less
according to our other experiment using the Java 2 SDK 1.4 and SPECjvm98.

These results of our experiments show that the cost of embedding hooks in
a program by using the HotSpot is not negligible. To make this cost relatively
small, the program must run long after dynamically weaving an aspect. Also, the
current design of Wool with respect to the Joinpoint object should be revised
to reduce the overhead of the embedded hooks. Our new technique described in
another paper [3] would help this.

4 Related Work

There are several implementation techniques for dynamic AOP that have been
proposed so far. The most naive technique is to modify the JVM but it is not
acceptable for Java since portability is significant in Java. PROSE [5] uses break-
points for hooking the thread of control. This technique, however, implies sub-

4



stantial performance penalties as we mentioned above. JAC [4] and HandiWrap
[1] statically transform a program at compilation time so that hooks are embed-
ded at all the join points. Since the hooks are embedded even at the join points
that are not identified by pointcuts, performance penalties due to the hooks are
not acceptable.

5 Summary

This paper proposes our new implementation technique for dynamic AOP sys-
tems. It also shows Wool, which is our dynamic AOP system for Java based on
the proposed technique. It integrates a technique using breakpoints provided by
the debugger interface of the JVM and a technique using the HotSwap mecha-
nism, which allows us to reload an class file that has been already loaded. The
results of our preliminary experiments showed that our technique can achieve
good execution performance against other implementation techniques of dynamic
AOP. Our technique would allow software developers to use dynamic AOP for
practical applications.

References

1. Baker, J. and W. Hsieh, “Runtime aspect weaving through metaprogramming,” in
Proc. of Int’l Conf. on Aspect-Oriented Software Development (AOSD’02), pp. 86–
95, ACM Press, 2002.

2. Chiba, S., “Load-time structural reflection in Java,” in ECOOP 2000, LNCS 1850,
pp. 313–336, Springer-Verlag, 2000.

3. Chiba, S. and M. Nishizawa, “An Easy-to-Use Toolkit for Efficient Java Byte-
code Translators,” in Proc. of Generative Programming and Component Engineering
(GPCE ’03), (to appear), 2003.

4. Pawlak, R., L. Seinturier, L. Duchien, and G. Florin, “JAC: A Flexible Solution for
Aspect-Oriented Programming in Java,” in Metalevel Architectures and Separation
of Crosscutting Concerns (Reflection 2001), LNCS 2192, pp. 1–24, Springer, 2001.

5. Popovici, A., T. Gross, and G. Alonso, “Dynamic Weaving for Aspect-Oriented
Programming,” in Proc. of Int’l Conf. on Aspect-Oriented Software Development
(AOSD’02), pp. 141–147, ACM Press, 2002.

5


	ref: ECOOP'03 workshop on Advancing the State of the Art in Runtime Inspection (ASARTI), 2003 July.


